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Abstra
t

It is now widely a

epted that, to model the dynami
s of daily �nan
ial returns, volatility models have

to in
orporate the so-
alled leverage e�e
t. We derive the asymptoti
 behaviour of the squared residuals

auto
ovarian
es for the 
lass of asymmetri
 power GARCH model when the power is unknown and is

jointly estimated with the model's parameters. We then dedu
e a portmanteau adequa
y test based on

the auto
ovarian
es of the squared residuals. These asymptoti
 results are illustrated by Monte Carlo

experiments. An appli
ation to real �nan
ial data is also proposed.

Key words: Asymmetri
 power GARCH models, goodness-of-�t test, portmanteau test, residuals

auto
ovarian
es, threshold models, validation.

1. Introdu
tion

The autoregressive 
onditional heteros
edasti
 (ARCH) model introdu
ed by Engle (1982) expresses

the 
onditional varian
e (volatility) of the pro
ess as a linear fun
tional of the squared past values. This

model has a lot of extensions. For instan
e, Bollerslev (1986) generalized the ARCH (GARCH) model by

adding the past realizations of the volatility. The GARCH models are also 
hara
terized by a volatility

spe
i�ed as a linear fun
tion of the squared past innovations. Thus, by 
onstru
tion, the 
onditional

varian
e only depends on the modulus of the past variables: past positive and negative innovations

have the same e�e
t on the 
urrent volatility. This property is in 
ontradi
tion with many empiri
al

studies on series of sto
ks, showing a negative 
orrelation between the squared 
urrent innovation and

the past innovations. For instan
e, Bla
k (1976) showed that the past negative returns seem to have

more impa
t on the 
urrent volatility than the past positive returns. Numerous �nan
ial series present

this stylised fa
t, known as the leverage e�e
t. Sin
e 1993, a lot of extensions are made to 
onsider

the leverage e�e
t. Among the various asymmetri
 GARCH pro
esses introdu
ed in the e
onometri


literature, the more general is the asymmetri
 power GARCH (APGARCH for short) model of Ding

et al. (1993). For some positive 
onstant δ, it is de�ned by















εt = ζtηt

ζδt = ω0 +

q
∑

i=1

α+
0i(ε

+
t−i)

δ + α−
0i(−ε−t−i)

δ +

p
∑

j=1

β0jζ
δ
t−j ,

(1)

where x+ = max(0, x) and x− = min(0, x). It is assumed that
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A0: (ηt) is a sequen
e of independent and identi
ally distributed (iid, for short) random variables

with E|ηt|r < ∞ for some r > 0.
In the sequel, the ve
tor of parameter of interest (the true parameter) is denoted

ϑ0 = (ω0, α
+
01, . . . , α

+
0q, α

−
01, . . . , α

−
0q, β01, . . . , β0p, δ)

′
and satis�es the positivity 
onstraints ϑ0 ∈

]0,+∞[×[0,+∞[2q+p×]0,+∞[. The representation (1) in
ludes various GARCH time series models:

the standard GARCH of Engle (1982) and Bollerslev (1986) obtained for δ = 2 and α+
0i = α−

0i for

i = 1, . . . , q; the threshold ARCH (TARCH) model of Rabemananjara and Zakoïan (1993) for δ = 1
and the GJR model of Glosten et al. (1993) for δ = 2.

After identi�
ation and estimation of the GARCH pro
esses, the next important step in the GARCH

modelling 
onsists in 
he
king if the estimated model �ts the data satisfa
torily. This adequa
y 
he
king

step allows to validate or invalidate the 
hoi
e of the orders p and q. Thus it is important to 
he
k the

validity of a GARCH(p, q) model, for given orders p and q. This paper is devoted to the problem of

the validation step of APGARCH(p, q) representations (1) pro
esses, when the power δ is estimated.

