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ABSTRACT
Fog computing provides computing, storage and communication
resources at the edge of the network, near the physical world. Sub-
sequently, end devices nearing the physical world can have inter-
esting properties such as short delays, responsiveness, optimized
communications and privacy. However, these end devices have low
stability and are prone to failures. There is consequently a need for
failure management protocols for IoT applications in the Fog. The
design of such solutions is complex due to the specificities of the
environment, i.e., (i) dynamic infrastructure where entities join and
leave without synchronization, (ii) high heterogeneity in terms of
functions, communication models, network, processing and storage
capabilities, and, (iii) cyber-physical interactions which introduce
non-deterministic and physical world’s space and time dependent
events. This paper presents a fault tolerance approach taking into
account these three characteristics of the Fog-IoT environment.
Fault tolerance is achieved by saving the state of the application in
an uncoordinated way. When a failure is detected, notifications are
propagated to limit the impact of failures and dynamically reconfig-
ure the application. Data stored during the state saving process are
used for recovery, taking into account consistency with respect to
the physical world. The approach was validated through practical
experiments on a smart home platform.
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1 INTRODUCTION
Cloud computing has been, for more than a decade now, an efficient
way of renting resources and services to businesses as well as to
public users. The outsourcing of applications and services to the
cloud is attractive particularly due to its pay-as-you-go model, the
potential of delegating the maintenance and storage of physical
servers, and the additional services provided like security, elasticity
or reliability. However, cloud systems, located within the core net-
work may fail to resolve some of the needs of the Internet of Things
(IoT) applications such as low network latencies, QoS and privacy.
With the explosion of the number of connected objects and the ever
increasing demand for real time processing and data privacy, we are
now witnessing the advent of more distributed paradigms to extend

the possibilities of the cloud for IoT. Fog computing [4] provides re-
sources (compute, storage and communication), and allows control,
processing and filtering at the edge of the network, in proximity
to the real world. This makes the Fog especially appealing to IoT
applications.

Providing reliable services is a key challenge for IoT applications
in the Fog. Fault-tolerant services give a better user experience.
In some cases, fault tolerance is very important since the non-
containment of failures may impact the physical world (PW) as well
as provoking the failure of the whole application. These failures
may be potentially critical. For instance, the failure of a smoke
detector or a lamp in a smart home for elderly/medicated people
may be hazardous. Failures in a Fog environment occur regularly
because end devices have low stability and are prone to many
types of failures like power failures (accidental unplugging, battery
drain), hardware failures (due to external environment conditions or
wear-out), or software failures. Additionally, end devices are often
connected through wireless networks offering both convenience
and flexibility to end users. However, it also induces instability due
to the volatility of the network and mobility of devices.

Building fault-tolerant systems to provide reliable services for
stateful IoT applications in the Fog is challenging as it implies the
saving of states, detection of failures and recovery in a consistent
manner with respect to the specificities of the Fog-IoT context. For
the design of a fault tolerance solution, we consider the following
three specificities of the Fog environment: dynamicity, heterogene-
ity and cyber-physical interactions.

Dynamicity. Devices in the Fog-IoT environment may appear
and disappear without any synchronization due to (unannounced)
mobility, instability of network links or failures. Failure detection
in such an environment is complex because of the entailing un-
certainties. It is difficult to know precisely the resources available
for the execution and recovery of the application. Dynamicity also
includes the support for on-the-fly (re)placement, (re)deployment
and reconfiguration of the application. This type of dynamicity can
be leveraged for recovery. For instance, the execution of software
element can be moved onto other infrastructure entities.

Heterogeneity. The Fog-IoT environment is highly heterogeneous
in terms of hardware, software, functions, observability, admin-
istrability, network and communication models. The processing
architectures (ARM, X86, MCU) and their capabilities are diverse
(e.g.: frequencies, cores). The storage properties vary in capacity
and in persistency, suggesting that data for recovery may not al-
ways be stored locally. The functions of applicative entities may be
constrained. This means that not all entities are able to construct
or store the data representing their states. Moreover, devices have



different means and degrees of administration and observation.
This makes it impossible to rely on just one uniform technique
for failure detection, state saving and recovery as certain devices
can only be accessible through closed APIs while others can offer
a full range of operations to administrate them (e.g.: deployment
of softwares, their reconfigurations and lifecycle management in
general). Network protocols vary from wired, Wi-Fi, Bluetooth,
Z-wave or Zigbee and have their own specificities. This implies
extended possibilities for means of observation but also variabil-
ity regarding fault detection uncertainties. There may be multiple
communication models implemented within the same application,
like message passing, publish-subscribe, (a)synchronous function
calls. This accentuates the need for the co-existence of different
techniques for implementing a fault tolerance solution.

Cyber-physical Interactions. The Fog-IoT context includes devices
which can frequently interact with the PW. Cyber-physical inter-
action introduces non-deterministic events that can be PW time,
space and context dependent. For instance, the events provoking
the turning off of a lamp in an office (e.g.: because of an increase in
light intensity at noon) may no longer be valid a few hours later.
The PW cannot be rolled back to a previous state. Furthermore,
the output devices that interact with the PW can act on the latter
in a definitive way. For example, printing a document cannot be
reverted. Additionally, care should also be taken when restoring the
states of the devices during recovery. For instance, replaying mes-
sages may introduce intermediary states that can have undesirable
or even dangerous consequences on the PW. Replaying messages
on a lamp may cause it to blink multiple times within a time frame
and provoke its failure or replaying messages on an injection device
of a patient may inject already administered doses of a drug.

