
HAL Id: hal-01927393
https://hal.science/hal-01927393

Submitted on 23 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A spectral algorithm for fast de novo layout of
uncorrected long nanopore reads

Antoine Recanati, Thomas Brüls, Alexandre d’Aspremont

To cite this version:
Antoine Recanati, Thomas Brüls, Alexandre d’Aspremont. A spectral algorithm for fast de novo layout
of uncorrected long nanopore reads. Bioinformatics, 2017, 33 (20), pp.3188 - 3194. �10.1093/bioinfor-
matics/btx370�. �hal-01927393�

https://hal.science/hal-01927393
https://hal.archives-ouvertes.fr

MANUSCRIPT

A spectral algorithm for fast de novo layout of
uncorrected long nanopore reads
Antoine Recanati 1, Thomas Brüls 2,3,4 and Alexandre d’Aspremont 1

1CNRS & D.I., UMR 8548, École Normale Supérieure, Paris, France.
2Commissariat à l’Energie Atomique et aux Energies Alternatives, Direction de la Recherche
Fondamentale, Genoscope, Evry, France.
3UMR 8030, Centre National de la Recherche Scientifique, Evry, France.
4Université Paris-Saclay, Evry, France.

ABSTRACT
Motivation: New long read sequencers promise to transform
sequencing and genome assembly by producing reads tens of
kilobases long. However, their high error rate significantly complicates
assembly and requires expensive correction steps to layout the reads
using standard assembly engines.
Results: We present an original and efficient spectral algorithm to
layout the uncorrected nanopore reads, and its seamless integration
into a straightforward overlap/layout/consensus (OLC) assembly
scheme. The method is shown to assemble Oxford Nanopore reads
from several bacterial genomes into good quality (∼99% identity to
the reference) genome-sized contigs, while yielding more fragmented
assemblies from the eukaryotic microbe Sacharomyces cerevisiae.
Availability and implementation:

https://github.com/antrec/spectrassembler
Contact: antoine.recanati@inria.fr

1 INTRODUCTION
De novo whole genome sequencing seeks to reconstruct an entire
genome from randomly sampled sub-fragments whose order and
orientation within the genome are unknown. The genome is
oversampled so that all parts are covered multiple times with high
probability.

High-throughput sequencing technologies such as Illumina
substantially reduce sequencing cost at the expense of read length,
which is typically a few hundred base pairs long (bp) at best.
Yet, de novo assembly is challenged by short reads, as genomes
contain repeated sequences resulting in layout degeneracies when
read length is shorter or of the same order than repeat length [Pop,
2004].

Recent long read sequencing technologies such as PacBio’s
SMRT and Oxford Nanopore Technology (ONT) have spurred a
renaissance in de novo assembly as they produce reads over 10kbp
long [Koren and Phillippy, 2015]. However, their high error rate
(∼15%) makes the task of assembly difficult, requiring complex and
computationally intensive pipelines.

Most approaches for long read assembly address this problem by
correcting the reads prior to performing the assembly, while a few
others integrate the correction with the overlap detection phase, as
in the latest version of the Canu pipeline [Koren et al., 2016] (former
Celera Assembler [Myers et al., 2000]).

Hybrid techniques combine short and long read technologies:
the accurate short reads are mapped onto the long reads, enabling

a consensus sequence to be derived for each long read and
thus providing low-error long reads (see for example Madoui
et al. [2015]). This method was shown to successfully assemble
prokaryotic and eukaryotic genomes with PacBio [Koren et al.,
2012] and ONT [Goodwin et al., 2015] data. Hierarchical assembly
follows the same mapping and consensus principle but resorts to
long read data only, the rationale being that the consensus sequence
derived from all erroneous long reads matching a given position of
the genome should be accurate provided there is sufficient coverage
and sequencing errors are reasonably randomly distributed: for a
given base position on the genome, if 8 out of 50 reads are wrong,
the majority vote still yields the correct base. Hierarchical methods
map long reads against each other and derive, for each read, a
consensus sequence based on all the reads that overlap it. Such an
approach was implemented in HGAP [Chin et al., 2013] to assemble
PacBio SMRT data, and more recently by Loman et al. [2015], to
achieve complete de novo assembly of Escherichia coli with ONT
data exclusively.

Recently, Li [2016] showed that it is possible to efficiently
perform de novo assembly of noisy long reads in only two
steps, without any dedicated correction procedure: all-vs-all raw
read mapping (with minimap) and assembly (with miniasm).
The miniasm assembler is inspired by the Celera Assembler and
produces unitigs through the construction of an assembly graph. Its
main limitation is that it produces a draft whose error rate is of the
same order as the raw reads.

Here, we present a new method for computing the layout of
raw nanopore reads, resulting in a simple and computationally
efficient protocol for assembly. It takes as input the all-vs-all overlap
information (e.g. from minimap, MHAP [Berlin et al., 2015] or
DALIGNER [Myers, 2014]) and outputs a layout of the reads
(i.e. their position and orientation in the genome). Like miniasm,
we compute an assembly from the all-vs-all raw read mapping,
but achieve improved quality through a coverage-based consensus
generation process, as in nanocorrect [Loman et al., 2015], although
reads are not corrected individually in our case.

The method relies on a simple spectral algorithm akin to Google’s
PageRank [Page et al., 1999] with deep theoretical underpinnings,
described in §2.1. It has successfully been applied to consecutive-
ones problems arising in physical mapping of genomes [Atkins and
Middendorf, 1996], ancestral genome reconstructions [Jones et al.,
2012], or the locus ordering problem [Cheema et al., 2010], but to
our knowledge has not been applied to de novo assembly problems.
In §2.2, we describe an assembler based on this layout method, to
which we add a consensus generation step based on POA [Lee et al.,

1

ar
X

iv
:1

60
9.

07
29

3v
3

 [
q-

bi
o.

G
N

]
 1

7
Ju

l 2
01

7

Recanati, Brüls, d’Aspremont

2002], a multi-sequence alignment engine. Finally, we evaluate this
pipeline on prokaryotic and eukaryotic genomes in §3, and discuss
possible improvements and limitations in §4.

2 METHODS

2.1 Layout computation
We lay out the reads in two steps. We first sort them by position, i.e., find a
permutation π such that read π(1) will be positioned before read π(2) on the
genome. Then, we iteratively assign an exact position (i.e., leftmost basepair
coordinate on the genome) to each read by using the previous read’s position
and the overlap information.

The key step is the first one, which we cast as a seriation problem, i.e.
we seek to reconstruct a linear order between n elements using unsorted,
pairwise similarity information [Atkins et al., 1998; Fogel et al., 2013]. Here
the n elements are the reads, and the similarity information comes from the
overlapper (e.g. from minimap).

The seriation problem is formulated as follows. Given a pairwise
similarity matrix Aij , and assuming the data has a serial structure, i.e. that
there exists an order π such that Aπ(i)π(j) decreases with |i− j|, seriation
seeks to recover this ordering π (see Figure 1 for an illustration). If such an
order π exists, it minimizes the 2-SUM score,

2-SUM(π) =

n∑
i,j=1

Aij (π(i)− π(j))2 , (1)

and the seriation problem can be solved as a minimization over the set of
permutation vectors [Fogel et al., 2013]. In other words, the permutation
π should be such that if Aij is high (meaning that i and j have a high
similarity), then (π(i)− π(j))2 should be low, meaning that the positions
π(i) and π(j) should be close to each other. Conversely, if Aij = 0, the
positions of i and j in the new order may be far away without affecting the
score.

When using seriation to solve genome assembly problems, the similarity
Aij measures the overlap between reads i and j. In an ideal setting with
constant read length and no repeated regions, two overlapping reads should
have nearby positions on the genome. We therefore expect the order found
by seriation to roughly match the sorting of the positions of the reads.

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

Fig. 1: A similarity matrix reordered with the spectral algorithm.
The original matrix (left) has values that decrease when moving
away from the diagonal (red : high value, blue : low value). It is
randomly permuted (right), and the spectral algorithm will find back
the original ordering.

The problem of finding a permutation over n elements is combinatorial.
Still, provided the original data has a serial structure, an exact solution to
seriation exists in the noiseless case [Atkins et al., 1998] using spectral
clustering, and there exist several convex relaxations allowing explicit
constraints on the solution [Fogel et al., 2013].

The exact solution is directly related to the well-known spectral clustering
algorithm. Indeed, for any vector x, the objective in (1) reads

n∑
i,j=1

Aij (xi − xj)2 = xTLAx, LA = diag(A1)−A

whereLA is the Laplacian matrix ofA. This means that the 2-SUM problem
amounts to

min
π
πTLAπ

where π is a permutation vector. Roughly speaking, the spectral clustering
approach to seriation relaxes the constraint “π is a permutation vector” into
“π is a vector of Rn orthogonal to the constant vector 1 = (1, ..., 1)T ” with
fixed norm. The problem then becomes

min
{1T π=0, ‖π‖2=1}

πTLAπ

This relaxed problem is an eigenvector problem. Finding the minimum
over normalized vectors x yields the eigenvector associated to the smallest
eigenvalue of LA, but the smallest eigenvalue, 0, is associated with the
eigenvector 1, from which we cannot recover any permutation. However,
if we restrict x to be orthogonal to 1, the solution is the second smallest
eigenvector, called the Fiedler vector. A permutation is recovered from this
eigenvector by sorting its coefficients: given x = (x1, x2, ..., xn), the
algorithm outputs a permutation π such that xπ(1) ≤ xπ(2) ≤ ... ≤ xπ(n).
This procedure is summarized as Algorithm 1.

