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ABSTRACT
We consider the integration of heterogeneous data under a
global RDF graph data model, based on the knowledge ex-
pressed in an ontology describing the concepts relevant for an
application, and a set of entailment rules which characterize
the logical relationships between these concepts. We con-
sider both standard RDF Schema rules and user-specified
ones.

We propose a data integration architecture to compute
certain query answers in this setting. Existing approaches
to query answering in the presence of knowledge (expressed
here in the ontology and the entailment rules) involve either
the materialization of inferences in the data or the refor-
mulation of the query. Both approaches have well-known
drawbacks. We introduce a new approach to query answer-
ing, based on a reduction to view-based query answering.
This approach avoids both materialization in the data and
query reformulation. We define restrictions of our general
architecture under which our method is correct, and for-
mally prove its correctness.

1. INTRODUCTION
The development of data management systems has quickly

lead to the need to integrate several databases under a sin-
gle schema, or unified view. Such an integrated architecture
simplifies application development and isolates it from pos-
sible changes in the underlying databases and data manage-
ment systems. Two classical architectures have been used
for data integration: (i) data warehousing [24] relies on in-
gesting all data sources in a single system; (ii) instead, me-
diation [35] leaves the data sources unchanged, and builds
the integrated view of the data as a (virtual) layer above
them.

An important question from which the design of a data
integration system starts concerns the data models (i) of
the underlying data sources, and (ii) of the integrated view
of the data. Given the historical pre-eminence of relational
data management systems, the early data integration sys-
tems as well as many follow-up works considered relational
sources and a relational integrated schema. Quite early on,
though, other data models have started being used to inte-
grate heterogeneous data sources, e.g., object-oriented [16],
Datalog-oriented [17], description logic-oriented [3], and Dat-
alog and description logic-oriented [30, 19, 21] data models.

Two important trends influence the design of data inte-
gration architectures today.

1. First, RDF, the W3C’s standard graph model for rep-
resenting heterogeneous data, has gained wide accep-
tance for modeling data from a variety of domains, from
life sciences to social networks, bibliography data, cul-
tural resources etc.

2. Second, it has been noted that application seman-
tics, usually expressed as an ontology, can be fruit-
fully used at the top (integrated) level, allowing users
and applications to express their query and processing
needs in the terms they are familiar with.

Part of this second trend, the term “Ontology-Based Data
Access” (OBDA, in short) has been coined [33, 29] to des-
ignate data integration architectures where data is modeled
using a set of unary predicates (or classes) and/or binary
predicates (or properties), and described by known relation-
ships between these predicates, e.g., any Student is a Person,
and anyone having got a Grade in a Class is a Student). In
OBDA settings, data is typically assumed stored in a rela-
tional database management system (RDBMS); mappings
are then used to specify which parts of the stored data
populate the ontology concepts and relations. OBDA has
attracted significant attention in the research community,
e.g., [18, 28, 27], and has been applied in several large real-
life data integration settings, e.g. [25, 23].

The above examples illustrate the fact that an important
part of domain knowledge can be encapsulated by entailment
(or inference) rules, of the general form ∀x̄(ϕ(x̄) → ψ(x̄)),
where x̄ designates the free variables of the ϕ and ψ formu-
lae, which may also use other existentially quantified vari-
ables. For instance, the sample rules above can be written
as:

(1) ∀x(S(x)→ P (x))
(2) ∀x(∃y∃z(GS(y, x) ∧GC(y, z) ∧ C(z))→ S(x))

where the unary predicates S, P and C state that the respec-
tive variables are of Student, Person, respectively Course
type, while the binary predicate GS associates grades (first
attribute) to students (second attribute), while GC asso-
ciates grades to courses. Some inference rules, such as (1)
above, can be expressed between a a fixed number of con-
cepts using a standardized vocabulary; for instance, the
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RDF Schema ontology standard provides a keyword for re-
lating exactly two classes S, P by stating that the first is
a subclass of the second. Other rules, such as (2) above,
can take a more general form; they allow the human expert
greater flexibility in describing the semantics of an applica-
tion domain.

In this work, we consider the integration of heterogeneous
data of any data models, under a global RDF graph data
model; further, applications are offered the possibility to
query the data with the help of (i) an ontology describing its
semantics and (ii) entailment rules (both of standard form
as per the RDF standard, and user-specified within a di-
alect that we describe). Figure 1 gives a broad view of this
(focus on the yellow-background boxes at the top and the
bottom now; the other components will be explained in due
time). From a set of local databases D1, . . . , Dn, some data
E of which begin accessible via mapppings M through an
ontology O, associated with entailment rules R, our goal is
to compute the certain answers of the query q, on the data
integration system thus composed.

Our contributions are as follows.
(1) We propose the first data integration architecture for

computing certain query answers in this setting. It goes
beyond comparable ones from the literature, focused either
on relational data, or on a single non-relational one, e.g.,
JSON, by its support of data sources of heterogeneous data
models, and (especially) by the ability to take into account
an ontology and, separately, a set of entailment rules based
on which certain answers are computed.

(2) To take into account domain knowledge (i.e., the on-
tology and entailment rules in our setting), classical query
answering approaches would either materialize the conse-
quences of the data and the knowledge (in warehouse data
integration style), or, reformulate the query to integrate the
relevant part of the knowledge. We propose a third, original
query answering approach, based on a reduction to view-
based query answering. We characterize precisely a class
of problems for which this approach holds, present a new
method for computing certain answers under these hypothe-
ses, and formally establish the correctness of this method.

The rest of the paper is organized as follows. Section 2
introduces preliminary notions and Section 3 presents our
problem statement. Section 4 outlines our query answering
approach in relationship with the main existing approaches.
Then, Section 5 defines a restricted setting in which our
approach applies, and Section 6 proves the correctness of
our method in this setting. We end with related work.

Proofs of our technical results are available in the ap-
pendix (Section 7).

2. PRELIMINARIES
We present the basics of the RDF graph data model (Sec-

tion 2.1), of RDF reasoning used to make explicit the im-
plicit information they encode (Section 2.2), as well as how
they can be queried using the widely-considered SPARQL
Basic Graph Pattern queries (Section 2.3). Finally, we recall
the principles of query rewriting using views in an informa-
tion integration context (Section 2.4), on which our solution
to the problem tackled in this paper is built.

2.1 RDF Graph

RDF assertions Triple notation

Class assertion (s, τ, c)
Property assertion (s, p, o) with p 6= τ

RDFS constraints Triple notation

Subclass (s,≺sc, o)
Subproperty (s,≺sp, o)
Domain typing (s,←↩d, o)
Range typing (s, ↪→r, o)

Table 1: RDF statements.

RDF graphs build on three pairwise disjoint sets of values:
I of IRIs (keys), B of blank nodes (labelled null modeling
incomplete information [5]), and L of literals (constants).

An RDF graph G is a set of well-formed triples (s, p, o)
from (I ∪B)×I × (L ∪I ∪B). A triple (s, p, o) states
that its subject s has the property p with the object value
o [1]. We denote the set of all values (IRIs, blank nodes and
literals) occurring in an RDF graph G by Val(G), and Bl(G)
its set of blank nodes.

Within an RDF graph, triples model either an assertions
for unary relations called classes and for binary relations
called properties properties, or RDFS ontological constraints
between classes and properties. The RDFS constraints that
can be used in an RDF graph G, which we denote RDFS(G),
are of four flavours: subclass constraints, subproperty con-
straints, typing of the domain (first attribute) or of the range
(second attribute) of a property. The triple notations we
adopt for RDF graph’s assertions and constraints are shown
in Table 1. Further, within triples, we use :b possibly with
indices to denote blank nodes and strings between quotes to
denote literals.

For instance, consider the following sample RDF graph:
Gex = {(:Professor,≺sc, :Person), (:teaches, ↪→r, :Course)

(:Fabian, τ, :Professor), (:Fabian, :teaches, :b),
( :b, :label, ”Dance”) }

Gex models with triples, in this order, that professors are
persons, that what is taught is a course, and that Fabian is a
professor, who teaches somethings (identified with the blank
node - hence unknown - value :b), whose label is “Dance”.
Further, this graph implicitly models that Fabian is a per-
son, because professors are persons, and :b is a course, be-
cause Fabian teaches it.

Finally, the notion of homomorphism between RDF graphs
allows characterizing whether an RDF graph simply entails,
i.e., is more specific than or subsumed by, another based on
their explicit triples only.

Definition 1 (RDF graph homomorphism). Let G
and G′ be two RDF graphs. A homomorphism from G to G′

is a substitution ϕ of Bl(G) by Val(G), and is the identity for
the other G values (IRIs and literals), such that ϕ(G) ⊆ G′,
where ϕ(G) = {(ϕ(s), ϕ(p), ϕ(o)) | (s, p, o) ∈ G}.

From now, we write G′ |=ϕ G to state that ϕ is a ho-
momorphism from G to G′, i.e., G′ simply entails G due to
ϕ.

2.2 RDF Entailment Rules
The semantics of an RDF graph consists of the explicit

triples it contains, and of the implicit triples that can be
derived using RDF entailment rules.

Definition 2 (RDF entailment rule). An RDF en-
tailment rule r has the form body(r)→ head(r), where body(r)
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q cert(q, 〈O,R,M, E〉)

Figure 1: Outline of an O-system architecture.

Rule [2] Entailment rule

rdfs2 (p,←↩d, o), (s1, p, o1)→ (s1, τ, o)
rdfs3 (p, ↪→r, o), (s1, p, o1)→ (o1, τ, o)
rdfs5 (p1,≺sp, p2), (p2,≺sp, p3)→ (p1,≺sp, p3)
rdfs7 (p1,≺sp, p2), (s, p1, o)→ (s, p2, o)
rdfs9 (s,≺sc, o), (s1, τ, s)→ (s1, τ, o)
rdfs11 (s,≺sc, o), (o,≺sc, o1)→ (s,≺sc, o1)
ext1 (p,←↩d, o), (o,≺sc, o1)→ (p,←↩d, o1)
ext2 (p, ↪→r, o), (o,≺sc, o1)→ (p, ↪→r, o1)
ext3 (p,≺sp, p1), (p1,←↩d, o)→ (p,←↩d, o)
ext4 (p,≺sp, p1), (p1, ↪→r, o)→ (p, ↪→r, o)

Table 2: Sample RDF entailment rules.

and head(r) are RDF graphs, respectively called body and
head of the rule r.