Based on the residual empiri
al auto
orrelations, Box and Pier
e (1970) derived a goodness-of-�t test,

the portmanteau test, for univariate strong autoregressive moving-average (ARMA) models (i.e. under

the assumption that the error term is iid). Ljung and Box (1978) proposed a modi�ed portmanteau test

whi
h is nowadays one of the most popular diagnosti
 
he
king tool in ARMA modelling of time series.

Sin
e the arti
les by Ljung and Box (1978) and M
Leod (1978), portmanteau tests have been important

tools in time series analysis, in parti
ular for testing the adequa
y of an estimated ARMA(p, q) model.

See also Li (2004), for a referen
e book on the portmanteau tests.

The intuition behind these portmanteau tests is that if a given time series model with iid innovation

ηt is appropriate for the data at hand, the auto
orrelations of the residuals η̂t should be 
lose to zero,

whi
h is the theoreti
al value of the auto
orrelations of ηt. The standard portmanteau tests thus


onsists in reje
ting the adequa
y of the model for large values of some quadrati
 form of the residual

auto
orrelations.

Li and Mak (1994) and Ling and Li (1997) studied a portmanteau test based on the auto
orrelations

of the squared residuals. Indeed the test based on the auto
orrelations is irrelevant be
ause the pro
ess

su
h that this use to de�ne a GARCH model (η̂t = εt/σ̂t) with σ̂t independent of σ{ηu, u < t}, is
a martingale di�eren
e and thus is un
orrelated. Con
erning the GARCH 
lass model, Berkes et al.

(2003) developed an asymptoti
 theory of portmanteau tests in the standard GARCH framework.

Leu
ht et al. (2015) suggest a 
onsistent spe
i�
ation test for GARCH(1, 1) model. This test is based

on a test statisti
 of Cramér-Von Mises type. Re
ently, Fran
q et al. (2016) proposed a portmanteau

test for the Log-GARCH model and the exponential GARCH (EGARCH) model. Carbon and Fran
q

(2011) work on the APARCH model when the power δ is known (and thus δ is not estimated) and

suggest a portmanteau test for this 
lass of models. However, in term of power performan
e, the authors

have showed that: these portmanteau tests are more disappointing sin
e they fail to dete
t alternatives

of the form δ > 2 when the null is δ = 2 (see the right array in Table 1 of Carbon and Fran
q (2011)).

To 
ir
umvent the problem, we propose in this work to adopt these portmanteau tests to the 
ase of

APGARCH model when the power δ is unknown and is jointly estimated with the model's parameters.

Consequently, under the null hypothesis of an APGARCH(p, q) model, we shown that the asymptoti


distributions of the proposed statisti
s are a 
hi-squared distribution as in Carbon and Fran
q (2011).

To obtain this result, we need the following te
hni
al (but not restri
tive) assumption:

A1: the support of ηt 
ontains at least eleven positive values or eleven negative values.

Noti
e that Carbon and Fran
q (2011) need that the support of ηt 
ontains at least three positive
values or three negative values only. This is due to the fa
t that δ was known in their work.

In Se
tion 2, we re
all the results on the quasi-maximum likelihood estimator (QMLE) asymptoti


distribution obtained by Hamadeh and Zakoïan (2011) when the power δ is unknown. Se
tion 3

presents our main aim, whi
h is to 
omplete the work of Carbon and Fran
q (2011) and to extend

the asymptoti
 theory to the wide 
lass of APGARCH models (1) when the power δ is estimated with

the other parameters. In Se
tion 4, we test the null assumption of an APGARCH(p, q) with varying
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p and q and against di�erent APGARCH models. The null assumption of an APGARCH(1, 1) model

for di�erent values of δ are also presented. Se
tion 5 illustrates the portmanteau test for APGARCH

models applied to ex
hange rates. To obtain these results, we use the asymptoti
 properties obtained

by Hamadeh and Zakoïan (2011) for the APGARCH model (1).