In fact, [Atkins et al., 1998] showed that under the assumption that A
has a serial structure, Algorithm 1 solves the seriation problem exactly, i.e.
recovers the order π such that Aπ(i)π(j) decreases with |i− j|. This means
that we solve the read ordering problem by simply solving an extremal
eigenvalue problem, which has low complexity (comparable to Principal
Component Analysis (PCA)) and is efficient in practice (see Supplementary
Figure S1 and Table S1).

Algorithm 1 Spectral ordering

Input: Connected similarity matrix A ∈ Rn×n
1: Compute Laplacian LA = diag(A1)−A
2: Compute second smallest eigenvector of LA, x∗

3: Sort the values of x∗

Output: Permutation π : x∗π(1) ≤ x∗π(2) ≤ ... ≤ x∗π(n)

Once the reads are reordered, we can sequentially compute their exact
positions (basepair coordinate of their left end on the genome) and
orientation. We assign position 0 and strand “+” to the first read, and use
the overlap information (position of the overlap on each read and mutual
orientation) to compute the second read’s position and orientation, etc. More
specifically, when computing the position and orientation of read i, we use
the information from reads i − 1, ..., i − c to average the result, where
c roughly equals the coverage, as this makes the layout more robust to
misplaced reads. Note that overlappers relying on hashing, such as minimap
and MHAP, do not generate alignments but still locate the overlaps on the
reads, making this positioning step possible. Thanks to this “polishing”
phase, we would still recover the layout if two neighboring reads were
permuted due to consecutive entries of the sorted Fiedler vector being equal
up to the eigenvector computation precision, for example.

2.2 Consensus generation
We built a simple assembler using this layout idea and tested its accuracy.
It is partly inspired by the nanocorrect pipeline of Loman et al. [2015]
in which reads are corrected using multiple alignments of all overlapping
reads. These multiple alignments are performed with a Partial Order Aligner
(POA) [Lee et al., 2002] multiple-sequence alignment engine. It computes
a consensus sequence from the alignment of multiple sequences using a

2

A spectral algorithm for fast de novo layout of uncorrected long nanopore reads

window 1

window 2

window 3

POA in windows

consensus 1

consensus 2

consensus 3

consensus (1+2)

consensus ((1+2) +3)

Fig. 2: Consensus generation. Given the layout, the genome is
sliced into overlapping windows, and a consensus is computed in
each window. The final consensus is then obtained by merging the
consensus windows.

dynamic programming approach that is efficient when the sequences are
similar (which is the case if we trim the sequences to align their overlapping
parts). Specifically, we used SPOA, a Single Instruction Multiple Data
implementation of POA developed in Vaser et al. [2016].

The key point is that we do not need to perform multiple alignment
using all reads, since we already have a layout. Instead, we can generate
a consensus sequence for, say, the first 3000 bp of the genome by aligning
the parts of the reads that are included in this window with SPOA, and repeat
this step for the reads included in the window comprising the next 3000 bp of
the genome, etc. In practice, we take consecutive windows that overlap and
then merge them to avoid errors at the edges, as shown in Figure 2. The top of
the figure displays the layout of the reads broken down into three consecutive
overlapping windows, with one consensus sequence generated per window
with SPOA. The final assembly is obtained by iteratively merging the
window k+1 to the consensus formed by the windows 1, . . . , k.

The computational complexity for aligning N sequences of length L

with POA, with an average divergence between sequences ε, is roughly
O(mNL2), with m ' (1 + 2ε). With 10% of errors, m is close to 1.
If each window of size Lw contains about C sequences, the complexity of
building the consensus in a window is O(mCL2

w). We compute Lg/Lw
consensus windows, with Lg the length of the genome (or contig), so
the overall complexity of the consensus generation is O(mCLgLw). We
therefore chose in practice a window size relatively small, but large enough
to prevent mis-assemblies due to noise in the layout, Lw = 3kbp.

2.3 Overlap-based similarity and repeats handling
In practice, we build the similarity matrix A as follows. Given an overlap
found between the i-th and j-th reads, we set Aij equal to the overlap score
(or number of matches, given in tenth column of minimap or fourth column
of MHAP output file). Such matrices are sparse: a read overlaps with only a

few others (the number of neighbors of a read in the overlap graph roughly
equals the coverage). There is no sparsity requirement for the algorithm
to work, however sparsity lowers RAM usage since we store the n × n

similarity matrix with about n×C non-zero values, withC the coverage. In
such cases, the ordered similarity matrix is band diagonal.

Fig. 3: Similarity matrix for E. coli ONT sequences before (left) and
after (right) thresholding. The positions of the reads were obtained
by mapping to the reference genome with GraphMap [Sović et al.,
2016].

Unfortunately, the correctly ordered (sorted by position of the reads on
the backbone sequence) similarity matrix contains outliers outside the main
diagonal band (see Figure 3) that corrupt the ordering. These outliers are
typically caused by either repeated subsequences or sequencing noise (error
in the reads and chimeric reads), although errors in the similarity can also
be due to hashing approximations made in the overlap algorithm. We use
a threshold on the similarity values and on the length of the overlaps to
remove them. The error-induced overlaps are typically short and yield a
low similarity score (e.g., number of shared min-mers), while repeat-induced
overlaps can be as long as the length of the repeated region. By weighting the
similarity, the value associated to repeat-induced overlaps can be lowered.
Weighting can be done with, e.g., the --weighted option in MHAP to add
a tf-idf style scaling to the MinHash sketch, making repetitive k-mers less
likely to cause a match between two sequences, or with default parameters
with minimap. In the Supplementary Material, we describe experiments
with real, corrected and simulated reads to assess the characteristics of
such overlaps and validate our method. Supplementary Figure S2 shows
that although the overlap scores and lengths are lower for outliers than for
inliers on average, the distributions of these quantities intersect. As shown
in S3, the experiments indicate that all false-overlaps can be removed with
a stringent threshold on the overlap length and score. However, removing
all these short or low score overlaps will also remove many true overlaps.
For bacterial genomes, the similarity graph can either remain connected
or be broken into several connected components after a threshold-based
outlier removal, depending on the initial coverage. Figure S3 illustrates
the empirical observation that the coverage needs to be above 60x to keep
the graph connected while removing all outliers. Most outliers can be
similarly removed for real and synthetic data from S. cerevisiae, although
a few outliers, probably harboring telomeric repeats, remain at the ends of
chromosomes after thresholding.

There is thus a tradeoff to be reached depending on how many true
overlaps one can afford to lose. With sufficient coverage, a stringent
threshold on overlap score and length will remove both repeat-induced and
error-induced overlaps, while still yielding a connected assembly graph.
Otherwise, aggressive filtering will break the similarity graph into several
connected components. In such a case, since the spectral algorithm only
works with a connected similarity graph, we compute the layout and
consensus separately in each connected component, resulting in several
contigs. To set the threshold sufficiently high to remove outliers but small
enough to keep the number of contigs minimal, we used a heuristic based on

3

Recanati, Brüls, d’Aspremont

the following empirical observation, illustrated in Supplementary Figure S4.
The presence of outliers in the correctly (based on the positions of the reads)
ordered band diagonal matrix imparts an increased bandwidth (maximum
distance to the diagonal of non zero entries) on the matrix reordered with the
spectral algorithm.

We can therefore run the spectral algorithm, check the bandwidth in the
reordered matrix, and increase the threshold if the bandwidth appears too
large (typically larger than twice the coverage).

In practice, we chose to set the threshold on the overlap length to
3.5kbp, and removed the overlaps with the lowest score [in the first 40%-
quantile (respectively 90% and 95%) for C≤60X (resp. 60X≤C≤100X
and C≥100X)]. As indicated in Algorithm 2, we let these threshold values
increase if indicated by the bandwitdh heuristic.

Finally, we added a filtering step to remove reads that have non-zero
similarity with several sets of reads located in distant parts of the genome,
such as chimeric reads. These reads usually overlap with a first subset of
reads at a given position in the genome, and with another distinct subset of
reads at another location, with no overlap between these distinct subsets.
We call such reads “connecting reads”, and they can be detected from
the similarity matrix by computing, for each read (index i), the set of its
neighbors in the graph Ni = {j : Aij > 0}. The subgraph represented by
A restricted to Ni is either connected (there exists a path between any pair
of edges), or split into separate connected components. In the latter case, we
keep the overlaps between read i and its neighbor that belong to only one of
these connected components (the largest one).

Algorithm 2 OLC assembly pipeline
Input: n long noisy reads
1: Compute overlaps with an overlapper (e.g. minimap or MHAP)
2: Construct similarity matrix S ∈ Rn×n from the overlaps
3: Remove outliers from S with a threshold on values Sij , on overlap

length, and removal of connecting reads (as explained in §2.3)
4: for all Connected component A of S do
5: Reorder A with spectral algorithm (Algorithm 1)
6: if bandwidth of Areordered ≥ 2× Coverage then
7: set higher threshold on A and try again
8: end if
9: Compute layout from the ordering found and overlaps

10: Partition the length of the contig into small windows
11: Compute consensus in each window with SPOA
12: Merge consecutive windows with SPOA
13: end for
Output: Contig consensus sequences

3 RESULTS
3.1 Data
We tested this pipeline on ONT and PacBio data. The bacterium
Acinetobacter baylyi ADP1 and the yeast Saccharomyces cerevisiae
S288C were sequenced at Genoscope with Oxford Nanopore’s
MinION device using the R7.3 chemistry, together with an
additional dataset of S. cerevisiae S288C using the R9 chemistry.
Only the 2D high quality reads were used. The S. cerevisiae
S288C ONT sequences were deposited at the European Nucleotide
Archive (http://www.ebi.ac.uk/ena) where they can be accessed
under Run accessions ERR1539069 to ERR1539080, while
Acinetobacter baylyi ADP1 sequences will be made available
on https://github.com/antrec/spectrassembler. We also used the
following publicly available data: ONT Escherichia coli by Loman
et al. [2015] (http://bit.ly/loman006 - PCR1 2D pass dataset), and

4.6Mbp
true position

4
.6

M
b
p

p
o
si

ti
o
n
 f

o
u
n
d
 (

sp
e
ct

ra
l
a
lg

o
.)

