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Abstract 22 

Many anthropic activities generate soil disturbances, favoring competitive, fast 23 

growing invasive plant species at the expense of natives. Active restoration of invasion-24 

resistant plant communities is increasingly recognized as a relevant strategy to combat 25 

invasive plant colonization in disturbed areas, but results are often unsatisfying. Historical 26 

effects, referred as “priority effects” (i.e. the effects generated by the order in which species 27 

arrive at a local site), can have a major role in community assembly and invasion success 28 

because they involve early colonists altering the performance of later colonists. Taking these 29 

priority effects into account in restoration projects is emerging as a relevant way to improve 30 

native species restoration success and prevent invasion. The present review discusses two 31 

strategies considering priority effects that would help to achieve the classic restoration goal of 32 

“more natives, less invasives”. The first strategy relies on tackling priority effects of invasive 33 

plants using different management options adapted to local environmental conditions, 34 

including removal, reduction of propagule sources, or mitigation of soil legacies. Indeed, 35 

invasive plants often generate strong priority effects providing themselves a substantial 36 
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competitive advantage through early emergence and quick growth, but also self-induced soil 37 

modifications that can persist after their removal or death, commonly termed “soil legacies”. 38 

In fertile and stable conditions, the reduction of invasive species priority effects must be 39 

coupled with the restoration of an invasion-resistant native plant cover to avoid reinvasion and 40 

secondary invasions. The second strategy is to bring about situations in which the restored 41 

native species are more likely to exert strong priority effects, decreasing invasion success. For 42 

this purpose, we sketch possible options open to restorationists based on resource or non-43 

resource mechanisms. First, we discuss ways to maximize resource preemption by extending 44 

the time advance given to restored native species and manipulating restored species 45 

characteristics. Second, we consider the potential effect of increasing niche overlap between 46 

native and invasive species. Third, we introduce the potential manipulations of non-resource 47 

mechanisms, such as allelopathy, herbivory, disease, or the presence of mycorrhizae, to 48 

increase priority effects. This review incorporates recent research on priority effects to draw 49 

the outlines of priority effects-based restoration strategies and define future research questions 50 

that need to be addressed to test and improve these strategies.  51 

1. Introduction 52 

The vast literature on biological invasions since Elton’s seminal work (1958) testifies 53 

to the complexity of understanding the processes underlying invasion success (Levine et al., 54 

2003; Hayes and Barry, 2008; Simberloff, 2013). According to deterministic theories, the 55 

outcome of an invasion depends on interactions between the invader and the physical and 56 

biological characteristics of the recipient environment (Lonsdale, 1999; Williamson, 1999). 57 

The intrinsic competitive superiority of invasive plant species (i.e. species introduced outside 58 

of their distribution areas which are able to grow and proliferate to become an autonomous 59 

viable population, and whose expansion can negatively impact local species and ecosystems; 60 

Richardson et al., 2000; Mooney, 2005) in acquiring resources has long been considered the 61 

critical mechanism determining invasion success (Sax and Brown, 2000; Vila and Weiner, 62 

2004; Pyšek and Richardson, 2008). However, invasive species performance also appears to 63 

depend on the physical and biological conditions encountered in the introduced range: 64 

resource availability and fluctuation (Davis et al., 2000; Shea and Chesson, 2002; Firn et al., 65 

2010; D’Antonio et al., 2017), multi-trophic interactions involving enemies (Mitchell et al., 66 

2006), and resident plant community composition (Levine and D’Antonio, 1999; Fridley et 67 

al., 2007). In addition to the deterministic explanations, stochastic dispersal and historical 68 

processes also play a crucial role in determining invasion success (Hubbell, 2001; Kolar and 69 
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Lodge, 2001; Chase, 2003; Lockwood et al., 2005; Dickson et al., 2012; Wilsey et al., 2015; 70 

Young et al., 2015).  71 

Stochastic colonization combined with deterministic interactions between early and 72 

later colonizing species lead to priority effects (Case, 1990; Chase and Myers, 2011), where 73 

early-arriving species affect the establishment, survival, growth or reproductive success of 74 

later-arriving species (Helsen et al., 2016). There is growing evidence that priority effects 75 

play a crucial role in community assembly, especially in productive environments (Chase, 76 

2003; Aronson and Galatowitsch, 2008; Körner et al., 2008; Young et al., 2016) and can be 77 

implicated in invasion success (Seabloom et al., 2003; Corbin and D’Antonio, 2004; Abraham 78 

et al., 2009; Grman and Suding, 2010). One mechanism prevalent in priority effects is 79 

resource preemption (Young et al., 2001; Fukami, 2015): the reduction of available resources 80 

(e.g. space, light, nutrients) by the early colonizers (Vance, 1984). This mechanism may allow 81 

even weak competitors to persist and maintain long-term dominance (Ross and Harper, 1972; 82 

Chase, 2010). Priority effects also arise from alterations of biotic (e.g. soil microorganisms) 83 

and abiotic (e.g. nutrient dynamics, allelochemicals) components of the environment, which 84 

can, in some contexts, limit colonization by subsequent colonizers (Kourtev et al., 2002; 85 