This paper proposes a failure management protocol for stateful
IoT applications in the Fog taking into account the three specifici-
ties mentioned above. The failure management protocol consists
of four steps: (i) state saving, (ii) monitoring and failure detection,
(iii) failure notification and reconfiguration, and (iv) decision and
recovery. We propose a combination of different state saving tech-
niques based on rules and policies to cope with the challenges of
the Fog-IoT environment. The state saving policies are based on
uncoordinated checkpoint, message log and function call record. A
state saving policy indicates the data representing the state of an
entity and the corresponding technique of saving. The state saving
policy of an entity is governed by its communication model, its
functions and the local assumptions that can be made. The pro-
tocol monitors infrastructure and applicative entities for failure
detection. When a failure is suspected, a decision is taken before
engaging into a repair and recovery process. If the suspicion is in-
deed considered as a failure, a notification is propagated to entities
having dependencies on the failed entity which may lead to their
reconfiguration in regard to the failure. For the recovery phase,
the data stored during the state saving phase are used to restore a
consistent state of the application, keeping consistency with respect
to the PW (PW-consistency). PW-consistency is ensured by taking
into account (i) events that are time sensitive and geographically
tied, and (ii) the impact of the technique of recovery on the PW.
Dynamicity of the environment is leveraged for recovery: a failed
IoT device can be substituted with another functionally equivalent
device to ensure the continuation of the functions of the application,

and failed software elements can be re-placed and re-deployed on
other infrastructure entities before restoring their states.

The contributions of this paper are:
• State saving techniques based on uncoordinated checkpoint, mes-
sages log and function call record for stateful IoT applications in
the Fog taking into account the specificities of the environment.
• Amodel of the PW and a mechanism for PW-consistent recovery.
• The design of an end-to-end resilience approach for stateful IoT
applications in the Fog, including failure detection, failure notifica-
tion, on-the-fly reconfiguration and consistent state recovery.
• An evaluation of the failure management solution on a platform-
based smart home use case.

The rest of this paper is organized as follows: Section 2 focuses
on related work around state saving techniques and more generally
on existing failure management systems. The definitions of the
infrastructure, application, PW and failure models are given in
Section 3. Section 4 aims at describing the failure management
protocol. Section 5 presents its implementation and evaluation on
a use-case. Section 6 concludes and discusses future work.

2 RELATEDWORK
This section is divided into a first part dedicated to checkpoint and
log-based (also known as message log) recovery techniques, which
are important in distributed systems to achieve fault tolerance. The
second part focuses on existing failure management systems and
protocols.

2.1 Checkpoint and Message Log
Checkpointing involves saving a set of data representing a state
of execution, from which that execution can be resumed, thereby
limiting the amount of lost computation after a failure. Checkpoint
techniques are often categorized under three main schemes [10, 16]:
coordinated, uncoordinated or communication induced.

In coordinated checkpoint, also called global checkpoint, the enti-
ties of an application synchronize to construct a globally consistent
checkpoint [9, 12, 17, 21, 22]. Uncoordinated checkpoint [28], on the
other hand, removes the synchronization overhead, where the enti-
ties construct their checkpoint individually, at the expense of global
consistency. In this case, a global consistent checkpoint has to be
computed from the available checkpoints. If a global consistent
checkpoint cannot be computed, it leads to a domino effect [24].
Communication-induced checkpoint [29] allows processes to con-
struct their checkpoint individually while avoiding the domino
effect by forcing some entities to construct additional checkpoints.
Checkpoint schemes rely on global rollback for consistency restora-
tion which has a system wide impact since all entities, including
failure-free entities, have to rollback after each failure.

In a Fog-IoT environment, the synchronization overhead to im-
plement coordinated checkpoint becomes very large as the applica-
tion scales since all executing entities have to synchronize. Also, the
mean time for the rollback recovery can be higher than the mean
time between failures resulting in the impossibility to recover. Such
an outcome is quite probable in the Fog because as the application
scales, the probability of a failure is high and subsequently the mean
time between failures (MTBF) is low. IoT devices in the Fog can
interact with the PW and may not be able to rollback, for instance,
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because they act on the PW in a definitive way. Moreover, after a
global rollback, there is no guarantee that the pre-failure execution
can be regenerated because of non-deterministic events from the
PW. Finally, a globally consistent state within the application may
not be consistent with respect to the PW.

Checkpoint can be combined with message log to allow the ap-
plication to recover beyond the most recent checkpoint. When the
entity recovers, it restarts to its most recent checkpoint and the
logged messages are replayed causally to reach the pre-failure state.
Message log involves saving determinants of non-deterministic
events and relies on a piecewise deterministic assumption [2, 25].
By replaying the non-deterministic events in their causal order,
the entity can deterministically reach its state prior to the failure.
Message logging has three main schemes depending on how deter-
minants are logged [10]: pessimistic, optimistic and causal.

In pessimistic log, the determinants are logged synchronously, be-
fore they are processed by the recipient. It ensures that before being
processed, each message has been successfully logged. Optimistic
log reduces failure-free overhead by saving locally or in a volatile
storage, a set of determinants before flushing them asynchronously
in a stable storage. In this case, recovery may, however, be more
complex since determinants in the volatile logs are lost when fail-
ure occurs. In causal log [1], the causal effects of the deliveries of
messages are tracked and piggybacked on applicative messages. It
combines the advantages of optimistic log while retaining most of
the advantages of pessimistic log. It limits the rollback to the most
recent checkpoint saved on the stable storage [10].

