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Abstract The main motivation of our work is to create an efficient aithon that de-
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terized differential and Galois theories. To achieve this,expand the representation
theory of linear differential algebraic groups and devebepv algorithms that calcu-
late unipotent radicals of parameterized differentiald&agroups for differential equa-
tions whose coefficients are rational functions. P. Bernmrah M.F. Singer presented
an algorithm calculating the differential Galois group dtifferential equations without
parameters whose differential operator is a compositiotwofcompletely reducible
differential operators. We use their algorithm as a partufadgorithm. As a result, we
find an effective criterion for the algebraic independerfdbe solutions of parameter-
ized differential equations and all of their derivativestwiespect to the parameter.
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1 Introduction

A special function is said to be hypertranscendental if @sinot satisfy any algebraic
differential equation. The study of functional hypertreisdence has recently appeared
in various areas of mathematics. In combinatorics, thetopresf the hypertranscen-
dence of generating series is frequent because it givesmiation on the growth of the
coefficients: for instance, the work of Kurkova and RascB6] §olved a famous con-
jecture about the differential algebraic behaviour of gatieg series of walks on the
plane. Dreyfus, Roques, and Hardouli§][gave criteria to test the hypertranscendence
of generating series associatedp@utomatic sequences and more generally Mahler
functions, generalizing the work of Nguye#f(], Nishioka [41], and Randé46]. Also,
when the derivation encodes the continuous deformation eliliary parameter, the
hypertranscendence is connected to the notion of isomonudideformation (see the
work of Mitschi and Singer37]).

The work of Cassidy, Hardouin, and Singé&B[22] were motivated by a study of
hypertranscendence using Galois theory. Starting fromeatifunctional equation with
coefficients in a field with a “parametric” derivation, theyse able to construct a ge-
ometric object, called the parameterized differentiald&agroup, whose symmetries
control the algebraic relations between the solutions efftimctional equation and all
of their derivatives. The question of hypertranscenderichutions of linear func-
tional equations is thus reduced to the computation of thharpeterized differential
Galois groups of the equations (see for instance the worknafohe [L] on the incom-
plete gamma functiop(x,t) and the work 18]). The parameterized differential Galois
groups are linear differential algebraic groups as intoediby Kolchin and developed
by Cassidy §]. These are groups of matrices whose entries satisfy sgstéipolyno-
mial differential equations, called defining equationstaf parameterized differential
Galois group.

Then, in this context of Galois theory, one can address atdi@blem, that is, the
question of the algorithmic computation of the paramegsfidifferential Galois group.
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For linear functional equations of order 2, one can find a Kavé&ype algorithm initi-
ated by Dreyfus17] and completed by Arrech&]. In [36], Minchenko, Ovchinnikov,
and Singer gave an algorithm that allows to test if the patarized differential Galois
group is reductive and to compute the group in that case39}) fhey also show how
to compute the parameterized differential Galois grousifjuotient by the unipotent
radical is conjugate to a group of matrices with constantientwith respect to the
parametric derivations. The algorithms &5[3€] rely on bounds on the order of the
defining equations of the parameterized differential Gadpoup, which allows to use
the algorithm obtained by Hrushovski4] and has been further analyzed and improved
by Feng [L9] in the case of no parametric derivations.

In this paper, we study the parameterized differential Gajooup of a differential
operator of the forniL;(L>(y)) = 0 wherelL;,L, are completely reducible differential
operators. This situation goes beyond the previously stldases, because the param-
eterized Galois group of such an equation is no longer raduand its quotient by its
unipotent radical might not be constant. If there is no pataimderivation, this prob-
lem was solved by Berman and Singer #] for differential operators and rephrased
using Tannakian categories by Hardoutd][ The general case is however more com-
plicated because, unlike the case of no parameters, the afrttee defining equations
of the parameterized differential Galois group is no longmmtrolled by the order of
the functional equatioh(L,(y)) = 0. Therefore, we present an algorithm that relies
on bounds (see Sectiéh3.3 and, in a generic situation, we find a description of the
parameterized differential Galois group. In this desaiptthe defining equations of
the unipotent radical are obtained by applying standardatioss to linear differential
operators (cf.21]).

However, by a careful study of the extension of completetucgble representa-
tions of quasi-simple linear differential algebraic greuwe are able to deduce a com-
plete and effective criterion to test the hypertranscenderi solutions of inhomoge-
neous linear differential equations (Theorér).

The paper is organized as follows. We start with a brief revid the basic no-
tions in differential algebra, linear differential algelr groups, and linear differential
equations with parameters in SectiarOur algorithmic results for calculating parame-
terized differential Galois groups are presented in Se@i®ur effective criterion for
hypertranscendence of solutions of extensions of irrddedifferential equations is
contained in Section.2, which is preceded by Sectignl, where we extend results of
Minchenko and Ovchinnikov34] for the purposes of the hypertranscendence criterion.
We use this criterion to prove hypertranscendence resuitthé Lommel differential
equation in Sectiod.3.

2 Preliminary notions

We shall start with some basic notions of differential algedind then recall what linear
differential algebraic groups and their representatioas a
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2.1 Differential algebra

Definition 2.1 A differential ringis a ringR with a finite setA = {J1,...,dm} of com-
muting derivations ofR. A A-ideal of Ris an ideal ofR stable under any derivation in
A,

In the present papefi will consist of one or two elements. LBtbe aA-ring. For

anyo € A, we denote
RO ={r eR|5(r) =0},

which is aA-subring ofR and is called theing of d-constantof R. If Ris a field and
a differential ring, then it is called a differential field, A-field for short. For example,
R=Q(x,t),A={0,0},andd = d/dx, d = d/0t, forms a differential field. The notion
of R-A-algebra is defined analogously.

The ring of A-differential polynomial&K{y,...,yn} in the differential indetermi-
nates, orA-indeterminatesys,...,y, and with coefficients in a\-field (K,4), is the
ring of polynomials in the indeterminates formally denoted

{6{1~...-6rigpyi it im>0,1<i < n}
with coefficients inK. We endow this ring with a structure &fA-algebra by setting
8 (B lpyi) =8t gk gy

Definition 2.2 (see B2, Corollary 1.2(ii)]) A differential field (K,A) is said to be
differentially closed oiA-closed for short, if, for every (finite) set @f-polynomials
F C K{y1,...,yn}, if the system of differential equatiorfs = 0 has a solution with
entries in somé-field extensior_, then it has a solution with entries i

Ford € A, the ringK[d] of differential operators, of-operators for short, is the
K-vector space with basis d,...,d",... endowed with the following multiplication
rule:

d-a=a-d+d(a).

To ad-operatolL as above, one can associate the linear homogermkepak/nomial
L(y) = and"y+ ...+ a19y+agy € K{y}.

In what follows, we assume that every field is of characteritro.

2.2 Linear differential algebraic groups and their unipbtadicals

In this section, we first introduce the basic terminology oldhin-closed sets, linear
differential algebraic groups and their representatidvesthen define unipotent radicals
of linear differential algebraic groups, reductive lind#ferential algebraic groups and
their structural properties. We continue with the notiorcofjugation to constants of
linear differential algebraic groups.

Let (k,d) be a differentially closed field; = k®, and(F, 8) a &-subfield ofk.
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2.2.1 First definitions

Definition 2.3 A Kolchin-closedor d-closed, for short) sa c k" is the set of com-
mon zeroes of a system @Fpolynomials with coefficients ik, that is, there exists
Sc k{y,...,yn} such that

W ={ack"|f(a)=0forall f € S}.

We say thatV is defined oveF if W is the set of zeroes @f-polynomials with coeffi-
cients inF. More generally, for afr-d-algebra R,

W(R)={aeR"|f(a)=0forall f € S}.
Definition 2.4 If W C k" is a Kolchin-closed set defined ovéer the d-ideal
IW)={f eF{y1,...,yn} | f(w) =0forall we W(k)}

is called the definin@-ideal ofW overF. Conversely, for a subs&of F{yi,...,¥n},
the following subset i$-closed ink" and defined ove:

V(S ={ack"|f(a)=0forall f €S}.

Remark 2.5Since every radicab-ideal of F{y1,...,yn} is generated as a radica}
ideal by a finite set ob-polynomials (see, for example}{, Theorem, page 10]2[,
Sections VI1.27-28]), the Kolchin topology Ritt—Noetherianthat is, every strictly
decreasing chain of Kolchin-closed sets has a finite length.

Definition 2.6 Let W C k" be ad-closed set defined ovétr. The d-coordinate ring
F{W} of W overF is theF-A-algebra

If F{W} is an integral domain, theW is said to barreducible This is equivalent to
I(W) being a primed-ideal.

Example 2.7The affine spac@A" is the irreducible Kolchin-closed sk¥. It is defined
overF, and itsd-coordinate ring oveF is F{y1,...,yn}.

Definition 2.8 Let W C k" be ad-closed set defined ovét. Let (W) =p1N...N

pq be a minimald-prime decomposition of[(W), that is, thep; C F{y1,...,yn} are
prime J-ideals containind(W) and minimal with this property. This decomposition
is unique up to permutation (se27 Section VII.29]). The irreducible Kolchin-closed
setsW = V(pi) are defined oveF and called thérreducible componentef W. We
haveW =Wy U... UW.

Definition 2.9 LetW; c k™ andW, c k™ be two Kolchin-closed sets defined over
A d-polynomial map (morphism) defined overis a map

¢ W =W, aw—(fi(a),...,fn(a)), acW,

wheref; € F{y1,...,yn, } foralli=1,...,n.
If Wi C W, the inclusion map oiV; in W, is ad-polynomial map. In this case, we
say thaW\ is ad-closed subset ofb.
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Example 2.10Let GL, C k" be the group oh x n invertible matrices with entries in
k. One can see GlLas a Kolchin-closed subset &f’ x k defined overF, defined
by the equation déX)y—1 in F{knz x k} = F{X,y}, whereX is ann x n-matrix of
d-indeterminates ovef andy a d-indeterminate ovelF. One can thus identify thé-
coordinate ring of Gk overF with F{Y,1/detY)}, whereY = (yi j)1<i j<n IS @ matrix
of d-indeterminates ove¥. We also denote the special linear group that consists of the
matrices of determinant 1 by §lc GL,.

Similarly, if V is a finite-dimensiondf -vector space, GIV) is defined as the group
of invertiblek-linear maps oV ®g k. To simplify the terminology, we will also treat
GL(V) as Kolchin-closed sets tacitly assuming that some baaisaderF is fixed.

Remark 2.11If K is a field, we denote the group of invertible matrices withficients
in K by GL(K).

Definition 2.12 ([8, Chapter Il, Section 1, page 905]A linear differential algebraic
groupG C k"* defined oveF is a subgroup of Gk.that is a Kolchin-closed set defined
overF. If G C H C GL, are Kolchin-closed subgroups of GLwe say thaiG is a
d-closed subgroup, a¥-subgroup oH.

Proposition 2.13 Let GC GLy be a linear algebraic group defined over F. We have:

(1) Gis alinear differential algebraic group.

(2) Let H C G be ad-subgroup of G defined over F, and the Zariski closHrec G
be the closure of H with respect to the Zariski topology. lis taseH is a linear
algebraic group defined over F, whose polynomial defininglideer F is

IH)NF[Y] CI(H) C F{Y},
where Y= (Vi j)1<i j<n iS & matrix ofé-indeterminates over F.

Definition 2.14 Let G be a linear differential algebraic group defined oveirhe irre-
ducible component 0B containing the identity elememtis called thadentity compo-
nentof G and denoted b&°. The linear differential algebraic gro@y is ad-subgroup
of G defined oveF. The linear differential algebraic gro@pis said to beconnectedf

G = G°, which is equivalent t& being an irreducible Kolchin-closed s& page 906].

Definition 2.15 ([9],[43, Definition 6]) Let G be a linear differential algebraic group
defined oveF and letV be a finite-dimensional vector space oferA d-polynomial
group homomorphismp : G — GL(V) defined ovelF is called arepresentatiorof G
overF. We shall also say thaf is aG-moduleoverF. By a faithful (respectively, sim-
ple, semisimple)>-module, we mean a faithful (respectively, irreduciblemngbetely
reducible) representatign: G — GL(V).