Mangla and Callaway, 2008; Corbin and D’Antonio, 2012). Disturbances leading to the 86 

removal of most or all plant individuals in a habitat patch initiate a new round of community 87 

assembly (Fukami, 2015), often favoring competitive, fast growing invasive species at the 88 

expense of natives (Hobbs and Huenneke, 1992; Davis et al., 2000). Because of the well-89 

recognized issues raised by invasive species (i.e. human health, crop production, native 90 

biodiversity, economic; Vitousek et al., 1997; Kolar and Lodge, 2001; Simberloff, 2013) and 91 

because of the evolution of legal framework on invasive species (at least in Europe; 92 

Regulation (EU) No 1143/2014), there is clearly an urgent need to develop effective strategies 93 

to limit invasions, particularly in newly disturbed areas. However, although active restoration 94 

of plant communities is increasingly recognized as a relevant tool to combat invasions 95 

(Middleton et al., 2010; Hazelton et al., 2014; Byun and Lee, 2017), results are often far from 96 

satisfactory (Kellogg and Bridgham, 2002). This has notably been attributed to a failure to 97 

account for priority effects, which may play a decisive role in restoration success (Young et 98 

al., 2001; Temperton, 2004; Grman and Suding, 2010; Wilsey et al., 2015). Priority effects 99 

appear to offer a cost-effective approach to combatting invasive plant species (Chadwell and 100 

Engelhardt, 2008), but have only been recently considered for invasive species management. 101 

Here, we discuss two non-exclusive restoration strategies to achieve the end goal “more 102 

natives, less invasives”. The first strategy consists in tackling priority effects generated by 103 
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invasive species, while the second is to bring about situations in which the native species are 104 

more likely to exert strong priority effects.  105 

2. Dealing with invasive species priority effects 106 

2.1. Priority effects are particularly advantageous to invasive species 107 

Phenological differences between invasive and native species can substantially 108 

contribute to invasion success (Wolkovich and Cleland, 2011). Distinct phenology allows 109 

certain invasive species to fill vacant phenological niches and profit from temporally available 110 

space and resources (e.g. light, nutrients, pollinators), sometimes creating seasonal priority 111 

effects (i.e. priority effects operating seasonally on a within-year scale; Wolkovich and 112 

Cleland, 2011). Numerous invasive species shares the strategy of being active early in the 113 

season as to get an early access to resources and acquire a competitive dominance (Dyer and 114 

Rice, 1997; Seabloom et al., 2003; Munter, 2008; Wolkovich and Cleland, 2011), but others 115 

also profit of being active late in the season (e.g. in California, the invasiveness of Centaurea 116 

silsitialis arises from extending its growing season into the summer when competition from 117 

winter annual vegetation for soil water is minimal; Gerlach and Rice, 2003). 118 

Several studies reported that invasive species generate stronger priority effects than 119 

natives (Dickson et al., 2012; Wilsey et al., 2015; Stuble and Souza, 2016, but see Cleland et 120 

al., 2015). The generally higher growth rate of invasive species (Rejmánek and Richardson, 121 

1996; Reynolds et al., 2001; Grotkopp et al., 2010; Marushia et al., 2010; Dawson et al., 122 

2011) was suggested to underlie this advantage (Stevens and Fehmi, 2009; Dickson et al., 123 

2012). A higher growth rate creates a greater asymmetry in plant size (Weiner, 1990), 124 

resulting in a stronger competitive suppression of the later arriving species (Dyer and Rice, 125 

1999; Perry et al., 2003; Ejrnaes et al., 2006). Cleland et al. (2015) found that the stronger 126 

priority effects of invasive species were correlated to regeneration trait values, such as higher 127 

germination rate and higher light capture during seedling stage, reflecting higher biomass. 128 

In addition to these seasonal advantages, invasive species can also profit from priority 129 

effects through self-induced soil condition modifications, whether biological, chemical or 130 

physical (Corbin and D’Antonio, 2012). Modifications such as: (1) shifts in nutrient cycling 131 

(Ehrenfeld, 2003; Marchante et al., 2008; Flinn et al., 2017) and soil salinity (Novoa et al., 132 

2013), (2) changes in soil microbial communities including pathogens and mycorrhizal fungi 133 

(Kourtev et al., 2002; Hawkes et al., 2006; Mangla and Callaway, 2008; Stinson et al., 2006; 134 

Kardol et al., 2007; Lorenzo et al., 2010), and (3) the release of allelochemicals (Bais et al., 135 

2003; Stinson et al., 2006; Milchunas et al., 2011; Grove et al., 2012) can all generate priority 136 
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effects enhancing invasive species performance and inhibiting native plant species (Fig. 1A; 137 

Reinhart and Callaway, 2006; Stinson et al., 2006; van der Putten et al., 2013; Rodriguez-138 