2. Quasi-maximum likelihood estimation when the power δ is unknown

Let the parameter spa
e ∆ ⊆]0,+∞[×[0,+∞[2q+p×]0,+∞[.
For all ϑ = (ω,α+

1 , . . . , α
+
q , α

−
1 , . . . , α

−
q , β1, . . . , βp, τ)

′ ∈ ∆, we assume that ζt(ϑ) is the stri
tly

stationary and non-anti
ipative solution of

ζt(ϑ) =



ω +

q
∑

i=1

α+
i (ε

+
t−i)

τ + α−
i (−ε−t−i)

τ +

p
∑

j=1

βjζ
τ
t−j(ϑ)





1/τ

, (2)

where ϑ is equal to an unknown value ϑ0 belonging to ∆. In the sequel, we let ζt(ϑ0) = ζt. Given

the realizations ε1, . . . , εn (of length n) satisfying the APGARCH(p, q) representation (1), the variable

ζt(ϑ) 
an be approximated by ζ̃t(ϑ) de�ned re
ursively by

ζ̃t(ϑ) =



ω +

q
∑

i=1

α+
i (ε

+
t−i)

τ + α−
i (−ε−t−i)

τ +

p
∑

j=1

βj ζ̃
τ
t−j(ϑ)





1/τ

, for t ≥ 1,


onditional to the initial values ε0, . . . , ε1−q , ζ̃0(ϑ) ≥ 0, . . . , ζ̃1−p(ϑ) ≥ 0. The quasi-maximum likelihood

(QML) method is parti
ularly relevant for GARCH models be
ause it provides 
onsistent and asymp-

toti
ally normal estimators for stri
tly stationary GARCH pro
esses under mild regularity 
onditions

(but with no moment assumptions on the observed pro
ess). The QMLE is obtained by the standard

estimation pro
edure for GARCH 
lass models. Thus a QMLE of ϑ0 of the model (1) is de�ned as any

measurable solution ϑ̂n of

ϑ̂n = argmin
ϑ∈∆

1

n

n
∑

t=1

l̃t(ϑ), where l̃t(ϑ) =
ε2t

ζ̃2t (ϑ)
+ log(ζ̃2t (ϑ)). (3)

To ensure the asymptoti
 properties of the QMLE (for the model (1)) obtained by Hamadeh and

Zakoïan (2011), we need the following assumptions:

A2: ϑ0 ∈ ∆ and ∆ is 
ompa
t.

A3: ∀ϑ ∈ ∆,
∑p

j=1 βj < 1 and γ(C0) < 0 where γ(·) is the top Lyapunov exponent of the

sequen
e of matrix C0 = {C0t,t ∈ Z} where C0t is de�ned in the appendix (see (23)).

A4: If p > 0,Bϑ0
(z) = 1 −∑p

j=1 β0jz
j
has non 
ommon root with A+

ϑ0
(z) =

∑q
i=1 α

+
0iz

i
and

A−
ϑ0
(z) =

∑q
i=1 α

−
0iz

i
. Moreover A+

ϑ0
(1) +A−

ϑ0
(1) 6= 0 and α+

0q + α−
0q + β0p 6= 0.

A5: E[η2t ] = 1 and ηt has a positive density on some neighborhood of zero.

A6: ϑ0 ∈
◦
∆, where

◦
∆ denotes the interior of ∆.

To ensure the strong 
onsisten
y of the QMLE, a 
ompa
tness assumption is required (i.e A2). The

assumption A3 makes referen
e to the 
ondition of stri
t stationarity for the model (1). Assumptions

A4 and A5 are made for identi�ability reasons and Assumption A6 pre
ludes the situation where


ertain 
omponents of ϑ0 are equal to zero. Then under the assumptions A0, A2�A6, Hamadeh and

Zakoïan (2011) showed that ϑ̂n → ϑ0 a.s. as n → ∞ and

√
n(ϑ̂n − ϑ0) is asymptoti
ally normal with

mean 0 and 
ovarian
e matrix (κη − 1)J−1
, where

J := Eϑ0

[

∂2lt(ϑ0)

∂ϑ∂ϑ′

]

= Eϑ0

[

∂ log(ζ2t (ϑ0))

∂ϑ

∂ log(ζ2t (ϑ0))