Uncoordinated checkpoint combined with pessimistic message
log is particularly attractive for IoT applications in the Fog. This
is because there is little to no computation loss, determinants of
non-deterministic events from the PW can be logged and it en-
sures a minimum disruption in the application during recovery.
Unlike global checkpoint, failed entities can recover individually
without impacting failure-free entities. Since the storage properties
of devices in the Fog differ, uncoordinated checkpoint can also be
combined with optimistic or causal log. For instance, a persistent
storage avoids a rollback when optimistic logging is implemented
since the data for recovery will be still available locally for recov-
ery. However, naively replaying logged messages may still cause
inconsistencies because of intermediary states.

2.2 Fault-tolerant Management Systems
The rest of this section focuses on related works on fault-tolerant
distributed systems closest to our approach.

In [5, 6], the authors present a reconfiguration protocol apply-
ing changes to a set of connected components for transforming a
current assembly to a target one given as input. Reconfiguration
steps aim at (dis)connecting ports and changing component states
(stopped or started). The protocol is robust in the sense that all the
steps of this protocol preserve a number of architectural invariants.
This protocol is also resistant to failures that may occur during
the reconfiguration process. This protocol does not easily scale to
IoT applications because the authors assume that all components
are hosted on a same VM and a unique centralized manager is in
charge of the reconfiguration steps.

[11] presents a self-deployment protocol that was designed to
automatically configure cloud applications consisting of a set of
software elements to be deployed on different virtual machines.
This protocol works in a decentralized way, i.e., there is no need for
a centralized server. It also starts the software elements in a certain
order, respecting important architectural invariants. This protocol
supports virtual machine and network failures, and always succeeds
in deploying an application when faced with a finite number of
failures. The main difference with our work is that [11] considers
stateless applications whereas we focus on consistent state recovery,
and consequently the state of the application needs to be stored.

[13] proposes a self-healing approach to handle exceptions in
service-based processes and to repair the faulty activities with a
model-based approach. More precisely, a set of repair actions is
defined in the process model, and repairability of the process is
assessed by analyzing the process structure and the available repair
actions. When an exception arises during execution, repair plans
are generated by taking into account constraints coming from the
process structure, dependencies among data, and available repair
actions. In [7], the authors present fault-aware management proto-
cols, which permit to model the management behavior of composite
cloud applications, by taking into account the possible occurrence
of faults suddenly occurring and misbehaving components. This
approach also proposes to generate plans for changing the actual
configuration of an application for, e.g., recovering an application
that is stuck because of a faulted node.

A few recent papers have focused on fault tolerance of IoT ap-
plications. [30] provides a fault tolerant approach through virtual
service composition. Single service and single device failures are
supported by using IoT devices of different modalities as fault tol-
erant backups for each other. [26] discusses the challenges of fault
tolerance in IoT and proposes some potential solutions to consider.
It suggests that natural redundancy of functionality across devices
within the home, as well as usage scenarios, should be exploited to
provide fault tolerance and also discusses the issues of this approach,
like incorrect context sensing and actuating of devices. [3] proposes
a fault-tolerant platform for smart home applications. It provides
fault-tolerant delivery of sensor events and actuation commands in
the presence of link loss and network partitions. [14] proposes an
IoT-based architecture supporting fault tolerance for healthcare en-
vironment. The approach focuses on network fault tolerance which
is achieved by backup routing between nodes and advanced service
mechanisms to maintain connectivity in case of failing connections.
These approaches, however, do not consider the restoration of the
state of the application nor the consistency with regards to the PW
during the recovery process.

3 MODELS
This section focuses on defining the infrastructure and application
models, the model of the PW and the failure model considered.

3.1 Infrastructure and Application Models
The Fog infrastructure is composed of two types of devices:
(i) Servers which can be administrated to provide computing, stor-
age and communication resources (ii) Appliances which provide a
dedicated fixed set of services only operable through their exposed
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API. Network Channels provide the transmission media between a
couple of servers or a server and an appliance.

An infrastructure is modeled as a graph, Ginf ra =

(Vinf ra, Einf ra ). Each vertex represents a Server or an Appliance.
Each edge is a Network Channel. The vertices and edges are identi-
fied uniquely.

An application is composed of the following entities:

• Software Elements are units of software to be executed. They
participate in the execution of the application through their corre-
sponding functions. A software element has an internal state and
exposes a set of interfaces for its administration.
• Appliances are only accessible through their exposed API and can-
not be otherwise operated. Since the software and hardware of an
appliance are tied, we refer to an appliance as both an infrastructure
and applicative entity.
• Fog Nodes host the software elements which will be executed on
the server. They provide the underlying resources for the execution
of the software elements. Each fog node hosts a Fog Agent which is
a special software element providing an entry point for managing
the lifecycle of the locally hosted software elements.
• Logical Bindings are abstractions of the communication models
which allow a couple of software elements or a software element
and an appliance to interact.

An Application is modeled as a directed acyclic graph, Gapp =

(Vapp , Eapp ). Each vertex represents a Software Element or an Ap-
pliance. Bindings are represented by edges. Vertices and edges are
identified uniquely. The direction of an edge gives the functional
dependency between two vertices. If a vertexv1 depends on a vertex
v2,then, v1 requires v2 to be functionally operable. In this case, v2
is said to be prerequisite to v1.