Built-in RDF entailment rules are defined in [2]. They
produce implicit triples by exploiting the RDFS ontological
constraints of an RDF graph. In this work, we consider the
rule set defined in Table 2, denoted by RRDFS; all values
except built-in properties denote blank nodes. For example,
for Rule rdfs9 used to propagate values from subclasses to
their superclasses:

• body(rdfs9) = {(s,≺sc, o), (s1, τ, s)}

• head(rdfs9) = {(s1, τ, o)}

where s, o, s1 are blank nodes.
The direct entailment of an RDF graph G with a set of

RDF entailment rulesR, denoted by CG,R, characterizes the
set of implicit triples resulting from triggering (a.k.a. firing)
the rules in R using the explicit triples of G only. It is
defined as:

CG,R = {ϕ(head(r))safe | ∃r ∈ R, G |=ϕ body(r)
and there is no ϕ′ extension of ϕ s.t.

G |=ϕ′
body(r) ∪ head(r)}

where ϕ(head(r))safe is ϕ(head(r)), where each blank node
in Bl(head(r)) \ Bl(body(r)) is replaced by a fresh blank
node. Note that the condition “there is no ϕ′ extension of

ϕ s.t. G |=ϕ′
body(r)∪ head(r)” prevents the production of

obviously redundant triples.

Without loss of generality, as in the RDF standard, we
only consider well-formed entailed triples, i.e., from (I ∪
B)×I × (L ∪I ∪B).

For instance, the rule rdfs9 applies to the RDF graph
Gex: Gex |=ϕ body(rdfs9) through the homomorphism ϕ
defined as {s 7→ :Professor, o 7→ :Person, s1 7→ :Fabian}.
The rule rdfs3 also applies; the direct entailment of Gex

with RRDFS contains exactly the triples (:Fabian, τ, :Person)
and ( :b, τ, :Course).

The saturation of an RDF graph allows materializing the
semantics of an RDF graph, by iteratively augmenting this
graph with the triples it directly entails using a set R of
RDF entailment rules, till a fixpoint is reached.

We formalize this as the sequence (GRi )i∈N of RDF graphs
recursively defined as follows:

• GR0 = G, and

• GRi+1 = GRi ∪ CGR
i ,R for 0 ≤ i.

Definition 3 (Saturation of RDF graph). Let G be
an RDF graph, and R be a set of entailment rules. The sat-
uration of G w.r.t R, denoted by GR, is defined by:

GR = ∪i∈NG
R
i .

The saturation of an RDF graph by any subset of RRDFS

is finite [2]. In the preceding example, the saturation of Gex

w.r.t. RRDFS is completed by the first direct entailment,
hence (Gex)RRDFS = Gex ∪ CGex,RRDFS .

Finally, the notion of a homomorphism between RDF
graphs is also used to characterize whether an RDF graph
entails another w.r.t. a set of RDF entailment rules, i.e., in
the presence of implicit triples. An RDF graph G entails
an RDF graph G′ w.r.t. a set R of RDF entailment rules,
noted G |=ϕ

R G′, whenever there is a homomorphism ϕ from
G′ to GR. From now, we will just write G |=R G′ when a
particular ϕ is not relevant to the discussion.

2.3 Basic Graph Pattern Queries
A popular fragment of the SPARQL query language for

RDF graphs is that of basic graph pattern queries, i.e., the
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SPARQL conjunctive queries. It builds on the notion of ba-
sic graph pattern, which generalizes RDF graphs with vari-
ables.

We assume given a set of variables V disjoint from I ∪B∪
L . A basic graph pattern (BGP) is a set of triple patterns
belonging to (I ∪B ∪ V )× (I ∪ V )× (I ∪B ∪L ∪ V ).

For a BGP P , we note Var(P) the set of variables occur-
ring in P and by Bl(P ) its set of blank nodes.

A basic graph pattern query is defined as follows:

Definition 4 (BGP query). A BGP query (BGPQ)
q is of the form q(x̄) ← P , where P is a BGP also denoted
by body(q) and x̄ ⊆ Var(P). The arity of q is |x̄|.

The semantics of a BGPQ is defined in terms of the homo-
morphisms that exist between its BGP body and the inter-
rogated RDF graph, i.e., in terms of the possible matches of
the BGP onto the RDF graph explicit and implicit triples.

Definition 5 (BGP to RDF graph homomorphism).
A homomorphism from a BGP P to an RDF graph G is a
substitution ϕ of Bl(P )∪Var(P) by Val(G) and is the identity
elsewhere such that ϕ(P ) ⊆ G with ϕ(P ) = {(ϕ(s), ϕ(p), ϕ(o)) |
(s, p, o) ∈ P}. We write G |=ϕ P to state that ϕ is a homo-
morphism from P to G.

Definition 6 (BGPQ answers). The answer set to a
BGPQ q on an RDF graph G w.r.t. a set R of RDF entail-
ment rules is:

q(G,R) = {ϕ(x̄) | G |=ϕ
R body(q)}

If x̄ = ∅, q is a Boolean query and the answer to q is false
when q(G) = ∅ and true when q(G) = {〈〉}.

We notice that the answers of a BGPQ on an RDF graph
may be composed by blank nodes.

In the following, we consider without loss of generality
that BGPQs do not contain blank nodes, as a blank node
appearing in a query can be equivalently replaced with a
fresh variable.

For example, consider the BGPQ q(x) ← (x, τ, :Course)
asking for all courses in the RDF graph Gex, i.e., for all the
resources that are explicitly or implicitly of type Courses in
Gex. There is one homomorphism from the BGP body(q) to
saturated RDF graph (Gex)RRDFS defined by ϕ = {x 7→ :b},
hence the answer to q on Gex w.r.t. RRDFS is :b. We remark
that the answers set would be empty for q on Gex w.r.t. an
empty set of RDF entailment rules.

Further, we will rely on the saturation of a BGP w.r.t. an
RDFS ontology by a set of RDF entailment rules, defined
in [15]. Just like for RDF graphs, we have to define a homo-
morphism from an RDF graph (in particular a rule body) to
a BGP. Then, the definition of BGP saturation is the same
as for RDF graphs, up to replacing variables by blank nodes
in the definition of a homomorphism.

The saturation of a BGPQ contains in its body all the
triples entailed from the BGPQ body and a given ontology,
but not those entailed by the ontology alone as illustrated
by Figure 7:

Definition 7 (BGPQ saturation [15]). Let R be a
set of RDF entailment rules, O a set of RDFS statements
(the ontology), and q a BGPQ. The saturation of q w.r.t.
O, denoted by qR,O, is the BGPQ with the same answer

variables as q and whose body, denoted by body(qR,O), is
the maximal subset of (body(q) ∪ O)R such that for any of
its subsets S: if O |=R S holds, then body(q) |=R S holds.

Figure 2: The cercle represents (body(q) ∪ O)R, the
hatched area is removed from qR,O, because it is
consequence of O only, hence not relevant to q.

Consider the RDFS ontologyOex fromGex, i.e., RDFS(Gex)
equals to {(:Professor,≺sc, :Person), (:teaches, ↪→r, :Course) }
and the BPGQ q(x) ← (x, :teaches, y) asking for professor
teaching at least one course. The saturation (q∪Oex)RRDFS

contains exactly (x, :teaches, y), (y, τ, :Course) and the triples
of Oex. By pruning from this set the triples only entailed by
Oex w.r.t. RRDFS, i.e., those in Oex here, the saturation of
q w.r.t. Oex and RRDFS is qRRDFS,Oex(x)← (x, :teaches, y),
(y, τ, :Course).

Finally, similarly to RDF graphs, the saturation of a query
w.r.t. an ontology and a subset of RDFS entailment rules is
finite.

2.4 Query Rewriting using Views
The second scientific area (beyond OBDA) on which we

base our approach, is view-based query rewriting. Since it
has mainly been studied in a relational setting, we recall its
main concepts as laid out e.g., in [22].

An integration system I is made of a global schema S,
that is, a set of relations, and of a set of views. Each such
view V specifies one way in which the data from a source
D is connected to the schema S. The view binds together
two components, one referring to D and one to S, the global
schema: (i) V D is a query over the schema of D. It speci-
fies which D data is exposed by V to the integration system.
Its result V D(D), called the extension of V , is the maxi-
mum amount of data that one can get from D through V .
In the typical relational setting, V D(D) is a set of tuples.
(ii) V (x̄) ← ϕ(x̄) is a query over the global schema S; it
specifies how the data exposed by V fits in the global integra-
tion schema, i.e., how one can use it to answer queries over
the global S. ϕ(x̄) is typically a Datalog or SQL query.

We use V (I) to designate all the data available through the
integration system I (including data that may be supplied
by other views) as an answer to the query V (x̄)← ϕ(x̄). For
instance, if V1(x̄) ← ϕ(x̄) is “all conference publications”,
V1(I) comprises all conference publications one could ob-
tain through the integration system (whether through view
V1 or any other). In general, in an integration setting, it is
assumed that the views are sound, that is V D(D) ⊆ V (I).
This is because in general, several sources (i.e., views) may
bring useful information of the same kind, e.g., no single
view comprises all conference papers, and when querying
I, one typically wants to get all the papers known in the
system. This vision corresponds to the Open World As-
sumption (OWA) [5].

The so-called certain answers to a query on I are defined
based on all the instances of S consistent with the views
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and their extensions, i.e., for which V D(D) ⊆ V (I) holds
for each view V .

Definition 8 (Certain answers under OWA [22]).
Let V be a set of view definitions on a global schema S, and
E the set of extensions for the the views in V. Let q be a
conjunctive query on S. The tuple t̄ is a certain answer to q
w.r.t. (V, E), if t̄ ∈ q(I), for each instance I of S consistent
with (V, E).

Note that the above views integrate data sources in a
global schema following the so-called local-as-view approach.
An alternative global-as-view approach exists [22], but is not
relevant to the purpose of this work, hence is not further dis-
cussed.

From a practical viewpoint, the certain answers (answers
for short) can be computed by rewriting a query using the
available views, so as to obtain a rewritten query in terms of
the view relations, called a view-based rewriting (or rewrit-
ing, in short), directly evaluable on the extensions of the
views. From a theoretical viewpoint, a rewriting must be
contained in the original query in order to provide correct
answers to it.