The image of a-polynomial group homomorphism: G — H is Kolchin closed
[8, Proposition 7]. Moreover, if kép) = {e}, thenp is an isomorphism of linear dif-
ferential algebraic groups betwe€mandp(G) [8, Proposition 8].
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Definition 2.16 ([10, Theorem 2]) A linear differential algebraic grou@ is unipotent
if one of the following equivalent conditions holds:

(1) Gis conjugate to a differential algebraic subgroup of theugrof unipotent upper
triangular matrices;

(2) G contains no elements of finite orderl;

(3) G has a descending normal sequence of differential algebuaigroups

G=GpDG1D...OGN={¢}

with G;/Gi1 isomorphic to a differential algebraic subgroup of the &deigroup
Ga.

One can show that a linear differential algebraic gr@igefined over= admits
a largest normal unipotent differential algebraic subgrdefined oveir [33, Theo-
rem 3.10].

Definition 2.17 Let G be a linear differential algebraic group defined o¥erThe
largest normal unipotent differential algebraic subgrotis defined ovelF is called
the unipotent radicalof G and denoted by,(G). The unipotent radical of a linear
algebraic group is also denoted biR,(H).

Note that, for a linear differential algebraic groGpwe always have

Ru(G) C Ru(G)

and this inclusion can be strict$, Example 3.17].

2.2.2 Almost direct products and reductive linear difféi@imalgebraic group

We recall what reductive linear differential algebraic gps are and how they decom-
pose into almost direct products of tori and quasi-simpl@soups.

Definition 2.18 A linear differential algebraic grou@ is said to besimpleif {e} and
G are the only normal differential algebraic subgroup&of

Definition 2.19 A quasi-simpldinear (differential) algebraic group is a finite central
extension of a simple non-commutative linear (differdiptiggebraic group.

Definition 2.20 ([33, Definition 3.12]) A linear differential algebraic grou@ defined
overF is said to beeductiveif R,(G) = {e}.

By definition, the following holds for linear differentialgebraic groups:
simple = quasi-simple—> reductive

Example 2.21SL; is quasi-simple but not simple, while PSis simple.
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Proposition 2.22 (6, Remark 2.9]) Let GC GL,, be a linear differential algebraic
group defined over F. IG C GL, is a reductive linear algebraic group, then G is a
reductive linear differential algebraic group.

Proposition 2.23 Let GC GL(V) be a linear differential algebraic group. The follow-
ing statements are equivalent:

(1) the G-module V is semisimple;

(2) V is semisimple as @-module, wher& c GL(V) stands for the Zariski closure;
(3) Gis reductive;

(4) V is semisimple as & -module;

(5) V is semisimple as aGmodule.

Proof For every subspadg C V, the setN of elementg € GL(V) preservindJ is an
algebraic subgroup of GV). Thereforel is G-invariantif and only if it isG-invariant:

GcN<GCN.

This implies (1}=(2). The equivalences (2)(3)<(4) are well-known (see, for ex-
ample, p0, Chapter 2]). Since the Kolchin topology contains the Zarigpology of
GL(V), G° is Zariski irreducible, hence, equdBs. Applying (1)=(2) to the case of a
connecteds, we obtain (43=(5). O

Definition 2.24 Let G be a group an€;y, ..., G, some subgroups @. We say thaG
is the almost direct product @, ..., Gy if

(1) the commutator subgroufs;,Gj] = {e} for alli # j;
(2) the morphism

Y:G1x...xGh—G, (g1,---,0n)—01--..-0n
is an isogeny, that is, a surjective map with a finite kernel.

We summarize some results on the decomposition of redyetiyebraic and differ-
ential algebraic, groups in the theorem below. We refer tiridin 2.3for the notation
G(C) with G a linear (differential) algebraic group defined o@er

Theorem 2.25 Let GC GLy be a linear differential algebraic group defined over F.
Assume thaG C GL, is a connected reductive algebraic group. Then

(1) G is an almost direct product of a torusgHind non-commutative normal quasi-
simple linear algebraic groups 4...,Hs defined ovef;

(2) G is an almost direct product of a Zariski dendeclosed subgroup gof Hy and
somed-closed subgroups®f H; fori=1,...,s;

(3) moreover , either &= H; or G; is conjugate by a matrix of Ho H;(C);

The H's are called the quasi-simple component§&afthe G’s are called thed-quasi-
simple components of G.
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Proof Part (1) can be found inZ5, Theorem 27.5, page 167]. Par®y @nd ) are
contained in B3, proof of Lemma 4.5] andl[1, Theorems 15 and 18]. O

Remark 2.26As noticed in B6, Section 5.3.1], the decomposition®fas above can be
made effective.

Proposition 2.27 If v : G1 x G, — G is a surjective homomorphism of linear differen-
tial algebraic groups and V is a simple G-module, then V, eidas a G x G;-module
via v, is isomorphic to Y® Vo, where each Ms a simple G-module.

Proof Sincev is surjectiveV is simple as &7 x Gp-module. Let; be a simple (non-
zero)Gi-submodule oV andU c V the sum of allG;-submodules isomorphic ;.
Since all elements db, sendv; to an isomorphic submodule, we obtain thiais G; x
Ggy-invariant. Sinc&/ is G1 x Gz-simple,U =V. We choose a direct sum decomposition

V=Eu;, Uj=v; forall je,
jed

and, for eachj € J, a non-zeray; € Uj, and letv, = sparn;{uj} C V. We see that, as
Gi-modulesy =2 V; ® Vo, whereG; acts trivially onVs.

By [51, Exercise 11.30], every endomorphism/f V>, commuting with the action
of Gy has the form i, ®A, whereAis an endomorphism &f. This means that, has a
structure of &,-module such that th&;-module isomorphisi = V; @V, extends to
aG1 x Gy-module isomorphism. Sindgis G x G,-simple,Vs is G,-simple. It remains
to note that the representatiGn— GL(V;), i = 1,2, is differential since it is isomorphic
to a subrepresentation of the representa@pn> GL(V). O

Definition 2.28 A connected linear differential algebraic grotips called ad-torusif
there is an isomorphism of T onto a Zariski densé-subgroupr’ c (k* )", n>0.

Let T = (C*)". By [8, Proposition 31]T. € T. Let Tc = a~(T¢). The 5-subgroup
Tc does not depend on the choicemfsince any differential homomorphisi@*)" —
(k*)™is monomial in each of thencomponents, its image is contained @<)™.

Corollary 2.29 Let GC GL(V) be a connected linear differential algebraic group. If
the G-moduleV is simple and non-constant, then there ex@t®orus T C G such that
V is semisimple and non-constant as a T-module.

Proof SinceV is simple,G is reductive by Propositio&.23 By Theoren?2.25 G de-
composes as an almost direct product @erusGg andd-quasi-simple components
Gi, 1 <i < s By Proposition2.27, V is a tensor product of simpl&;-modules\W.
By [33, Theorem 3.3], representations Gf on W are polynomial, that is, extend to
algebraic representatiops: G; — GL(W).

SinceV is non-constant, there is a0 <i < s, such thatV{ is non-constant. lif > 0,
thenG; = G;. Indeed, otherwis&; ~ H(C), whereH = G;j is a quasi-simple algebraic
group defined ove€ (see Theorem.25. Since all algebraic representationg-bfare
defined ovef) (see, for example5] Section 5]) pi(G;i) is conjugate to constants, which
contradicts the assumption . Thus,G; = Gj, and we can tak& to be a maximal
torus of G; (see 5, Sections 21.3-21.4]). if=0, letT = Go. O
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2.2.3 Conjugation to constants

Conjugation to constants will play an essential role in aguanents. We recall what
it means. As beforek is a differentially closed field containirfg andC is the field of
J-constants ok.

Definition 2.30 Let G C GLp be a linear algebraic group over. We say thaiG is
conjugate to constants if there existg GL, such thathGh™! ¢ GL(C). Similarly,
we say that a representatipn G — GLp is conjugate to constantsgf(G) is conjugate
to constants in Gj.

Proposition 2.31 Letp : G C GL(W) — GL(V) be a representation of a linear differ-
ential algebraic group G such th& c GL(W) is a connected reductive linear alge-
braic group. Assume that is defined over the field C. With notation of Theor2@i5
assume that Z acts by constant weights on V and that, forall,i.. ., s, either H #£ G

or p|w, is the identity. Then there existsegG such that

P(9Gg ) C GL(V)(C).

Proof Let S= {i| Hj = G;i}. By assumptionp(H;) = {1} for all i € S. By Theorem
2.25 foralli ¢ S, there existgj € G; such thagiHigfl C Gi(C). Set

gzlllgiGG-

Let h € G. Since G is the almost direct product of and of its d-quasi-simple
components, there exigte Z and, fori € {1,...,s}, an elementy; € H; such that
h=2zh ... -hs. Now,
p(ghg ™) = p(2 ] P (gihig ).
i¢S
Sincep is defined over the constants agt; g(l € Gi(C) foralli ¢ S, we find that

p(gihigi*) € GL(V)(C).

Sincep(2) is also constant, the same holds fdighg ?). 0

2.3 Parameterized differential modules

In this section, we recall the basic definitions of diffeiahtnodules and prolongation
functors for differential modules with parameters. We tleentinue with the notion

of complete integrability of differential modules and iedation to conjugation to con-
stants of parameterized differential Galois groups. We alow a new result, Propo-
sition 2.54, which relates the conjugation to constants of a lineaediffitial algebraic

group and of its identity component.
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2.3.1 Differential modules and prolongations

LetK be aA = {9, d}-field. We denote bk (respectivelyC) the field ofd (respectively,
A)-constants oK. We assume for simplicity thdk, d) is differentially closed (this
assumption was relaxed i2(,53,39]). Therefore, unless explicity mentioned, any
Kolchin-closed set considered in the rest of the paper idbaefiof somé".

Definition 2.32 A d-module .# over K is a left K[d]-module that is a finite-
dimensional vector space ovér

Let .# be ad-module overK and let{ey,...,en} be aK-basis of.#Z. Let A=
(a,j) € K™" be the matrix defined by

n

Jde)=—3 ajig, i=1...,n (2.1)
;lj j

Then, for any elememh= 7' ; yie,, whereY = (yy,... ¥n)T € K", we have

o(m) = iam)a - Z < Jia,,-yj> .

Thus, the equatiod(m) = O translates into the linear differential systéifY) = AY.

Definition 2.33 Let .# be ad-module overK and{ey,...,en} be aK-basis of.#.
We say that the linear differential systedfY) = AY, as above, is associated to the
d-module.# (via the choice of &-basis). Conversely, to a given linear differential
systemd(Y) = AY, A= (g j) € K™", one associates@&module.# overK, namely
# = K" with the standard basigy, ..., €,) and action o given by @.1).

Another choice of &-basisX = BY, whereB € GLy(K), leads to the differential
system
d(X) = (B"'AB—B~19(B))X.

Definition 2.34 We say that a linear differential systeiiX) = AX, with A € K™, is
K-equivalent (or gauge equivalent ou€) to a linear differential systerd(X) = AX,
with A € K™ if there existB € GLp(K) such that

A=B"'AB-B19(B).

One has the following correspondence between linear diffigal systems and linear
differential equations. Far = 0"+ a,_ 10" 1+...+a € K[d], one can consider the
companion matrix

AL
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The differential systendY = ALY induces a?-module structure oK", which we de-
note by.Z. Conversely, the Cyclic vector lemmaq, Proposition 2.9] states that any
d-module is isomorphic to 8-module.Z, of the above form, providekl C K.

Definition 2.35 A morphism of d-modules overK is a homomorphism oK|d]-
modules.

One can consider the category Riff d-modules oveK:

Definition 2.36 We can define the following constructions in Riff

(1) The direct sum of twa@-modules,.#1 and.#>, is .#1 & .#> together with the
action ofd defined by

d(m @ mp) =0d(my) @ d(m).

(2) The tensor product of tw@-modules, 71 and.#5, is .#1 Qk .#> together with the
action ofd defined by

d(m @ mp) = (M) @M+ Mm@ d(my).

(3) The unit objectl for the tensor product is the field together with the lefk[d]-
module structure given by

(@p+a10 +---+and")(f) = apf +--- +and"(f)

for f,ap,...,ap € K.