We further assume that events exchanged between the applica-
tive entities are identified uniquely.

3.2 Physical World Model
The physical world is modeled as a finite set of n geographi-

cal spaces, PW =
n⋃
i=1

GSi . A geographical space is defined as

дs = (id,D, ET ) where id is a unique identifier, D identifies a
three dimensional Euclidean space, ET is a finite set of m cou-
ples, ((e1, t1), ..., (em, tm )), representing the state of дs where e is
an event sensed or actuated and t is the associated expiration time
of the event.

3.3 Instance Model
Figure 1 illustrates an application placed and deployed onto a target
infrastructure in a smart home context. The infrastructure entities
are composed of two servers, four appliances and two network
channels:

• Servers: S1-RPI3 is a Raspberry Pi 3 and S2-PC is a PC.
• Appliances: Motion Sensor, Connected Door Bell, Connected
Door Lock and a Camera.
• Network channels: NC-S1S2 is a cabled network channel between
the two servers and NC-W-A, a wireless network channel between
S2-PC and the appliances.

The application is composed of 2 fog nodes:

• fgn1 hosts the software element MQTT Broker
• fgn2 hosts the software elements CEP (Complex Event Process-
ing) and IoT-Obj-Mgr (IoT Object Manager)
The arrows illustrate the bindings and the functional dependen-
cies. The bindings between the software elements are implemented
over the network channel NC-S1S2 whereas the bindings between
IoT-Obj-Mgr and the appliances are implemented over the wire-
less network channel NC-W-A. The porch of the house, where the
appliances are located, is represented by the geographical space
PW-gs1-porch. The fog agents and their monitoring functions are
later illustrated in Figure 5.

3.4 Failure Model
Failures are classified into two categories, namely applicative and
infrastructure failures.

Failures of applicative entities are modeled as fail-stop which
affect software elements. A software element crashes when it does
not execute any further operations. We assume that bindings do
not lose messages but can fail by crashing.

Infrastructure failures affect appliances, servers and network
channels; these can crash and later recover. The disappearance
of an appliance resulting from its crash, the crash of its network
channel or an unannounced mobility is considered as a fail-stop
of the appliance. A server fails when it can no longer provide the
underlying resources to a fog node and will thus induce the failure
of the hosted fog node and its software elements. A network channel
crashes when it can no longer transmit data in an acceptable time
regarding its mean bandwidth. The failure of a network channel
can disconnect the server/appliance from the infrastructure, in
which case the server/appliance is considered as failed. Figure 2
shows the causality between infrastructure failures and applicative
failures: the failure of a network channel induces the failure of the
underlying binding(s). The failure of a server results in the failure
of the hosted fog node and software elements.

The proposed failure model is motivated by real case failures
that can be observed in a Fog-IoT environment as discussed in [20].
A server can fail because of a power failure or overheating of the
hardware. The failure of an appliance can, for instance, arise due
to a hardware failure because of external environment conditions
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Figure 1: An Instance of an Application on a Fog Infrastruc-
ture
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and wear out, or from power failure because of a battery drain.
Moreover, infrastructure entities may be connected via wireless
network links which can be volatile. Infrastructure entities can, thus,
temporarily lose synchronization. Software elements can crash due
to a lack of resources for their execution, unhandled exceptions or
design/development errors (e.g.: bugs).

4 FAILURE MANAGEMENT PROTOCOL
This section presents the failure management approach. Section 4.1
introduces the failure management entities and their roles. Section
4.2 gives a detailed description of the failure management protocol.

4.1 Failure Management Entities
Figure 3 shows the functionalities of the failure management proto-
col and the corresponding entities involved in ensuring these func-
tions. The arrows show the relation between the different functions.
The participating entities are classified into global and distributed
entities. The global entities are:
• A Stable Storage which is unaffected by failures. It is available to
the software elements to persist data 1.1 1.2 . The implementation
of the stable storage may take various forms [18] but for simplicity
we assume a reliable dedicated storage infrastructure.
• AGlobal Manager, GM, which is a control and decisionmaking en-
tity that has a global view on the infrastructure and the application.
It keeps a record of failed entities. GM is responsible for decision
making 3.1 4.3 after receiving failure suspicions 2.2 . It also guides
the fog agents during the recovery process 4.3 . It retrieves stored
states from the storage 4.1 and dependency information from the
Application Lifecycle Manager (ALM) 4.2 . GM can be hierarchically
distributed for managing a set of applications/services within geo-
graphical regions. The GM instances can monitor each other and
can decide the recovery procedure for failures that impact multiple
regions. For instance, the failure of a third party service localized
in a region may impact another service running locally in a smart
home or a failed service may be recovered in a different region
(in the cloud for example). In this paper, GM is treated as a single
functional entity.
• The Application Lifecycle Manager, ALM, is responsible for the
lifecycle operations [20] of infrastructure and applicative entities.
For instance, it is involved in the placement and deployment of
software elements.

The distributed failure management entities and their roles are:
• Device Enrollers are the entry points where IoT devices can be
enrolled to participate in the execution of the application. The ALM
keeps track of the enrolled devices 0.1 .
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Figure 3: Failure Management Entities and their Functions

• Fog Agents have a monitoring responsibility 2.1 which concerns
infrastructure entities and software elements hosted on their local
fog nodes. They report any failure suspicions to GM 2.2 . The fog
agents are also involved in the recovery process. They receive the
state data from GM for the consistent recovery of software elements
and appliances.
• Software Element Loggers are implemented as a wrapper over
software elements and are responsible for saving the states 1.2 of
applicative entities according to their corresponding state saving
policies.
• Configurators propagate reconfiguration notifications 3.2 when
their associated software elements are reconfigured.