Fig. 4: Ordering of the reads computed with the spectral algorithm
vs true ordering (obtained by mapping the reads to the reference
genome with GraphMap) for the E. coli ONT dataset. All contigs
are artificially displayed on the same plot for compactness. There
are two equivalent correct orderings for each contig : (1,2,...,n) and
(n, n-1, ..., 1), both yielding the same 2-SUM score (1) and leading
to the same consensus sequence (possibly reverse complemented).

PacBio E. coli K-12 PacBio P6C4, and S. cerevisiae W303 P4C2.
Their key characteristics are given with the assembly results in
Table 1, and read length histograms are given in Supplementary
Figure S5. For each dataset, we also used the reads corrected
and trimmed by the Canu pipeline as an additional dataset with
low error-rate. The results on these corrected datasets are given in
Supplementary Figures S6 and S7 and Tables S2 and S4.

3.2 Layout
3.2.1 Bacterial genomes minimap was used to compute overlaps
between raw reads (we obtained similar results with MHAP and
DALIGNER). The similarity matrix preprocessed as detailed in
Section2.3 yielded a few connected components for bacterial
genomes. The reads were successfully ordered in each of these, as
one can see in Figure 4 for E. coli, and in Figure S6 for the other
datasets.

3.2.2 Eukaryotic genome For the S. cerevisiae genome, the
threshold on similarity had to be set higher than for bacterial
genomes because of a substantially higher number of repetitive
regions and false overlaps, leading to a more fragmented assembly.
Most of them are correctly reordered with the spectral algorithm,
see Figure 5 and Supplementary Figure S7.

3.3 Consensus
3.3.1 Recovering contiguity Once the layout was established,
the method described above was used to assemble the contigs and
generate a consensus sequence. For the two bacterial genomes,
the first round of layout produced a small number of connected
components, each of them yielding a contig. Sufficient overlap was
left between the contig sequences to find their layout with a second

4

http://www.ebi.ac.uk/ena
http://bit.ly/loman006

A spectral algorithm for fast de novo layout of uncorrected long nanopore reads

12.1Mbp
true position

1
2
.1

M
b
p

p
o
si

ti
o
n
 f

o
u
n
d
 (

sp
e
ct

ra
l
a
lg

o
.)

Fig. 5: Ordering of the Saccharomyces cerevisiae ONT R7.3 reads
identified with the spectral algorithm vs true ordering (obtained
by mapping the reads to the reference genome with GraphMap
and concatenating the ordering found in each chromosome). The
different chromosomes are separated by grid lines.

iteration of the algorithm and produce a single contig spanning the
entire genome. The number of contigs in the yeast assemblies can
be reduced similarly. The fact that the first-pass contigs overlap even
though they result from breaking the similarity graph into several
connected components might seem counter-intuitive at first sight.
However, note that when cutting an edge Aij results in the creation
of two contigs (one containing i and the other j), the sequence
fragment at the origin of the overlap between the two reads is still
there on both contigs to yield an overlap between them in the second
iteration. Alternatively, we found the following method useful to
link the contigs’ ends: 1. extract the ends of the contig sequences,
2. compute their overlap with minimap, 3. propagate the overlaps
to the contig sequences, 4. use miniasm with all pre-selection
parameters and thresholds off, to just concatenate the contigs (see
Supplementary Material §5).

3.3.2 Consensus quality evaluation We first investigated the
quality of the consensus sequences derived in each window.
Figures 6 and S8 highlight the correcting effect of the consensus.
Supplementary Figure S9 suggests that the error-rate in the
consensus windows depends mainly on the local coverage. We
then compared our results to those obtained with other long reads
assemblers : Miniasm, Canu and Racon [Vaser et al., 2016]. Racon
takes a draft assembly, the raw reads, and a mapping of the reads
to the draft assembly as input. We used it with the draft assembly
produced by Miniasm (as done by Vaser et al. [2016]). We label
this method “Miniasm+Racon” in our results. We also used Racon
with the draft assembly derived by our method (“Spectral+Racon”
method), using Minimap to map the raw reads to the draft
assemblies before using Racon. A summary of assembly reports
generated with DNAdiff [Kurtz et al., 2004] and QUAST [Gurevich
et al., 2013] are given in Table 1 and Supplementary Table S3.
Briefly, the assemblies displayed between 98% and 99% average
identity to their reference genome, with errors mostly consisting

Fig. 6: Error rate of consensus window sequences, compared to the
raw and corrected (with the Canu correction and trimming modules)
reads for the A. baylyi ONT dataset. The error rates were computed
by mapping the sequences to the A. baylyi reference genome.
Histograms for the other datasets are available in Supplementary
Figure S8.

in deletions. Misassemblies were rare in reconstructed bacterial
genomes but more frequent in assembled yeast genomes, where they
mostly consisted in translocations and relocations caused by either
deletions and/or misplaced reads in the layout.

3.3.3 Optical mapping After the first iteration of the bacterial
genome assembly pipeline, overlaps between the first-pass contigs
were sufficient to find their layout. It should be anticipated however
that not all overlaps might be apparent in some cases, e.g. if
too many reads were removed during the preprocessing step. One
attractive option is to use optical mapping [Aston et al., 1999] to
layout the contigs. We had such an optical map available for the A.
baylyi genome, and implemented the algorithm of Nagarajan et al.
[2008] to map the contigs to the restriction map, which led to the
same layout as the one identified from our two-round assemblies
(data not shown), thus providing a “consistency check” for the
layout. We suggest in Supplementary Figure S10 and Table S5
that optical maps could be particularly valuable for the ordering of
contigs from more structurally complex eukaryotic genomes such as
S. cerevisiae.

4 DISCUSSION
We have shown that seriation based layout algorithms can be
successfully applied to de novo genome assembly problems, at least
for genomes harboring a limited number of repeats.

In a similar vein to the recent report about the miniasm assembly
engine [Li, 2016], our work confirms that the layout of long reads
can be found without prior error correction, using only overlap
information generated from raw reads by tools such as minimap,
MHAP or DALIGNER. However, unlike miniasm, which does

5

Recanati, Brüls, d’Aspremont

Table 1. Assembly results of the spectral method, compared to Miniasm, Canu and Racon, across the different datasets

Miniasm Spectral Canu Miniasm+Racon Miniasm+Racon
(2 iter.)

Spectral+Racon

A. baylyi
ONT
R7.3
28x

Ref. genome size [bp] 3598621 3598621 3598621 3598621 3598621 3598621
Total bases [bp] 3531295 3551582 3513432 3564823 3566438 3551094

Ref. chromosomes [#] 1 1 1 1 1 1
Contigs [#] 5 1 (7) 1 5 5 1 (7)

Aln. bases ref [bp] 3445457(95.74%) 3596249(99.93%) 3595082(99.90%) 3596858(99.95%) 3596854(99.95%) 3598181(99.99%)
Aln. bases query [bp] 3379002(95.69%) 3549290(99.94%) 3513081(99.99%) 3564455(99.99%) 3566021(99.99%) 3550742(99.99%)

Misassemblies [#] 0 0 2 2 2 0
Avg. identity 87.31 98.17 97.59 98.18 98.36 98.42

E. coli
ONT
R7.3
30x

Ref. genome size [bp] 4641652 4641652 4641652 4641652 4641652 4641652
Total bases [bp] 4759346 4662043 4625543 4647066 4643235 4629112

Ref. chromosomes [#] 1 1 1 1 1 1
Contigs [#] 3 1 (4) 2 3 3 1 (4)

Aln. bases ref [bp] 4355121(93.83%) 4612515(99.37%) 4638255(99.93%) 4640127(99.97%) 4640127(99.97%) 4641457(100.00%)
Aln. bases query [bp] 4432658(93.14%) 4623823(99.18%) 4625535(100.00%) 4642837(99.91%) 4639816(99.93%) 4628962(100.00%)

Misassemblies [#] 0 2 8 3 3 2
Avg. identity 89.28 98.80 99.40 99.31 99.45 99.46

S.
cerevisiae
ONT
R7.3
68x

Ref. genome size [bp] 12157105 12157105 12157105 12157105 12157105 12157105
Total bases [bp] 11813544 12213218 12142953 11926664 11926191 12167363

Ref. chromosomes [#] 17 17 17 17 17 17
Contigs [#] 29 71 (127) 36 29 29 71 (127)

Aln. bases ref [bp] 11566318(95.14%) 12043050(99.06%) 12086977(99.42%) 12084923(99.41%) 12086556(99.42%) 12061384(99.21%)
Aln. bases query [bp] 11236806(95.12%) 12134480(99.36%) 12089056(99.56%) 11923058(99.97%) 11918621(99.94%) 12135284(99.74%)

Misassemblies [#] 0 7 34 18 19 11
Avg. identity 89.00 98.00 98.33 98.49 98.63 98.61

S.
cerevisiae
ONT R9
86x

Ref. genome size [bp] 12157105 12157105 12157105 12157105 12157105 12157105
Total bases [bp] 11734150 11795644 12217497 12128279 12129086 11750114