Echeverria et al., 2013; Meisner et al., 2014). Such invader-mediated soil modifications can 139 

persist after the causal invasive species is removed or dies (Corbin and D’Antonio, 2012; 140 

Hacker and Dethier, 2009; Hamman and Hawkes, 2013), and are commonly termed “soil 141 

legacies” (Fig. 1B).  142 

Fig. 1. Mechanisms driving the consequences of priority effects when the plant individual is present (A), or has been 143 

removed or died (B). (A) Early arriving species can limit colonization success of subsequent colonizing species by 144 

gaining a size-related competitive advantage, by generating positive plant-soil feedbacks improving its own 145 

performance, and by modifying soil conditions. Priority effects are asymmetric between native and invasive species, so 146 

that invasive species are less impacted by arriving late compared with natives. (B) Plants can also generate priority 147 

effects through soil legacies after they were removed or died, that can impact subsequent colonization. While, for many 148 

invasive species, persistent soil legacies have been reported to hinder invasive recolonization, little is known about how 149 

native species soil legacies could limit invasive species establishment. Note that Grman and Suding (2010) found no 150 

impact of native species legacies on invasive species success.  151 

2.2. Countering invasive species priority effects 152 

When it comes to decrease the competitive dominance of an invasive plant species, it 153 

is essential to look for abiotic conditions to determine what actions need to be undertaken. In 154 

environments with high nutrient resource and water availability, the presence of invasive 155 

species could particularly hinder restoration of native communities because of their high 156 

competitive abilities (Cox and Allen, 2008; Abraham et al., 2009; Grman and Suding, 2010). 157 

Countering invasive species competitive advantage can be achieved by applying intensive 158 

management techniques to reduce invasive species cover (i.e. herbicide applications, 159 
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mechanical removal; Fig. 2). Marushia et al. (2010), by applying control methods (herbicide 160 

application) early in the season, tackled rapid and early emerging exotic annuals while 161 

minimizing impacts on native plants. In favorable conditions, many invasive species are likely 162 

to invade in response to the removal of one or more invaders (D’Antonio et al., 2017). Thus, it 163 

is particularly relevant to reduce propagule sources in order to limit invasive species 164 

recolonization (Fig. 2; D’Antonio et al., 2017). Common methods to decrease nondesirable 165 

species seed bank include topsoil removal (Hölzel and Otte, 2004), effective mowing 166 

management (i.e. adjusted to phenological development; Milakovic et al., 2014) and artificial 167 

flushing of invasive species to induce germination, followed by lethal interventions such as 168 

tillage or herbicide application (Wolf and Young, 2016). Prescribed burns for fire-prone 169 

species or supplying water are two techniques promoting germination (Ooi, 2007; Wolf and 170 

Young, 2016) that could be used to flush invasive plant species and tackle seasonal priority 171 

advantage early in the season (Wolkovich and Cleland, 2011; Wainwright et al., 2012; Wilsey 172 

et al., 2015). Establishing early-emerging and competitive native species (e.g. cover crops) is 173 

another option that can help reducing competition from early-germinating invasive species. 174 

Indeed, restoring early-emerging species can directly decrease invasive species performance 175 

(Blackshaw et al., 2006) and indirectly favor desired native species (Perry et al., 2009). 176 

However, so far, these strategies are little explored. To successfully counter seasonal priority 177 

effects generated by invasive species, it is crucial to better understand invasive species 178 

phenology, requirements and possible interactions with native species, so as to improve 179 

existing management techniques (i.e. artificial invasive species flushing, the use of cover 180 

crops) and develop new ones.  181 

To limit reinvasion and secondary invasions, invasive species reduction must be 182 

coupled with revegetation strategies (Fig. 2; Pearson et al., 2016) directed towards the 183 

limitation of multiple co-occurring invasive plant species. However, because of soil legacies, 184 

invasive species removal and propagule pressure reduction are sometimes unlikely to lead to 185 

recovery of native communities (Suding et al., 2004; Ehrenfeld et al., 2005; Corbin and 186 

D’Antonio, 2012; Jordan et al., 2012; van der Putten et al., 2013), and often favor secondary 187 

invasions (Dickie et al., 2014; Grove et al., 2015; Yelenik and d’Antonio, 2013). When the 188 

site was invaded prior to disturbance, it may then be necessary to include measures to deal 189 

with soil legacies, rather than simply eliminate invasive species populations (Fig. 2). Soil 190 

legacies can be mitigated by adjusting soil properties, typically via topsoil removal or soil 191 

amendments (Kulmatiski and Beard, 2006; Buisson et al., 2008; Perry et al., 2010). Carbon 192 

addition can help lowering nitrogen availability by stimulating nitrogen immobilization (Baer 193 
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et al., 2003), thereby reducing invasive species performance and concurrently increasing 194 

desired species growth (Alpert and Maron, 2000; Blumenthal et al., 2003; Eschen et al., 2007; 195 

see Perry et al., 2010 for review). However, in the case of restored communities reassembling 196 

from seeds, nitrogen management may have no direct positive effect unless a headstart is 197 

given to natives (i.e. invasive species are controlled the first growing season; James et al., 198 