(4) The internal Hom of twad-modules.#1,.#> exists in Diffik and is denoted by
Hom(.#1, .#5>). It consists of th&-vector space Hor\(.#1,.#>) of K-linear maps
from .#1 to .#, together with the action af given by the formula

du(my) = d(u(my)) — u(dmy).

The dual.#* of ad-module.# is thed-module Honi.#,1).

(5) An endofunctoD : Diffx — Diffk, called the prolongation functor, is defined as
follows: if . is an object of Difk corresponding to the linear differential system
d(Y) = AY, thenD(.#) corresponds to the linear differential system

(2) = (g 55@) z

The construction of the prolongation functor reflects thikofeing idea. IfU is a
fundamental solution matrix a?(Y) = AY in someA-field extensiorF of K, that is,
d(U) =AU andU € GLy(F), then

d(8U) = 5(3U) = 5(A)U +AS(U).

Then, Lé 58") = '8 6%) Z. Endowed
with all these constructions, it follows frormd4, Corollary 3] that the category Diffis
a o-tensor categoryin the sense of44, Definition 3] and P6, Definition 4.2.1]).

In this paper, we will not consider the whole category Riffut thed-tensor sub-
category generated bygamodule. More precisely, we have the following definition.

is a fundamental solution matrix of(Z)
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Definition 2.37 Let.# be an object of Diff. We denote by{.# }*:° the smallest full
subcategory of Diff that contains# and is closed under all operations of linear alge-
bra (direct sums, tensor products, duals, and subquati@ntsundeD. The category
{.#}*9 is a &-tensor category ovét. We also denote by.#}* the full tensor sub-
category of Difk generated by#. Then,{.#}® is a tensor category ovér

Similarly, the category Vegtof finite-dimensionak-vector spaces is &-tensor
category. The prolongation functor on \iecs$ defined as follows: for &-vector space
V, thek-vector spac®(V) equalk[d]<1 @k V, wherek[d]<1 is considered as the right
k-module ofd-operators up to order 1 anlis viewed as a lefk-module.

Definition 2.38 Let.# be an object of Dift. A d-fiber functorw : {///}&5 — Vecik
is an exact, faithfulk-linear, tensor compatible functor together with a natis@aor-
phism betweemMyecy, o w andwo D{%}M [26, Definition 4.2.7], where the subscripts

emphasize the category on which we perform the prolongatioa pair({///}®’5, w)
is called ad-Tannakian category.

Theorem 2.39 (RO, Corollaries 4.29 and 6.2])Let.# be an object oDiff . Sincek
is 5-closed, the categorf.# } % admits ad-fiber functor and any twé-fiber functors
are naturally isomorphic.

Definition 2.40 Let .# be an object of Diff andw : {.#}*° — Veci be ad-fiber
functor. The group Gé(///) of &-tensor isomorphisms ab is defined as follows. It
consists of the elementse GL(w(.#)) that stabilizew(?") for every d-module ¥
obtained from# by applying the linear constructions (subquotient, disech, tensor
product, and dual), and the prolongation functor. The aaifg on w(?') is obtained by
applying the same constructionsgoWe call Gaf(//l) the parameterized differential
Galois group of .# , w), or of .# when there is no confusion.

Theorem 2.41 (B4, Theorem 2]) Let.# be an object oDiffx and w : {.#}%° —
Vect be ad-fiber functor. The grougal’ (.#) c GL(w(.#)) is a linear differential
algebraic group defined ovéx, and w induces an equivalence of categories between
{9 and the category of finite-dimensional representatiorGaf (. ).

Definition 2.42 We say that @-module.# overK istrivial if itis either (0) orisomor-
phic asd-module ovelK to 1" for some positive integan. For G a linear differential
algebraic group ovét, we say that &-moduleV is trivial if G acts identically orv.

Remark 2.43For.# an object of Diff andw: {///}&5 — Vectc ao-fiber functor, the
following holds: ad-module.# in {.# % is trivial if and only if w(.#") is a trivial
GaP (.#)-module.

Remark 2.44The parameterized differential Galois group depends aripoio the
choice of ad-fiber functorw. However, since twd-fiber functors for{.# }*-° are nat-
urally isomorphic, we find that the parameterized diffei@r®alois groups that these
functors define are isomorphic as linear differential atgabgroups ovek. Thus, if

it is not necessary, we will speak of the parameterized difféal Galois group of#
without mentioning th&-fiber functor.
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Forgetting the action 0d, one can similarly define the group Ga¥) of tensor
isomorphisms ofo : {.#}® — Veck. By [14], the group Gal#) C GL(w(.#)) is
a linear algebraic group defined overand w induces an equivalence of categories
between{.#}® and the category df-finite-dimensional representations of Ga).
We call Gal.#) thedifferential Galois groupf .# overK.

Proposition 2.45 (R2, Proposition 6.21]) If .# is an object ofDiffx and w :
{#}%9 — Vecy is a d-fiber functor, therGaP (.#) is a Zariski dense subgroup of
Gal(.#) (see Propositior2.13).

Definition 2.46 A parameterized Picard—Vessiot extensionPPV extensioffor short,
of K for ad-module.# overK is aA-field extensiorK , that is generated ovét by
the entries of a fundamental solution mattixof a differential systemd(X) = AX
associated toZ and such thak?, = K. The fieldK (U) is aPicard-Vessiot extension
(PV extensiorior short), that is, @-field extension oK generated by the entries of a
fundamental solution matrid of d(X) = AX such thak (U)? = K?.

A parameterized Picard—\Vessiot extension associatedtmadule.# depends a
priori on the choice of &-basis of.#, which is equivalent to the choice of a linear
differential system associated.ti&'. However, one can show that gauge equivalent dif-
ferential systems lead to parameterized Picard—\Vessietsions that are isomorphic
asK-A-algebras. In14], Deligne showed that a fiber functor corresponds to a Picard
Vessiot extension; it is shown 2, Theorem 5.5] that the notions &tfiber functor
and parameterized Picard—\Vessiot extension are equtvalen

Definition 2.47 Let.# be ad-module oveK. Letd(X) = AX be a differential system
associated to# overK with A€ K™"and letK , be a PPV extension fat(X) = AX
overK. Theparameterized Picard—\Vessiot graugr PPV-groupfor short is denoted by
GaP (K ,/K) and is the set ofA-automorphisms oK , overK, whereas th@icard—
Vessiot grougusually called the differential Galois group in the litena) ofK , over
K, by definition, is the set of-automorphisms of a Picard—Vessiot extendidb) ) of
Kin K 4, whereU € GLn(K ) is a fundamental solution matrix of(X) = AX. This
group is denoted by G&_, /K).

Remark 2.48LetU € GLny(K ) be a fundamental solution matrix 8fX) = AX. For
anyt € GaP (K ,/K), there exist$t]y € GLn(k) such thatr(U) = U[r]y. The map

Gal(K 4 /K) = GLn, T[Ty

is an embedding and identifies G&K_, /K ) with a-closed subgroup of GL One can
show that another choice of fundamental solution matrix e & another choice of
gauge equivalent linear differential system yield a coajegsubgroup in Gi. Sim-
ilarly, one can represent G& ,/K) as a linear algebraic subgroup of GLWith
these representations of the Picard—\Vessiot groups, anshzav that Picard—Vessiot
groups and differential Galois groups are isomorphic ingheameterized and non-
parameterized cases.
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In the PPV theory, a Galois correspondence holds betwetaretitial algebraic sub-
groups of the PPV-group ani-sub-field extensions df , (see R2, Theorem 6.20]

for more details). Moreover, thé-dimension of G&l(.#) coincides with thed-
transcendence degreeldf, overK (see P2, page 374 and Proposition 6.26] for the
definition of thed-dimension and-transcendence degree and the proof of their equal-
ity). Moreover, the defining equations of the parameterdiéfidrential Galois group re-
flect the differential algebraic relations among the sohsi(seeZ?2, Proposition 6.24]).
Therefore, given @-module.# overK, we find that the defining equations of the pa-
rameterized differential Galois group (‘%M/) overk determine the differential alge-
braic relations between the solutionsry, overK.

Definition 2.49 A d-module.# is said to be completely reducible if, for evedy
submodule /" of ., there exists @-submodule /" of .# such that# = 4/ @
. We say that a-operator is completely reducible if the associafechodule is
completely reducible.

By [45, Exercise 2.38], @-module is completely reducible if and only if its differéadt
Galois group is a reductive linear algebraic group. Moredee a completely reducible
d-module.#, any object in{.# }* is completely reducible.

2.3.2 Isomonodromic differential modules

Definition 2.50 ([13, Definition 3.8]) Let A € K™". We say that the linear differential
systemdY = AY is isomonodromic (or completely integrable) overif there exists
B € K™ such that

0(B) — 5(A) = AB—BA

Remark 2.510ne can show that a linear differential syst@= AY is isomonodromic
if and only if there exists @-field extensiorL of K andB € K"™" such that the system

aY =AY
oY =BY

has a fundamental solution matrix with coefficient&.in
We recall a characterization of complete integrabilityamts of the PPV theory.

Proposition 2.52 ([L3, Proposition 3.9]) Let .# be ad-module over K and(Y) =
AY , with Ac K™", be an associated linear differential system. The follgvgitatements
are equivalent:

— GaP(.#) is conjugate to constants BL(w(.#)) (see Definitior?.30);
— The linear differential system(Y) = AY is isomonodromic over K.

The proof of the following result was provided to the authoysMichael F. Singer
and will be used in the proof of Propositi@nb4
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Lemma 2.53 Given a linear differential algebraic group G GL, defined over a dif-
ferentially closed fieldk, &) and anyA = {9, 8}-field K such that K = k, there exists

a A-field extension F of K such tha= k and G can be realized as a parameterized
differential Galois group over F in the given faithful regentation of GZ GL,.

Proof We first consider the “generic” case: we construdi-field extensiorE of K
with no newd-constants such that Glis a parameterized differential Galois group of
ad-module.#Z overE. Assume we have constructBdcand letg , be a PPV extension
of . overE. For any differential algebraic subgro@of GLy, letF be the fixed field
of Gin E 4, i.e., the elements d& , fixed byG. By the PPV correspondendg,is the
parameterized differential Galois group®jf, overF. Moreover,

K=k cF?CE =k.

To construct the fieldg , andE for GL,,, we shall follow the construction fronBl,
pages 87-89]. Lefz j} be a set oh? A-differential indeterminates ovét. LetE , =
K(z.,j)a be aA-field of differential rational functions in these indeténates. Note that
the 6-constants oE , arek, as in B1, Lemma 2.14]. LeZ = (z j) € GLa(E ) and
A=(02)(2)1. We then have that

07 =AZ 2.2)

Let E be theA-field generated ovek by the entries oAA. Then,E , is a PPV exten-
sion of E for equation 2.2). SinceZ is a matrix ofA-differential indeterminates, any
assignmenZ — Zgfor g € GLy(K) defines aA-K-automorphismyg, of E , overK. If
we restrict to thosg € GLn = GLn(k), theng, leavesA fixed and so all elements &
are left fixed. Therefore, Glis a subgroup of the PPV-group &f, overE. Since this
PPV-group is already a subgroup of izlwe must have that the PPV-group®f, over
E is GLy. O

The proof of the following result uses PPV theory, which doesappear in the state-
ment. Itis, therefore, of interest to find a direct proof cdstwell.

Proposition 2.54 Let GC GL(V) be a linear differential algebraic group ovérand
let G° be the identity component of G. IP@ conjugate to constants BL(V ), then
the same holds for G.

Proof By Lemma2.53 letK be aA-field with K9 = k such thaiG is a parameterized
differential Galois group of @-module.# overK and the embeddinG C GL(V)
is the faithful representatio® — GL(w(.#)). Let L/K be a PPV extension fow/
over K. One can identifyG with GaI‘S(L/K), the group of automorphisms &f over
K commuting withd andd. Let F be the subfield ot fixed by G°. By the PPV cor-
respondencel3, Theorem 9.5], the group of automorphismd.oéver F commuting
with {0,0} coincides withG°® and the extensioR /K is algebraic sinc&/G* is finite.