Definition 9 (Query containment). For two queries
q1, q2 on a global schema S or on a set of views V, we say
that q1 is contained in q2, if for all set E of extensions of V
and for all instance of S consistent with (V, E), the answer
set of q1 is included in that of q2. The two queries are said
equivalent, if q1 is contained in q2 and q2 is contained in q1.

An equivalent rewriting for a query may not always exist,
depending on the views and the query. In such cases, maxi-
mally contained rewritings are guaranteed to produce all the
answers that the system I may bring to the query:

Definition 10 (Maximally contained rewriting [22]).
Let q be a query on S, V a set of views on S and L a query
language. A query qr is a maximally contained rewriting of
q using V w.r.t. L if:

• qr is query in L on views V only;

• qr is contained in q;

• there does not exist a query q′r ∈ L on V such that qr
is contained in q′r, q′r is contained in q and q′r is not
equivalent to qr.

The following known result shows that for conjunctive
views, a maximally contained rewriting in the language of
unions of conjunctions of views compute exactly the certain
answers. This theorem is inspired by the Theorem 3.2 of [4]:

Theorem 1. Let V be a set of conjunctive views on S and
q be a conjunctive query on S. If a query qr is a maximally
contained rewriting of q using V w.r.t. the language of unions
of conjunctive queries, then for each set E of extensions of
V, the set of answers of qr on E is exactly the set of certain
answers of q on (V, E).

3. PROBLEM STATEMENT
In this section, we first discuss how heterogeneous data

sources can be integrated in and queried through an RDF
graph using the notion of mappings (Section 3.1). Then,
we extend this approach to the use of an RDFS ontology
allowing to interpret the data integrated from the sources
(Section 3.2).

3.1 RDF integration of data sources
We consider a set of heterogeneous data sources D1, . . . , Dn

with respective data models DM1, . . . ,DMn. For each data
model, we assume available a query language, and assume
queries expressed in this language return tuples of bind-
ings, which is the usual case e.g. for SQL, XPath (and any
tree pattern language), and BGPQs. Our first step toward
handling this data model heterogeneity is to assume that
data from each source is exposed to the integration system
through a set of mappings:

Definition 11 (Mapping and mapping extension).
A mapping m is of the form m = q1(x̄) ; q2(x̄) where q1
and q2 are two queries with the same arity. The body of
the mapping m is q1 and its head is q2. An extension of m,
denoted ext(m), is the set of answers to q1.

Intuitively, a mapping specifies how to translate the tu-
ples returned by a query q1 on a data source into answers of
a query q2 on a global schema. Keep in mind that a map-
ping is a specification only, i.e., it does not always lead to
executing q1 on that dataset, especially when no user query
is interested in that data.

Given a set of mappingsM, we call an extent of M a set
E of extensions defined by E = {ext(m) | m ∈ M}, i.e., the
data made available by the sources to the integration system.

In our setting, we rely on mappings which integrate source
data into RDF graphs:

Definition 12 (RDF mapping). An RDF mapping is
a mapping m = q1(x̄) ; q2(x̄), where q2 is a BGPQ.

Importantly, the above definition makes no assumption on
the query language of q1, so that RDF mappings can be
used to integrate heterogeneous data sources, e.g., relational,
XML, RDF ones, into an RDF graph as follows:

Definition 13 (Induced RDF graph). Given a set
M of RDF mappings and an extent E ofM, the RDF graph
induced by M and E is:

GME =
⋃

m∈M

{(body(q2)(t̄))safe | m = q1(x̄) ; q2(x̄), t̄ ∈ ext(m)}

where

• body(q2)(t̄) is the set of triples of body(q2) in which we
replace the x̄ tuple of answer variables by the tuple t̄.

• (body(q2)(t̄))safe is body(q2)(t̄) in which we replace each
variable by a fresh blank node (recall we consider w.l.o.g.
that body(q2) contains no blank nodes).

From now, to simplify the notation, we may also specify
an RDF mapping m = q1(x̄) ; q2(x̄) simply as:

m = q1(x̄) ; body(q2).

Example 1. Consider the following data sources of a uni-
versity department. A first relational source Sp pairs profes-
sors with the courses they teach. Let qp(professor, course) be
the query on Sp returning such pairs. A second JSON source
Ss provides pairs students with the courses they register for.
Let qs(student, course) be the query on Ss that retrieves such
pairs. Finally, let ql(professor, courseLabel) be a BGPQ ask-
ing for labels of courses appearing in each professor’s page
on the RDF website of the university department.

Consider now that these sources are integrated using the
following set Mex of RDF mappings:
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mp = qp(professor, course) ; (professor, :teaches, course)
ms = qs(student, course) ; (student, :registeredFor, course)

ml = ql(professor, courseLabel) ;
(professor, :teaches, x),
(x, :label, courseLabel)

where :teaches, :registeredFor, :courseLabel are IRIs. We note
that, in mapping ml, the variable x represents the existence
of an unknown course.

Finally, assume that the extent Eex of Mex, defined by
that answers to qp, qs, ql is:

ext(mp) = {(:Fabian, :SemWeb)}
ext(ms) = {(:Alice, :SemWeb), (:Alice, :RelDB)}
ext(ml) = {(:Fabian, ”Dance”)}

In this setting, the induced RDF graph GMex
Eex is

GMex
Eex = {(:Fabian, :teaches, :SemWeb),

(:Alice, :registeredFor, :SemWeb),

(:Alice, :registeredFor, :RelDB),

(:Fabian, :teaches, :b), ( :b, :label, ”Dance”)}

in which, for instance, the last two triples (:Fabian, :teaches, :b),
( :b, :label, ”Dance”) results from instanciating the body of
ml with the results of ql, i.e., ext(ml), which also instanciate
the head of ml to (:Fabian, :teaches, x), (x, :label, ”Dance”).
The triples (:Fabian, :teaches, :b), ( :b, :label, ”Dance”) are
therefore added to GMex

Eex , after having replaced the x vari-
able to a fresh blank node (recall the safe operation in Defi-
nition 13).

We define an RDF system as a triple S = 〈R,M, E〉,
where R is the set of entailment rules under consideration
defining the reasoning power of the system, M the set of
mappings that integrate data sources into the RDF system
and E the extent thereof.

For such systems, we recast the well-known notion of an-
swers to a BGPQ as follows:

Definition 14 (Certain answer set). Given a setR
of RDF entailment rules, a set M of mappings and an ex-
tent E of M, the certain answer set of a BGPQ q against
the RDF system S = 〈R,M, E〉 is:

cert(q, S) = {ϕ(x̄) | GME |=ϕ
R q(x̄)}

where ϕ(x̄) is made of IRIs and literals only.

Example 2 (continued). Consider the RDF system
S = 〈R,M, E〉, whereM and E are these of the preceding ex-
ample, and R only contains the entailment rule
rex = (s, :registeredFor, c) → (z, :teaches, c), stating that if
some student is registered for some course, then this course
is taught by some teacher.

Suppose that one asks the query q(x) = (y, :teaches, x)
retrieving the courses taught by some teacher. The answers
to this query against S are those that can be obtained from
the saturation w.r.t. R of the RDF graph induced by M, E,
i.e., the saturation of GMex

Eex from Example 1.

The first triple of GMex
Eex leads to the answer :SemWeb to q.

We remark that :b is not an answer to q though there is an
obvious homomorphism from q to the fourth triple in GMex

Eex ;
this is because blank nodes (i.e., unknown values) are for-
bidden in query answers.

The saturation of GMex
Eex with R only adds the implicit

triple ( :a, :teaches, :RelDB), hence a second answer :RelDB
found using reasoning. We stress here that the saturation of
GMex
Eex with R does not add a triple ( :c, :teaches, :SemWeb)

because of the presence of the second GMex
Eex triple; indeed,

such a triple would be redundant w.r.t. the first GMex
Eex triple

and saturation avoids this (recall Section 2.2).
The certain answers cert(q, S) to q on S are therefore

equals to {:SemWeb, :RelDB}.

3.2 Ontology-based RDF integration of data
sources

We now extend RDF systems with the ability to use an
ontology, hence domain knowledge, when integrating data
sources.

To this aim, we introduce specific mappings whose goal
is to feed an RDF system with the RDFS ontological con-
straints it must consider:

Definition 15 (Standard RDFS mappings of O).
Given an RDFS ontology O and R a set of RDF entailment
rules, the standard RDFS mappings of O, denoted MSTD

O ,
are as follows:

msubClassOf = qsubClassOf(s, o) ; (s,≺sc, o)
msubPropertyOf = qsubPropertyOf(s, o) ; (s,≺sp, o)
mdomain = qdomain(s, o) ; (s,←↩d, o)
mrange = qrange(s, o) ; (s, ↪→r, o)

with as body mapping queries:

qsubClassOf(s, o)← (s,≺sc, o)
qsubPropertyOf(s, o)← (s,≺sp, o)
qdomain(s, o)← (s,←↩d, o)
qrange(s, o)← (s, ↪→r, o)

Given R a set of RDF entailment rules, the extension of
O’s standard mappings, denoted EO, contains the following
extensions:

ext(msubClassOf) = qsubClassOf(O,R)
ext(msubPropertyOf) = qsubPropertyOf(O,R)
ext(mdomain) = qdomain(O,R)
ext(mrange) = qrange(O,R)

Above, qx(O,R) denotes the answer set of the BGPQ qx
evaluated on O as an RDF graph with R as entailment rules
(recall BGPQ answers from Definition 6).

Example 3. Consider the following extension of the on-
tology Oex introduced in Section 2:

Oex = {(:Professor,≺sc, :Person), (:Student,≺sc, :Person),

(:teaches,←↩d, :Professor), (:teaches, ↪→r, :Course)

(:registeredFor,←↩d, :Student),

(:registeredFor, ↪→r, :Course)}

Assume a standard integration of O as per Definition 15,
with the set RRDFS of RDF entailment rules (Table 2). The
extension of mdomain in MSTD

Oex
is qdomain(Oex,RRDFS), i.e.,

{(:teaches,←↩d, :Professor), (:registeredFor,←↩d, :Student),
(:teaches,←↩d, :Person), (:registeredFor,←↩d, :Person)}. The
first two triples come from O, which the two others are all
generalizations thereof, here obtained using the RDF entail-
ment rule ext1 together with the fact that both students and
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professors are persons. This is similar for the other three
mappings. As a result, all O RDFS triples, both explicit and

implicit, are part of the induced RDF graph G
MSTD

Oex
EOex

.