2011). Furthermore, success of carbon addition to decrease invasive species dominance also 199 

mainly depends on the condition that invasive species is nitrophilic relative to native species 200 

(Blumenthal et al., 2003). 201 

To face soil legacies, another restoration approach is to establish species that are 202 

tolerant to invasive species legacies (Perry et al., 2005), or that could mitigate legacies before 203 

establishing the target community (Jordan et al., 2008; Eviner and Hawkes, 2012; Leger et al., 204 

2015; Vink et al., 2015). In this sense, restoration of non-susceptible species to Centaurea 205 

maculosa’s allelopathic compounds prevented reinvasion and possibly facilitate native species 206 

recovery (Callaway et al., 2005; Thorpe et al., 2009). Herron et al. (2001) also showed that 207 

establishing native species decreasing nitrogen availability through high nitrogen uptake 208 

decreases the prevalence of invasive species favored by soil nitrogen enrichment. 209 

Taking soil legacies into account in restoration projects is however challenging. Soil 210 

legacies are difficult to predict and to assess (involving chemical analyses, determination of 211 

microbial communities’ abundance and composition), and are species-specific (Bezemer et 212 

al., 2006; Yelenik et al., 2007; Bardgett and Wardle, 2010). Furthermore, their persistence 213 

depends on characteristics of the invaded ecosystem (e.g. soil mineralization rates; Stock et 214 

al., 1995), on their nature (Levine et al., 2003; Corbin and D’Antonio, 2012), and on the 215 

duration of invasion (Marchante et al., 2008; Kulmatiski and Beard, 2011). For example, 216 

while allelopathic compounds are generally short-lived in the soil (i.e. hours to days; Blair et 217 

al., 2005; Reigosa et al., 2006), increased nitrogen levels generated by a nitrogen-fixing 218 

invasive species can persist for decades (e.g. 35 years; Maron and Jeffries, 2001). Long-term 219 

studies suggest, however, that invasion impacts on ecosystems, such as increased nitrogen 220 

levels, can shift over time (Yelenik and D’Antonio, 2013). All this makes it hard to predict the 221 

amplitude and persistence of soil legacies for a particular invasive species in a given 222 

environment, and calls for high levels of costly technical expertise. Thus, soil legacies are not 223 

systematically given the weight they deserve in restoration projects. Yet restoration would 224 

clearly benefit from accounting for soil legacies, especially when an invasive species is 225 

implicated in strong and persistent legacies and has dominated the target environment for 226 

several growing seasons (Fig. 2; Marchante et al., 2008; Kulmatiski and Beard, 2011). A 227 
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better understanding of how invasive species induce strong and persistent soil legacies in the 228 

habitat they commonly invade would reduce the need for complex and expensive analyses, 229 

facilitating development of effective restoration strategies. Cost-effective methods, such as 230 

native species germination or survival tests on soil with potential legacies should be 231 

developed to rapidly assess their extent. 232 

Fig. 2. Decision support to counter invasive plant species priority effects. When invasive species facilitate the 233 

establishment of natives (e.g. in some harsh environments), they should not be removed and can be used as nurse 234 

species for restored species. Conversely, when invasive species hinder native species establishment (e.g. in some fertile 235 

and stable environments), it is essential to decrease their abundance and prevent secondary invasions, notably via 236 

removal and seed bank reduction. After removal, soil legacies generated by invasive species can lower restoration 237 

success. These legacies should be particularly considered when the removed invasive species is known to produce 238 
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strong and/or persistent legacies (e.g. nitrogen levels), and/or or was present in abundance and/or for long duration. 239 

Legacies mitigation methods such as topsoil removal, amendments (e.g. carbon addition), or intermediate planting 240 

should be adjusted to the nature and intensity of legacies. Finally, the restoration of native species adapted to local 241 

conditions and invasion pressure should be undertaken to limit reinvasion and secondary invasions, except when 242 

revegetation facilitates invasions (e.g. in some harsh environments).  243 

In harsh environments with extremely limited resources and/or stressful conditions 244 

(e.g. extreme temperatures, excessive solar radiation, unstable substrates), invasive species 245 

removal often lead to a lower success of a native cover restoration (D’Antonio and Meyerson, 246 

2002). In some cases, invasive species are used as nurse plants to facilitate the establishment 247 

of native species (Fig. 2; Becerra and Montenegro, 2013; Hanslin and Kollmann, 2016). The 248 

removal of an invasive species may not result in additional invasions (D’Antonio et al., 2017): 249 

the likelihood of other stress-adapted species being present and able to respond quickly is low 250 