Let d(Y) = AY be a linear differential system associated#t The parameterized
differential Galois group of# overF is G° and thus conjugate to constants by assump-
tion. Propositior2.52implies thatd(Y) = AY is isomonodromic oveF, that is, there
existsB € F™" such that

d(B) —d(A)=AB—BA (2.3)
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Let Kg be the subfield extension Bfgenerated ovef by the coefficients of the matrix
B. Without loss of generality, we can assume tKgfK is a finite Galois extension
in the classical sense. We denote by BafK) its differential Galois group and hy
its degree. By 45, Exercise 1.24], there exist unique derivations, stillatedd and
0 extendingd andd to Ko. Moreover, any element of Gdlp/K) commutes with the
action ofd andd onKjy. If we let

1

C=- 17(B),
r reGa%KO/K) ( )

thenC has coefficients it and satisfies

I(A)=3(C) =a(A) - = T(5(B))>

(reGal(Ko/K)
=d(A) —= ( T(0(A)—BA+ AB)) =0d(A)—d(A)+CA—AC. (2.4)
TeGal(Kp/K)

This shows thaf (Y) = AY is isomonodromic ove. By Propositior2.52, we find that
G is conjugate to constants in GL O

3 Calculating the parameterized differential Galois groupof L1 (L2(y)) =0

In this section, given two completely reducibdemodules.#; and .%,, we study
the parameterized differential Galois group of an arbjtrdrmodule extensior?/

of 4 by 4. In Section3.1, we describe Gé(%) as a semi-direct product of a
d-closed subgroup of Hofw(.£1), w(-%2)) by the parameterized differential Galois
group Ga‘ls(.;i”l@.zz) (see Theorem.3). In Section3.2, we perform a first reduction
that allows us to se¥; equal to the triviab-modulel.

In Theorem3.13 we show how one can recover a complete description of the
parametrized differential Galois group @f from the knowledge of the parametrized
differential Galois group of its reduction. In Sectidr, we thus focus on the computa-
tion of the parameterized differential Galois group of abpitaary 0-module extension
% of 1 by a completely reducibl@-module.Z.

We then show that one can decompagein a “constant” and a “purely non-
constant” part. This decomposition yields a decompositibR,(Gal’ (% )). ForK =
k(x), the computation of GA(% ) for the “constant part” can be deduced from the al-
gorithms contained in35], whereas the computation of the “purely non-constantt par
results from Sectiof3.3.2and Theoren3.19 Finally, in Sectior3.3.3 we show, under
some assumption o, thatR,(Gal’ (%)) is the product of the “constant” and “purely
non-constant” parts (see Theoré€m5).

Throughout this sectiorK is a (9,0)-field of characteristic zero, whose field of
d-constantk is assumed to b&-closed. We denote also I6y/the field of 5-constants
of k. We fix ad-fiber functorw : Diffx — Vect; on Diffx (see Definition2.39. Any
parameterized differential Galois group in this sectioallshe computed with respect
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to w and is a linear differential algebraic group defined dveAny representation is,
unless explicitly mentioned, defined over

3.1 Structure of the parameterized differential Galoisugro

Let Lq,L, € K[d] be two completely reduciblé-operators, and let us denote %
(respectively, by%) the -module corresponding tio; (y) = O (respectivelylz(y) =
0). Thed-moduleZ overK, corresponding th;(L2(y)) = 0, is an extension of; by
2,

p

0 Sy 2 0

in the category o9-modules oveK.

Definition 3.1 For any object2” in {#}®°, we define Stah?’) (respectively,
Stalf(2')) as the set of (respectivel§;) tensor automorphisms in G&) (respec-
tively, GaP (%)) that induce the identity om(.2").

By [15, 11.1.36], Stal§.2") (respectively, Staf-rt(c%” )) is a linear (respectively, dif-
ferential) algebraic group ovéd. One has also that Sl‘éb%’) is Zariski dense in
Stal{.2"). Moreover, we have:

Lemma 3.2 For any object 2" in {%}®9, the group Stalf(2") (respectively,
Stal{.Z")) is normal inGaP(%) (respectivelyGal(% )).

Proof We prove only the parameterized statement. bet GaI‘S(ﬂZ/) and h €
Stat? (2). One has to show thaghg ! induces the identity om(.2"). It is sufficient
to remark that, by definition, any element of &@¥ ) stabilizesw(.2"). O

The aim of this section is to prove the following theorem.

Theorem 3.3 If .%4,.%, are completely reducibl@-modules over K and i/ is a d-
module extension over K ¢f] by %%, then

(1) GaP(#%) is an extension ofGaP(#1 @& %) by a d-subgroup W C
Hom(w(£1), w(%2)).
(2) W is stable under the action &fal’(.#1 @ .%%) onHom(w(.%1), w(%»)) given by

gx@=0gp(g ") forany (g,¢) € GaP(L1& .25) x Hom(w(21), w(2%)).

Remark 3.4The parameterized differential Galois group @{aﬂﬁ@fz) acts on the
objects of thed-tensor category generated lay(.£1 @ %%). The k-vector space
Hom(w(.%1), w(.%»)) belongs to this category, and the action of Gty © %) on
Hom(w(%1), w(%%)) detailed above is just the description of the Tannakianesgn-
tation.

Before proving this theorem, we need some intermediate @snm
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Lemma 3.5 The linear differential algebraic grouﬁalé(%) is an extension of the
reductive linear differential algebraic grouGaI‘S(fleéfz) by the linear differential
algebraic groupStalf (41 & % ).

Proof Since{.#1 © %} is a full 5-tensor subcategory ¢f% }*-9, the linear differ-
ential algebraic group Gal.%1 &%) is a quotient of G&I(% ). We denote the quotient
map by

m:Gal (%) — Gal (A & ).

Then kenr= Stabs(fl@fz). Since ., and.% are completely reducible?s & %
is completely reducible as well. This means thatGat; & .%%) is reductive. Since the
latter group is the Zariski closure of G411 ©.%%) in GL(w(.£1 & .%%)), [36, Remark
2.9] implies that Geﬁ(i”l@oiﬂz) is a reductive linear differential algebraic group.O

We will relate StaB(£ @ %) to Ry(GaP (%)) and describe more precisely the
structure of the latter group. By the exactnesapto(% ) is an extension ofo(.%#1) by
w(.%,) in the category of representations of &ak ).

Lemma 3.6 In the above notation, let s bekalinear section of the exact sequence:

0—— (%) 2 @) 2L iz ——o0 (3.1)

We consider the following map
Qw - GaP (%) — Hom(w(£1), w(22)), g (x— g(s(g ) —s(¥)) -

Then the restriction of the ma@, to Stabs(.fl@fz) is a one-to-one morphism of
linear differential algebraic groups. Moreover, the linedifferential algebraic group
Stal? (£ @ %) is abelian and coincides withjfRGal (% )).

Proof Forallgs, g» € Gal‘s(%), we have:
Lo (9192) (¥) = 91 (92) (91 X) + L (91) (%). 3.2)
If 91,02 € StalP (A & %), equation 8.2) gives
S (092) = Cor (91) + Qo (92).-

This means thatly, is a morphism of linear differential algebraic groups from
Stald (41 & %) to Hom(w(.%1), w(%5)).

Moreover, let{ej}j—1. s (respectively{ fi}i—1 ) be ak-basis ofw(.%>) (respec-
tively, w(.21)). Then

is ak-basis ofw(% ). If g € StalP (£ © %) Nker({z ), theng induces the identity on
{w(i)(a)’s(fj)}izl ..... s, j=1,.r
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and thereby om(% ). Therefore, by definition of GQ(%), the elemeng is the identity
element and, therefore, ké(o;, Sta@(ﬁ@fz)) is trivial.

Since Honiw(.%1), w(%)) is abelian, the same holds for St} & .%%). More-
over, StaB(Z @ .%%) is unipotent. Indeed, let be the identity element in GX% ),
x € w(Z1), andg € Stalf (L4 © .%%). Sincegs(x) — s(x) € (%), we have

(9—e)?(s(x)) = (g—e)(gs(x) — s(x)) = g(gs(x) — S(x)) — (g5(X) — S(x)) = O.

Reasoning as above, we find tiigt- €)? is zero onw(% ). By Lemma3.2, Stalf (41 @
%) is also normal and, hence, must be containeRjfGal’(% )). By [10, Theorem
1], the image of a unipotent linear differential algebraiowp is unipotent. By Lemma
3.5 Stalf (£ @ %) is the kernel of the projection of G ) on the reductive linear
differential algebraic group GH.Z, @ .%5). It follows thatR,(Gal (%)) is contained
in Stalf (21 @ %), which ends the proof. O

Remark 3.7Since two sections of(1) differ by a map fromw(.#21) to w(.%%), one sees
that, when restricted tB,(GalP (%)) = Stalf (£ & .%»), the mapl, is independent
of the choice of the section.

By the above lemmaR,(GalP (%)) is an abelian normal subgroup of C&¥ ).
Since Ga (41 @ %) is the quotient of G&I(% ) by Ry(Gal (%)) andRy(Gal (%))
is abelian, the linear differential algebraic group ﬁ(ﬁl@fz) acts by conjugation on
Ru(GaP (% )). The lemma below shows that this action is compatible withahtion
of Gal (.21 & %) on Homk (w(.41), w(.%)).

Lemma 3.8 Forallg: € GaP (%), g € Ry(GaP (%)), and xe w(-#1), we have
Qar (019201 1) (%) = 91 (4 (92) (9, X)) = 91 # Lo (2) (),
wherex denotes the natural action GaP (£, & %) on Hom(w(Z41), w(.%)) via
gx@=go@og * for g Hom(w(.£1),w(.%)) and ge GaP (£ & .%5).

Proof Let e denote the identity element in C-%?/). From (3.2), we find that, for all
X € w(A),

01w (91 1) (9. %) = Lo (8)(X) — L (91) (X) = — L (91) (X). (3.3)
Applying repeatedly{.2), we deduce that
Qo (919201 ) (%) = 91 ({ar (9201 1) (91 X)) + Lo (91) (X)
=01 (%7 (9171) (9279 ™) + L (82) (9, X)) + Lo (91) (X)
= 014w (92) (97 %) + 019207 * (01 (97 1) (9710195 191 %) ) + L (92) (X),

for all x € w(.£1). Since

010201 1, 010,701 € Ry(GaP (%)) = Stalf (41 @ %),
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we get that, for alk € w(.%7),

019207 1 (914 (97%) (97 19105 *97 X)) + v (91) (X)
= da (9%) (97 ) + o (91) (X) = 0.

We conclude that, for alt € w(%1),

Qo (910201 1) (X) = 91 (92) (91 '%). O

Proof (Proof of Theoren3.3) By the above, GA(% ) is an extension of Ga(.£; @
%) by Ry(GaP (%)). The action of GA(Z1 & %) onR,(GaP (%)) is deduced from
the action by conjugation of G‘%(I%) on its unipotent radical.

Combining Lemma3.6and Lemma3.8, we can identify vialy,, the unipotent rad-
ical Ry(Gal (%)) with a 3-closed subgroup of Hofa(.21), w(.%)) and the action
of GaP (4 & %) onRy(Gal (%)) by conjugation with the action of G¥.% & %)
on Homw(.%1), w(%)), induced by the GA(.Z, & .%%)-module structure om (.2 &
32). O

Remark 3.9The extension in Theoref3does not split in general. For example,

ao0o0
G= 01b| € GLs(k) 6(b):@
001

a
is a linear differential algebraic group such that the qurdtmapG — G/Ry(G) = k*
does not have ang-polynomial section. Indeed, otherwigg,would have a projec-
tion ontoR,(G) = C = k%, which is impossible, becaugkis strongly connectedLp,
Example 2.25].

Remark 3.10If K = k(x) andd = %(’ the knowledge oR = Ry(Gal (%)) allows

one to computeG = GaI‘S(ﬂZ/) algorithmically. Indeed, one can compute the nor-
malizerN of Rin GL(w(%)). Note thatG C N. By the differential version of the
Chevalley theorem33, Theorem 5.1] (see als®,[ proof of Theorem 5.6]), there is
Uy € {2 }*° and a differential representatipn N — GL(w(%p)) such thaR=kerp.
The proof of this Chevalley theorem leads to a constructreegdure to findZp and

p. Since Gl (%) = p(G) is reductive, one can compute &f. We can findG as
pY(GaP (%)).