The next section discusses the failure management protocol.

4.2 Failure Management Protocol Features
The failure management protocol consists of four steps: (i) State
Saving, (ii) Monitoring and Failure Detection, (iii) Failure Notifi-
cation and Reconfiguration, and, (iv) Decision and Recovery. The
following sections describe in more details the four steps of the
failure management protocol.

4.2.1 State Saving. The techniques used for saving the state of an
entity are policy-based. A state saving policy defines the data to be
saved as well as the corresponding technique of saving. The policies
are built upon three strategies: uncoordinated checkpoint, message
log and function call record. A state saving policy consists of one
of these strategies or a combination of two or three strategies.

Uncoordinated checkpoints are performed for both software
elements and appliances where data governing the behavior and
the execution of the entity like tuning parameters, environment
variables and dependencies, composition and configuration files
have to be stored. This checkpoint represents an initial state. All
checkpoints following this initial state are delta checkpoints. A delta
checkpoint represents the change in state since the last checkpoint.
After a successful checkpoint, all previous checkpoints, message
logs and function call records of the entity are purged. A checkpoint
is stored locally or on a stable storage depending on the persistency
mode of the local storage.

Checkpointing can be combined with message log and/or func-
tion call record. Figure 4 illustrates the criteria for choosing between
the different state saving policies. The policies are defined with
reference to the properties of the local storage, the communica-
tion model, and the dependencies on other applicative entities. The
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last change of state (or event changing state) should be recorded.
The nature of the local storage determines between optimistic and
pessimistic techniques. A volatile local storage implies that the
locally saved data can be lost when there is a failure. Thus, saving
is done in a pessimistic way ensuring that all the required data for
consistent state recovery is available. A persistent local storage, on
the other hand, can support optimistic techniques since the data
can still be available for recovery even in case of failures. The im-
plemented communication model between two interacting entities
also impacts the choice of the saving policy. Message log is imple-
mented for message based communication and function call record
for a model based on function calls. Message log or function call
record is generally performed at reception1since reception is non-
deterministic: this is the case when the emitter and receiver are both
software elements or an appliance and a software element, respec-
tively. However, when the receiving entity is an appliance, message
log or function call record is performed at emission since appliances
cannot be expected to save their state. To achieve message log and
function call record, a logger is wrapped around software elements.
The state saving of appliances are achieved by software elements
loggers since appliances have constrained functional perimeters
and cannot save their state. The message logger intercepts the
reception or emission (depending on the policy) of messages and
logs them before delivering the message to the software element
for processing. The function call logger intercepts function calls
and records the call before calling the original function itself. The
checkpoint frequency is defined, based on execution time or on the
number of processed events.

Moreover, an event, (evt), sensed or pushed for actuation in
the PW, is saved by enriching it with a recovery validity timer
(rvt), which is piggybacked on applicative messages to track its
causality in the application. The recovery validity timer gives the
number of seconds for which the event is valid in the PW after
its occurrence. A set of couples (evt, rvt) constitutes the state of
a geographical space in the PW. The rvt value depends on the
PW context in which an event was sensed or pushed for actuation
and the time frame for which the resulting state with regards to
the PW should be maintained. The expiration of the rvt value
means that this event is no longer consistent with the PW and
should not be taken into account during a recovery phase. An
event can have an immediate expiration time or can invalidate the
expiration timer of a previous event. For instance, temperature
events sent by a connected thermometer every second may have
rvt=1; a message to unlock a connected door lock may have rvt=10
but may be overridden by a message to lock the door.

4.2.2 Monitoring and Failure Detection. Fog agents have an active
monitoring role. They monitor both infrastructure and applicative
entities:
• Local Software Elements: The fog agents monitor all the software
elements running on their local fog nodes. They report any failure
suspicions of software elements to the global manager.
• Infrastructure Entities: The fog agents alsomonitor remote servers
and appliances. These remote entities to monitor are assigned by
the ALM based on geographic proximity.
1Function call recording can be achieved at the caller or at the callee. We refer to the
former as emission and to the latter as reception, respectively.
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Figure 4: State Saving Policies

Figure 5 illustrates the monitoring of infrastructure entities and
local software elements by the fog agent for the use case presented
in Figure 1.

When a fog agent suspects the failure of an entity, it adds the
latter to the local list of suspected entities and reports it to the global
manager. The fog agent implements four types of monitoring for
failure detection depending on the entity to observe:
(1) Heartbeats: The fog agent implements a heartbeat mechanism
for the monitoring of neighboring servers. It emits a heartbeat to-
wards the fog agent on the neighboring server at regular intervals.
It triggers a timeout for the reception of a heartbeat. At each recep-
tion of a heartbeat within the timeout, it resets the timeout. If it
fails to receive the heartbeat before the expiration of the timeout,
the fog agent suspects the failure of the server.
(2) Applicative messages observation: For the monitoring of appli-
ances, applicative messages observation is preferred. The fog agent
observes the applicative messages of the appliance if the latter
communicates at regular intervals (for example a connected ther-
mometer that reports the temperature every second). In this way
there is no influence on the monitored appliance by the fog agent.
The fog agent suspects the failure of the appliance if it fails to
observe a message in the required interval.
(3) Ping-acks: The fog agent can also monitor appliances through
ping-acks if applicative message observation is not possible (for
example if the appliance does not communicate at regular intervals).
In this case, the fog agent starts a timeout and sends a message to
the appliance requesting a reply. If the appliance has not replied
within the expiration of the timeout, the fog agent suspects the
failure of the appliance.
(4) Local System Observation: The fog agent relies on the local (oper-
ating) system observation to monitor local software elements [19].
This avoids influence on the network traffic and message delays
will not cause false detection. It also avoids interference with the
execution of software elements.