(Harms and Hiebert, 2006), and these systems constrain species to low productivity or 251 

capacity to accumulate biomass (D’Antonio et al., 2017). Managers may therefore have ample 252 

time to control a secondary invasive species because they commonly have low population 253 

growth rates (Funk and Vitousek, 2007). 254 

3. Strengthening native species priority effects 255 

Restoring native communities after a disturbance can have opposite consequences on 256 

invasion success depending on abiotic conditions. In harsh environments, native species can 257 

create microclimatic conditions that are more favorable to invasive species establishment than 258 

the surrounding (Lenz and Facelli, 2003; Cavieres et al., 2005; Mason et al., 2013). In such 259 

cases, the restoration of a vegetation cover may not be the best option. Removal of invasive 260 

species followed by the control of secondary invasions without active revegetation may be a 261 

more suitable strategy. Resource availability, especially nitrogen, also strongly influences 262 

invasion success through modifications in competition intensity between species (Davis et al., 263 

2000; Davis and Pelsor, 2001). Environmental harshness has also been assumed to decrease 264 

the importance of stochastic factors because of strong niche selection (Chase, 2007; Kardol et 265 

al., 2013). In this sense, Kardol et al. (2013) found weaker priority effects under low nutrient 266 

supply. In nitrogen-limited systems, restoration of nitrogen-fixing species can also favor the 267 

establishment of fast-growing invasive species that overgrow and shade slower-growing 268 

native species (Huenneke et al., 1990; Maron and Connors, 1996; Corbin and D'Antonio, 269 

2004b). In such conditions, it may be advisable to restore a native plant cover adapted to low 270 

levels of nitrogen and to consider avoiding nitrogen-fixing species and soil nitrogen 271 

amendments. 272 
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In fertile and relatively stable conditions, restoration of invasionresistant native plant 273 

species is increasingly considered to protect disturbed sites from re-invasion or secondary 274 

invasions (Perry and Galatowitsch, 2006; Buckley, 2008; Middleton et al., 2010; Byun et al., 275 

2013; Pearson et al., 2016). Environmental conditions influence the magnitude of priority 276 

effects (Collinge and Ray, 2009; Kardol et al., 2013; Symons and Arnott, 2014), with stronger 277 

impact in productive environments (Kardol et al., 2013; Young et al., 2016). The strength of 278 

priority effects also varies with the identity of the earlier- and the laterarriving species 279 

(Dickson et al., 2012; von Gillhaussen et al., 2014; Cleland et al., 2015; Wilsey et al., 2015; 280 

Stuble and Souza, 2016), invasive species being less negatively impacted by arriving late than 281 

native species (Fig. 1A; Wilsey et al., 2015; Stuble and Souza, 2016), raising the need to 282 

restore native species producing strong priority effects. 283 

Recent work on priority effects also states that the strength of priority effects is 284 

notably driven by (1) the impact a species has on resource levels (Fargione et al., 2003; 285 

Fukami, 2015), (2) the overlap between competitive species in resource needs (Funk et al., 286 

2008; Vannette and Fukami, 2014), and (3) the impact a species has on nonresource 287 

components of the environment (Bever, 2003; Levine et al., 2004; Goldstein and Suding, 288 

2014). The following sections will discuss how these emerging properties could be used to 289 

reinforce the priority effects of restored native species in invaded habitats (see Figure A1 in 290 

Appendix for summary). 291 

3.1. Increasing resource preemption 292 

3.1.1. Does the duration of time advance matters? 293 

Numerous studies reported that giving native species a short time advance (one to few 294 

weeks) suffices to substantially decrease invasion success in grassland systems (Firn et al., 295 

2010; Grman and Suding, 2010; Vaughn and Young, 2015; Young et al., 2016). Grman and 296 

Suding (2010) found that native species establishment only five weeks before invasive species 297 

introduction reduced invasive biomass by 85%, against an 8% decrease when natives and 298 

invasives were planted simultaneously. Firn et al. (2010) also found a strong effect of giving a 299 

threeweek head-start to native grasses on an invasive grass performance. However, few 300 

studies investigated the importance of the duration of the time interval between native 301 

establishment and invasive species colonization. Asymmetry in plant size has been advocated 302 

as one of the most important aspect of priority effect (Wilsey et al., 2015), suggesting that 303 

extending duration interval between native species establishment and the later invasion event 304 

may give a size advantage strengthening native priority effects. In this sense, von Gillhaussen 305 
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et al. (2014) found that a six-week head-start resulted in stronger priority effects than a three-306 

week head-start. Young et al. (2016) tested the effect of giving the native perennials a two-307 

week or a one-year seeding advantage over exotic annuals in a four-year experiment. It 308 

respectively resulted in a native cover increase of 68% or 128% compared to when natives 309 

and exotics were sown at the same time. The positive effect of increasing time advance 310 

appeared however inconstant between years and sites, with sometimes an absence of benefit. 311 

Better understand how the duration of time advance given to the restored native species 312 

influence invasion success would be crucial to develop cost-effective priority effects- based 313 

revegetation strategies. To give natives a time advantage over invasives, native species should 314 

be actively restored as soon as possible after the disturbance on an invasive species-free soil 315 