In view of Remark3.1Q our aim is to compute the parameterized differential Galoi
group of 7. To this purpose, we will perform a first reduction that willosv us to
simplify our computation.
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3.2 Afirst reduction

LetL,,L, € K[d] be two completely reduciblé-operators. Let us denote tRemodule
overK corresponding td1(y) = 0 (respectivelylL,(y) = 0) by .#; (respectively, by
£). Thed-module? corresponding th1(L2(y)) = 0 is an extension af; by %5,

0o— > Loy P

7 0 (3.4)

in the category oP-modules oveK. In this section, we recall the methods éf fo
show that we can restrict ourselves to the case in whicts of the formd — ‘7—bb for
someb € K*.

We first describe the reduction process in term@-ahodules. Since the functor
Hom(.#1, —) is exact, B.4) gives the exact sequence:

0 —— Hom(#,.%,) — Hom(A, % ) — Hom(#1, #;) ——=0 (3.5)
We pull back 8.5 by the diagonal embedding
d:1—Hom(.71,.21), A—Aidg,
wherel is the unit object. We obtain an exact sequence
0——Hom(A, %) ——= #(U)—1—>0 (3.6)

whereZ (% ) is thed-module deduced fror by the pullback. We call th@-module
Z (% ) the reductiorof % . We recall that, as K-vector spaceZ (% ) coincides with
the set

{(@.A) eHom(£1, %) x 1| pop=Aidg}.

Remark 3.11An effective interpretation of this reduction process imte of matrix
differential equations immediately follows from,[page 15].

Proposition 3.12 With notation above, we have

(1) The parameterized differential Galois gro@al’ (Hom(.#1,.%5)) is a quotient of
Gal (4 @ %) and is a reductive linear differential algebraic group;

(2) By Lemma3.6, one can identify RGal (%)) (respectively, RGal (% (%))))
with a differential algebraic subgroup dflom(w(£1), w(%2)) (respectively, of
Hom(k,Hom(w(£1), w(-%2)))). Then the canonical isomorphism

@ : Hom(k,Hom(w(£1), w(%2))) = Hom(w(%1), w(%2)), W — (1)

induces an isomorphism of linear differential algebraicogps between
Ru(Gal (% (% ))) and R(GaP (%));

(3) By Lemma3.8, GalP (& & .%) (respectively,Gal (Hom(.#1,.%»))) acts on
Ru(Gal (%)) (respectively, on RGal’(%(% )))). These actions are compatible
with the isomorphisnp.
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Proof

(1)

(2)

Since Homl.Z1, %) (respectively, ) @ .%%) is a subobject of % } 9, its parame-
terized differential Galois group is a quotient of &@¥ ) by Stal§ (Hom(.#1,.%»))
(respectively, by Stali.#1 & %) = Stalf (1) N Stal? (.£2)). It is not difficult to
see that we have the inclusion

Stalf (A @ %) C Stalf (Hom(41,.%5))

Since stabilizers of objects ifiZ }*% are normal in G&(% ) by Lemma3.2, we
can apply 10, Proposition 2] to get that

GaP (Hom(.#1, %)) = GaP (%) / Stalf (Hom(.#3, .%5))
is a quotient of
Gal (L@ %) =Gal (%)) Staf (A @ L)

by
Stalf (Hom(.#1,.%5)) / Stalf (£, © .2%).

The same reasoning in the non-parameterized case showsdliaom(.#1,-%%))
is a quotient of Gdl¥1 @ %%). Since quotients of reductive algebraic groups are
reductive, B6, Remark 2.9] allows us to conclude that &#om(.#1,.%)) is a
reductive linear differential algebraic group.

SinceZ(% ) is an object of % }*%, GaP (%(%)) is a quotient of G&(% ), and
we denote the canonical surjection 1y The image of Stal{Hom(.#1,.%%)) via
1 coincides with the stabilizer of Hofi#1,.%%) in Gal (% (%)) and, thus, with
Ru(Gal(%(%))) by Lemmas3.5and3.6.

LetH c Ry(Gal(#(%))) be the image of Std§.#, & .%%) by . By [8, Propo-
sition 7, page 908]H is a differential algebraic subgroup &(Gal(2(%))).
Since Stab(.Z1 © %) is normal in Gafl (%) andmt is surjectiveH is normal in
Ru(Gal (#(%))), and we can consider the quotient map

p: Ru(GaP(2(%))) — Ru(GaP(#(% ) /H.

Since quotients of unipotent linear differential algebrgioups are unipotent by
[10, Theorem 1], the linear differential algebraic groRp(Gal (%Z(%)))/H is
unipotent. Note that

Ri(GaP(%2(%))) /H = n(Stalf (Hom(.#1,.2%))) /n(Stald (A ® %)) (3.7)

The surjective morphisnm is induced viad-Tannakian equivalence by the inclu-
sion of 8-Tannakian categorie§Z (% )}*° C {% }**°. This inclusion restricts to
the inclusion of the usual Tannakian categofie& % )}® c {% }*, which shows,
taking the Zariski closure, that extends to a surjective morphism of algebraic
groupstt: Gal% ) — GallZ(% )). One can show that the quotient

Ti(StaHom(.#1, fz)))/ﬁ(Stat(,%l D.5))
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coincides with the Zariski closure &,(Gal’ (%(%)))/H.

LetK #,0.2, (respectivelyKpom ., ,)) denote the usual PV extension@f © £
(respectively, of Hom#,.#)) overK. Let Ky (respectivelyKgr(4)) denote the
usual PV extension o (respectively, ofZ(% ))) overK. We have the following
tower of 9-field extensions:

) Kf]ﬁﬁgz

7

KHom (£1,-%2)

K

Kr

We see that
Gal(K#a.9,/Kiom(.1,2,)) = StalfHom(#1,.%%)) / Stal 41 & .%3) .

SinceKpom(#, %) is @ PV extension ok, the group GalK 4., / Knom(#, %)) IS
normal in GalK #5.2,/K)
by the PV correspondence. Therefore, wlegz/Km(gbgz)) is a reductive
algebraic group. Since

T1: Stal{Hom(.%1,.%5)) / Stal{ 41 & %))
— 7_'[( Stat(Hom(fl,fz)))/TT( StalZ1 @ fz))
is a quotient map, we deduce from the above identificatioasttie Zariski clo-
sure ofR,(GaP (#(%)))/H is a reductive algebraic group. We conclude B, [
Remark 2.9] thatR,(Gal (% (%)))/H is reductive. On the other hand, since

Ru(Gal (#2(%)))/H is both unipotent and reductive, it must be equafep, and
we have

n(Stalf (A © 2)) = n(Stalf (Hom(#1,.22))) = Ru(GaP (%2(%))).  (3.8)

We recall the notation of Lemma6. We denote by ak-linear section of the exact
sequence of finite-dimensional representations of(%l):

0— w(Z) o () 22

Then, we identifyR,(GaP (%)) = Stalf (41 & %) with the image of Stal( £, &
25) by

w :Ru(GaP (%)) — Hom(w(£1), w(£2)), g (x> gS(g™ %) — (X)) -
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Sincew is compatible with Homthe map
rk—=wZ%)), A~ (AsA),
is ak-linear section of

0 —— Hom(@(£1), (L)) —> W(#(%)) ——=k —=0

We apply again Lemma.6 to identify Ry(Gal (Z(%))) = n(Stat?(D%l@,%))
with its image via

Loy - GaP(Z(%)) — Hom(k, Hom (w(21), w(-%%)))
g (A= gr(M)gt—r(n)).
Identifying Hom(k,Hom(w(.21), w(.%%))) with Hom(w(.%1), w(.%2)) via ¢, we
find that
Cuw = @olgyy)oTL (3.9)
We have

Ri(Gal (%)) = Ly (Stalf (L1 @ %))
= L) o N(Stalf (Z418.2)) =Ru(GaP (% (% ))),

where we have used Remaik’.
(3) The compatibility of the actions comes from Lemf§g, (3.9), and 3.9). O

We combine PropositioR.12and Theoren3.3in the following Theorem.

Theorem 3.131If .£43,.%% are completely reducibl@-modules over K and i/ is a
d-module extension a¥; by %, then

(1) GaP(#) is an extension ofGaP(¥ @ %) by a &-subgroup W of
w(Hom(#1, £3)).

(2) W = Ry(GaP (% (%))), whereZ (%) is an extension ot by the completely re-
ducibled-moduleHom(.#1,.%%), and the action oGaI‘S(i”l @.%) onW is given
by composing the quotient map®&P (£, & %) on Gal (Hom(.Z1,.%%)) with the
action ofGaP (Hom(.#1,.%»)) on w(Hom(.%Z4,.%%)).

3.3 The unipotent radical of the parameterized differé@glois group of an
extension ofl by a completely reduciblé-module.¥

Let .Z be a completely reducibl@-module ovelK and% be an extension df by .Z.
In this section, we studR,(Gal (% )).

In terms ofd-operators, the situation corresponds to the following.LLe K[d] be
a completely reduciblé-operator and?Z be the associate#tmodule. An extensio/
of 1 by .# corresponds to an inhomogeneous differential equatiomeofdrmL(y) = b
for someb € K*. The main result of4] is to show thaR,(Gal(% )) = w(.%), where
o is the largest-module of.Z such that
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(1) L=LiLo;

(2) Li(y) =bhas a solution ifK.

From Lemma3.6, we know thatR,(Gal’(%)) can be identified with a differential
algebraic subgroug of w(.%), stable under the natural action of &a¥’) on w(.%).
In [21], the result of ]] was rephrased in Tannakian terms and it was proveddfas
the smallest subobject d¥ such that the pushout of the extensignby the quotient
maprmn: ¥ — £/ % is a trivial (split) extension. Such a characterization ooger
holds in general in the parameterized setting. Indeed, ldssiication of differential
algebraic subgroups of vector groups shows\abincides with the zero set of a finite
system of linear homogeneous differential equations watffecients ink. Therefore,
we have two possibilities:

— eitherW is given by linear homogeneous polynomials and it is a fiditeensional
vector space ovek, that is,W is an algebraic subgroup of(-%);

— orW is given by linear homogeneodspolynomials of order greater than 0, and
is a vector space ov€r=k?.

In the first case, we deduce from theTannakian equivalence for the categry’} -9
thatW = oo(.:izo) fora submodule?o of .Z if and only if it is an algebraic subgroup of
w(%). In this situation, we show thaty is the smalles-submodule ofZ such that
the parameterized differential Galois group of the puslodilhe extensior?z by the
quotient mapt: . — .Z/:go is reductive (see Theorefl9. This last condition can
be tested by an algorithm contained &6].

If W is not given by linear homogeneodigpolynomials of order 0, theW is not of
the formw(,{;) for anyg Moreover, the order of the defining equationdtan be
as high as required even for second order differential éoust

Example 3.14Forn > 0, let

n o _ az(x,t,n) Nt
zZx,t,n)= S tin(x+j); akxtn=-"7">=F5 — ck(x),
oxtm =5 dinic ;- axtm = =5 = 5 S ek(y

wherek is a differentially closed field with respect &/ dt containingQ(t). Then the
functionz(x,t, n) satisfies the following second order differential equatioy(x,t) over
k(x):

ay(xt)
o(%Hljaxtm) iy O gy
ox ox? ax,t,n) dx '

Since Inx),...,In(x+ n) are algebraically independent ovie(x) by [42,16], and

" 1z(xt,n)
Wj_— - 0, and

oti

1a) | 0" ta

K(X)(IN(X), ..., In(x+ 1)) = K(X) <M iz o) ,

we have
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In Section3.3.], we give a decomposition o into “constant and purely non-
constant” parts, which allows us to distinguish betweeneecases for the unipotent
radicalW described above. In Secti@n3.2 we treat the “purely non-constant case”. In
Section3.3.3 we give a general algorithm to compiRg(Gal’ (%)) under the assump-
tion that.Z has no non-zero triviad-submodules in the sense of Definitiarl 2

3.3.1 Decomposition of the completely reduci®enodule”

The following lemma gives a decomposition of a completetuable d-module into
a direct sum ob-modules, a “constant” one and a “purely non-constant” one.