∂ϑ′

]

,with lt(ϑ) =
ε2t

ζ2t (ϑ)
+ log(ζ2t (ϑ))

where κη := E[η4t ] < ∞ by A0 and ζt(ϑ) is given by (2).
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3. Portmanteau test

To 
he
k the adequa
y of a given time series model, for instan
e an ARMA(p, q) model, it is


ommon pra
ti
e to test the signi�
an
e of the residuals auto
orrelations. In the GARCH framework

this approa
h is not relevant be
ause the pro
ess ηt = εt/ζt is always a white noise (possibly a martingale

di�eren
e) even when the volatility is misspe
i�ed. To 
he
k the adequa
y of a volatility model, under

the null hypothesis

H0 : the pro
ess (εt) satis�es the model (1),

it is mu
h more fruitful to look at the squared residuals auto
ovarian
es

r̂h =
1

n

n
∑

t=|h|+1

(η̂2t − 1)(η̂2t−|h| − 1), with η̂2t =
ε2t

ζ̂2t
,

for |h| < n and where ζ̂t = ζ̃t(ϑ̂n) is the quasi-maximum likelihood residuals. For a �xed integer m ≥ 1,
we 
onsider the ve
tor of the �rst m sample auto
ovarian
es de�ned by

r̂m = (r̂1, . . . , r̂m), su
h that 1 ≤ m < n.

Let Ik the identity matrix of size k. The following theorem gives the asymptoti
 distribution for

quadrati
 forms of auto
ovarian
es of squared residuals.

Theorem 3.1. Under the assumptions A0�A6, if (εt) is the non-anti
ipative and stationary solution

of the APGARCH(p, q) model (1), then, when n → ∞, we have

√
nr̂m

L−→ N (0,D) where D = (κη − 1)2Im − (κη − 1)CmJ−1C ′
m

is nonsingular and where the matrix Cm is given by (15) in the proof of Theorem 3.1.

The proof of this result is postponed to Se
tion 6.

The standard portmanteau test for 
he
king that the data is a realization of a strong white noise

is that Box and Pier
e (1970) or Ljung and Box (1978). Both of these tests are based on the residuals

auto
orrelations ρ̂(h) and they are de�ned by

Qbp

m = n

m
∑

h=1

ρ̂2(h) and Qlb

m = n(n+ 2)

m
∑

h=1

ρ̂2(h)

n− h
, (4)

where n is the length of the series and m is a �xed integer. Under the assumption that the noise

sequen
e is iid, the standard test pro
edure 
onsists in reje
ting the strong white noise hypothesis

if the statisti
s (4) are larger than a 
ertain quantile of a 
hi-squared distribution. These tests are

not robust to 
onditional heteros
edasti
ity or other pro
esses displaying a se
ond order dependen
e.

Indeed su
h nonlinearities may arise for instan
e when the observed pro
ess (εt) follows a GARCH

representation. Other situations where the standard tests are not robust 
an be found for instan
e

in Fran
q et al. (2005) or Bouba
ar Mainassara (2011), who showed that: for an ARMA model with

un
orrelated but dependent noise pro
ess, the asymptoti
 distributions of the statisti
s de�ned in (4)

are no longer 
hi-squared distributions but a mixture of 
hi-squared distributions. In the APGARCH

framework, we may wish to simultaneously test the nullity of the �rst m auto
ovarian
es using more

robust portmanteau statisti
s.

In order to state our se
ond result, we also need further notations. Let κ̂η , Ĵ and Ĉm be weakly


onsistent estimators of κη, J and Cm involved in the asymptoti
 normality of

√
nr̂m (see Theorem 3.1).