(Stevens and Fehmi, 2009), and a particular attention must be payed to invasive species 316 

control in the initial weeks. Providing a short-term priority (several days) could also be 317 

achieved by “pre-germinating” native species seeds. Pre-treatments including seed priming 318 

and cold stratification can help ensuring a rapid and complete germination and overcome seed 319 

dormancy (Halmer, 2004). These treatments therefore appear as opportunities for improving 320 

native emergence speed and create priority effects over invasives, but remain yet untested. 321 

Although the eventual success of extending time advance can be judged only against 322 

the persistence of priority effects over long periods (i.e. more than one growing season), long-323 

term studies are rare. Vaughn and Young (2015) showed that the effect of a two-week 324 

advance in planting can remain visible after three years, favoring native perennials over exotic 325 

annuals. Werner et al. (2016) highlighted differences in persistence of a one-year priority 326 

between functional groups: the grass priority over forbs was still visible after six to eight 327 

years, but the forb priority over grasses did not persist. Designing efficient, cost-effective 328 

restoration strategies that allow native species to maintain their dominance over invasive 329 

species in the long term calls for more studies on mechanisms (i.e. duration of time advance, 330 

disturbance regime, resource availability, dynamic of sown communities) influencing the 331 

persistence of priority effects over long periods. 332 

3.1.2. Manipulate species composition and density  333 

The resource competition model (Tilman, 1990) predicts that the more a species 334 

reduces the availability of limited resources, the less these resources are available for later 335 

colonizers. Because resource preemption has been identified as one of the main driver of 336 

priority effects (Fukami, 2015), high resource preemption would lead to strong priority effects 337 

(Vannette and Fukami, 2014). Fargione et al. (2003) found that C4-grasses inhibited the most 338 

the later arriving invasive species, most likely because this guild reduced soil nitrate to the 339 
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lowest levels compared with other tested functional guilds. This result suggests that restoring 340 

native species leading to a strong and rapid reduction of limited resources could help 341 

enhancing priority effects. Accordingly, research efforts should be directed towards the 342 

identification of species having the ability to (1) rapidly occupy of above- and/or below-343 

ground space, thereby limiting light and space availability (often considered as two primary 344 

determinants of invasive species germination and establishment; D’Antonio et al., 2001; 345 

Corbin and D’Antonio, 2004a; Iponga et al., 2008), and (2) rapidly and effectively preempt 346 

soil nutrients, especially in low productivity environments where there is likely to be less 347 

above-ground competition for light (Dietz and Edwards, 2006; Gioria and Osborne, 2014). 348 

At small scale (10m
2
 or less), many studies support the widespread assumption that 349 

species diversity confers invasion resistance (Tilman, 1997; Levine and D’Antonio, 1999; 350 

Levine et al., 2004; Carter and Blair, 2012), due to fuller use of resources by resident species 351 

(“complementarity effect”; Robinson et al., 1995; Lavorel et al., 1999; Levine and D’Antonio, 352 

1999; Larson et al., 2013), or due to the increased probability of a species being present to be 353 

a strong competitor for the invasive species when increasing the number of species in a 354 

community (“sampling effect”: Kennedy et al., 2002; Wardle, 2001; Lavorel et al., 1999; 355 

Goslee et al., 2013). Increasing diversity has been reported to increase primary productivity in 356 

grassland systems (Hector et al., 2011), suggesting that diverse communities produce higher 357 

rates of biomass and could therefore exert a stronger asymmetric competition with later 358 

colonists. Two studies supported the fact that diversity strengthens priority effects in protist 359 

and aquatic plant communities (Jiang et al., 2011; Viana et al., 2016), but more studies 360 

investigating this relationship in plant communities are needed.  361 

The density of individuals also modulates priority effects (Weiner, 1990) in the sense 362 

that establishing more individuals should lead to increased resource acquisition and 363 

competition intensity (Goldberg, 1990; Lockwood et al., 2005). The benefit of increasing 364 

sowing density may stabilize over time, since the law of constant yields predicts that even-365 

aged populations grown at different densities show the same overall productivity after a 366 

certain period of time, with higher number of individuals in high densities but lower standing 367 

biomass per individual (Drew and Flewelling, 1979). Consistently, von Gillhaussen et al. 368 

(2014) found sowing density (1.5, 2.5 and 5 g/m
2
) only had a weak influence on aboveground 369 

productivity. Increased density is however often associated with improved invasion resistance 370 

in short time scales (Gerhardt and Collinge, 2007; Carter and Blair, 2012; Vaughn and Young, 371 

2015; Yannelli et al., 2017). Accordingly, Yannelli et al. (2017) found that sowing 372 

communities at high density (10 g.m
2
) is more effective in suppressing invasive species than 373 
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low density (1 g.m
2
). The improved invasion-resistance of high density community may be 374 

related to the inability of low density community to fully exploit available resources. Since we 375 

are looking for solutions to design restored communities rapidly exerting strong priority 376 

effects, increasing sowing densities is an attractive option. However, it remains to determine 377 

effective sowing thresholds depending on species used and environmental conditions.  378 