In order to avoid a wrong failure suspicion of a server, the fog
agents may recover themselves from unexpected failures [15]. To
do so, when the fog agent is initialized, it forks a local backup which
keeps polling the primary fog agent. If the primary fog agent fails,
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the backup fog agent breaks the polling loop and resumes the task
of the primary fog agent by becoming itself the primary fog agent.
It then spawns a new backup. If the backup fog agent fails, the
primary fog agent receives a signal (since the backup is a child
process) to create a new backup.

4.2.3 Failure Notification and Reconfiguration. The failure of an
entity may impact other failure-free entities, for instance because of
functional dependencies between them. Failure and reconfiguration
notifications aim at limiting service interruption. When a failure
occurs, a failure notification is sent to the set of functionally depen-
dent software elements, f d_se ∈ FD_SE. The failure notification
indicates the entity, f e , that has failed and a decision with respect
to that failure, so that the following reconfigurations are triggered:
(1) f d_se stops processing events to and from f e ,
(2) f d_se implements the decision included in the failure notifica-
tion. The decision is taken by GM as follows: (a) If f e is a software
element, f d_se waits for a recovery notification to start processing
events to and from f e again, (b) If f e is a device that interacts with
the PW, f d_se is connected to a functionally equivalent device (Cf.
4.2.4), and, (c) If all dependent and prerequisite entities of f d_se
have failed, its execution is temporarily stopped.
The reconfiguration of the software element, f d_se , is then propa-
gated. Algorithm 1 describes how these notifications are pushed
to implement reconfigurations. In an initialization process, each
software element’s configurator, se_conf , subscribes to the recon-
figuration event on a set of relevant software elements, se , given
by the ALM. When se_conf receives a reconfiguration subscrip-
tion message, it adds the software element as a follower in a local
subscription list Reconf SeFollowersList . When an entity fails, GM
retrieves (from the ALM) its set of functionally dependent soft-
ware elements, FD_SE and sends them a failure notification and
the decision regarding this failure. When se_conf receives a failure
notification, it reconfigures its associated software element accord-
ingly and propagates a reconfiguration notification to the set of
software elements listed in Reconf SeFollowersList . When se_conf
receives a reconfiguration notification, it reconfigures its associated
software element according to 1, 2(a) and 2(c).

4.2.4 Decision and Recovery. The recovery process is achieved in
two steps. The first step is a decision process computed by GM to
decide the rules for state restoration. In a second step, the fault
management entities, described in Section 4.1, implement the state
restoration according to the rules decided in the first step. The
decision for state restoration is based on a set of three rules. The
first rule depends on whether the failed entity has interactions with

Algorithm 1: Failure Notification and Reconfiguration
Input: Set of software elements in the application SE
// Initialisation

1 foreach se ∈ SE do
2 Reconf SeFollowersList = []
3 Reconf SeToFollowList = ALM .дetDependencies(se)

4 foreach seToFollow ∈ Reconf SeToFollowList do
5 se .sendReconf Subscription(seToFollow)

6 end
7 end
/* Reception of reconfiguration subscription */

8 Function ReceiveReconfSub(seFollower):
9 loдMsд()

10 Reconf SeFollowersList .add(seFollower )

11 return;
/* Reception of failure notification from GM */

12 Function ReceiveFailureNotif(f e , decision):
13 loдMsд()

14 localReconf (f e,decision)

15 foreach seFollower ∈ Reconf SeFollowersList do
16 sendReconf Noti f ication(seFollower , f e,decision)

17 end
18 return;

/* Reception of a reconfiguration notification */

19 Function ReceiveReconfNotif(seFollowinд, f e ,
reconf ):

20 loдMsд()

21 reconf = localReconf (seFollowinд, f e, reconf )

22 foreach seFollower ∈ reconf SeFollowersList do
23 sendReconf Noti f ication(seFollower , f e, reconf )

24 end
25 return;

the PW. Second, the state restoration is based on the state saving
policy of the failed entity. The third rule depends on the type of
entity that has failed.

Interaction with the PW. The replay of messages and recall
of functions produce intermediary states until the final state is
reached. For entities interacting with the PW, these intermediary
states can cause inconsistencies when recovering. Furthermore, this
final state may no longer have any sense in the PW. To overcome
these inconsistencies with the PW, the final state of the entity
should be computed from its set of message logs and function call
records taking into account their rvt value. The computation of the
final state requires a functional specification of entities interacting
with the PW and how events change their states. A recovery is PW-
consistent if, ∀дs ∈ PW , Er ec = (Epf \Eexp )

⋃
Erpf , where дs is a

geographical space, Er ec is the set of couples (evt, rvt) representing
the state of дs after recovery, Epf is the pre-failure state of дs , Eexp
is the set of events having an expired rvt , and Erpf is a set of events
sensed and actuated over дs after the occurrence of the failure but
before recovery.
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The state saving policy. Given a set of message logs (function
call records, respectively) of a failed entity, consistency restoration
involves replaying message logs (recalling the functions recorded,
respectively) after restoring the state of the entity with a checkpoint
if one is available. A message log (function call record, respectively)
with an expired rvt value is not replayed (recalled, respectively)
during the recovery process.