The standard mappings MSTD
O and their extent EO are

defined so that the induced RDF graph contains the
knowledge of the saturation of O by R. We will see
later (Property 8), that this holds under some restrictions
on entailment rules and ontology.

We are now able to define an ontology-based RDF system,
as depicted in Figure 1:

Definition 16 (O-system). Given an RDFS ontology
O, a set R of RDF entailments rules, a set M of RDF
mappings and an extent E thereof, the RDF system with
ontology (or O-system, in short) S = 〈O,R,M, E〉 is the
RDF system 〈R,M∪MSTD

O , E ∪ EO〉.

In this ontology-based RDF integration setting, the prob-
lem we formally study in this paper is the following:

Problem 1. Given an RDFS ontology O, a set R of
RDF entailment rules, a set M of instance mappings and a
set E of their extensions, compute the certain answer set of
a BGPQ q against the O-system S = 〈O,R,M, E〉.

4. REWRITING-BASED QUERY ANSWER-
ING: A THIRD WAY

Below, we first review the two main existing approaches
to query data in similar settings (Section 4.1), i.e., that in-
volve mappings and ontological knowledge; these are based
on instance materialization, respectively, query reformula-
tion. Each has its own drawbacks: materialization requires
time to compute and space to store, and it necessitates
maintenance when the data, rules and/or mappings change,
whereas reformulation may lead to very expensive query
evaluation.

We then propose a new approach which does not suffer
from these drawbacks (Section 4.2). The key idea is an
innovative usage of the well-known technique of view-based
rewriting, applied on a set of virtual views, which we obtain
by saturating the heads of the mappings M. This approach
avoids the pitfalls of both materialization and reformulation.
However, it provides complete answer sets only under some
restrictions, that we will detail in due time (Section 5).

4.1 Existing Approaches: Materialization and
Reformulation

The simplest family of methods consists in materializing
both the data imported by the mappings (as in data ware-
housing) and inferences computed from ontological knowl-
edge. In our setting, given an RDF system S = 〈R,M, E〉
(including, but not limited to, O-systems), we would mate-
rialize the RDF graph GME , then saturate it with the rules
to obtain (GME )R; certain answers to queries would be com-
puted against this materialization. The benefits and draw-
backs of this approach are well-known. Query answering
can be very fast as one forgets about mappings and rules
at query time. On the other hand, there are several situ-
ations in which this double level of materialization is not
possible, due to the volume of the obtained data or even the
non-termination of the saturation by the rules (note that,

whereas termination is ensured for the saturation by stan-
dard RDFS entailment rules, it is not the case for more
general RDF entailment rules, see Section 5.2 for details).
Moreover, this approach is not adapted to contexts where
data changes frequently, as the materialization has to be re-
computed after the updates, which involves triggering again
both mappings and rules.

At the other end of the spectrum, one can avoid any kind
of materialization as follows: at query time, a query is first
reformulated using the ontological knowledge, then the ob-
tained reformulation is rewritten into another query using
the mappings. In our setting, the reformulation step would
take as input an RDFS ontology O, a set R of RDF entail-
ment rules and a BGPQ q, and would output a reformulation
q′ of q using O and R. We need reformulation to be sound
and complete, i.e., for any RDF graph G whose set of RDFS
statements is O, the certain answers to q′ against G alone
must be the certain answers to q against G w.r.t.R (in other
words, against GR). The rewriting step would then turn q′

into a maximally contained rewriting q′r (see Section 2.4),
which can be asked against the extent E . One could also
consider a mixed approach which, on the one hand, materi-
alizes the graph obtained from the mappings (yielding GME ),
and on the other hand reformulates queries, subsequently
answered against the materialized graph.

Such an approach is typical of the OBDA setting [33, 29],
in which, for the systems implemented so far (see, e.g., [11]
for one of the most complete systems), the knowledge is
encoded in light description logic languages (typically the
OWL 2 QL dialect, which relies on the description logic DL-
Lite). However, even for relational conjunctive queries and
simple ontological languages that guarantee the termination
of the reformulation step, the obtained reformulation can be
exponentially larger than the initial query, which may ques-
tion the practical usability of the technique1. Notably, with
the aim of improving the efficiency of reformulation-based
query answering, more general reformulation languages have
been investigated (e.g., [34, 9, 26, 10, 27]).

Most works on query answering in the presence of an
ontology make the assumption that data is described over
the same vocabulary as the ontology, hence they do not
study the interaction between the ontology and mappings.
Moreover, most contributions are restricted to conjunctive
queries, which, when restricted to binary predicates, cor-
respond to specific BGPQs on triples of the form (:s, τ, :c)
and (:s, p, :o), where p cannot be a blank node. In [20],
general BGPQs were considered and a reformulation tech-
nique was introduced for a specific subset of standard RDF
entailment rules (namely the DB fragment, consisting of
RDF rules 2,3,7 and 9 (see Table 2). However, this tech-
nique has not been so far extended to more RDF entailment
rules. Hence, to pursue this approach using RDFS rules,
one should first define a sound and complete reformulation
technique for BGPQs and RDF entailment rules.

4.2 Rewriting-Based Query Answering
We now outline our approach, which proceeds in two main

steps. Offline, the mapping heads are saturated by the ontol-
ogy and the entailment rules. Then, each query is rewritten

1Note that most papers in the Knowledge Representation
area call query rewriting what we call here query reformu-
lation to avoid confusion with view-based query rewriting.
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using the saturated mappings, as if these were view defini-
tions. As already mentioned, this approach does not provide
complete answer sets for any O-system, hence we will have
to put syntactic restrictions on the allowed ontologies, en-
tailment rules and mappings (see the next section). In a nut-
shell, we reduce the query answering problem in restricted
O-systems to a view-based query answering problem.

Note that saturating the mapping heads and saturating
the data produced by the mappings have very different costs
in terms of volume and robustness to data dynamicity. In-
deed, the size of the mapping heads is expected to be small,
and the mappings are by definition independent from changes
in data. Hence, on the one hand this technique avoids the
main drawbacks of materialization-based approaches, and
on the other hand it also avoids those of query reformula-
tion.

We first define the saturation of mappings.

Definition 17 (Saturation of Mapping). Given an
RDFS ontology O, a set R of RDF entailment rules and an
RDF mapping m = q1(x̄) ; q2(x̄), the saturation of the
mapping m w.r.t. R and O is defined as:

mR,O = q1(x̄) ; qR,O
2 (x̄)

Accordingly, the saturation of a set of mappings M w.r.t.
R and O is MR,O = {mR,O | m ∈ M}, and the satu-

rated mapping graph, denoted by GM
R,O

E , is the RDF graph
induced by MR,O and an extent E.

Example 4. We consider the mapping mp (Example 1)
whose head is the triple (professor, :teaches, course), the
RDF entailment rule rdfs2 (about ←↩d) and the ontology
Oex. To saturate mp w.r.t. {rdfs2} and Oex, we map
body(rdfs2) to body(head(mp))∪Oex using the following ho-
momorphism:

ϕ′ = {p 7→ :teaches, o 7→ :Professor,

s1 7→ professor, o1 7→ course}.

The head of the saturated mapping m
{rdfs2},Oex
p has triples

(professor, :teaches, course) and (professor, τ, :Professor).

Hence, m
{rdfs2},Oex
p will also populate the class :Professor

with each value taken by the variable professor in mp.

The second idea is to see mappings as views in a inte-
gration system following the local-as-view approach (recall
Section 2.4), which we formally define below.

Definition 18 (Views defined by mappings). Given
an RDF mapping m = q1 ; q2, the view defined by m, de-
noted by Vm, is:

Vm(x̄)← body(q2).

Let M be a set of RDF mappings. The set of views defined
by M, denoted by VM, is:

VM = {Vm | m ∈M}.

Furthermore, to any pair (M, E), where E is an extent of
M, is assigned the pair (VM, E), such that, for all m ∈ M,
ext(m) is the extension of Vm.

The following proposition shows that this translation from
mappings to views preserves the certain answers to queries.

Property 1. Let M be a set of RDF mappings, E be an
extent of M, and VM be the set of views defined by M. For
any BGPQ q, the certain answer set of q on the RDF system
(without entailment rules) 〈∅,M, E〉 is equal to the certain
answer set of q on (VM, E).

We are now able to outline our method. We assume given
an O-system S = 〈O,R,M, E〉. As explained in Section 3.2,
we see S as an RDF system 〈R,M∪MSTD

O , E ∪ EO〉. The
different steps of our method are as follows:

1. (Offline step) Compute MR,O, the saturation of M.

2. To compute the certain answer set of a BGPQ q against
S, proceed as follows:

(a) Rewrite q into a maximally contained rewriting
qr using the views defined by MR,O ∪MSTD

O

(b) Compute the answers to qr against the extent
E ∪ EO.

5. PROBLEM RESTRICTIONS
In this section, we state the specific hypotheses under

which our approach holds. We first characterize our ontolo-
gies (Section 5.1), then our entailment rules (Section 5.2),
mappings (Section 5.3), and finally the resulting restricted
O-systems (Section 5.4).

5.1 First-Order Ontology
The following definition of first-order ontology restricts

the form of the RDFS statements that can be used in an
ontology. Essentially, it is not allowed to express constraints
on the RDFS built-in properties and the RDF type property,
nor to use anonymous subjects and objects, i.e., unknown
classes and properties.

Definition 19 (FO Ontology). A first-order ontol-
ogy O is an RDFS ontology whose triples do not contain
any of the following values:

• a blank node,

• the property type, τ (see Example 8),

• an RDFS IRI as subject,

• an RDFS IRI as object.

This setting allows one to express schema statements sim-
ilar to TBox statements in description logics. For example,
the triple (C1,≺sc, C2) in FO ontology states exactly the DL
statement C1 v C2, which corresponds to the FO formula
∀x (C1(x)→ C2(x)).

5.2 Restricted Rules
We consider entailment rules that comply with some re-

strictions. This yields two kinds of entailment rules, namely
ontological rules and instance rules, which respectively allow
to infer knowledge about the ontology and about individu-
als.

The goal of the instance rule restrictions is to allow using
RDFS triples when inferring facts about individuals, which
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is one of the interests of RDF, while ensuring the complete-
ness of saturation based on mapping heads2.