Lemma 3.15Let . be a completely reducibl@-module andp : Galé(,%) —
GL(w(.%)) be the representation of the parameterized differentidb&agroup of.¥
onw(.¥). Then there exis?-submodules’; and %, of £ such that

- L =2D L

— the representation ddal’(.¢) on % is conjugate to constants BL(w(%)), that
is, any differential system associated%g is isomonodromic by Propositioh52,

— % is maximal for the properties above, that is, there is no mered-submodule
N of %, such that the representation GfaI‘S(J) on./# is conjugate to constants
in GL(w(A)).

Proof Let .%,...,. %4 be irreducibled-submodules such tha? = A @ ... ® 4. We
have

GLw(2) - [|GL@(2)).

Let Sbe the set of indicesin {1,...,r} such that the representation of &a¥’) on
w(4A) is conjugate to constants in G(.%)). Setting

L= @ﬂ and L= @ﬂ
ieS i¢S

allows to conclude the proof. O

Remark 3.16The above construction is effective. L&t be a completely reduciblé-
module ovelK = C(z) with d(z) = 1 andd(C) = 0. There are many algorithms that
compute a factorization of into a direct sum of irreduciblé-submodules: see, for
instance, 23,48]. Thus, we can find a linear differential system associatef’tof the
form
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with Aj e K= foralli=1,...,r and such thad(Y) = A)Y is an irreducible differential
system. Forali=1,...,r, let.% be ad-module associated ®&(Y) = A)Y. LetSbe the
set of indices such that there exists a matix e K"*" such that

O(A)) —d(Bij) =BiA — AB;.
Since there are algorithms to find rational solutions ofdindifferential systems (see
[3]), the construction of the s&is also effective. We can set

ieS i¢S

This decomposition motivates the following definition.
Definition 3.17 A d-module.Z overK is said to be constant if the representation of
GaP () on w(.Z) is conjugate to constants in Gl(.%)). On the contrary, thé-
module.?Z is said to bepurely non-constanf there is no non-zer@-submodule

of . such that the representation of &a¥’) on w(.#") is conjugate to constants in
GL(w(A)).

Remark 3.18We say that &-moduleV is purely non-constarif, for every non-zero

G-submoduldV of V, the induced representatign: G — GL(W) is non-constant. By

the Tannakian equivalence,damodule.? is purely non-constant if and only if the
GaP (.#)-modulew(.?) is purely non-constant.

Recall thatZ is ad-module extension df by .. We consider the pushout of

0 Zz w 1 0

by the projection ofZ on % (respectively, on%,c). We find two exact sequences of
d-modules:

0 2. U, 1 0 (3.10)

and
0 Zne Une 1 0 (3.11)

We deduce from Lemma.6that

— Ru(GaP (%)) is a differential algebraic subgroup af.%);
- Ru(GaP (%)) is a differential algebraic subgroup @f %) ;
— Ru(GaP (%)) is a differential algebraic subgroup af.%c).

The quotient G&l(%) /Ru(GaP (%)) is GaP (%), which is, by construction, con-
jugate to constants. We can usi|[to computeRu(GaI‘S(ﬁZ/c)). Section3.3.2shows
how to compute the unipotent radical of the parameterizfierdntial Galois group of
an extension ol by a purely non constant completely reducible module. Kin&kec-
tion 3.3.3shows how to combine Sectién3.2with [35] to deducer,(Gal (%)) from
the computation oR,(GaP (%)) andR,(GaP (Znc)) .
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3.3.2 The purely non-constant case

The aim of this section is to prove the following theorem.

Theorem 3.19 Let . be a purely non-constant completely reduciblenodule over
K. Let% be ad-module extension df by .. Then, R(Gal (%)) = w(%), where
.,% is the smallest-submodule of# such tha@alé(%/fo) is reductive.

By Theorem3.13 R,(Gal (%)) is ad-closed subgroup ab(.#), which is stable
under the action of GQ(X). We show that any such subgroup ik-&ector subspace.
In this attempt, we first treat the cases in which&&f) is a torus or Sk. We conclude
with the general situation and the proof of Theor&md

The algorithm contained in3f] allows one to test whether the unipotent radical
of a linear algebraic group is trivial. This algorithm ralien bounds on the order of
the defining equations of the parameterized differentidbiSayroup. Combined with
Theorem3.19 we find a complete algorithm to compwRg(Gal’ (% )).

Theorem3.19implies among other things th&,(Gal (%)) is an algebraic sub-
group ofR,(Gal(% )). Despite the fact that G&|% ) (respectively, GAI(.Z)) is Zariski
dense in G4l ) (respectively, G4l¥)), it might happen thaRu(GaP(%)) is con-
tained in a proper Zariski closed subgrougRafGal(%)) as it is shown in the follow-
ing example.

Example 3.20Let V = span {x?,xy,y?,Xy — xy'} C k{x,y}, and let us consider the
following representatiop : PSL, — GL(V) (cf. [34, Example 3.7]):

a® ab P ab-ab

ab 10\ /(-1 0 2ac ad+ bc2bd 2(bc — ad')
<c d) mOd{(o 1)< 0 —1)}H @ o & cdd-cd |- G12
0 0 0 1

Note thatp(PSLy) = G2 x PSL,, and we haveR,(PSLy) = {e} whereasR,(G2 x
PSLy) = G3. By [49, Theorem 1.1 and Lemma 2.2], we can constru@tmodule%
such that G&(%) = PSLy, andp is the representation of G4l ) on w(%) (so
that Ga(#% ) = G3 x PSLp). We can also construct@&module.# such thatZ is an
extension ofl by .Z in the given representation.

For a subseB of a k-vector spac&/, we denotekB the smallesk-subspace of
that contain®. Note thatkB consists of all finite linear combinations of element8of
with coefficients irk.

Proposition 3.21 Let G be a reductive linear differential algebraic group akd
a purely non-constant completely reducible G-module. Teeery G-invarianto-
subgroup AC V is a submodule.

Proof We need only to show th& is k-invariant. Let us assume th@tis connected.
The general case will follow by Propositio2s23 and 2.54, which imply thatV is
completely reducible and purely non-constant & anodule.
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Let us prove thaA is k-invariant by induction on difd. Let B be minimal among
the non-zerdG-invariant 8-subgroups oV that are contained if\, which exists by
the Ritt—Noetherianity of the Kolchin topology. In what lfmks, we shall prove that
kB = B. Assuming this, by the semisimplicity &, letW C V be aG-invariantk-
subspace such thit=B@W. ThenA=B® (WNA), andk(WNA) =WnNA by the
inductive hypothesis. ThereforeA = A.

Let us show that there exisise k \ C such thatxB = B. SinceV is purely non-
constanty’ = kB is purely non-constant, and so it contains a simple nontaahsub-
moduleU. By Corollary2.29 there exists &-torusT C G such that) semisimple and
non-constant as &-module. By the construction df (see the proof of Corollarg.29
and Propositior2.27, every simpleG-module is semisimple asTamodule. Therefore,
V andV’ are semisimple a$-modules. HenceT is an algebraic torus, and there is a
direct sum of weight spaces

V' =PV (3.13)
X

over all algebraic charactegs: T — k*. By definition,
Vy={veV'|t(v)=x(t)v forallte T}.

Note that\/)’(, viewed a<C-linear spaces, are weight spaces with respe€i{@®) = Tc.
Since any charactey (being defined by monomials) is uniquely determined by its re
striction toT (C), the direct sumJ.13 is also the weight space decomposition of the
C-spaceV’ with respect to the action ofc. Sincélc € T C G and thed-subgroup

B Cc V' is G-invariant,B is alsoTc-invariant. Moreover is aC-vector spacef], Propo-
sition 11]. Therefore, we have the weight decompositiornefd-space with respect to
the action ofT¢:

B—(DB,,  where By (BNV;).
X

SinceV’ = kB, V; = kBy. In particular,By is non-zero ifVy is. By the definition of
T, there is a character of T such thaiy (T) ¢ C andV, # {0}. Therefore, there exist
b e By, b# 0, andt € T such thatt acts onb by multiplication by a non-constant
elementx. We fix such arx. Due to theG-invariance ofxB, we obtain thaBNxB is a
G-invariant non-triviald-subgroup oB. SinceB is minimal,xB = B.

On the one hand, the s8t= {a € k|aB C B} is aC-subalgebra ok. On the other
hand,

S=(190,"(B). ¢p:k—=V, testb,
beB

is a d-subgroup ok. Therefore, by 29, Theorem 11.6.3, page 97§ = C or k. Since
Xe S S=Kk. O

Proof (Proof of Theorer.19 By Theoreni3.13 Ru(GaI‘S(ﬁZ/)) is ad-closed subgroup
W of w(.Z) which is stable under the action of Gal”). Proposition3.21shows that
W is ak-vector space and thereby a é(ai”)-module. Byd-Tannakian equivalence for
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the category{.#}®-%, we obtain thawV is of the formw(#') for somed-submodule
W C ¥ C%.Thus,itremains to prove th# is the smal@/sﬂ—submodule,% of &
such that the parameterized differential Galois groug/gf%y is reductive.

Let us show that the s&t of subobjects? of . such thaRy(GaP (% /#')) = {1}
admits a smallest subobject with respect to the inclustas enough to prove that, if;
and¥; belong toV, their intersectior?” lies inV. Denote byG, G1, andG, the param-
eterized differential Galois groups @f /%', % | ¥1, and% | 5, respectively. The quo-
tient maps% /% — % /¥ give rise to homomorphisnis : G — Gj, i = 1,2. SinceG;
are reductiveR,(G) C ker¢;. Therefore, it suffices to show that igarnkerg, = {1}.
For eacly € G, the conditiorg € kerg; means thag(u) — u € w(¥) forallu € w(%).
Therefore, every element of k@ Nkerg, acts trivially onw(% )/ w(#).

As in the notation of Lemma.6, let s be ak-linear section of the last arrow of the
following exact sequence

0—-wZ)—w#)—k—0

and let{, be its associated cocycle. By Lem®& and Propositior8.21, the cocycle
4 identifiesRy(Gal’ (%)) with a k-vector subgroupV = w(#) of w(.#) for some
d-submodule?” C % . To conclude the proof, we have to show tiat= w(,%).

It follows from the definition of{ that the diagram

GaP(%) —+ (%) (3.14)

Pl

Gal (% /W) o, (LW

where the vertical arrows are induced by the quotient mapspinmutative. By the
definition of # and exactness @b, the compositiof8{;, vanishes oR,(Gal (% )).
Sincew(% /#) is a faithful Gaf (% /# )-module andw(.Z/#’) has no non-zero
trivial Gal®(.Z/# )-submodule by assumption, and therefore no non-zero ltrivia
Gal (% /#')-submodules by assumption, Propositiériz2and3.23below show that

Ru(GaP(% /7)) = p(Ru(GaP(%))).

Since( is one-to-one on the unipotent radical, we conclude thalitiear differential
algebraic group Gé(%/“fﬂ) is reductive. Therefore#” O .,%. If we replace?”” with
a d-submodule? C % in the above diagram such that &gk /7) is reductive, we
obtain that

w(¥) > {u (Ru(GaP (%)) =W.

Thus,w(.Zp) D W. O

Recall that unipotent linear differential algebraic greape connected. (Otherwise
they would have unipotent finite quotients, which is impblkes) Therefore, for every
linear differential algebraic grou@, we haveR,(G) = Ry(G°) = Ry(G)°.
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Proposition 3.22 Let p : G — H be a surjective homomorphism of linear differential
algebraic groups. Assume that, for every proper subgroup®,(H) that is normal in
H, the group B(H/N) is not central in(H/N)° = H° /N. Thenp(R,(G)) = Ru(H).