3.2. Increasing niche overlap: Applying limiting similarity 379 

Niche overlap, referring to resource use similarity between co-occuring species 380 

independent of their rate of resource consumption (Pianka, 1974; Petraitis, 1989), has been 381 

hypothesized to influence invasion-resistance (Abrams, 1983; Funk et al., 2008) and more 382 

recently priority effects (Vannette and Fukami, 2014). Niche overlap is derived from the 383 

limiting similarity concept, predicting that species most similar to the invasive species should 384 

provide greater invasion resistance because of greater overlap in resource use (Abrams, 1983). 385 

Accordingly, a high degree of similarity in resource use between first and later colonizers 386 

should strengthen priority effects of the recipient species. Attempts to use limiting similarity 387 

to limit plant invasions often resulted in failures (Symstad, 2000; Emery, 2007; Turnbull et 388 

al., 2005; Price and Pärtel, 2013), highlighting the complexity of selecting plant species 389 

having a sufficient degree of niche overlap. With current knowledge, using the limiting 390 

similarity concept to limit invasions appears premature. An emerging, more promising 391 

strategy consists in focusing on the identification of key functional traits playing a substantial 392 

role in invasion resistance and priority effects (Drenovsky and James, 2010; Cleland et al., 393 

2013). For example, Cleland et al. (2013) identified phenology as an important determinant of 394 

invasion success: high phenological overlap between exotic annual grasses and restored forb 395 

species successfully resulted in a decreased abundance of invasive species. These results 396 

suggest that restoring early active perennial species may be particularly relevant to decrease 397 

the competitive dominance of early active annual invasive species in the long term. Further 398 

investigations are needed to determine how and in which situations such trait-based strategies 399 

are efficient. 400 

3.3. Manipulating non-resource components 401 

Few studies have explored ways to enhance invasion-resistance of restored 402 

communities by exploiting non-resource priority effects (Bever, 2003; Levine et al., 2004) 403 

induced by the release of allelopathic compounds, the manipulation of mycorrhizae, or the 404 

promotion of pathogens or herbivory (Goldstein and Suding, 2014). Non-resource priority 405 
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effects could act through a direct negative impact on the target invasive species, or by an 406 

indirect improvement of native species success. 407 

The use of allelopathy (i.e. the exudation of chemical compounds influencing the 408 

growth of other plants or microorganisms) for invasive species control has received special 409 

attention, especially in suppressing weeds in agricultural systems (Bhowmik, 2003; 410 

Milchunas et al., 2011; Jabran et al., 2015; Jabran, 2017). The establishment of native 411 

allelopathic species can directly reduce the biomass of the target invasive species (Callaway 412 

and Ridenour, 2004), and indirectly facilitate the desired later-arriving native species (Perry et 413 

al., 2009). Indeed, allelopathy is relatively ineffective in interactions between species that 414 

frequently co-occur (Fitter, 2003) and is more intense in novel interactions, such as between 415 

native and exotic species (Callaway and Ridenour, 2004; Thorpe et al., 2009). By being 416 

established first, native allelopathic species could induce stronger priority effects reducing 417 

invasion success, but such assumption needs to be tested. Since the allelopathic effect vary 418 

depending on species (Prati and Bossdorf, 2004), community density (Weidenhamer et al., 419 

1989), climate conditions (May and Ash, 1990; Blair et al., 2006), and substrate 420 

characteristics (Parepa and Bossdorf, 2016), using allelopathic native species to limit invasion 421 

appears complex and may be limited to a set of invasive species. The effectiveness of invasive 422 

control strategies based on allelopathic species needs further investigations, in particular the 423 

potential use of native allelopathic species to suppress several invasive species. 424 

In addition to plant-plant interactions, biotic resistance can also arise from 425 

consumption by herbivores and disease (Levine et al., 2004). Introducing coevolved natural 426 

predators or parasites from the native region of the invasive species has been implemented for 427 

controlling well-established invasive populations, with mixed results (Clewley et al., 2012). 428 

Native herbivores can have various impacts on invasives (Maron and Vilà, 2001; Levine et 429 

al., 2004), sometimes contributing (i.e. invasive plants are maladapted to deter consumption 430 

by native herbivores; Parker and Hay, 2005; Morrison and Hay, 2011; Petruzzella et al., 2017; 431 

Zhang et al., 2018) or not (i.e. native herbivores are maladapted to consume invasive plants; 432 

Keane and Crawley, 2002; Liu and Stiling, 2006; Xiong et al., 2008) to biotic resistance. 433 

However, because herbivores have been reported to create disturbances facilitating the 434 

establishment of invasive species (Mack, 1989; Hobbs and Huenneke, 1992), and because 435 

young restored native species may be negatively impacted by trampling (Clear-Hill and 436 

Silvertown, 1997), using herbivores in early stages of restoration may not be an advisable 437 

option. 438 
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Mycorrhizal fungi, forming symbiotic relationships with 80–90% of terrestrial plants 439 

(Smith and Read, 2008), often strongly influence plant growth and reproduction (Koide and 440 

Dickie, 2002), plant community structure (van der Heijden et al., 1998; Hartnett anrd Wilson, 441 