Definition 20 (Restricted rules). We call restricted
rule an RDF entailment rule r which is either an ontological
rule or an instance rule as defined below:

1. (Ontological rule) body(r) and head(r) contain solely
RDFS triples such that Bl(head(r)) ⊆ Bl(body(r))

2. (Instance rule) body(r) = {tr} ∪ bodyO(r), where

(a) bodyO(r) is a (possibly empty) set of RDFS triples

(b) tr is of one of the following forms:

i. (x, p, y) where x, y ∈ B \ Bl(bodyO(r)), x 6= y
and p ∈ (I \{≺sc,≺sp,←↩d, ↪→r, τ})∪Bl(bodyO(r)),

ii. (x, τ, z) where x ∈ B \ Bl(bodyO(r)),
z ∈ I ∪ Bl(bodyO(r))

and head(r) contains solely (s, p, o) triples such that:

(c) p ∈ I \ {≺sc,≺sp,←↩d, ↪→r} or p ∈ Bl(bodyO(r)),

(d) if p = τ , then o ∈ I or o ∈ Bl(bodyO(r)).

We first point out below that the standard RDF entail-
ment rules from Table 2 are specific restricted rules.

Example 5. Consider Table 2. Rules rdfs5, rdfs 11,
ext1, ext2, ext2, ext3 and ext4 are ontological rules. In-
deed, their body and head are composed of RDFS statements,
e.g., rdfs5: (p1,≺sp, p2), (p2,≺sp, p3) → (p1,≺sp, p3). All
the other rules are instance rules, whose body is composed
of an RDFS triple and a triple of the form tr, and the
head has a single triple. In Rule rdfs2 defined as follows
(s,←↩d, o), (s1, p, o1)→ (s1, τ, o), tr fulfills Restriction 2(b)i,
while the head fulfills Restriction 2d. The same holds for
Rule rdfs3. In Rule rdfs9 = (s,≺sc, o), (s1, τ, s)→ (s1, τ, o),
tr complies with 2(b)ii and the head with 2d. Finally, in
Rule rdfs7: (p1,≺sp, p2), (s, p1, o) → (s, p2, o), tr complies
with 2(b)i and the head with 2c.

The syntax of restricted rules also allows for user-specific
rules beyond standard RDF entailment rules, see for
instance the rule rex = (s, :registeredFor, c)→ (z, :teaches, c)
from the running example, stating that if some student is
registered for some course, then this course is taught by
some teacher.

Since entailment rules will be applied to saturate the map-
ping heads, the termination of saturation is a crucial require-
ment. Obviously, this requirement is fulfilled by ontological
rules. Indeed, rule heads do not introduce new blank nodes
(i.e., for any rule r, Bl(head(r)) ⊆ Bl(body(r))). However,
termination is not ensured for instance rules: e.g., a rule of
the form (x, p, y) → (y, p, z) (intuitively, for all x and y, if
x is related to y by p, there exists z such that y is related
to z by p) leads to infinite saturation, as each rule applica-
tion produces a new individual, which leads to a new rule
application. However, we prefer not to further restrict in-
stance rules to enforce termination, because of the variety

2Essentially, the restrictions seek to ensure that, given any
extensions for the mappings, the graph obtained by the sat-
urated mappings is equal to the saturation of the graph ob-
tained by the initial mappings, see Theorem 2.

of candidate syntactic restrictions. Indeed, many acyclicity
conditions for sets of rules have been defined in the liter-
ature about first-order logical rules (e.g., tuple-generating
dependencies or existential rules) and can be imported in
our setting. Hence, in the following, we will silently assume
that the considered set of restricted rules ensures the termi-
nation of saturation, as is the case, for instance, of the set
of rules RRDFS ∪ {rex}.

In order to comment on the behavior of restricted rules,
let us distinguish RDFS triples that can be contained in
a FO ontology, from instance triples (s, p, o) such that (1)
p 6∈ {≺sc,≺sp,←↩d, ↪→r}, and (2) if p = τ , then o ∈ I .

We first point out that ontological rules can only be ap-
plied on triples of an FO ontology, and that any restricted
rule that can be applied on an FO ontology is an ontolog-
ical rule (next Property 2); second, the saturation of an
FO ontology by restricted rules (hence, necessarily ontolog-
ical rules) remains an FO ontology (next Property 3); third,
given a graph whose set of RDFS triples is an FO ontol-
ogy, all RDFS triples that can be brought by application of
restricted rules come from ontological rules (next Property
4). Finally, restricted rules behave as expected when they
are applied to any RDF graph G composed of an FO on-
tology and instance triples: the ontological rules compute
exactly the saturation of the ontological part of the graph
(next Property 5), while the instance rules add triples about
the individuals (possibly using ontological triples as well, be
they initially present in the graph or inferred by the onto-
logical rules).

Property 2. Let r be a restricted rule and O be an FO
ontology, if O |=ϕ body(r), then r is an ontological rule, i.e.,
it fulfills Restriction 1.

Property 3. Let O be an FO ontology and R be a set of
restricted rules, OR is also an FO ontology.

Property 4. Let r be a restricted rule and G be an RDF
graph whose set of RDFS triples is an FO ontology. If the
direct entailment of G by {r} (denoted CG,{r} in Section 2.2)
contains an RDFS triple, then r is an ontological rule.

Property 5. Let O be an FO ontology, R be a set of re-
stricted rules and G be an RDF graph such that
RDFS(G) = O, it holds that:

RDFS(GR) = OR

This behavior is schematized by Figure 3: the above prop-
erties of ontological rules are summarized by the loop on the
FO ontology. The body of an instance rule r is composed of
tr a triple and bodyO(r) a set of RDFS triples. When r is
applied on G, the triple tr (resp. bodyO(r)) is necessarily
mapped to an instance triple (resp. FO ontology triples) of
G, furthermore the triples produced by this application are
necessarily instance triples.

5.3 Instance Mappings
In line with the distinction between ontological and in-

stance triples, we distinguish between standard mappings
associated with an ontology and instance mappings associ-
ated with data sources.

Definition 21 (Instance mapping). An instance map-
ping is an RDF mapping m = q1(x̄) ; q2(x̄), such that the
body of q2 contains only triples of one of the following forms:
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Instance triples FO ontology

bodyO(r)tr

Instance rules

Ontological rules

Figure 3: Restricted rule entailments

• (s, p, o) where p ∈ I \ {≺sc,≺sp,←↩d, ↪→r, τ},

• (s, τ, C) where C ∈ I .

The triples in the head of an instance mapping are exactly
instance triples where variables replace blank nodes, hence,
when these are instantiated, they yield instance triples. The
next example shows why the second condition is set.

Example 6. Consider the RDF mapping m defined by
q1(x, y) ; (x, τ, y) and its extension ext(m) = {(s, C1)}, as
well as the RDF standard entailment rule rdfs9 defined by
(s,≺sc, o), (s1, τ, s) → (s1, τ, o) and the FO ontology
O = {(C1,≺sc, C2)}. Given M = {m}, E = {ext(m)} and
R = {rdfs9}, the saturation of the induced RDF graph is:(

GME ∪O
)R

= {(s, τ, C1), (s, τ, C2), (C1,≺sc, C2)}.

However, there is no homomorphism from body(r≺sc) to
(x, τ, y), (C1,≺sc, C2), hence (head(m))R,O = head(m). It

follows that the triple (s, τ, C2) is missing in (GM
R,O

E ∪O).
For this reason, m is not considered as an instance mapping.

The next property partially explains why no information
is lost when we locally saturate the heads of mappings in-
stead of saturating the graph induced by them. See Figure 4:
for an instance rule r, if body(r) is mapped by a homomor-
phism ϕ to an FO ontology O and a triple v(t) from the
head of an instance mapping instantiated by a homomor-
phism v, then (1) there is a homomorphism ϕ′ that applies
r to {t} ∪O, and (2) the composition ϕ′ ◦ v is exactly ϕ.

Property 6. Let O be an FO ontology, t a triple in the
head of an instance mapping, and v a homomorphism from
Var(t) → B ∪ I . For any restricted rule r (necessarily
an instance rule), if {v(t)} ∪ O |=ϕ body(r) then there ex-

ists a homomorphism ϕ′ such that {t} ∪O |=ϕ′
body(r) and

ϕ(body(r)) = v(ϕ′(body(r))).

body(r)

ϕ(body(r))
= v(ϕ′(body(r))
⊆ {v(t)} ∪O

ϕ′(body(r))
⊆ {t} ∪O

ϕ ϕ′

v

Figure 4: Illustration of Property 6.

The next property expresses that, when a restricted rule
is applied to the head of an instance mapping, the added
triples keep the property of being an instance mapping.

Property 7. Let O be an FO ontology, t a triple of the
head of an instance mapping m = q1(x̄) ; q2(x̄) and r an

instance rule such that {t} ∪O |=ϕ′
body(r). Then the map-

ping m′ = q1(x̄) ; q′2(x̄) with q′2(x̄) = body(q2)∪ϕ′(head(r))safe

is an instance mapping.

Example 7. Reusing the running example, we illustrate
the two previous properties. The instance mapping mp gen-
erates the triple (:Fabian, :teaches, :SemWeb) by the homo-
morphism v = {professor 7→ :Fabian, course 7→ :SemWeb}
applied on t = (professor, :teaches, course) in the head of
mp. The instance rule rdfs9 can be used on the generated
triple v(t) and FO ontology Oex. Indeed, there is a homo-
morphism ϕ from body(r) to v(t) ∪Oex defined as:

ϕ = {p 7→ :teaches, o 7→ :Professor,

s1 7→ :Fabian, o1 7→ :SemWeb}.

As stated by Property 6, there exists a homomorphism from
body(r) to {t} ∪Oex, which is ϕ′ defined in Example 4. We
check that v(ϕ′(body(r))) = ϕ(body(r)), which ensures that
applying rdfs2 on mp head with ϕ′ and then instantiating
its saturated head with v returns the same triples as applying
rdfs2 with ϕ on mp head with v. Moreover, Property 7 en-

sures that the saturated mapping m
{rdfs2,Oex}
p is an instance

mapping like mp.

5.4 Restricted O-system
We have now defined suitable restrictions for each com-

ponent of an O-system, which yield a restricted O-system.
We precise that only previous properties on FO ontology,
restricted rules and instance mappings are needed for the
rest of the paper. It means that by using an other syntax
of this elements satisfying the same properties, following re-
sults will still hold.

Definition 22 (Restricted O-system). We say that
an O-system S = 〈O,R,M, E〉 is a restricted O-system if
O is an FO ontology, R a set of restricted rules and M a
set of instance mappings.