For instan
e, κη and J 
an be estimated by their empiri
al or observable 
ounterparts given by

κ̂η =
1

n

n
∑

t=1

ε4t

ζ̃4t (ϑ̂n)
and Ĵ =

1

n

n
∑

t=1

∂ log ζ̃2t (ϑ̂n)

∂ϑ

∂ log ζ̃2t (ϑ̂n)

∂ϑ′
.
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We 
an write the ve
tor of parameters ϑ := (θ′, τ)′ where θ ∈ R
2q+p+1

depends on the 
oe�
ients

ω,α+
1 , . . . , α

+
q , α

−
1 , . . . , α

−
q , β1, . . . , βp. The parameter of interest be
omes ϑ0 := (θ′0, δ)

′
, where θ0 =

(ω0, α
+
01, . . . , α

+
0q, α

−
01, . . . , α

−
0q, β01, . . . , β0p)

′
. With the previous notation, for all ϑ = (θ′, τ)′ ∈ ∆, the

derivatives in the expression of Ĵ 
an be re
ursively 
omputed for t > 0 by

∂ζ̃τt (ϑ)

∂θ
= c̃t(ϑ) +

p
∑

j=1

βj
∂ζ̃τt−j(ϑ)

∂θ
,

∂ζ̃τt (ϑ)

∂τ
=

q
∑

i=1

α+
i log(ε+t−i)(ε

+
t−i)

τ + α−
i log(−ε−t−i)(−ε−t−i)

τ +

p
∑

j=1

βj
∂ζ̃τt−j(ϑ)

∂τ
,

with the initial values ∂ζ̃t(ϑ)/∂ϑ = 0, for all t = 0, . . . , 1− p and

c̃t(ϑ) = (1, (ε+t−1)
τ , . . . , (ε+t−q)

τ , (−ε−t−1)
τ , . . . , (−ε−t−q)

τ , ζ̃τt−1(ϑ), . . . , ζ̃
τ
t−p(ϑ))

′. (5)

By 
onvention, log(ε+t ) = 0 if εt ≤ 0 and respe
tively log(−ε−t ) = 0 if εt ≥ 0.
For the matrix Ĉm of size m× (2q + p+ 2), one 
an take

Ĉm(h, k) = − 1

n

n
∑

t=h+1

(η̂2t−h − 1)
1

ζ̃2t (ϑ̂n)

∂ζ̃2t (ϑ̂n)

∂ϑk
for 1 ≤ h ≤ m and 1 ≤ k ≤ 2q + p+ 2, (6)

where Ĉm(h, k) denotes the (h, k) element of the matrix Ĉm. Let D̂ = (κ̂η−1)2Im− (κ̂η−1)ĈmĴ−1Ĉm

be a weakly 
onsistent estimator of the matrix D. The following result is established in the 
ase where

the power is unknown and estimated with the others parameters.

Theorem 3.2. Under Assumptions of Theorem 3.1 and H0, when n → ∞, we have

nr̂′mD̂−1
r̂m

L−→ χ2
m.

The proof of this result is postponed to Se
tion 6.

The adequa
y of the APGARCH(p, q) model (1) is then reje
ted at the asymptoti
 level α when

nr̂′mD̂−1
r̂m > χ2

m(1− α), (7)

where χ2
m(1 − α) represents the (1 − α)−quantile of the 
hi-square distribution with m degrees of

freedom.

4. Numeri
al illustration

By means of Monte Carlo experiments, we investigate the �nite sample properties of the test in-

trodu
ed in this paper. The numeri
al illustrations of this se
tion are made with the free statisti
al

software RStudio (see https://www.rstudio.
om) in R
pp language. We simulated N = 1, 000 in-

dependent repli
ations of size n = 500 and n = 5, 000 of the APGARCH(p, q) model (1) with the

orders (p, q) ∈ {0, 1, 2} × {1, 2, 3}. The distribution of ηt is a Student law with 9 degrees of freedom,

standardized to obtain a varian
e equal to 1.

For ea
h of these N repli
ations and ea
h APGARCH(p, q) models 
onsidered, we use the QMLE

method to estimate the 
orresponding 
oe�
ients ϑ0,pq and we apply portmanteau test to the squared

residuals for di�erent values of m, where m is the number of auto
orrelations used in the portmanteau

test statisti
. At the nominal level α = 5% the 
on�den
e interval of the nominal level is [3.6%, 6.4%]
with a probability 95% and [3.2%, 6.8%] with a probability 99%.