Ref. chromosomes [#] 17 17 17 17 17 17
Contigs [#] 30 48 (85) 26 30 29 48 (85)

Aln. bases ref [bp] 11947453(98.28%) 11607131(95.48%) 12126980(99.75%) 12126663(99.75%) 12127467(99.76%) 11695983(96.21%)
Aln. bases query [bp] 11549494(98.43%) 11668882(98.93%) 12179843(99.69%) 12118506(99.92%) 12121202(99.93%) 11717047(99.72%)

Misassemblies [#] 0 23 39 18 19 36
Avg. identity 93.55 98.81 99.02 99.16 99.20 99.10

E. coli
PacBio
161x

Ref. genome size [bp] 4641652 4641652 4641652 4641652 4641652 4641652
Total bases [bp] 4845211 4731239 4670125 4653228 4645420 4674460

Ref. chromosomes [#] 1 1 1 1 1 1
Contigs [#] 1 2 (6) 1 1 1 2 (6)

Aln. bases ref [bp] 4437473(95.60%) 4617713(99.48%) 4641652(100.00%) 4641551(100.00%) 4641500(100.00%) 4641652(100.00%)
Aln. bases query [bp] 4601587(94.97%) 4705704(99.46%) 4670125(100.00%) 4653140(100.00%) 4645420(100.00%) 4673065(99.97%)

Misassemblies [#] 0 5 4 4 4 4
Avg. identity 89.13 98.63 99.99 99.64 99.91 99.87

S.
cerevisiae
PacBio
127x

Ref. genome size [bp] 12157105 12157105 12157105 12157105 12157105 12157105
Total bases [bp] 12266420 12839034 12346258 12070971 12052148 12695031

Ref. chromosomes [#] 17 17 17 17 17 17
Contigs [#] 30 90 (136) 29 30 30 90 (136)

Aln. bases ref [bp] 11250453(92.54%) 11917823(98.03%) 12091868(99.46%) 12023040(98.90%) 12024968(98.91%) 12002816(98.73%)
Aln. bases query [bp] 11396172(92.91%) 12456415(97.02%) 12304982(99.67%) 12045088(99.79%) 12027812(99.80%) 12485128(98.35%)

Misassemblies [#] 0 57 76 61 59 68
Avg. identity 88.29 98.41 99.87 99.43 99.72 99.54

For the spectral method, we give the results after contig merging (see §3.3.1); the number of contigs before this post-processing is given between parentheses. Racon’s use here can
be seen as a polishing phase for the sequences outputted by the spectral method and Miniasm. To keep both assemblers on an equal footing, we compared Spectral+Racon to two
iterations of Miniasm+Racon (since one pass of Miniasm does not implement any consensus). The best results in terms of average identity are highlighted in bold (but other metrics
should also be used to compare the assemblies). Canu clearly outperforms the spectral method on PacBio data, while both assemblers yield comparable results on the ONT datasets.

not derive a consensus but instead concatenates the reads into a
full sequence, we take advantage of read coverage to produce
contigs with a consensus quality on par with that achieved by
assembly pipelines executing dedicated error-correction steps. The

results of Table 1 appear promising. For example, our assembler
combined with Racon yields among the highest average identities
with the reference for the ONT datasets. In terms of speed
however, our pipeline is clearly outperformed by Miniasm, but also

6

A spectral algorithm for fast de novo layout of uncorrected long nanopore reads

by Miniasm+Racon, the latter improving overall accuracy. Still,
compared to approaches implementing error correction steps, we
gain significant speed-ups by highly localizing the error correction
and consensus generation processes, which is made possible by
knowledge of the layout. We believe that tools such as Miniasm
and Racon are implemented in a much more efficient way than our
own, but the layout method itself is efficient (see Supplementary
Table S1) and is known to be scalable as it relies on the same
algorithmic core as Google’s PageRank.

The main limitation of our layout algorithm is its sensitivity to
outliers in the similarity matrix, hence the need to remove them in
a pre-processing phase. Higher coverage and quality of the input
reads, both expected in the near future, would likely improve the
robustness of our pipeline. Still, for eukaryotic genomes, we found
that some outliers require additional information to be resolved (see
Supplementary FigureS3), which could be provided in the future by
extracting topological information from the assembly graph.

In the meantime, our pipeline behaves like a draft generating
assembler for prokaryotic genomes, and a first-pass unitigger for
eukaryotic genomes. Importantly, the overall approach is modular
and can integrate other algorithms to increase layout robustness or
consensus quality, as illustrated here by the integration of Racon as
an optional polishing module.

Our original contribution here consists in the layout computation.
The spectral OLC assembler we built on top of it could be enhanced
in many ways. We have shown that the spectral algorithm is suited to
find the layout for bacterial genomes, even though there is room left
for performance improvements on repeat-rich eukaryotic genomes.

For these eukaryotic genomes, it could make sense to use
the spectral algorithm jointly with other assembly engines (e.g.
Miniasm or Canu), to check the consistency of connected
components before they are assembled. Our consensus generation
method is coarse-grained for now and does not take into account
statistical properties of ONT sequencing errors. Nevertheless, the
three components (O, L and C) of the method being independent,
an external and more refined consensus generation process could
readily be plugged after the overlap and layout computations to
further improve results and increase accuracy.

ACKNOWLEDGEMENT
TB would like to thank Genoscope’s sequencing (Laboratoire
de Séquençage) and bioinformatics (Laboratoire d’Informatique
Scientifique) teams for sharing some Acinetobacter baylyi ADP1
and Sacharomyces cerevisiae S288C MinION data, and is grateful
to Oxford Nanopore Technologies Ltd for granting Genoscope
access to its MinION device via the MinION Access Programme.

AA and AR would like to acknowledge support from the
European Research Council (project SIPA). The authors would also
like to acknowledge support from the chaire Économie des nouvelles
données, the data science joint research initiative with the fonds
AXA pour la recherche and a gift from Société Générale Cross Asset
Quantitative Research.

REFERENCES
Aston, C., Mishra, B., and Schwartz, D. C. (1999). Optical mapping and its potential

for large-scale sequencing projects. Trends in Biotechnology, 17(7):297–302.

Atkins, J. E., Boman, E. G., and Hendrickson, B. (1998). A spectral algorithm
for seriation and the consecutive ones problem. SIAM Journal on Computing,
28(1):297–310.

Atkins, J. E. and Middendorf, M. (1996). On physical mapping and the consecutive
ones property for sparse matrices. Discrete Appl. Math., 71(1-3):23–40.

Berlin, K., Koren, S., Chin, C.-S., Drake, J. P., Landolin, J. M., and Phillippy, A. M.
(2015). Assembling large genomes with single-molecule sequencing and locality-
sensitive hashing. Nature biotechnology.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. (2017). Julia: A fresh
approach to numerical computing. SIAM Review, 59(1):65–98.

Cheema, J., Ellis, T. N., and Dicks, J. (2010). Thread mapper studio: a novel, visual web
server for the estimation of genetic linkage maps. Nucleic acids research, 38(suppl
2):W188–W193.

Chin, C.-S., Alexander, D. H., Marks, P., Klammer, A. A., Drake, J., Heiner, C., Clum,
A., Copeland, A., Huddleston, J., and Eichler, E. E. (2013). Nonhybrid, finished
microbial genome assemblies from long-read smrt sequencing data. Nature methods,
10(6):563–569.

Fogel, F., Jenatton, R., Bach, F., and d’Aspremont, A. (2013). Convex relaxations for
permutation problems. pages 1016–1024.

Goodwin, S., Gurtowski, J., Ethe-Sayers, S., Deshpande, P., Schatz, M. C., and
McCombie, W. R. (2015). Oxford nanopore sequencing, hybrid error correction, and
de novo assembly of a eukaryotic genome. Genome research, 25(11):1750–1756.

Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013). Quast: quality assessment
tool for genome assemblies. Bioinformatics, 29(8):1072–1075.

Jones, B. R., Rajaraman, A., Tannier, E., and Chauve, C. (2012). Anges: reconstructing
ancestral genomes maps. Bioinformatics, 28(18):2388.

Koren, S. and Phillippy, A. M. (2015). One chromosome, one contig: complete
microbial genomes from long-read sequencing and assembly. Current Opinion in
Microbiology, 23:110–120.

Koren, S., Schatz, M. C., Walenz, B. P., Martin, J., Howard, J. T., Ganapathy, G.,
Wang, Z., Rasko, D. A., McCombie, W. R., and Jarvis, E. D. (2012). Hybrid
error correction and de novo assembly of single-molecule sequencing reads. Nature
biotechnology, 30(7):693–700.

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., and Phillippy, A. M. (2016). Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting and repeat
separation. bioRxiv.

Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C., and
Salzberg, S. L. (2004). Versatile and open software for comparing large genomes.
Genome biology, 5(2):R12.

Lee, C., Grasso, C., and Sharlow, M. F. (2002). Multiple sequence alignment using
partial order graphs. Bioinformatics, 18(3):452–464.

Li, H. (2016). Minimap and miniasm: fast mapping and de novo assembly for noisy
long sequences. Bioinformatics, page btw152.

Loman, N. J., Quick, J., and Simpson, J. T. (2015). A complete bacterial genome
assembled de novo using only nanopore sequencing data. Nat Meth, 12(8):733–735.

Madoui, M.-A., Engelen, S., Cruaud, C., Belser, C., Bertrand, L., Alberti, A.,
Lemainque, A., Wincker, P., and Aury, J.-M. (2015). Genome assembly using
nanopore-guided long and error-free dna reads. BMC Genomics, 16:327.