As defined in Section 3.2, the standard mappings associ-
ated with an ontology O allow one to integrate the ontolog-
ical statements of O into an RDF graph, as follows:

Property 8. Given an FO ontology O and a set R of
restricted rules, it holds that:

G
MSTD

O
EO = OR

Futhermore, no other RDFS triples are created by in-
stance mappings and applications of instance rules, hence:

Property 9. For any restricted O-system S = 〈O,R,M, E〉,
the set of RDFS triples in (G

M∪MSTD
O

E∪EO )R is exactly OR.

6. CORRECTNESS OF THE METHOD
In this section, we present the main arguments that prove

the correctness of our method, and refer the reader to the
appendix for detailed proofs.
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Assume first that we adopt a classical materialization ap-
proach: starting from the extent E ∪ EO, we trigger the map-
pingsM∪MSTD

O , then saturate the obtained graph with the

entailment rulesR, and finally get the graph
(
G
M∪MSTD

O
E∪EO

)R
,

on which we can ask BGP queries and obtain a complete
certain answer set.

Now, instead of saturating the graph produced by the
mappings, we proceed as follows: (1) we saturate the map-
pings (actually their head) with the entailment rules, then
(2) we trigger the mappings. We thus obtain the graph

GM
R,O

E ∪GM
STD
O

EO . The next theorem states that the graphs

obtained by the two ways of doing are equal (which holds
up to bijective renaming of blank nodes).

Theorem 2. Given an FO ontology O, a set R of re-
stricted rules, a set M of instance mappings, it holds that:

(
G
M∪MSTD

O
E∪EO

)R
= G

MR,O∪MSTD
O

E∪EO

Of course, this equality does not hold for general O-systems.
In Section 5, we have illustrated by examples the role of the
main restrictions we enforce and hightlighted some key prop-
erties ensured by these restrictions. An important character-
istic of restricted O-systems is the distinction between stan-
dard and instance mappings, and similarly between ontolog-
ical and instance entailment rules. This allows one to con-

sider two induced graphs, whose union yields G
MR,O∪MSTD

O
E∪EO :

• GM
STD
O

EO , which is equal to the saturated ontology OR

(Property 8).

• GM
R,O

E , which materializes exactly the instances triples

of the saturated graph
(
GME ∪O

)R
. This equality also

relies on the form of the restricted instance rules, which
ensures that every application of an instance rule in-
volved in the saturation of the graph produced the
mappings can be similarly performed on a mapping
head (Property 6); in particular, no application of an
instance rule requires instance triples coming from two
different mappings.

Finally, instead of computing the answers to a query q

against the materialized graph
(
GME ∪O

)R
, we rewrite q

into a query qr, such that the answers to q against the system
are the answers to qr against E ∪ EO:

Definition 23 (Rewriting). Given an FO ontology O,
a set R of restricted rules, and a set M of instance map-
pings, a rewriting qr of a BGPQ q w.r.t. O,R,M is a query
such that, for any extent E ofM, the answer set of qr against
E ∪ EO is cert(q, S = 〈O,R,M, E〉).

We have already shown how mappings can be seen as
views (Definition 18 and Property 1), more precisely the
set of mappings MR,O ∪MSTD

O is seen as the following set
of views:

VMR,O∪MSTD
O

= {Vm(x̄)← body(q2) | m ∈MR,O ∪MSTD
O ,

m = q1(x̄) ; q2(x̄)}

with, for each m ∈ M, the extension of Vm being set to
ext(m).

Based on this translation, one obtains a rewriting of q
w.r.t. O,R,M by computing a maximally contained rewrit-
ing of q using the views VMR,O∪MSTD

O
, as expressed by the

following theorem:

Theorem 3. Given an FO ontology O, a set R of re-
stricted rules, a set M of instance mappings, and a BGPQ
q, qr a maximally contained rewriting of q using the views
VMR,O∪MSTD

O
w.r.t. UCQs is a rewriting of q w.r.t. O,R,M.

Grouping together Theorems 2 and 3, we obtain the wanted
result: the certain answer set to a BGPQ q against a re-
stricted O-system 〈O,R,M, E〉, is exactly the answer set of
qr on the extension E ∪ EO.

7. RELATED WORK
As we have explained in the Introduction, our work pur-

sues a data integration goal [35, 32], that is: providing access
to a set of data sources under a single unified schema.

Ontologies have been used to integrate relational or het-
erogeneous data sources in mediators [35] following the local-
as-view approach, using the CLASSIC description logic [30],
CARIN which combines Datalog with some description log-
ics [19, 21] or the DL-liteR description logic [3] underpin-
ning the OWL2QL dialect of the W3C’s OWL2 semantic
web standard; in particular, [3] adopts the reformulate-then-
rewrite query answering approach sketched in Section 4.1.
However, none of the above approaches consider graph data
models, as we do with RDF.

We follow the observation, at the origin of the semistruc-
tured data management area [16], that graphs are a very
convenient paradigm for integrating data from heterogeneous
data sources. Adding semantics at the integration level in
order to enrich its exploitation was proposed early on, for
SGML [13] and then soon after for RDF [7, 8]; data is con-
sidered to be represented and stored in a flexible object-
oriented model, thus no mappings are used. Reconciliation
between the source and the integrated schemas is performed
semi-automatically, trying to determine the best correspon-
dences based on the available ontologies, and asking users to
solve unclear situations. In contrast, our proposal considers
heterogeneous sources, and, following the OBDA approach,
relies on mappings to connect (in a loose coupling) the in-
tegration ontology and the source schemas.

XML trees have also been used as the integration format
in systems integrating heterogeneous data sources follow-
ing the local-as-view approach [31, 14, 6]. Virtual views
were specified in a pivot relational model (enriched with in-
tegrity constraints) to describe how the content of each data
source contributes to the global schema. View-based rewrit-
ing against this relational model lead to queries over the
virtual views, which were then translated back into queries
that can be evaluated on each individual source. Ontologi-
cal knowledge was not exploited in here nor in classical re-
lational view-based integration [17, 22], whereas we include
them in our framework to enrich the set of results that a
user may get out of the system, by making available the
application knowledge they encapsulate.

Our work follows the OBDA vision [18, 28, 27, 12]. Com-
pared to these works, our novelty is (i) to extend the typical
relational setting to heterogeneous data sources (which is
rather simple thanks to mappings), (ii) relying on RDF as
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the integration model, thus in particular allowing applica-
tions to query the integrated data and the ontology, and
(iii) proposing a novel approach for query answering, dif-
ferent both from materialization and reformulation, which
avoids their drawbacks and is capable of computing certain
query answers, under the restrictions we detailed above.
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[21] F. Goasdoué and M. Rousset. Answering queries using
views: A KRDB perspective for the semantic web.
ACM Trans. Internet Techn., 4(3), 2004.

[22] A. Y. Halevy. Answering queries using views: A
survey. The VLDB Journal, 10(4), Dec. 2001.

[23] D. Hovland, R. Kontchakov, M. G. Skjæveland,
A. Waaler, and M. Zakharyaschev. Ontology-based
data access to Slegge. In ISWC, 2017.

[24] M. Jarke. Fundamentals of data warehouses, 2nd
Edition. Springer, 2003.

[25] E. Kharlamov, D. Hovland, M. G. Skjæveland,
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Appendix
Proof of Property 1

Proof. Let t̄ be a certain answer of q on 〈∅,M, E〉. By
definition, there exists mappings m1 = q1,1 ; q2,1, . . . ,
mn = q1,n ; q2,n of M and tuples t̄1 ∈ ext(m1), . . . ,
t̄n ∈ ext(mn) such that:

body(q2,1)(t̄1)safe, . . . , body(q2,n)(t̄n)safe |= body(q)(t̄)

Since the safe operation just replaces variables by fresh blank
nodes, we have for each 1 ≤ i ≤ n, we have
body(Vmi)(t̄i) = body(q2,i)(t̄i) |= body(q2,i)(t̄i)

safe. Let D
be an instance of triples w.r.t. (VM, E), by definition for each
1 ≤ i ≤ n, we have t̄i ∈ q2,i(D), i.e., D |= body(Vmi)(t̄i). So
finally, for each D instance of triples w.r.t. (VM, E), we have
D |= body(q)(t̄). And t̄ is a certain answer of q on (VM, E).

Let’s make a remark about maximally contained rewrit-
ing. Let qr be a maximally contained rewriting of q using
VM w.r.t. UCQ on views language and let Cr be one con-
junction component of qr with Cr = Vm1 , . . . , Vmn . Since
we know that qr is contained in q, we can deduce that
body(Vm1), . . . , body(Vmn) |= body(q).

Let t̄ be a certain answer of q on (VM, E). Since q is
a conjunctive query of triples and VM contains conjunc-
tive views, we know that there exists qr a maximally con-
tained rewriting of q using VM w.r.t. union of conjunctive
queries on VM. Moreover, applying Theorem 1 on qr in-
fers that t̄ is an answer of qr on E . So, there exists Cr a
conjunction component of qr with Cr = Vm1 , . . . , Vmn and
t̄1 ∈ ext(m1), . . . , t̄n ∈ ext(mn), such that:

body(Vm1)(t̄1), . . . , body(Vmn)(t̄n) |= body(q)(t̄).

By considering existential variables as blank nodes, we have
for each 1 ≤ i ≤ n, we have body(q2,i)(t̄i)

safe |= body(Vmi)(t̄i)
where q2,i is such that mi = q1,i ; q2,i. So finally, we have
GME |= body(q)(t̄), i.e., t̄ is an answer of q on GME . Moreover
t̄ is not composed by any blank node, so t̄ is a certain answer
on S.

Examples
The following example illustrates why the property τ is not
allowed in an FO ontology, here in an object position.

Example 8. Consider an RDF mapping m = q1(x, y) ;
(x, τ ′, y), its extension ext(m) = {(a,C1)}, the RDF entail-
ment rules rdfs9 defined as (s,≺sc, o), (s1, τ, s) → (s1, τ, o)
and rdfs7 defined as (p1,≺sp, p2), (s, p1, o)→ (s, p2, o), and
the ontology O = {(C1,≺sc, C2), (τ ′,≺sp, τ)}. Let M =
{m}, E = {ext(m)} and R = {rdfs9, rdfs7}; the satura-
tion of the induced RDF graph is:(

GME ∪O
)R

= {(a, τ ′, C1), (a, τ, C1), (a, τ, C2),
(C1,≺sc, C2), (τ ′,≺sp, τ)}

The saturated mapping mR,O is q1(x, y) ; (x, τ ′, y), (x, τ, y),

so (GM
R,O

E ∪ O) does not contain, hence misses, the triple
(a, τ, C2).