1999, 2002), and invasion success (Klironomos, 2002; Callaway et al., 2004). Soil inoculation 442 

of arbuscular mycorrhizal fungi can reduce the performance of agricultural non-mycorrhizal 443 

weeds (Jordan et al., 2000; Vatovec et al., 2005; Rinaudo et al., 2010; Veiga et al., 2011), 444 

raising a potential application in managing non-hosts invasive species (e.g. from 445 

Chenopodiaceae and Cruciferae families; Wang and Qiu, 2006). In the case of non-hosts 446 

invasive species, establishing species having the ability to increase mycorrhizal inoculum 447 

potential would facilitate arbuscular mycorrhizal fungi-dependent native species (Eviner and 448 

Hawkes 2012), and may enhance their competitive abilities over later arriving invasive 449 

species (Smith et al., 1998). In the cases where the presence of mycorrhizae increases 450 

invasion success of host invasive species (Marler et al., 1999; Smith and Read, 2008), 451 

mycorrhizae suppression through fungicide application combined with restoration of non-452 

mycorrhizal species may help limiting invasive species. The feasibility and effectiveness of 453 

this approach needs however to be investigated, since mycorrhizae are sometimes essential in 454 

some species assemblages (Dostálek et al., 2013). 455 

Overall, whether native herbivores, parasites and symbionts could create priority 456 

effects reducing invasive species success remains untested, so that an application in 457 

restoration is premature. Because interactions between invasive species and native enemies or 458 

symbionts are species or trait-specific (Veiga et al., 2011; Grutters et al., 2017; Zhang et al., 459 

2018), it may be relevant to develop non-resource-based restoration strategies for the most 460 

noxious invasive species. 461 

4. Conclusion 462 

Recent research suggests that better considering priority effects of both invasive and 463 

native species in restoration strategies could significantly help reducing invasive species 464 

colonization on disturbed areas. When invasive plants arrive or emerge earlier than natives, a 465 

size-related advantage can hamper native community restoration success, often impelling to 466 

reduce or remove invasive propagule sources. Yet, after removal, invasive plants can still 467 

threaten restoration success through persisting soil legacies, especially when the invasive 468 

species have long been present or when they were very abundant. The processes underlying 469 

the magnitude and persistence of soil legacies are however still poorly understood. Research 470 

efforts should be directed towards this topic, as well as towards developing cost-effective and 471 
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rapid methods of assessing invasives-induced soil modifications. In order to avoid reinvasion 472 

and secondary invasions, invasive species removal must often be coupled with the restoration 473 

of native species. However, before undertaking revegetation, it is advisable to ensure that it 474 

will not lead to invasive species facilitation, such as in some harsh environments. 475 

Invasion-resistance of restored native species could be increased by manipulating 476 

resource- and non-resource-based priority effects, especially in productive environments. 477 

Resource preemption, driving priority effects, may be enhanced by extending native species 478 

time advance over invasives and by manipulating the characteristics of the restored native 479 

species. Several studies reported a high benefit of giving only few weeks of advance, and the 480 

amplitude of the benefit was often correlated to variations in environmental conditions (e.g. 481 

climate, rainfall, soil fertility). Extending time advance showed mixed results and has been 482 

yet poorly studied, raising the need to multiply studies in order to define durations of time 483 

advance which are the most effective and how this effectiveness varies depending on 484 

environmental conditions. Resource preemption could also be enhanced by manipulating the 485 

characteristics of the restored species (selecting species having traits associated to strong and 486 

rapid resource preemption, increasing species diversity or sowing density), but such strategies 487 

remain largely untested in the field. Priority effects have also been suggested to be influenced 488 

by niche overlap between species, but attempts to use functional similarities to control 489 

invasive species often showed unsatisfying results. Focusing on key functional traits playing a 490 

substantial role in invasion success (e.g. phenology) appeared more promising, but studies are 491 

lacking to evaluate the relevance of this method. The manipulation of non-resource priority 492 

effects to limit invasions has been yet poorly studied. Restoring allelopathic native species 493 

may decrease invasion success by directly reducing the target invasive species biomass and 494 

indirectly facilitating native species. To investigate the potential of this method, research is 495 

needed on the interactions between allelopathy and priority effects as well as the use on the 496 

ability of native allelopathic species to suppress several invasive species. The manipulation of 497 

other non-resource mechanisms to increase priority effects of natives, such as natural enemies 498 

of invasive species or mycorrhizae, appears today premature. 499 

Combinations between different priority effect-based strategies have not been explored 500 

yet, but may potentially enhance invasive species control. When invasive species are present, 501 

it may be relevant to simultaneously tackle their priority effects and increase those of desired 502 

native species. Different strategies could also be successively used over time. For example, 503 

establishing a community dominated by one competitive species, producing a high rate of 504 

biomass, may be an effective way to rapidly increase native cover and counter immediate 505 
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invasion risk, while subsequently adding seeds from diverse species may help stabilize the 506 

community in the long term. 507 
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