The left array in Tables 1 (resp. Tables 2) represents the number of reje
tion in per
entage of the

orders p and q for the 
orresponding APGARCH(p, q) models for n = 500 (resp. n = 5, 000). These

5



tests are done for the nominal level α = 5%. As ex
epted, for all models the per
entages of reje
tion

belongs to the 
on�dent interval with probabilities 95% and 99%, ex
ept for the APGARCH(2, 1) and
APGARCH(1, 3) models when = 500 and m ≥ 4. Consequently the proposed test well 
ontrols the

error of �rst kind for the 
andidates models when the number of observations is n = 5, 000, whi
h 
ould


orrespond in pra
ti
e to the length for daily �nan
ial series or higher-frequen
y data.

We now study the empiri
al power under the null of an APGARCH(1, 2) model. The right array

in Tables 1 (resp. Tables 2) displays the relative reje
tion frequen
ies (also in per
entage) over the

N independent repli
ations in the 
ase that the null is an APGARCH(1, 2) model for n = 500 (resp.

n = 5, 000). In these 
ases, we also estimate the power τ of di�erent models with true value δ = 1,
whi
h 
orrespond to the TGARCH models of Rabemananjara and Zakoïan (1993). The test makes the

di�eren
e between the models when the size n in
reases (see right array in Table 2).

Carbon and Fran
q (2011) work on the APARCH model when the power δ is known and suggest

a portmanteau test for this 
lass of models. However, in term of power performan
e, the authors have

showed that: these portmanteau tests are more disappointing sin
e they fail to dete
t alternatives of

the form δ > 2 when the null is δ = 2 (see the right array in Table 1 of Carbon and Fran
q (2011)).

Contrary to Carbon and Fran
q (2011), we estimate the power δ and 
onsequently we 
an not 
ompare

our simulations. Nevertheless, in Table 3 we present the frequen
ies of reje
tion in per
entage for the

model APGARCH(1, 1) when the power δ ∈ [0.5,3] is estimated. To simulate the di�erent traje
tories,

we use the parameter θ0 = (0.04, 0.02, 0.13, 0.85)′ used by Carbon and Fran
q (2011). However, from

Table 3 the test do not reje
t the null hypothesis when δ is higher than 2. So, this problem seems to

be over
ome when the power δ is unknown and is jointly estimated with the model's parameters. We

draw the same 
on
lusion that the test also 
ontrols well the error of �rst kind at di�erent asymptoti


level α.

Empiri
al Size Empiri
al Power

level

(p, q)
m m

2 4 6 8 10 12 2 4 6 8 10 12

(0, 1) 4.8 5.7 4.5 6.3 5.7 4.6 15.4 19.0 18.4 15.7 16.6 13.6

(1, 1) 3.7 4.3 5.1 6.0 5.7 6.8 6.6 7.7 7.3 8.8 8.2 7.8

(1, 2) 4.3 4.2 6.1 4.7 4.1 4.3 4.3 4.2 6.1 4.7 4.1 4.3

(1, 3) 5.8 7.1 10.1 8.1 9.6 8.9 10.6 13.2 15.2 10.6 12.5 12.2

(2, 1) 6.8 8.0 8.5 10.3 8.9 8.9 10.1 9.8 9.6 10.9 9.2 8.7

Table 1: Relative frequen
ies (in %) of reje
tion when n = 500

Left part: Relative frequen
ies of reje
tion for di�erent APGARCH(p, q) models with the power estimated.

Right part: Relative frequen
ies of reje
tion when the model is an APGARCH(1, 2) with
ϑ0,12 = (0.04, 0.02, 0.005, 0.13, 0.05, 0.6, 1)′.