Nature of the failed entity. The rules for recovery differ for
appliance, software element and server failures.
Appliance failure. An appliance failure leads into two possibil-
ities of consistency restoration: i) replacement, or ii) degraded
mode. Replacement is a situation where an alternative, function-
ally2equivalent appliance is used for consistency restoration. In this
case, the state of the failed appliance is restored on a different ap-
pliance. Degraded mode applies when no alternative appliance can
replace the functions of the failed one. In this case, the application
continues its execution with less features. Note that, if the appliance
is essential to the functions of the application, for instance if all
other entities depend on the appliance, the whole application fails.

Software element failure. To recover from a software element
failure, the latter is re-instantiated on the same fog node. If re-
instantiation on the same fog node fails (for example because of a
lack of resources for its execution), a new placement is computed for
the software element. A placement [27] request to the ALM, which
knows its physical and logical constraints, returns a new possible
fog node for the execution of the software element. The ALM re-
deploys the software element, then the state of the latter is restored
before resuming its execution. A reconfiguration notification is
then propagated as described in Section 4.2.3

Server failure. Recovery from a server failure is complex since
it causes the failure of its fog node and all the hosted software ele-
ments. It also means that the application has now fewer resources
for its execution. The software elements are re-placed/deployed
(by the ALM) before restoring their states. The impossibility of
re-placing all the software elements may lead to a degraded mode
(execution with a fewer features) or a failure of the whole applica-
tion, i.e., the impossibility to recover if the software elements are
essential to the function of the application.

The fog agent has also an active responsibility in state restora-
tion of software elements and appliances. After determining the
rules for state and consistency restoration, GM retrieves the state
data of a failed entity from the storage. It provides the data as well
as the rules for state restoration of the failed entity to the associ-
ated fog agent. After a successful recovery, GM sends a recovery
notification to f d_se ∈ FD_SE, which triggers the reconfiguration
of the application according to Algorithm 1.

5 EVALUATION
This section gives an evaluation of the resilience protocol and aims
at answering the following questions: (i) Is recovery of the applica-
tion successful when a failure occurs? (ii) Is the failure management

2An appliance a1 is functionally equivalent to another appliance a2 , if a1 can provide
at least the same functionalities as a2 . Functional equivalence is given by the Thing’in
platform developed by Orange. It provides a digital index of connected things and
their relationships. The platform can be interrogated for devices providing required
services and having specific constraints. More information on this on going study can
be found online at http://thinginthefuture.com/
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Figure 6: Smart Home Application and Infrastructure

protocol able to repair different types of failures within an accept-
able delay from a user point of view? (iii) Is the recovery process
consistent with respect to the PW?

5.1 Use Case Description
The target use case application is a smart home where, for com-
fort and convenience of the house tenants, available devices are
remotely controlled for automated lightning and physical intrusion
detection. Figure 6 depicts the smart home application deployed
on the target infrastructure. The infrastructure and application
were chosen such that they represent legitimate entities that can be
found in real-life smart home [20] and include entities with the three
specificities of the Fog-IoT environment discussed in Section 1.

The infrastructure is composed of three Raspberry Pi (Model
3 Type B) and a PC. Software elements are hosted on four fog
nodes: fgn1 (NodeHueSense, NodeHueActuate), fgn2 (Orchestrator,
Soundplayer) and fgn3 (FibaroAdapter, AwoxActuate) hosted on three
distinct Raspberry Pi and fgn4 (MQTT Broker) hosted on a PC. The
appliances are: Philips Hue Lamps, Hue Go Lamp and Hue But-
tons, an Awox StriimLight (connected in WiFi), Fibaro Door Sensor,
Fibaro Sensors (which reports motion, light intensity, vibration and
temperature), a WeMo Motion Sensor and a Speaker.

The applicative entities and their functions are:
• A Message Oriented Middleware (MOM) that allows a publish-
subscribe communication pattern. It implements a MQTT broker
based on ActiveMQ.
• The Orchestrator defines the actions that should be triggered
based on events reported by sensors.
• NodeHueSense reports events from Hue Buttons while NodeHue-
Actuate controls the Hue Lamps.
• FibaroAdapter reports events sensed by the Fibaro Sensors and
publishes them on the MQTT broker.
• WemotionSense reports motion events sensed by the Wemo Mo-
tion Sensor and publishes them on the MQTT broker.
• AwoxActuate controls the light and the integrated speaker of the
Awox StriimLight, and SoundPlayer controls the Speaker in the
living room.
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5.2 Failure Management Framework and Setup
We developed a resilience framework which provides four APIs to
extend the functions of software elements: (i) CkptAPI defines
the data and the frequency of the uncoordinated checkpoints,
(ii)MsдLoдAPI intercepts messages and handles their logging ac-
cording to the policy defined, (iii) FctRecordAPI overrides the func-
tions implemented by a software element to handle the recording
of function calls, and, (iv) Conf iдAPI handles the reconfiguration
of software elements.