Myers, E. W., Sutton, G. G., Delcher, A. L., Dew, I. M., Fasulo, D. P., Flanigan, M. J.,
Kravitz, S. A., Mobarry, C. M., Reinert, K. H., and Remington, K. A. (2000). A
whole-genome assembly of drosophila. Science, 287(5461):2196–2204.

Myers, G. (2014). Efficient local alignment discovery amongst noisy long reads, pages
52–67. Springer.

Nagarajan, N., Read, T. D., and Pop, M. (2008). Scaffolding and validation of bacterial
genome assemblies using optical restriction maps. Bioinformatics, 24(10):1229–
1235.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford InfoLab.

Pop, M. (2004). Shotgun sequence assembly. Advances in computers, 60:193–248.
Sović, I., Šikić, M., Wilm, A., Fenlon, S. N., Chen, S., and Nagarajan, N. (2016).

Fast and sensitive mapping of nanopore sequencing reads with graphmap. Nature
communications, 7.

Vaser, R., Sovic, I., Nagarajan, N., and Sikic, M. (2016). Fast and accurate de novo
genome assembly from long uncorrected reads. bioRxiv, page 068122.

Yang, C., Chu, J., Warren, R. L., and Birol, I. (2016). Nanosim: nanopore sequence
read simulator based on statistical characterization. bioRxiv, page 044545.

7

A spectral algorithm for fast de novo layout of uncorrected long nanopore reads

5 SUPPLEMENTARY MATERIAL

Table S1. Running time for the different methods on the datasets presented in Section3.1

Spectral Layout Spectral (full,
+Minimap)

Canu Minimap +
Miniasm

Racon after
Miniasm

Racon after
Spectral

A. baylyi ONT
R7.3 28x

Runtime [h:mm:ss] 0:00:23 (0:00:59) 0:12:52 0:25:55 0:00:28 0:01:54 0:01:48
Max mem [Gb] 1.966 1.966 3.827 1.499 0.756 0.484

E. coli ONT
R7.3 30x

Runtime [h:mm:ss] 0:00:41 (0:01:25) 0:16:15 0:28:40 0:00:13 0:04:36 0:02:14
Max mem [Gb] 1.216 1.216 4.655 2.099 0.879 0.645

S. cerevisiae
ONT R7.3 68x

Runtime [h:mm:ss] 0:01:41 (0:07:60) 1:41:20 4:33:08 0:01:17 0:21:11 0:21:32
Max mem [Gb] 12.208 12.208 4.015 8.506 2.376 2.325

S. cerevisiae
ONT R9 86x

Runtime [h:mm:ss] 0:03:38 (0:09:28) 2:26:44 7:15:41 0:02:14 0:23:09 0:22:03
Max mem [Gb] 32.928 32.928 3.986 12.397 2.966 2.775

E. coli PacBio
161x

Runtime [h:mm:ss] 0:05:19 (0:05:44) 1:32:13 0:51:32 0:01:16 0:16:51 0:18:18
Max mem [Gb] 21.650 21.650 3.770 9.969 8.082 4.619

S. cerevisiae
PacBio 127x

Runtime [h:mm:ss] 0:03:11 (0:07:01) 2:59:41 1:50:23 0:02:10 0:20:54 0:23:32
Max mem [Gb] 32.184 32.184 3.810 16.881 4.290 4.307

Run-time and peak memory for the previously compared methods, when run on a 24 cores Intel Xeon E5-2640 2.50GHz node. Runtime and Max mem correspond to the
wall-clock and maximum resident set size fields of the unix /usr/bin/time -v command. The first column (Spectral Layout) displays the running time of the layout phase of our
method in the following way: time to reorder contigs with the spectral algorithm (total time to get fine-grained layout); the total time for the layout (including the fine-grained
computation of the position of the reads on a backbone sequence) is given between parentheses next to the time for the ordering. The second column gives the runtime for
our full pipeline, including running minimap to obtain the overlaps. The runtime for Racon includes the time to map the reads to the backbone sequence with Minimap and to
run Racon for the consensus (Racon requires a backbone sequence, obtained either with Miniasm or Spectral in the present experiments). Indeed, the Racon pipeline maps the
reads to a draft sequence to get the layout and then computes consensus sequences in windows across the genome. Our pipeline instead directly computes the layout and then
generates consensus sequences in windows across the genome (the latter task being embarassingly parallel). Canu is faster than our method on the PacBio datasets (probably
at least because because we did not adapt our pipeline (as Canu does) to the much higher coverage, nor to the higher fraction of chimeric reads typical of PacBio data), but not
on the ONT datasets. The memory for the spectral method can be allocated among several cores.

0 5000 10000 15000 20000 25000

matrix size (conn. comp.)

0

20

40

60

80

100

ti
m

e
 t

o
 r

e
o
rd

e
r

(s
)

python

julia

Fig. S1: Runtime of the spectral ordering algorithm in connected components of different sizes (across all datasets), with two solvers for the
eigenvalues computations (scipy.sparse.eigsh and the eigs function from Julia [Bezanson et al., 2017]). We implemented a call to Julia for
matrices of size larger than 3000 in the code since its eigenvector computation scales better for large matrices (probably due to the fact that
the matrices are passed by reference in Julia) but has a non-negligible overhead for small matrices.

1

Recanati, Brüls, d’Aspremont

102 103 104

matches

D
e
n
si

ty

Outliers

Inliers

(a) A. baylyi ONT

102 103 104 105

matches

D
e
n
si

ty

Outliers

Inliers

(b) S. cerevisiae ONT R7.3

102 103 104 105

matches

D
e
n
si

ty

Outliers

Inliers

(c) S. cerevisiae ONT R9

102 103 104 105

Ovl length

D
e
n
si

ty

Outliers

Inliers

(d) A. baylyi ONT

102 103 104 105

Ovl length

D
e
n
si

ty
Outliers

Inliers

(e) S. cerevisiae ONT R7.3

102 103 104 105

Ovl length

D
e
n
si

ty

Outliers

Inliers

(f) S. cerevisiae ONT R9

Fig. S2: Histograms of overlap scores [number of matches from minimap] (a-c) and overlap lengths (d-f) for the ONT datasets, for outliers
(blue) and inliers (green). The x-axis is in log scale. The mapping of the reads to the reference genome with GraphMap was used to label
inliers and outliers.

2

A spectral algorithm for fast de novo layout of uncorrected long nanopore reads

(a) A. baylyi simu. perfect 104X (b) A. baylyi simu. raw 104X (c) S. cerevisiae simu. perfect 87x

(d) A. baylyi sim. perfect 104X (e) A. baylyi simu. raw 104X (f) S. cerevisiae simu. perfect 87x

Fig. S3: Ordered similarity matrices for simulated datasets after removing 50% of the overlaps (a-c) or 90% (d-f) to illustrate the outlier
removal by thresholding on the overlap score. The reads were simulated with NanoSim [Yang et al., 2016], from the A. baylyi ONT R7.3 and
S. cerevisiae ONT R9 datasets. Subfigures S3a and S3d (respectively S3c and S3f) represent the similarity for reads generated with NanoSim
from the A. baylyi ONT R7.3 (respectively S. cerevisiae ONT R9) dataset with option –perfect, which means these synthetic reads follow the
same length distribution than the original dataset, but have no errors, and have the coverage specified above. The matrices S3b and S3e were
generated from the A. baylyi ONT R7.3 dataset without the –perfect option, which means they have the same length and error distribution
than the original data, but with higher coverage. For perfect and noisy synthetic A. baylyi reads and with sufficient coverage, all outliers
could be removed by thresholding while keeping a connected similarity graph (all matrices in the Figure are connected). On the other hand,
the similarity matrix generated with S. cerevisiae perfect reads still harbors a few outliers after removing 90% of the overlaps (with lowest
score). When increasing the threshold value, the connectivity within some individual chromosomes will be broken before all outliers have
been removed. Additional structural information (as used in Canu or Miniasm) will be required to resolve repeats in such situations.

3

Recanati, Brüls, d’Aspremont

0 1000 2000 3000 4000

0

1000

2000

3000

4000

(a)

0 1000 2000 3000 4000

0

1000

2000

3000

4000

bandwidth : 1806

(b)

Fig. S4: Similarity matrices containing outliers, displayed with true ordering (obtained by mapping the reads to the reference genome with
GraphMap) and generated with a subset of A. baylyi ONT NanoSim perfect reads S4a, and the same matrix incorrectly reordered with the
spectral algorithm S4b. The bandwidth is about 50 times as large as in the absence of outliers. This significant gap (an order of magnitude
difference) between the bandwidth of the matrix reordered with the spectral algorithm depending on whether the original matrix (ordered by
increasing position of the reads) contained outliers (i.e., is band-diagonal) or not motivated the development of the heuristic for assessing the
ordering found by the spectral algorithm, as explained in §2.3. However, this heuristic is not applicable when the size of the similarity matrix
is small, e.g., if the matrix is of size 100, the bandwidth cannot exceed 100 and the use of the heuristic is precluded.