The following example is relative to the definition of re-
stricted rules and illustrates the importance of the condition
x 6= y in the triple tr.

Example 9. Assume the rule r = (x, p, x) → (x, q, x)
would be allowed, and let the mapping m = q1(x, y) ;

(x, p, y) and its extension ext(m) = {(a, a)}. LetM = {m},

E = {ext(m)} and R = {rdfs9}. Then the saturation of the
induced RDF graph is:(

GME

)R
= {(a, p, a), (a, q, a)}.

However, there is no homomorphism from body(r) to (x, p, y),
hence the saturation of the mapping m with R is exactly m.
Therefore, the triple (a, q, a) is missing in the saturated map-

ping graph GM
R,{}

E . It is the reason why the condition x 6= y
is enforced in 2(b)i, hence r is not a restricted rule.

Proof of Property 2
Proof. If we assume that r is an instance rule, then

body(r) = {tr}∪bodyO(r), and the triple tr has to be of the
form (x, p, y) with p ∈ Bl(bodyO(r)), otherwise ϕ(tr) could
not be an RDFS triple (which would contradict the fact that
O |=ϕ body(r)). Then ϕ(p) occurs as a subject or an object
of a triple in O, because bodyO(r) does not have any blank
node as a property. However, ϕ(p) cannot be an RDFS IRI,
because O is an FO ontology. This contradicts the fact that
ϕ(p) is an RDFS IRI since ϕ(tr) ∈ O. We conclude that r
is necessarily an ontological rule.

Proof of Property 3
Proof. From Property 2, only ontological rules can be

applied on an FO-ontology. We check that the produced
RDFS triples comply with the conditions of an FO-ontology.

Proof of Property 4
Proof. From the definition of the restricted rules, we

know that if the direct entailment of G by {r} contains
an RDFS triple, then r is either an ontological rule, or
an instance rule with head containing a triple t = (s, p, o),
case 2c. The latter case is not possible, because necessarily
p ∈ Bl(bodyO(r)), i.e., p also occurs as the subject or the
object of an RDFS triple tb in the body of r. The applica-
tion of the rule r maps tb to an RDFS triple of G. Since
the set of RDFS triples of G is an FO ontology, p cannot be
mapped to an RDFS IRI, which is absurd. Therefore, r is
an ontological rule.

Proof of Property 5
Proof. First, we prove that OR ⊆ RDFS(GR). Using

Property 3, we know that OR is an FO ontology, so at least
OR is a set of RDFS triples. Since O ⊆ G, we have OR ⊆
RDFS(GR).

Second, we prove that RDFS(GR) ⊆ OR. Let t be a triple
in RDFS(GR), so either t is an RDFS triple of G (and then
t ∈ OR) or t is a RDFS triple in entailment of R on G.
In the latter case, we prove that t ∈ OR by induction on
(GRi )i∈N the saturation sequence of GR.

By Property 4, if a restricted rules r ∈ R applied on G
directly derives at least an RDFS triples, r is an ontological
rule. And since, the body of an ontological rule is composed
of RDFS triples, a such rule r can be apply only on RDFS
triples. Moreover, RDFS(G) = O, so each RDFS triple t
in CG,r the direct entailment of r on G is actually in CO,r.
Finally, we can remark that RDFS(GR1 ) ⊆ OR.

For the initialization step of the induction, if t a RDFS
triple directly entails by G, the preceding remark proves
that t ∈ OR. And the induction is assured by Property 3
which shows that OR is an FO ontology, so RDFS(GR1 ) is
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an FO ontology. We can start the preceding reasoning again
replacing G by GR1 and O by RDFS(GR1 ).

Proof of Property 6
Proof. We define body(r) as tr∧bodyO(r). Since bodyO(r)

is a set of RDFS triples and t (thus also v(t)) is not an RDFS
triple, then ϕ(bodyO(r)) ⊆ O. We now consider the two
possible forms of tr.
Case (i): tr has the form of (x, p, y), Restriction 2(b)i. As
in the proof of Property 2, we know that ϕ(p) is not an
RDFS IRI and with the same reasoning, we can show that
ϕ(p) 6= τ . So, the triple ϕ((x, p, y)) is equal to v(t) and the
instance mapping triple t = (x′, p′, y′) with p′ ∈ I \ {τ}.
Since we know that x and y are not in Bl(bodyO(r)), we
know that ϕ|Bl(bodyO(r))(tr) = (x, p′, y). So if we choose
ϕ′ = ϕ|Bl(bodyO(r)) ∪ {x 7→ x′, y 7→ y′}, which is indeed a

homomorphism because x 6= y, then we have {t} ∪ O |=ϕ′

body(r) and ϕ(body(r)) = v(ϕ′(body(r))).
Case (ii): tr has the form (x, τ, z), with x /∈ Bl(bodyO(r))
and z ∈ I ∪ Bl(bodyO(r)), Restriction 2(b)ii. Since τ is
not an RDFS property, we know that ϕ(tr) = v(t). So
v(t) is equal to (a, τ, C) with a ∈ B ∪ I and C ∈ I ,
and there exists y ∈ B ∪ I such that t = (y, τ, C). We
have ϕ|Bl(bodyO(r))(tr) = (x, τ, C), so if y ∈ B, then ϕ′ =
ϕ|Bl(bodyO(r)) ∪{x 7→ y} satisfies the wanted property. Oth-
erwise, y ∈ I and ϕ′ = ϕ|Bl(bodyO(r)) satisfies the wanted
property as well, because v is then the identity.

Proof of Property 7
Proof. Let body(r) = {tr}∪ bodyO(r). Since bodyO(r)

is a set of RDFS triples and t is not an RDFS triple, we have
ϕ′(bodyO(r)) ⊆ O.

The result is just a consequence of the form of head(r).
Let u = (s, p, o) be a triple in head(r), we check that in
each case ϕ′(u)safe can be a triple of the head of an instance
mapping:

• if p = τ then o ∈ I ∪ Bl(bodyO(r)). So ϕ′(o) is al-
ways an IRI, since ϕ′(bodyO(r)) ⊆ O and O is an FO
ontology;

• if p ∈ I \ {≺sc,≺sp,←↩d, ↪→r}, nothing more is re-
quired;

• if p ∈ Bl(bodyO(r)), then ϕ′(p) ∈ I \ {≺sc,≺sp,←↩d
, ↪→r} and it is OK. Again since ϕ′(bodyO(r)) ⊆ O and
O is an FO ontology.

Proof of Property 8
Proof. By Property 3, OR is an FO ontology, hence con-

tains only RDFS triples. The proof then directly follows
from the equalities:

OR = {(s,≺sc, o) | (s,≺sc, o) ∈ OR}
∪{(s,≺sp, o) | (s,≺sp, o) ∈ OR}
∪ {(s,←↩d, o) | (s,←↩d, o) ∈ OR}
∪{(s, ↪→r, o) | (s, ↪→r, o) ∈ OR}

= {(s,≺sc, o)
safe | msubClassOf = qsubClassOf(s, o) ;

(s,≺sc, o), (s, o) ∈ ext(msubClassOf) = qsubClassOf(O,R)}
∪ {(s,≺sp, o)

safe | msubPropertyOf = qsubPropertyOf(s, o) ;

(s,≺sp, o), (s, o) ∈ ext(msubPropertyOf) = qsubPropertyOf(O,R)}
∪ {(s,←↩d, o)safe | mdomain = qdomain(s, o) ;

(s,←↩d, o), (s, o) ∈ ext(mdomain) = qdomain(O,R)}
∪ {(s, ↪→r, o)

safe | mrange = qrange(s, o) ;

(s, ↪→r, o), (s, o) ∈ ext(mrange) = qrange(O,R)}

= G
MSTD

O
EO

q

Corollary 1

Corollary 1. The set of RDFS triples of G
M∪MSTD

O
E∪EO is

exactly OR.

Proof. Since no instance mapping ofM has RDFS triples

in its head, the ontology ofG
M∪MSTD

O
E∪EO is included inG

MSTD
O

EO .

Moreover, G
MSTD

O
EO contains only RDFS triples, hence the

wanted equality holds.

Proof of Property 9
Proof. By Corollary 1, the set of RDFS triples ofG

M∪MSTD
O

E∪EO
is OR. By Property 3, OR is an FO ontology, so by Prop-

erty 5, the set of RDFS triples of (G
M∪MSTD

O
E∪EO )R is OR.

Below: proofs from Section 6

Proof of Theorem 2
To prove the theorem, we will rely on the next definition
and some auxilliary lemmas.

Definition 24. We define the following sequence of map-
pings:

(M)R,O
i =

{
q1 ; (q2)R,O

i | q1 ; q2 ∈M
}

where body((q)R,O
i ) = max{S ⊆ (body(q) ∪ O)Ri | ∀T ⊆

S,O |=R T ⇒ body(q) |=R T}.

Intuitively, (q)R,O
i is the saturation of (body(q) ∪ O) at

rank i from which triples entailed solely by O are removed,
as in Def. 7.

Lemma 1. Let be q the head of an instance mapping, O
an FO ontology and R a set of restricted rules, we have:

∀i ∈ N, body((q)R,O
i ) = (body(q)∪O)Ri \RDFS((body(q)∪O)Ri ).

Proof. First, let i be a positive integer, we prove that
body((q)R,O

i ) ⊆ (body(q) ∪ O)Ri \ RDFS((body(q) ∪ O)Ri ).

Let t be a triple in body((q)R,O
i ), so t ∈ (body(q) ∪ O)Ri .

Hence by definition of (q)R,O
i , we have either O 6|=R t or

body(q) |=R t. We will tackle the both cases separately.
We recall that since q is the head of an instance mapping,
body(q) only contains none RDFS triples. Moreover us-
ing Property 7, we know that qR body only contains none
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RDFS triples. So if body(q) |=R t, then t ∈ (body(q) ∪
O)Ri \ RDFS((body(q) ∪ O)Ri ). Inspiring by the proof of
Property 5, we can prove the following property: for all u ∈
(body(q)∪O)Ri , if u ∈ RDFS((body(q)∪O)Ri ) then O |=R u.
Using the contraposition of this property, we know that if
O 6|=R t then t ∈ (body(q)∪O)Ri \RDFS((body(q)∪O)Ri ). So
in the both case, t ∈ (body(q)∪O)Ri \RDFS((body(q)∪O)Ri ).