A monitor is deployed on each fog node as part of the fog agent’s
functions. The monitor is capable of failure detection through the
mechanisms described in Section 4.2.2. Each applicative and infras-
tructure entity to be observed is associated to at least a fog agent.
Its parameters (frequencies, timeouts) can be tuned according to
the use case application, network latencies and the desired reactiv-
ity. GM has to be deployed on a reliable infrastructure. The stable
storage takes form of a MongoDB database. The framework was
developed in Node.js because it is lightweight, allows asynchronous
operations and its packet manager, npm, handles effectively the
management of runtime dependencies.

The resilience framework is deployed onto the use case applica-
tion. GM and the stable storage are deployed on a dedicated reliable
laptop which is unaffected by failures. A fog agent is deployed on
each fog node. Figure 7 illustrates the monitoring of this use case
infrastructure with the fog agents. The frequency of heartbeats is
set to 500ms to account for network latencies. The appliances to
monitor are assigned to the respective fog agents according to their
location and observability. The fog agents monitor the local soft-
ware elements though the local system observation at a frequency
of 100ms.

5.3 Experimental Results
We experiment our resilience approach through different types of
failures so that the different recovery rules described in Section
4.2 can be illustrated and evaluated. We designed three tools for
evaluation purposes: (i) a Scenario Injector generates a set of sensor
events and injects them into the application to change its state,
(ii) a Failure Injector provokes the failure of appliances, software
elements or servers, and, (iii) a Verifier checks that the recovery is
consistent with respect to the PW.

We designed three experiments for the evaluation of the re-
silience protocol. In a first experiment, we observe the behavior of

the failure management protocol for software element failures. We
set the failure injector to provoke the failure of random software el-
ements and measure the time for their re-instantiation on the same
fog node. The experiment is carried out with one to four simulta-
neous injected failures. The experiment is repeated one hundred
times with an interval of five seconds between failures. Figure 8
illustrates the results of the time measured for repair with respect
to the number of failures. It takes around 100ms to repair the failure
of one software element. In the case of four simultaneous failures,
in more than 75% of cases it takes less than 300ms to repair. Ex-
pectedly, the median values for the time to repair increases with
the number of failures. This is because GM has to process multiple
failure suspicion notifications and the fog agents have to handle
the repair of multiple local software elements. The variability of
the measured values for multiple failures is mainly due to: (i) the
time for the fog agents to process multiple messages from GM, and,
(ii) the time taken for the software elements to restart.

In a second experiment, we measure the time taken to repair
the application when a server fails. We measure the time to re-
instantiate the software elements hosted on f дn1 on a different fog
node (e.g.: fgn2) and reconfigure the application when rpi1 fails.
Figure 9 shows that in more than 75% of cases, it takes between
3.5s and 4.2s to repair and reconfigure the application in this case.
This time is, expectedly, higher than the time of re-instantiation on
the same fog node, since the time for the detection of the failure is
higher as the frequency of heartbeats is lower than the frequency
of observation of software elements. Moreover, GM has to send
messages to fga2 for the observation of the newly instantiated
software elements and subsequently wait for acknowledgements
of their successful restart.

The third experiment aims at showing the reconfiguration and
the consistent recovery with respect to the PW. The scenario in-
jector is used to input random events to turn on or off the Hue
Lamp in the bedroom. When the failure of the lamp is provoked,
the application is reconfigured so that the bedside Hue Go Lamp
is used to function as the main lamp of the bedroom. The state of
the failed lamp is restored on the bedside Hue Go Lamp to keep
PW-consistency. Figure 10 illustrates the time taken for the state
restoration for one hundred failures at five seconds time intervals.
This time is between 10ms and 20ms in more than 75% of cases.
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This section evaluated the behavior of the failure management
protocol with respect to the time taken to repair infrastructure
and applicative entities. The experiments show that the resilience
protocol works well in practice, even in case of multiple failures.
The repair of software elements on the same fog node is performed
within a short delay from the user point of view. According to [8, 23]
one second is the limit of response time for the user’s flow to stay
uninterrupted even if the delay is noticeable. These experiments
also show the benefit of re-instantiation of software elements on a
same fog node rather than moving to another fog node. The repair
of server failures is performed within an acceptable delay in this
context since the frequency of failures of servers is intrinsically
lower than the the frequency of software elements (because of the
causality relation between the two types of failures). Moreover,
consistent state restoration is achieved within a very satisfactory
delay. In this case, the resilience protocol offers comfort and conve-
nience to house tenant since there is PW-consistent recovery and
an automatic switch to the bedside lamp.

6 CONCLUSION AND FUTUREWORK
This paper presented a fault tolerance solution for stateful IoT ap-
plications in a dynamical Fog environment, taking into account the
specificities of the environment, namely dynamicity, heterogene-
ity and cyber-physical interactions. Fault tolerance is achieved by
saving the state of applicative entities. The failure management
protocol monitors both infrastructure and applicative entities for
failure detection. When a failure is detected, the application is re-
configured and the data stored during the state saving phase are
used for a consistent state recovery, including PW-consistency. An
evaluation procedure of the failure management protocol is pro-
posed. The evaluation shows that the protocol is robust and is able
to restore the application in a consistent and stable state in the
presence of multiple simultaneous failures. The experiments show
that the protocol is able to recover from failures in a reasonable
user time.

Future works include: (i) an extensive performance evaluation of
the failure management protocol, (ii) improving the techniques for
better monitoring of appliances for failure detection, and (iii) ex-
tension of the failure management protocol for non-administrable
software elements (black-boxes).
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