Proof Let N = p(Ry(G)) € Ry(H). By the surjectivity ofp, the groupN is normal in
H. Consider the epimorphism of quotients

v:G/Ry(G) —H/N

induced byp. The linear differential algebraic growp *(Ry(H/N))° is normal in the
reductive linear differential algebraic groy/Ru(G))°. Therefore, it is reductive it-
self. By Theoren®.25 v—1(R,(H/N))° is an almost direct product of&closed sub-
groupZ of a central torug§ C (G/Ry(G))° and of quasi-simple linear differential al-
gebraic groupsl;. Since the subgroup$ coincide with their commutator groups, they
cannot have unipotent images unlessl;) = {e}. We conclude tha#(Z) = R,(H/N).
SinceZ is central in(G/R,(G))° and v is surjective, the grouw(Z) is central in
(H/N)°. It follows from the assumption th&t = R,(H). O

Proposition 3.23 The assumption on H in Propositién22is satisfied if there exists a
short exact sequence
0O—-V—-U—=1-0

of H°-modules, where U is a faithful Hmodule and V is a Frsemisimple module with
no non-zero trivial H-submodule.

Remark 3.24Note that if theH°-moduleV has no trivialH°-submodules, theX has
no no zerdC-vector space fixed by the actionldf. Indeed, letf be a nonzero element
of aC-vector space fixed b, then thek-vector space spanned yis fixed byH°.

Proof It suffices to prove the statement for connectédLet N C Ry(H) be ao-
subgroup that is normal iH and such thaR,(H/N) is central inH /N. Since we have
a commutative diagram

H—H/N

Ru(H) —Ru(H/N),

the latter implies that, for atj € Ry(H), one hasigh™! € gN. Letu € U be an element
whose image irl is non-zero. MoreoveiR,(H) acts trivially onV because/ is H-
semi-simple. Thus, the map

(:Ry(H) =V, g—gu—u

is anH-equivariant one-to-one homomaorphism of linear diffel@ndlgebraic groups
(see proofs of Lemmas 6and3.8), that is, for allh € H andg € R,(H), we have

hgu—hu= hgh™tu—u.
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The d-subgroupg (Ry(H)) and{(N) of V are thus stable under the actiontbf Note
that{ (Ry(H)) and{(N) areC-vector spaces since, assubgroup o/, they are zero
sets linear homogeneous differential equations kver

Letn € N be such thahgh™! = gnandn’ € N be such thagng™ = n'. Then

h(gu—u) = hgu—hu=gnu—u=n'gu—u+nu-n'u
=n'(gu—u)+nu—u=gu—u+nu—u,

sincegu—u € V and R,(H) acts trivially onV. Therefore,H acts trivially on
{(Ry(H))/Z(N). Since{ (Ry(H)) is H-semisimple asi-module oveC, theH-module

{(Ru(H))/Z(N) C {(Ru(H)) cV

is aC-vector space fixed by the action Hf. This contradicts the assumption ¥n It
follows thatR,(H) = N. O

3.3.3 A general algorithm

Will will explain a general algorithm to compute the unipoteadical of ad-module
extensionz of 1 by a completely reducibl@-module.#. We recall that¥ can be
decomposed as the direct sum of a constentodule.Z: and a purely non-constant
d-module %yc. Considering the pushouts of the extensinwith respect to the de-
composition ofZ, we find the following two exact sequencesdemodules:

0 Z Ue 1 0

and
0 “Zne YUne 1 0

We assume th&{ = k(x) so that we can use the algorithm contained3f fo com-
puteR,(Gal’ (%)) and the algorithm of Sectioh.3.2to computeR,(Gal’ (Z)). The
quotient map¥ — % % = % induces an epimorphism : GaP (%) — Gal’ (Z).
Similarly, we find an epimorphisifi : GaI‘S(ﬂZ/) — Gal‘s(%c). The following theorem
allows us to comparBU(GaI‘s(ﬁZ/)) with the groups computed above.

Theorem 3.25 Let K=k(X), &, % , %, %nc be as above. Assume th#t has no non-
zero trivial -submodule. Then the map

a x B:Ry(GaP (%)) — Ru(GaP (%nc)) x Ru(Gal (%))
is an isomorphism of linear differential algebraic groups.

Proof We will use the notion oflifferential typer (G) of a linear differential algebraic
groupG (see [L2, Section 2.1] andd5, Definition 2.2]). Recall that, in the ordinary
case, can only take the values1, 0, or 1. We will also use the following result:

Lemma 3.26 ([L2, Equation (1), page 195])Let G be a linear differential alge-
braic group and H be a normal differential algebraic subgpoaf G. Thent(G) =
max{t(H),7(G/H)} .
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Let us consider the commutative diagram:

Ru((GaP (%)) ——L—— Ru((GaP (%) —— Ry((GaP (%))  (3.15)

| |

(%) (%) = (%) ® O(YUnc)

(%)

Here, the vertical arrows correspond to embedding (that isne-to-one homomor-
phism) via the associated cocycles (s8€l{)). The horizontal arrows of the lower
row correspond to natural projections. Note tRat(Gal (%)), Ru((GaP (%)), and
Ru((Gal (%)) are all abelian groups (see Theorém). It follows from (3.15 that
a x (B is an embedding. Then, by 2, Corollary 2.4] and Lemma.26

T(Ru(Gal (%)) < 1(Ru(GaP (%)) x Ru(GaP (Znc)))
= max{1(Ru(Gal(%))).T(Ru(GaP (Znc))) } -

Sincea andf are surjective, we find that
T(Ru(Gal (%)) = max{1(Ry(GaP(%))), T (Ru(Gal (%)) } -

If Ru(Gal (Z)) # {e}, it is isomorphic to a non-trivial vector group ovierand its
differential type is 1 (seelR, Example 2.9]). Moreover, since the unipotent radicals
considered above a@closed subgroups of vector groups, they are either algebra
groups and their differential type is 1, or finite-dimensib@-vector spaces of differ-
ential type 0. IfR,(Gal’ (Zc) = {e}, we have nothing to prove. Thus, we assume that
Ru(GaP (%) # {€} and that its differential type is 1. By the discussion abevecan
also assume that

T(Ru(GaP (%)) = 1

SinceZ has no non-zero trivia#-submodule, the same holds f&f; and £c. By
Propositions3.22and3.23 a andp are surjective. LeRy C Ry(Gal’ (%)) stand for the
strong identity component &,(Gal (%)) ([12, Definition 2.6]). SincdR,(Gal’ (%))
is algebraic by Theorerf.19 it is strongly connected bylp, Lemma 2.8 and Exam-
ple 2.9]. We have

a(Ro) = Ru(GaP (%))

(Indeed, otherwiser (Ro) € Ry(GaP (%c)). By definition of the strong identity com-
ponent, we find that

T(Ru(GaP(%))/Ro) < 1.

However,

T(Ru(Gal (%) /a(Ro)) = 1,

becaus&,(Gal (%)) is strongly connected. Therefore, we have a surjective map

Ru(Gal(%))/Ro — Ru(Gnc)/a(Ro)
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from a linear differential algebraic group of differentigbe smaller than 1 onto a linear
differential algebraic group of differential type 1, whighimpossible. Therefore, the
group product map

Ry x kera — Ry(GaP (%)), (ro,x) ~— rox
is onto. To finish the proof, it suffices to show that
B(kera) = Ry(GaP (%)).
If B(Ro) # {e}, itis strongly connected and

T(B(Ro)) = 1(Ro) = 1.

Since T(Ru(GaI‘S(%nc))) = 0 (see B5, Theorem 2.13]), we havg(Ry) = {e} (by
Lemma3.26). Thus,
B(kera) = Ry(GaP (%nc)). 0

4 Criteria of hypertranscendance

We start with a new result in the representation theory osgsinple and reductive
linear differential algebraic groups, which we further &sea hypertranscendence cri-
terion.

4.1 Extensions of the trivial representation

Let (k,0) be ad-closed field such that chiar= 0 and letC be its field ofd-constants.
Let G C GLy(k) be a connected linear differential algebraic group évéie recall the
definition of the Lie algebra a8, following [8, Chapter 3].

Definition 4.1 A k-linear derivatiorD of the field of fractionk(G) of thed-coordinate
ring k{G} of G is called adifferential derivationf Do d = doD.

In particular, every differential derivation is determihigy its values on the matrix
entries that differentially generakg G} and, therefore, can be represented bypam
matrix. The groupG acts by right translations on the set of differential defosas of
k(G).

Definition 4.2 The set Ligs of invariant differential derivations, denoted also @yis
called thelie algebraof G.

This is aC-Lie subalgebra of the Lie algebgg, (k) = LieGLnp(k) of all nx n
matrices. Moreovey is also ad-subgroup of the additive group gf,(k). Every o-
homomorphism of linear differential algebraic groups givise (by taking the differ-
ential) to aC-homomorphism of their Lie algebras. We refer & Chapter 3] for the
details.
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Definition 4.3 A g-module(respectivelyC-g-module) is a finite-dimension&lvector
space (respectiveltg-vector space, possibly infinite-dimensiondltogether with a
C-Lie algebra homomorphism: g — gl(V), whereg((V) denotes the Lie algebra of
k-linear endomorphisms &f.

EveryG-moduleV is also ag-module, wherey = dp : g — gl(V) is the differential
(see B, pages 928-929]) of the homomorphigm G — GL(V). (Formally, to agree
with the above definitions, we assume that a basisisfchosen, hence we can identify
GL(V) and gl(V) with GLn(k) and gl,,(k), respectively.) The definitions of simple,
semisimple, and other types gfmodules that we use here are analogues to those for
G-modules.

It follows from [8, Proposition 20] that, i6 C GLn(K) is given by polynomial equa-
tions, then Lig5 coincides with the Lie algebra of the gro@considered as an alge-
braic group. Moreover, for an arbitrary linear differehilgebraic groufs C GLn(k),
the Lie algebra Li& of its Zariski closureG coincides with thek-span of LieG in
al,(k). Recall that, in the case & = G, LieG is aG-module, which is calleadjoint,
where the action 0B is induced from its action ogl,, (k) by conjugation. The differen-
tial of the corresponding homomorphism AG — GL(g) gives thek-Lie algebra map
ad :g — gl(g) defining the structure of thg module ong, also callechadjoint One has
(adk)(y) = [x,y] forall x,y € g.

For any group, Lie algebra, or ring, we denote the set d®-module homomor-
phisms by Hom(V,W).

For aC-Lie algebrag, let gx = k ®c g denote thek-Lie algebra with the bracket
determined by

xeé&yonl=xy®[&n] vYxyek, &necg.

We have the inclusion
g~CgCck®g=gk.
If g C b are Lie algebras, then we also consifles ag-module under the adjoint action.

Lemma 4.4 Let H C GLy(C) be a reductive algebraic group arid= LieH C gl,,(C).
Letg C bk be a C-Lie subalgebra containirigand

0—-V->W-—=1-0 (4.2)

an exact sequence gfmodules (ovek). If

(1) sequencés.]) splits as a sequence Bfmodules and
(2) Homy, (hk,V) = 0 (in other words, V does not contain quotients of the adjoint
representation ofy),

then sequencg!.]) splits.

Proof If one chooses a bas{®,...,e,_1,en} of W such thal = sparey,...,e,1},
then the matrixp(&) € gl(W) corresponding td € g can be written in the form

(agf) ¢(§)>7
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wherea : g — gl(V) determines thg-module structure oW and¢ : g — V is aC-
linear map. The fact thad defines a homomorphism of Lie algebras is the following
condition ong:

(& n)=a(&)p(n)—a(n)¢&) V&neg. (4.2)

Choosing another vector fay, one obtains anoth@-linear mapg’ : g — V, which is
called equivalent t@. Sequence4( 1) splits if and only if¢ is equivalent to 0.
Let us choose, in such a way that

$(&)=0 Vien, (4.3)
which is possible due to assumption (1). It follows frofmd) and @.3) that
¢([&.n)=a()e(n) Véebh, neg (4.4)

SinceH is reductive, by $2, page 97, Theorem] ané(, Chapter 2], there exist simple
h-submodulesd)1,...,bm in b such thath = EB hi. Let B C k be aC-basis ofk as a

C-vector space. For eaete k andi, 1 <i < m a® hi is a simpleC-h-submodule ofy,
and
bk = €P b (4.5)

1<i<m
beB

For everyC-h-submoduld C by, letl” be a maximal sum of the simple components in
decomposition4.5) with I’'N I = {0}. Such arh-submoduléd’ exists by Zorn’s lemma.
We will show that
k=1l (4.6)
LetS=b®b; forsomebe Band 1<i<m.If SN (I&1") = {0}, thenl N (S 1") = {0}.
Indeed, ifv € | andv = vy + vy, wherev; € Sandv, € I, thenv, =v—v; € SN (I @1'),
and sov = v1 € I NS= {0}. By the maximality ofi’, SC I’, which contradictSn (I ®
I’) = {0}. Therefore,
Sn(lel’) #{0}. 4.7)
SinceSis a simpleh-module, ¢.7) implies thatSC | ¢1’. Thus, ¢.6) holds and there-
fore hy is a semisimplé-module. (cf. [/, §4.1]).
The C-h-moduleg is semisimple. Indeed, evefyinvariant subspacé C g has a
complementary invariant subspat‘en by, sincehy is semisimple. Therefore,

g=Ja (I Ng).