Secondly, let i be a positive integer, we prove that (body(q)∪
O)Ri \ RDFS((body(q) ∪ O)Ri ) ⊆ body((q)R,O

i ). Let t ∈
(body(q)∪O)Ri \RDFS((body(q)∪O)Ri ) and S ⊂ (body(q)∪
O)Ri , which satisfies the property P (S) = ∀T ⊆ S, O |=R
T ⇒ body(q) |=R T . We will prove that if t 6∈ S, S is not
maximal for the property P , i.e., we will prove P (S ∪ {t}).
Let T ⊆ S ∪ {t}, if t ∈ T then O 6|=R T , because t is not
an RDFS triples and Property 3, otherwise T ⊆ S. In both
cases, O |=R T ⇒ body(q) |=R T holds, so P (S ∪ {t}) also.

Finally, t ∈ body((q)R,O
i ).

We notice that even if this sequence of mappings is not
increasing, it induces a increasing sequence of RDF graphs(
G

(M)
R,O
i

E

)
i∈N

.

Lemma 2. For any i ∈ N:

• (G
M∪MSTD

O
E∪EO )Ri ⊆ G

(M)
R,O
i ∪MSTD

O
E∪EO

• (M)R,O
i only contains instance mappings

Proof. We start by proving that the set of RDFS triples

of
(
G
M∪MSTD

O
E∪EO

)R
i

is a subset of G
(M)

R,O
i ∪MSTD

O
E∪EO , for each i ∈

N. Using preceding results, we have the following equations
for i ∈ N:

OR = RDFS(G
M∪MSTD

O
E∪EO ) (Corollary 1)

⊆ RDFS(
(
G
M∪MSTD

O
E∪EO

)R
i

)

⊆ RDFS(
(
G
M∪MSTD

O
E∪EO

)R
)

= OR (Property 9)

We deduce that:

∀i ∈ N, RDFS(
(
G
M∪MSTD

O
E∪EO

)R
i

) = OR

Moreover, using Property 8, we know that:

∀i ∈ N, OR ⊆ GM∪M
STD
O

E∪EO ⊆ G(M)
R,O
i ∪MSTD

O
E∪EO .

So finally, we prove that:

∀i ∈ N, RDFS(
(
G
M∪MSTD

O
E∪EO

)R
i

) ⊆ G(M)
R,O
i ∪MSTD

O
E∪EO .

After that, we just have to prove for i ∈ N the following
statement P (i):

• each non-RDFS triple of
(
G
M∪MSTD

O
E∪EO

)R
i

is inG
(M)

R,O
i ∪MSTD

O
E∪EO ,

• Let q be an head of a instance mappings ofM, NRq,i =
(body(q)∪O)Ri \RDFS((body(q)∪O)Ri ) contains only

correct triple for instance mapping head. So (M)R,O
i

only contains instance mappings.

Here, we have to explain why in the second point of this
list, the first sentences implies the second. It comes from
the fact that if q is an head of a mapping in (M)R,O

i , then
body(q) ⊂ (body(q)∪O)Ri \RDFS((body(q)∪O)Ri ), accord-
ing to Lemma 1.

We will prove P (i) by induction. In the base case, we
show that the statement holds for i = 0:

•
(
G
M∪MSTD

O
E∪EO

)R
0

= G
M∪MSTD

O
E∪EO = G

(M)
R,O
0 ∪MSTD

O
E∪EO ,

• For q a head of mapping in M, (body(q) ∪ O)R0 \
RDFS((body(q)∪O)R0 ) = (body(q)∪O)\RDFS(body(q)∪
O) = (body(q) ∪ O) \ O = body(q). So like previously

explained we have: (M)R,O
0 = M only contains in-

stance mappings.

In the inductive step, we assume that P (i) holds for i ∈ N,
we will prove that P (i + 1) also holds. If t′ is a non-RDFS

triple of
(
G
M∪MSTD

O
E∪EO

)R
i+1

, then there are two cases:

• t′ ∈
(
G
M∪MSTD

O
E∪EO

)R
i

so by hypothesis t′ ∈ G(M)
R,O
i ∪MSTD

O
E∪EO ,

• or there exists a restricted rule r ∈ R such that(
G
M∪MSTD

O
E∪EO

)R
i
|=ϕ body(r) and t′ ∈ ϕ(head(r))safe.

Since t′ ∈ ϕ(head(r))safe is a non-RDFS triple, r is an in-

stance rule. So there exists an t ∈
(
G
M∪MSTD

O
E∪EO

)R
i

such

that {t} ∪ OR |=ϕ body(r). By the inductive hypothe-

sis, t is a triple of G
(M)

R,O
i ∪MSTD

O
E∪EO . Hence there exists a

mapping m ∈ M with m = q1 ; q2, and a triple tm ∈
body((q2)R,O

i ) (defined in Definition 24) and a tuple e ∈
ext(m) such that ve(tm) = t, where ve is the homomor-
phism induced by the replacement of answer variables of
(q2)R,O

i by the tuple e. Since (q2)R,O
i is the head of a

mapping of (M)R,O
i , we know by induction hypothesis this

mapping is actually an instance mapping. So according
to Property 6, there exists a homomorphism ϕ′ such that

tm ∪ OR |=ϕ′
body(r) and ϕ(body(r)) = ve(ϕ′(body(r))).

Hence, ϕ(head(r))safe = ve(ϕ′(head(r))safe). We show that

the mapping q1 ; (q2)R,O
i+1 ∈ (M)R,O

i+1 is such that

ϕ′(head(r)))safe ⊆ body((q2)R,O
i+1 ). Indeed, it is a conse-

quence of Lemma 1, because we know that ϕ′(head(r)))safe ⊆
(body(q2)∪O)Ri+1 and ϕ′(head(r)))safe contains only no RDFS
triple. Finally, we have proved:

t′ ∈ ϕ(head(r))safe

= ve(ϕ′(head(r))safe)

⊆ ve(body((q2)R,O
i+1 ))

⊆ G
(M)

R,O
i+1 ∪M

STD
O

E∪EO .

We also have to prove that for q an head of a mapping in
M, NRq,i+1 = (body(q) ∪O)Ri+1 \RDFS((body(q) ∪O)Ri+1)
contains only valid triples for instance mapping head. By
induction hypothesis, we know that M, NRq,i verify the
willing property. Let t′ a triple of NRq,i+1, so there exists
r ∈ R such that t′ is one directly entailed triple by r on
(body(q) ∪ O)Ri . If the restricted rule r is an ontological
rule, then t′ is an RDFS triple. This case is absurd, because
t′ will be in RDFS((body(q)∪O)Ri+1) so t′ 6∈ NRq,i+1. So r is
an instance rule and there exists an t ∈ NRq,i such that {t}∪
OR |= body(r). Using Property 7, we know that t is a valid
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triples for instance mapping head. Finally we can deduce
from it that (M)R,O

i+1 is a set of instance mappings.

We are now able to prove the Theorem 2.

Proof Proof of Theorem 2. First, we prove the in-

clusion G
MR,O∪MSTD

O
E∪EO ⊆

(
G
M∪MSTD

O
E∪EO

)R
. Let (s, p, o) be a

triple from G
MR,O∪MSTD

O
E∪EO . Then, there exists a mapping

m ∈ M ∪MSTD
O such as m = q1(x̄) ; q2(x̄) and there ex-

ists t̄ ∈ ext(m) with (s, p, o) ∈ (body(qR,O
2 )(t̄))safe. We also

know that:

• (body(q2)(t̄))safe ⊆ GM∪M
STD
O

E∪EO

• O ⊆ GM∪M
STD
O

E∪EO , because of Property 8

We know that the saturation operation is monotonous,
i.e., if G,G′ are RDF graphs such as G ⊆ G′, then GR ⊆
G′R. So if we put everything together, we have (considering
inclusion by bijective renaming of blank nodes):

(s, p, o) ∈ (body(qR,O
2 )(t̄))safe

⊆ ((body(q2)(t̄))safe ∪O)R

⊆
(
G
M∪MSTD

O
E∪EO

)R
Finally, we have (s, p, o) ∈

(
G
M∪MSTD

O
E∪EO

)R
.

Secondly, we prove that
(
G
M∪MSTD

O
E∪EO

)R
⊆ GM

R,O∪MSTD
O

E∪EO .

Let t be a triple in
(
G
M∪MSTD

O
E∪EO

)R
, by definition of the

saturation of an RDF graph (Definition 3), there exists i ∈ N
such that :

t ∈
(
G
M∪MSTD

O
E∪EO

)R
i

⊆ G
(M)

R,O
i ∪MSTD

O
E∪EO (thanks to Theorem 2)

⊆ G
MR,O∪MSTD

O
E∪EO .

Proof of Theorem 3
Proof. For any extent E ofM, we prove that the certain

answers of q on the restricted O-system 〈O,R,M, E〉 is equal
to the certain answers of q on the RDF system 〈∅,MR,O ∪
MSTD

O , E ∪ EO〉.

cert(q, 〈O,R,M, E〉) = {ϕ(x̄) | GM∪M
STD
O

E∪EO |=ϕ
R q(x̄)}

= {ϕ(x̄) |
(
G
M∪MSTD

O
E∪EO

)R
|=ϕ q(x̄)}

= {ϕ(x̄) | GM
R,O∪MSTD

O
E∪EO |=ϕ q(x̄)}

= cert(q, 〈O, ∅,MR,O, E〉)
= cert(q, 〈∅,MR,O ∪MSTD

O , E ∪ EO〉)

where ϕ(x̄) is made of IRIs and literals only.
By Property 1, the certain answers of q on the RDF sys-

tem 〈∅,MR,O ∪MSTD
O , E ∪ EO〉 are exactly the certain an-

swers of q on (VMR,O∪MSTD
O

, E∪EO). By Theorem 1, since qr
is a maximally contained rewriting of q using VMR,O∪MSTD

O

w.r.t. union conjunctive queries on this views language, the
certain answers of q on views based integration of VMR,O∪MSTD

O

and E ∪ EO are the answers of qr on the extent E ∪ EO. Be-
cause all preceding equality do not depend of the extent E
of instance mappings M, qr is a rewriting of q.
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