Empiri
al Size Empiri
al Power

level

(p, q)
m m

2 4 6 8 10 12 2 4 6 8 10 12

(0, 1) 4.5 4.7 4.2 5.9 6.3 5.5 99.6 99.9 99.4 99.7 99.6 99.0

(1, 1) 4.6 6.5 4.6 4.8 7.2 6.3 24.2 18.6 16.4 14.6 11.6 9.8

(1, 2) 4.4 5.5 5.7 4.8 5.2 5.2 4.4 5.5 5.7 4.8 5.2 5.2

(1, 3) 5.5 6.5 6.2 6.3 6.2 8.0 10.6 14.5 14.5 14.4 13.4 11.9

(2, 1) 4.7 6.2 4.7 6.3 6.1 6.5 42.2 38.7 35.2 33.0 32.5 28.5

Table 2: Relative frequen
ies (in %) of reje
tion when n = 5, 000

Left part: Relative frequen
ies of reje
tion for di�erent APGARCH(p, q) models with the power estimated.

Right part: Relative frequen
ies of reje
tion when the model is an APGARCH(1, 2), with
ϑ0,12 = (0.04, 0.02, 0.005, 0.13, 0.05, 0.6, 1)′.
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level

δ
m

2 4 6 8 10 12

α = 1%

0.5 1.0 1.2 1.1 1.2 2.3 2.4

1 1.3 1.3 1.4 1.7 1.3 1.7

1.5 1.4 1.2 1.0 1.7 1.3 1.7

2 1.8 1.4 1.0 1.4 1.8 1.7

2.5 1.1 1.1 0.9 1.8 1.8 1.1

3 1.3 1.9 1.2 1.7 1.7 1.6

level

δ
m

2 4 6 8 10 12

α = 5%

0.5 4.7 5.6 4.8 6.0 6.0 6.4

1 3.2 4.4 5.8 5.4 5.4 5.1

1.5 4.4 4.2 5.5 6.0 4.6 5.1

2 5.2 4.7 5.5 5.1 5.7 7.4

2.5 3.7 4.9 4.9 4.3 5.0 5.3

3 3.8 3.4 4.8 5.4 4.9 6.6

Table 3:

Relative frequen
ies (in %) of reje
tion for an APGARCH(1, 1) model with di�erent power 
oe�
ients and

ϑ0,11 := (0.04, 0.02, 0.13, 0.85, δ)′. Left part: the nominal level is α = 1% and α = 5% in the right part.

5. Adequa
y of APGARCH models for real datasets

We 
onsider the daily return of four ex
hange rates EUR/USD (Euros Dollar), EUR/JPY (Euros

Yen), EUR/GBP (Euros Pounds) and EUR/CAD (Euros Canadian dollar). The observations 
overed

the period from November 01, 1999 to April 28, 2017 whi
h 
orrespond to n = 4, 478 observations. The
data were obtain from the website of the National Bank of Belgium (https://www.nbb.be).

Table 4 displays the p−values for adequa
y of the APGARCH(p, q) for daily returns of ex-


hange rates based on m squared residuals auto
ovarian
es, as well as the estimated power. The

APGARCH(0, 1) model assumption is reje
ted for ea
h series and is not adapted to these kinds of series.

The APGARCH(1, 2) model is reje
ted for EUR/GBP and EUR/CAD whereas the APGARCH(1, 1)
and APGARCH(2, 1) models seem the most appropriate for the ex
hange rates. The APGARCH(2, 2)
model assumption is only reje
ted for the ex
hange rates EUR/CAD. From the last 
olumn of Table

4, we 
an also see that the estimated power τ̂ is not ne
essary equal to 1 or 2 and is di�erent for ea
h

series.