0.0 10.0 20.0 30.0
read length (Kbp)

d
e
n
si

ty

: 21645
Cov : 28.1x
Mean : 4670.9
Median : 4523.0
Min : 160.0
Max : 21464.0
>7Kbp : 20.4

(a) A. baylyi ONT

0.0 10.0 20.0 30.0
read length (Kbp)

d
e
n
si

ty

: 20409
Cov : 30.2x
Mean : 6863.4
Median : 7002.0
Min : 327.0
Max : 25494.0
>7Kbp : 50.0

(b) E. coli ONT

0.0 10.0 20.0 30.0
read length (Kbp)

d
e
n
si

ty

: 87217
Cov : 161.3x
Mean : 8582.1
Median : 6663.0
Min : 1.0
Max : 44113.0
>7Kbp : 48.4

(c) E. coli PacBio

0.0 10.0 20.0 30.0
read length (Kbp)

d
e
n
si

ty

: 117773
Cov : 67.7x
Mean : 6984.9
Median : 6721.0
Min : 201.0
Max : 40954.0
>7Kbp : 45.9

(d) S. cerevisiae ONT R7.3

0.0 10.0 20.0 30.0
read length (Kbp)

d
e
n
si

ty

: 177853
Cov : 85.9x
Mean : 5869.8
Median : 6144.0
Min : 87.0
Max : 53888.0
>7Kbp : 42.2

(e) S. cerevisiae ONT R9

0.0 10.0 20.0 30.0
read length (Kbp)

d
e
n
si

ty

: 263571
Cov : 127.0x
Mean : 5855.7
Median : 4913.0
Min : 1.0
Max : 30164.0
>7Kbp : 34.4

(f) S. cerevisiae PacBio

Fig. S5: Read length histograms of the raw datasets.

4

A spectral algorithm for fast de novo layout of uncorrected long nanopore reads

Table S2. Assembly results of several assemblers across the datasets corrected with Canu

Miniasm Spectral Canu Miniasm+Racon Miniasm+Racon
(2 iter.)

Spectral+Racon

A. baylyi
ONT
R7.3
28x
(26x)

Ref. genome size [bp] 3598621 3598621 3598621 3598621 3598621 3598621
Total bases [bp] 3493724 3523055 3516777 3540178 3540766 3522315

Ref. chromosomes [#] 1 1 1 1 1 1
Contigs [#] 5 2 (9) 2 5 5 2 (9)

Aln. bases ref [bp] 3594663(99.89%) 3596069(99.93%) 3595264(99.91%) 3595193(99.90%) 3595193(99.90%) 3596269(99.93%)
Aln. bases query [bp] 3492976(99.98%) 3522804(99.99%) 3516440(99.99%) 3539856(99.99%) 3540444(99.99%) 3522311(100.00%)

Misassemblies [#] 2 1 2 2 2 1
Avg. identity 96.40 97.87 97.61 97.79 97.85 97.86

E. coli
ONT
R7.3
30x
(27x)

Ref. genome size [bp] 4641652 4641652 4641652 4641652 4641652 4641652
Total bases [bp] 4597538 4613973 4627578 4617120 4617100 4613521

Ref. chromosomes [#] 1 1 1 1 1 1
Contigs [#] 3 1 (8) 2 3 3 1 (8)

Aln. bases ref [bp] 4639179(99.95%) 4639815(99.96%) 4639396(99.95%) 4639355(99.95%) 4639355(99.95%) 4639420(99.95%)
Aln. bases query [bp] 4597389(100.00%) 4613972(100.00%) 4627577(100.00%) 4617119(100.00%) 4617099(100.00%) 4613520(100.00%)

Misassemblies [#] 2 2 4 2 2 2
Avg. identity 98.89 99.43 99.41 99.42 99.43 99.43

S.
cerevisiae
ONT
R7.3
68x
(38x)

Ref. genome size [bp] 12157105 12157105 12157105 12157105 12157105 12157105
Total bases [bp] 11814836 11959669 12112186 11877015 11876882 11949674

Ref. chromosomes [#] 17 17 17 17 17 17
Contigs [#] 29 67 (126) 37 28 28 67 (126)

Aln. bases ref [bp] 12061456(99.21%) 11963869(98.41%) 12068379(99.27%) 12062161(99.22%) 12061809(99.22%) 11969742(98.46%)
Aln. bases query [bp] 11814252(100.00%)11930637(99.76%) 12069253(99.65%) 11876268(99.99%) 11876225(99.99%) 11925068(99.79%)

Misassemblies [#] 19 22 26 20 20 24
Avg. identity 97.81 98.32 98.36 98.39 98.39 98.38

S.
cerevisiae
ONT
R9 86x
(40x)

Ref. genome size [bp] 12157105 12157105 12157105 12157105 12157105 12157105
Total bases [bp] 11946760 12081487 12184545 11970672 11970529 12061759

Ref. chromosomes [#] 17 17 17 17 17 17
Contigs [#] 21 65 (108) 30 20 20 65 (108)

Aln. bases ref [bp] 12055448(99.16%) 11851023(97.48%) 12110461(99.62%) 12056562(99.17%) 12056734(99.17%) 11879607(97.72%)
Aln. bases query [bp] 11944969(99.99%) 12043650(99.69%) 12184122(100.00%)11970041(99.99%) 11969729(99.99%) 12040521(99.82%)

Misassemblies [#] 21 32 26 22 22 38
Avg. identity 98.83 98.90 99.06 99.06 99.05 99.04

E. coli
PacBio
161x
(38x)

Ref. genome size [bp] 4641652 4641652 4641652 4641652 4641652 4641652
Total bases [bp] 4642736 4663427 4670125 4642423 4642443 4662179

Ref. chromosomes [#] 1 1 1 1 1 1
Contigs [#] 1 1 (1) 1 1 1 1 (1)

Aln. bases ref [bp] 4639048(99.94%) 4640514(99.98%) 4641652(100.00%) 4641623(100.00%) 4641616(100.00%) 4641652(100.00%)
Aln. bases query [bp] 4639955(99.94%) 4662891(99.99%) 4670125(100.00%) 4642423(100.00%) 4642443(100.00%) 4662172(100.00%)

Misassemblies [#] 2 4 4 4 4 4
Avg. identity 99.59 99.97 99.99 99.99 99.99 99.99

S.
cerevisiae
PacBio
127x
(37x)

Ref. genome size [bp] 12157105 12157105 12157105 12157105 12157105 12157105
Total bases [bp] 12174558 12232964 12346261 12194786 12193481 12217702

Ref. chromosomes [#] 17 17 17 17 17 17
Contigs [#] 26 55 (86) 29 26 26 55 (86)

Aln. bases ref [bp] 12036689(99.01%) 12008560(98.78%) 12091871(99.46%) 12042104(99.05%) 12041381(99.05%) 12018488(98.86%)
Aln. bases query [bp] 12151704(99.81%) 12179852(99.57%) 12304982(99.67%) 12177020(99.85%) 12175701(99.85%) 12172316(99.63%)

Misassemblies [#] 74 75 76 76 76 80
Avg. identity 99.22 99.78 99.87 99.88 99.88 99.86

These corrected datasets were obtained by running Canu with the saveReadCorrections=True option on the datasets presented in 3.1. Canu includes correction and trimming, resulting
in a removal of short reads and a lower coverage than in the original raw data. However, it is the coverage of the raw dataset which is relevant since higher coverage in the latter will
result in longer reads in the corrected data, even though the coverage in all corrected datasets are roughly below 40x. We indicate the coverage of the corrected datasets in parentheses
next to the coverage of the original dataset. For the spectral method, we give the results after the contig merging step (see 3.3.1). The number of contigs before this post-processing
is given between parentheses. Unlike with raw data, the polishing effect of adding Racon to our pipeline is not significant. All methods have comparable results on the corrected
datasets. The best result in terms of average identity only is indicated in bold (but other metrics should also be used to compare the assemblies).

5

Recanati, Brüls, d’Aspremont

3.6Mbp
true position

3
.6

M
b
p

p
o
si

ti
o
n
 f

o
u
n
d
 (

sp
e
ct

ra
l
a
lg

o
.)

(a) A. baylyi ONT

4.6Mbp
true position

4
.6

M
b
p

p
o
si

ti
o
n
 f

o
u
n
d
 (

sp
e
ct

ra
l
a
lg

o
.)

(b) E. coli ONT

4.6Mbp
true position

4
.6

M
b
p

p
o
si

ti
o
n
 f

o
u
n
d
 (

sp
e
ct

ra
l
a
lg

o
.)

(c) E. coli PacBio

3.6Mbp
true position

3
.6

M
b
p

p
o
si

ti
o
n
 f

o
u
n
d
 (

sp
e
ct

ra
l
a
lg

o
.)

(d) A. baylyi ONT corr.

4.6Mbp
true position

4
.6

M
b
p

p
o
si

ti
o
n
 f

o
u
n
d
 (

sp
e
ct

ra
l
a
lg

o
.)

(e) E. coli ONT corr.

4.6Mbp
true position

4
.6

M
b
p

p
o
si

ti
o
n
 f

o
u
n
d
 (

sp
e
ct

ra
l
a
lg

o
.)

(f) E. coli PacBio corr.

Fig. S6: Ordering of the reads computed with the spectral algorithm vs true ordering (obtained by mapping the reads to the reference
genome with GraphMap) for the original (a-c) and corrected (d-f) bacterial datasets. All contigs are artificially displayed on the same plot
for compactness.

12.1Mbp
true position

1
2

.1
M

b
p

p
o
si

ti
o
n
 f

o
u
n
d
 (

sp
e
ct

ra
l
a
lg

o
.)

(a) ONT R7.3

12.1Mbp
true position

1
2

.1
M

b
p

p
o
si

ti
o
n
 f

o
u
n
d
 (

sp
e
ct

ra
l
a
lg

o
.)

(b) ONT R9

12.1Mbp
true position

1
2

.1
M

b
p

p
o
si

ti
o
n
 f

o
u
n
d
 (

sp
e
ct

ra
l
a
lg

o
.)