Thus, to prove thap is the zero map, it suffices to show thiatJ) = {0} for every
simpleC-h-submodule) C g. Since suchl is isomorphic tah; for somei, 1 <i <m,
we have thé)-equivarianC-linear map

uipBhi~dcghv,

where 1T is the projection with respect to dpinvariant decompositioty = b; & by,
and theh-equivariance ofp is implied by ¢.4) . Sinceu extends to thé-linear hy-
equivariant mapy — V, assumption (2) yields that is the zero map. Therefore,

6(3) = {0}. 0
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Lemma 4.5 Let G be a connected linear differential algebraic group gnlde its Lie
algebra. Any G-module W is completely reducible if and ohly is completely re-
ducible as ag-module.

Proof Let Gw denote the image d& in GL(W). The G-moduleW is completely re-
ducible if and only if it is completely reducible asGg-module. The latter is equivalent
to W being completely reducible as@y-module. Since chér= 0, this is equivalent
to the semisimplicity oV viewed as the Li&y-module (seeq2, page 97, Theorem])).
Since LieGy is thek-span of LieGy C gl(W), W is completely reducible as a L@y if
and only if it is completely reducible as a LGgy-module. Since, byg, Proposition 22],
LieGw is an image ofj in gl(W), W is completely reducible as@module if and only
if W is completely reducible as a L@&y-module. O

Theorem 4.6 Let G be a connected linear differential algebraic grouprokeand
0—-V->W-—=1-0 (4.8)

an exact sequence of G-modules, where V is faithful and sepiés LetG denote the
Zariski closure of G irGL(V). If V, viewed as &-module, does not contain non-zero
submodules isomorphic to a quotient of the adjoint modul&fahat is, if

Homg(LieG,V) =0,
then sequencg!.9) splits.

Proof By Lemma4.5, it is sufficient to show tha#V is completely reducible as @
module. SinceG admits a faithful completely reducible representatiowvégibyV),
it is reductive. Therefore, by3B, Lemma 4.5], there is &-isomorphismv : H — G,
whereH ¢ GL, (k) is ad-group such that it§-subgroupHc = H N GL, (C) is Zariski
dense (the Zariski topology dt is induced from GL(k)).

LetH = v(Hc) andh = LieH. We will show that) andg satisfy the hypotheses of
Lemma4.4, which would thus yield the proof (in particular, we will idgfy g with a
subalgebra ofik). The differential algebraic groud ~ Hc is reductive. Indeed, if its
unipotent radical were non-triviaR,(Hc) NH would be a non-trivial normal unipotent
differential algebraic subgroup of, which is impossible due to the reductivity Gf~
H.

Let us show thav extends to an algebraic isomorphismHc — G of the Zariski
closures. By 83, Theorem 3.3], this would follow if th&-moduleV is completely
reducible andHc is reductive. It only remains to prove the latter. Siftgis reductive,
C' is a completely reduciblelc-module. Thereforek” is completely reducible as an
Hc-module. ThusHc is reductive.

The differentialdV defines an isomorphism betwe&rLie algebras Liélc and
Lie G. Since LieHc C gl; (C) and anyC-basis ofgl, (C) is also ak-basis ofgl; (k), we
obtain that anyC-basis of LieHc is k-linearly independent. Since Lk is thek-span
of LieHg, we can therefore write

LieHc = k ®c Lie He.
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Applying dv, this implies that
LieG=k®ch = by.

Therefore, we have
hCgC bk

Since everyd-representation oHc is polynomial andHc is reductive, everyd-
representation dflc is completely reducible. Thereford/ is completely reducible as
anH-module (and)-module), and so sequenceq) splits as a sequence pfmodules.
Finally, using p2, page 97, Theorem] and L@&= g, we conclude that

Homy, (gk,V) = Homy ;.5 (LieG,V) = Homg (LieG,V) = 0. O

4.2 A practical criterion of hypertranscendance

LetA = {d,d} be a set of two derivations. L&t be aA-field such thak? = k (recall
thatk is d-closed). From the results of the previous sections, weimlite following
criterion for the hypertranscendence of the solution& (@ = b, for irreducibleL e
K[9].

Theorem 4.7 Let L € K[d] be an irreducibled-operator such thaGal(L) is a quasi-
simple linear algebraic group. Denote=a ordL and m= dimGallL). Suppose that
m+£n. Let be K* and F aA-field extension of K such that’= k and F contains z, a
solution of Lly) = b, and u, ..., un, K-linearly independent solutions ofy) = 0. Then

— the functions ¥,...,Vm,z...,0" 1z and all their derivatives with respect thare
algebraically
independent over K, whergvy, ..., Vm} C {u1,...,0" tug,... Un,...,0" tuy} is
a maximal algebraically independent over K subset

if and only if

— the linear differential systemd(B) — d(A.) = ALB— BA_, where A denotes the
companion matrix of L, has no solutionseB<"*" and
— the linear differential equation(y) = b has no solutions in K.

Example 4.8If L € K[d] and GalL) = SL,,, wheren = ordL > 2, thenL is irreducible
and dimL # dimGallL) = n? — 1. In this situation, in Theorer.7, we can take

n—1 n—1 n—-2
{vi,...,Vm} ={ug,...,0" "u1,...,Up-1,...,0" “Un_1,Un,..., 0" “Un}.

Proof (Proof of Theorem.?) Let . (respectivelyZ/) be thed-module associated to
L (respectively, tqd — d(b)/b)L). Since theA-field Ky, generated by, ... ,un,zin F

is a PPV extension fo#z overK, the differential transcendence degre&of overK
equals the differential dimension of (%4?/). Since.Z corresponds to the differential
systemdY = ALY, Proposition2.52together with Theorer.253) imply that the first
hypothesis is equivalent to @4l¥’) = Gal(.).
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SincelL is irreducible, there is no non-zero trividdlsubmodule 4" of .Z such that
the representation of G%(Liﬂ) on w(-4") is conjugate to constants, that &, is purely
non-constant. By Theoref19 Ry(GaP (%)) = w(:izo), where. %, is the smallesp-
submodule ofZ such that Gél(%/,?o) is reductive. SinceZ is irreducible, either
:% is zero or.,% = %. The module:% is zero if and only ifRu(GaP(%)) = {e}.
Moreover,R,(Gal (%)) = {e} if and only if w(%) is a GaP(.Z)-module. Since
dimg w(.Z) = n, the Gaf (.¥)-modulew(.¥) is not adjoint. Since G4l) is a quasi-
simple linear algebraic group, Li&al(L)) is simple (seeq5, Section 14.2]), and there-
fore its adjoint representation is irreducible. This inaglthat

Homgay) (Lie(GallL)), w(.£)) = 0.

Therefore, by the above and Theoréms, we find that,?o is zero if and only if the
sequence of G&(.Z)-modules

0 wZ)—w#)—k—0

splits, which, by 3 Theorem 3.5], is equivalent to the existence of a solution i
K of the equationL(y) = b, in contradiction with the second hypothesis. There-
fore, we find that the second hypothesis is equivale®@al(7% )) = (k",+), that

is, the vector grougs] and Gaf(%) = G x Gal(.#). The latter is equivalent to
Vi,...,Vm,Z...,0" 'z being a differential transcendence basi&gf overK. O

Remark 4.9The condition in the statement of Theorefr/ to have no solutions
B € K™ is equivalent to the fact that G‘%(Lsf) is not conjugate to constants. Her

a computable field, this condition can be tested throughouaralgorithms that find
rational solutions (see, for instanc&])] However, one can sometimes easily prove
the non-integrability of the system by taking a close lookhattopological generators
of the parameterized differential Galois group such as tbaadromy or the Stokes
matrices. This is the strategy employed in LenmdnkQ

4.3 Application to the Lommel equation

We apply Theorem4.7 to the differential Lommel equation, which is a non-
homogeneous Bessel equation

d’y 1d a?
d—)(z/+;d—§+<1—?>y_x“ L (4.9)
depending on two parameters,u € C.

We will study the differential dependence of the solutioh$49) with respect to
the parametesr. To this purpose, we considaras a new variable, transcendental over
C, and suppose that € Z. We endow the field"(a,x) with the derivation® = %
andd = %(’ A ={0d,0}. Letk be ad-closure ofC(a). We extendd to k as the zero
derivation. We extend to K = k(x), the field of rational functions ir with coefficients
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in k, so thatC(a,x) is aA-subfield ofK. Indeed, let” = k ®¢(q) C(a,X), which is
a A-algebra overC(a,x), and.«7? = k. SinceC(a,x)? = C(a), the multiplication
homomorphismp : .o — K, is injective (seeZ9, Corollary 1, page 87]). Therefore,
there is an extension @ ontoK making¢ a A-homorphism so that(a,x) C K is a
A-field extension viap.

Let.Z be ad-module oveK associated to the Bessel differential equation

d?y 1dy a?

and let% be ad-module ovelK associated to the Lommel differential equation. We
have:
0O—-%Y—% —1—0. (4.12)

Lemma 4.10 The parameterized differential Galois group&fover K isSL,.

Proof The differential Galois group aZ overK is known to be Sk (see PRg)). By
[11], we know that either GA(.#) = SL, or GaP (%) is conjugate to constants in
SL,. Suppose that we are in the second situation, that is, tikésts B € SL, such that

PGaP(Z)P~tc {MeSLy|5(M)=0}.

The coefficients of4.10 lie in C(a,x). Moreover, for a fixed value ofr in C, the
point zero is a parameterized regular singular pointlof () (see B7, Definition 2.3]).

If we fix a fundamental solutiody of (4.10 and follow [37, page 922], we are able to
compute the parameterized monodromy matricesgldf(f around zero. For a suitable
choice ofZy, we find the following parameterized monodromy matrix,

(50
wo-(52)
where = €™ and = e 2™ (see B8, page 35]). By $7, Theorem 3.5]Mq be-
longs to some conjugate of G4l¥). This means that there exisfse GL, such that

3(QMpQ 1) = 0. Since conjugate matrices have the same spectrum andebisp
of Mg is notd-constant, we find a contradiction. O

Let Jy(X) be the Bessel function of the first kind andYgtx) be the Bessel function of
the second kind. A solution of the Lommel differential eqoais the Lommel function
Su,a(X), which is defined as follows

Sua(X) = %H{Ya(x) /Oxx“\]o,(x)dx— Ja (X) /Oxx“Yo,(x)dx} .

Proposition 4.11 The functions, g(x), Ya (), 3 (Ya) (X), Sy« (X) and ks, « (x) and all
their derivatives of all order with respect t§a are algebraically independent over
C(a,x). Moreover, the parameterized differential Galois groupZofis isomorphic to
a semi-direct produdB2 x SL.
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Proof Since Gaf(.£) = SL,, we just need to prove thaty) = x*~1 has no solutiory

in K in order to apply Theorenr.7to the Lommel differential equation. Thus, suppose
on the contrary thdt(y) = x*~* has a rational solutiog € k(x). Using partial-fraction
decomposition, one can show that the only possible potgi®tero. If we write

n .
g= z ajx), mneZ m<n, aj €k, anan #0,
j=m

then the highest and lowest order termd.(d) € k[x,1/x] are
axX"#0 and (m?—a?)anX™?+£0,

respectively. Since different powersxére linearly independent ovkrandn # m— 2,
L(g) —x#~ contains at least one non-zero term. Contradiction. O
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