(c) PacBio

12.0Mbp
true position

1
2

.0
M

b
p

p
o
si

ti
o
n
 f

o
u
n
d
 (

sp
e
ct

ra
l
a
lg

o
.)

(d) ONT R7.3 corr.

12.0Mbp
true position

1
2

.0
M

b
p

p
o
si

ti
o
n
 f

o
u
n
d
 (

sp
e
ct

ra
l
a
lg

o
.)

(e) ONT R9 corr.

12.1Mbp
true position

1
2

.1
M

b
p

p
o
si

ti
o
n
 f

o
u
n
d
 (

sp
e
ct

ra
l
a
lg

o
.)

(f) PacBio corr.

Fig. S7: Ordering of the reads computed with the spectral algorithm vs true ordering (obtained by mapping the reads to the reference genome
with GraphMap) for the original (a-c) and corrected (d-f) yeast (S. cerevisiae) datasets. All contigs are artificially displayed on the same plot
for compactness. The dashed lines represent the boundaries between chromosomes. The correction slightly improves the layout for the yeast
genomes.

6

A spectral algorithm for fast de novo layout of uncorrected long nanopore reads

(a) A. baylyi ONT

0 5 10 15 20 25 30 35 40 45

Error rate (%)

D
e
n
si

ty

Raw reads

(Canu) corrected reads

Consensus in windows

(b) E. coli ONT

0 5 10 15 20 25 30 35 40 45

Error rate (%)

D
e
n
si

ty

Raw reads

(Canu) corrected reads

Consensus in windows

(c) E. coli PacBio

0 5 10 15 20 25 30 35 40 45

Error rate (%)

D
e
n
si

ty

Raw reads

(Canu) corrected reads

Consensus in windows

(d) S. cerevisiae ONT R7.3

0 5 10 15 20 25 30 35 40 45

Error rate (%)

D
e
n
si

ty

Raw reads

(Canu) corrected reads

Consensus in windows

(e) S. cerevisiae ONT R9

0 5 10 15 20 25 30 35 40 45

Error rate (%)

D
e
n
si

ty

Raw reads

(Canu) corrected reads

Consensus in windows

(f) S. cerevisiae PacBio

Fig. S8: Error-rates in consensus windows, raw reads and corrected reads for the six real datasets. With ONT R7.3 data, the consensus
produced by our pipeline appears more accurate than via the correction module of Canu, while the contrary is true for PacBio data.

7

Recanati, Brüls, d’Aspremont

3.6Mbp
window position (found by mapping to ref.)

0

5

10

15

20

25

e
rr

o
r

ra
te

 o
f

co
n
se

n
su

s
w

in
d
o
w

 (
%

)

(a) A. baylyi ONT

12.0Mbp
window position (found by mapping to ref.)

0

5

10

15

20

25

e
rr

o
r

ra
te

 o
f

co
n
se

n
su

s
w

in
d
o
w

 (
%

)

(b) S. cerevisiae ONT R7.3

10 20 30 40 50 60 70 80

coverage in window for consensus

0

5

10

15

20

25

e
rr

o
r

ra
te

 o
f

co
n
se

n
su

s
w

in
d
o
w

 (
%

)

(c) A. baylyi ONT

10 20 30 40 50 60

coverage in window for consensus

0

5

10

15

20

25

e
rr

o
r

ra
te

 o
f

co
n
se

n
su

s
w

in
d
o
w

 (
%

)

(d) S. cerevisiae ONT R7.3

Fig. S9: Error-rates in consensus windows versus position of the windows on the reference genome (a,b). The dashed lines represent the
location of repeats for A. baylyi, and the separation between chromosomes for S. cerevisiae. The size of each scatter marker is proportional
to the coverage of the window. The (c,d) panel represents the error-rates in consensus windows versus the coverage of the windows. The
error-rate was computed with the errorrates.py script from samtools, using the mapping obtained from GraphMap. Most of the windows
with a high error rate are positioned at the ends of the contigs they belong to. We also observed that repeats are often positioned at the edge
between two contigs, though this does not seem to be the determinant factor. The bottom plots represent the error-rate in the windows against
their estimated coverage, defined as the total length of sequences used to perform the multiple alignment in the window normalized by the
length of the consensus sequence. Overall, one can see that the windows with high error rate are the ones with low coverage. Nevertheless,
especially for the yeast genomes, there are also several windows with high values for both error-rate and coverage. Manual inspection of
these reveals that they usually do not span repeated regions, but their high error-rates arise from imperfections in the layout.

8

A spectral algorithm for fast de novo layout of uncorrected long nanopore reads

Table S3. Misassemblies report of the different assemblers across the various datasets

Miniasm Spectral Canu Miniasm+Racon Miniasm+Racon
(2 iter.)

Spectral+Racon

A. baylyi
ONT
R7.3
28x

Relocations [#] 0 0 2 2 2 0
Translocations [#] 0 0 0 0 0 0

Inversions [#] 0 0 0 0 0 0
Missmbld. contigs [#] 0 0 1 1 1 0

Missmbld. contigs length [bp] 0 0 3513432 1993457 1994286 0
Local misassemblies [#] 0 7 5 0 0 0

Mismatches [#] 0 0 0 0 0 0
Indels [#] 0 0 0 0 0 0

Indels length [bp] 0 0 0 0 0 0

E. coli
ONT
R7.3
30x

Relocations [#] 0 2 6 3 3 2
Translocations [#] 0 0 0 0 0 0

Inversions [#] 0 0 2 0 0 0
Missmbld. contigs [#] 0 1 2 2 2 1

Missmbld. contigs length [bp] 0 2160837 4625543 3743081 3740186 2148788
Local misassemblies [#] 0 50 2 2 2 3

Mismatches [#] 0 55 0 0 0 0
Indels [#] 0 1 1 0 0 0

Indels length [bp] 0 30 1 0 0 0

S.
cerevisiae
ONT
R7.3
68x

Relocations [#] 0 0 17 6 7 1
Translocations [#] 0 7 17 12 12 10

Inversions [#] 0 0 0 0 0 0
Missmbld. contigs [#] 0 7 16 11 11 10

Missmbld. contigs length [bp] 0 1223452 4852688 4638491 4638515 909031
Local misassemblies [#] 0 57 17 9 10 12

Mismatches [#] 0 63 0 0 0 0
Indels [#] 0 3 2 3 2 1

Indels length [bp] 0 90 124 167 132 54

S.
cerevisiae
ONT R9
86x

Relocations [#] 0 5 22 9 9 4
Translocations [#] 0 18 17 9 10 32

Inversions [#] 0 0 0 0 0 0
Missmbld. contigs [#] 0 11 11 10 11 10

Missmbld. contigs length [bp] 0 3149392 5957900 4545988 4563372 2661541
Local misassemblies [#] 0 41 88 11 11 30

Mismatches [#] 0 0 0 0 0 0
Indels [#] 0 2 4 3 3 2

Indels length [bp] 0 161 250 208 207 157

E. coli
PacBio
161x

Relocations [#] 0 3 2 2 2 2
Translocations [#] 0 0 0 0 0 0

Inversions [#] 0 2 2 2 2 2
Missmbld. contigs [#] 0 1 1 1 1 1

Missmbld. contigs length [bp] 0 2848876 4670125 4653228 4645420 2818134
Local misassemblies [#] 0 66 2 3 2 2

Mismatches [#] 0 0 0 0 0 0
Indels [#] 0 0 0 1 0 0

Indels length [bp] 0 0 0 66 0 0

S.
cerevisiae
PacBio
127x

Relocations [#] 0 17 31 21 20 18
Translocations [#] 0 40 44 39 38 50

Inversions [#] 0 0 1 1 1 0
Missmbld. contigs [#] 0 28 24 22 21 31

Missmbld. contigs length [bp] 0 6470761 10214689 9569247 9421896 6683508
Local misassemblies [#] 0 157 26 42 30 33

Mismatches [#] 0 0 0 5 0 0
Indels [#] 0 3 8 9 6 2

Indels length [bp] 0 132 260 416 245 78

This report was obtained with QUAST [Gurevich et al., 2013] (only a subset of the report is shown). Given the accuracy of the Miniasm assembly, it is likely that the zeros in the
Miniasm column are due to the fact that the algorithm failed to correctly match the sequences, rather than the absence of misassemblies. On all ONT datasets, the Spectral and
Spectral+Racon methods are among those yielding the least global misassemblies (relocation, translocation or inversions).

9

Recanati, Brüls, d’Aspremont

Table S4. Misassemblies report of the different assemblers across the datasets corrected with Canu

Miniasm Spectral Canu Miniasm+Racon Miniasm+Racon
(2 iter.)

Spectral+Racon

A. baylyi
ONT
R7.3
28x
(26x)

Relocations [#] 2 1 2 2 2 1
Translocations [#] 0 0 0 0 0 0

Inversions [#] 0 0 0 0 0 0
Missmbld. contigs [#] 1 1 1 1 1 1

Missmbld. contigs length [bp] 1949981 3245660 2802152 1976843 1977319 3244955
Local misassemblies [#] 4 1 3 2 1 0

Mismatches [#] 0 0 0 0 0 0
Indels [#] 0 0 0 0 0 0

Indels length [bp] 0 0 0 0 0 0

E. coli
ONT
R7.3
30x
(27x)

Relocations [#] 2 2 2 2 2 2
Translocations [#] 0 0 0 0 0 0

Inversions [#] 0 0 2 0 0 0
Missmbld. contigs [#] 1 1 2 1 1 1

Missmbld. contigs length [bp] 3945897 4613973 4627578 3962753 3962721 4613521
Local misassemblies [#] 5 2 2 2 2 2

Mismatches [#] 58 0 0 77 77 77
Indels [#] 3 1 1 2 2 2

Indels length [bp] 13 1 1 2 2 2

S.
cerevisiae
ONT
R7.3
68x
(38x)

Relocations [#] 6 7 14 7 6 9
Translocations [#] 13 15 12 13 14 15

Inversions [#] 0 0 0 0 0 0
Missmbld. contigs [#] 11 15 14 11 11 15

Missmbld. contigs length [bp] 5025689 2643657 2808407 5053047 5052895 2634865
Local misassemblies [#] 12 26 10 6 7 10

Mismatches [#] 21 0 0 0 0 0
Indels [#] 3 1 1 3 1 1

Indels length [bp] 122 78 78 235 78 78

S.
cerevisiae
ONT
R9 86x
(40x)

Relocations [#] 11 7 13 11 11 8
Translocations [#] 10 25 13 11 11 30

Inversions [#] 0 0 0 0 0 0
Missmbld. contigs [#] 10 12 12 9 9 13

Missmbld. contigs length [bp] 4954988 3199985 3534917 4573865 4573600 3361506
Local misassemblies [#] 12 58 8 9 10 16

Mismatches [#] 55 0 0 0 0 0
Indels [#] 1 0 1 1 1 0

Indels length [bp] 7 0 54 54 54 0

E. coli
PacBio
161x
(38x)

Relocations [#] 2 2 2 2 2 2
Translocations [#] 0 0 0 0 0 0

Inversions [#] 0 2 2 2 2 2
Missmbld. contigs [#] 1 1 1 1 1 1

Missmbld. contigs length [bp] 4642736 4663427 4670125 4642423 4642443 4662179
Local misassemblies [#] 13 5 2 2 2 3

Mismatches [#] 0 0 0 0 0 0
Indels [#] 0 0 0 0 0 0

Indels length [bp] 0 0 0 0 0 0

S.
cerevisiae
PacBio
127x
(37x)

Relocations [#] 29 22 31 33 33 24
Translocations [#] 44 52 44 42 42 56

Inversions [#] 1 1 1 1 1 0
Missmbld. contigs [#] 22 33 24 22 22 34

Missmbld. contigs length [bp] 10163939 9816851 10214692 10180811 10178266 9840033
Local misassemblies [#] 49 59 26 24 25 28

Mismatches [#] 28 0 0 0 0 0
Indels [#] 8 6 8 5 6 7

Indels length [bp] 462 216 260 147 153 222

This report was obtained with QUAST (only a subset of the report is shown). The number of local misassemblies is smaller than with the uncorrected data, but the number of
global ones is not. None of the assemblers has a significantly smaller or larger number of misassemblies compared to the others.

10

A spectral algorithm for fast de novo layout of uncorrected long nanopore reads

Table S5. Assembly of each chromosome of S. cerevisiae (for each chromosome, we used the subset of reads from the S. cerevisiae ONT R7.3 dataset that
were mapped to it). The assembled contigs were evaluated with QUAST and DNAdiff for each chromosome (only a subset of the QUAST descriptive statistics
is shown here). This experiments sheds light on how our method would behave if there were no repeats between chromosomes, or if we knew to which
chromosomes some reads belong to thanks to, e.g., optical mapping.

Chr. Ref size [bp] Contigs [#] Aln. bp ref [bp] Aln. bp query [bp] Misassemblies [#] Avg. identity [%]
I 230218 1 228273(99.16%) 225845(98.43%) 0 98.21
II 813184 1 806340(99.16%) 797624(98.91%) 0 98.17
III 316620 4 313707(99.08%) 326011(93.47%) 3 98.33
IV 1531933 6 1519577(99.19%) 1539642(99.04%) 0 98.24
V 576874 1 574944(99.67%) 575037(99.30%) 3 98.37
VI 270161 3 270161(100.00%) 285160(98.97%) 0 98.36
VII 1090940 8 1088278(99.76%) 1115166(98.37%) 0 98.09
VIII 562643 2 556839(98.97%) 561348(99.48%) 2 98.22
IX 439888 2 437971(99.56%) 443785(97.81%) 0 98.38
X 745751 2 740696(99.32%) 738859(99.16%) 0 98.35
XI 666816 2 665942(99.87%) 667003(99.46%) 0 98.35
XII 1078177 5 1067559(99.02%) 1084233(98.50%) 2 98.27
XIII 924431 4 922948(99.84%) 937417(99.58%) 1 98.12
XIV 784333 2 779066(99.33%) 783072(99.35%) 0 98.41
XV 1091291 3 1089941(99.88%) 1088832(99.49%) 0 98.34
XVI 948066 11 942078(99.37%) 1015108(97.50%) 1 97.83

Chrmt. 85779 5 65196(76.00%) 69107(80.98%) - 90.32

0 10 20 30 40 50 60 70

number of RS

0

2

4

6

8

10

12

n
u
m

b
e
r

o
f

co
n
ti

g
s

correctly mapped
mis-mapped

(a) A. baylyi ONT

0 100 200 300 400 500

contig length (kb)

0

2

4

6

8

10

12

14

n
u
m

b
e
r

o
f

co
n
ti

g
s

correctly mapped
mis-mapped

(b) S. cerevisiae ONT R7.3

Fig. S10: Result of an experiment to evaluate the extent to which optical mapping could improve long-range anchoring of the 127 S. cerevisiae
ONT R7.3 contigs and provide an alternative consistency check of the assembly. A restriction map was generated in silico from the reference
S. cerevisiae genome with the BamHI restriction site (GGATCC), yielding one map per chromosome. This simulated optical map represents
a best-case scenario since real optical measurements lack some precision and are obtained through an error-prone assembly process. Using
the same algorithm as for the A. baylyi genome, we obtained this bar plot showing the number of contigs as a function of the number of
distinct restriction sites (RS) in their sequence (a) or contig length (b). For a given number of RS occurrences (a) or contig length (b), the
blue part of the bar shows the fraction of contigs correctly aligned to the theoretical restriction map, whereas the red part corresponds to the
complementary fraction of unperfectly aligned contigs. All contigs longer than 60kbp are correctly mapped.

11

Recanati, Brüls, d’Aspremont

Implementation and reproducibility
Spectrassembler is implemented in python and available on https://github.com/antrec/spectrassembler with a usage example of how to
reproduce the results obtained with E. coli ONT data. We used the following software :

• SPOA - https://github.com/rvaser/spoa - commit b29e10ba822c2c47dfddf3865bc6a6fea2c3d69b

• Minimap - https://github.com/lh3/minimap - commit 1cd6ae3bc7c7a6f9e7c03c0b7a93a12647bba244

• Miniasm - https://github.com/lh3/miniasm - commit 17d5bd12290e0e8a48a5df5afaeaef4d171aa133

• Canu v1.4 - https://github.com/marbl/canu - commit r8037 4ece307bc793c3bc61628526429c224c477c2224

• Racon - https://github.com/isovic/racon - commit e55bb714ef534ae6d076ff657581836f324e0776

• MUMmer’s DNAdiff version 1.2, NUCmer version 3.07 - http://mummer.sourceforge.net/

• QUAST - https://sourceforge.net/projects/quast/files/

• GraphMap - https://github.com/isovic/GraphMap - commit 84f058f92dc5be02022e944dd1d6b9414476432a

• errorrates.py from samscripts - https://github.com/isovic/samscripts - commit cd7440fbbffafd76f40b15973c93acbe6111265a

• NanoSim - https://github.com/bcgsc/NanoSim - commit 48b9a4c3fcaeff623b9207b7db6d6d88b89a5647

SPOA is used in our pipeline for performing multiple sequence alignment. For generating the consensus in windows, it was run with
the options : -l 2 -r 0 -x -3 -o -5 -e -2 (semi-global alignment with custom gap and mismatch penalties). minimap was
run with options -Sw5 -L100 -m0 -t12 (long reads specific values and multithreading with 12 threads). miniasm was run with
default parameters when used as a comparative method. Canu was run with saveReadCorrections=True option and data specifications (e.g.,
genomeSize=3.6m -nanopore-raw). Racon was run with the alignment generated with minimap (to map the draft assembly, either
from miniasm or from our pipeline) with default parameters. GraphMap [Sović et al., 2016] was used to generate alignment between the reads
and the reference genome in order to have the position of the reads and their error rate (which was computed with the script errorrates.py).
DNAdiff and QUAST were used to evaluate the assemblies. To concatenate the contigs obtained with our method, we extracted their ends
(end length used : 35kbp) and used minimap with options -Sw5 -L500 to compute overlaps between them, and ran miniasm with options -1
-2 -e 0 -c 0 -r 1,0 (no pre-selection, no cutting small unitigs, no overlap drop). The related script is available in the tools folder of our GitHub
code. We also publish the other scripts we used (although they may be poorly written and undocumented), including our implementation of
the optical mapping algorithm of Nagarajan et al. [2008], in the tools folder.

12

http://mummer.sourceforge.net/

	1 Introduction
	2 Methods
	2.1 Layout computation
	2.2 Consensus generation
	2.3 Overlap-based similarity and repeats handling

	3 Results
	3.1 Data
	3.2 Layout
	3.2.1 Bacterial genomes
	3.2.2 Eukaryotic genome

	3.3 Consensus
	3.3.1 Recovering contiguity
	3.3.2 Consensus quality evaluation
	3.3.3 Optical mapping

	4 Discussion
	5 Supplementary Material