The portmanteau test is thus an important tool in the validation pro
ess. From the empiri
al results

and the simulation experiments, we draw the 
on
lusion that the proposed portmanteau test based on

squared residuals of an APGARCH(p, q) (when the power is unknown and is jointly estimated with the

model's parameters) is e�
ient to dete
t a misspe
i�
ation of the order (p, q).
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m
τ̂

1 2 3 4 5 6 7 8 9 10 11 12

Portmanteau tests for adequa
y of the APGARCH(0,1)

USD 0.009 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.77

JPY 0.160 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.23

GBP 0.697 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.98

CAD 0.049 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.35

Portmanteau tests for adequa
y of the APGARCH(1,1)

USD 0.888 0.533 0.715 0.671 0.764 0.814 0.687 0.704 0.788 0.817 0.874 0.906 1.05

JPY 0.113 0.261 0.442 0.605 0.735 0.442 0.550 0.578 0.591 0.342 0.401 0.478 1.11

GBP 0.037 0.087 0.181 0.166 0.242 0.346 0.362 0.292 0.377 0.410 0.406 0.490 1.33

CAD 0.027 0.078 0.157 0.254 0.174 0.254 0.291 0.269 0.346 0.435 0.517 0.536 1.56

Portmanteau tests for adequa
y of the APGARCH(1,2)

USD 0.673 0.489 0.672 0.648 0.739 0.780 0.647 0.646 0.739 0.767 0.832 0.870 1.08

JPY 0.003 0.009 0.025 0.051 0.089 0.055 0.086 0.098 0.121 0.063 0.083 0.114 1.11

GBP 0.000 0.000 0.001 0.001 0.003 0.006 0.007 0.005 0.009 0.011 0.015 0.023 1.33

CAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.53

Portmanteau tests for adequa
y of the APGARCH(2,1)

USD 0.471 0.544 0.682 0.622 0.733 0.787 0.651 0.659 0.750 0.781 0.843 0.877 1.05

JPY 0.379 0.680 0.855 0.941 0.977 0.657 0.763 0.796 0.747 0.342 0.294 0.351 1.10

GBP 0.193 0.362 0.566 0.455 0.564 0.687 0.689 0.587 0.676 0.696 0.669 0.746 1.34

CAD 0.170 0.277 0.440 0.594 0.403 0.523 0.567 0.515 0.607 0.698 0.768 0.779 1.61

Portmanteau tests for adequa
y of the APGARCH(2,2)

USD 0.849 0.448 0.630 0.600 0.715 0.784 0.634 0.693 0.779 0.815 0.870 0.907 1.02

JPY 0.057 0.154 0.291 0.439 0.579 0.285 0.387 0.437 0.434 0.217 0.243 0.304 1.10

GBP 0.008 0.016 0.034 0.033 0.050 0.081 0.107 0.095 0.136 0.166 0.167 0.220 1.34

CAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.61

Table 4: Portmanteau test p−values for adequa
y of the APGARCH(p, q) for daily returns of ex
hange rates, based on

m squared residuals auto
ovarian
es.

6. Appendix : Proofs

We re
all that for all ϑ ∈ ∆, ζt(ϑ) is the stri
tly stationary and non-anti
ipative solution of (2).

The matrix J 
an be rewritten as

J = Eϑ0

[

1

ζ4t (ϑ0)

∂ζ2t (ϑ0)

∂ϑ

∂ζ2t (ϑ0)

∂ϑ′

]

.

First, we shall need some te
hni
al results whi
h are essentially 
ontained in Hamadeh and Zakoïan

(2011). Let K and ρ be generi
 
onstants, whose values will be modi�ed along the proofs, su
h that

K > 0 and ρ ∈]0, 1[.

6.1. Reminder on te
hni
al issues on quasi likelihood method for APGARCH models

The starting point is the asymptoti
 irrelevan
e of the initial values. Under A0, A2�A6, Hamadeh

and Zakoïan (2011) show that:

sup
ϑ∈∆

|ζτt (ϑ)− ζ̃τt (ϑ)| ≤ Kρt. (8)
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Similar properties also hold for the derivatives with respe
t to ϑ of ζτt (ϑ) − ζ̃τt (ϑ). We sum up the

properties that we shall need in the sequel. We refer to Hamadeh and Zakoïan (2011) for a more

detailed treatment. For some s ∈]0, 1[, we have

E|ε0|2s < ∞, E sup
ϑ∈∆

|ζ2st | < ∞, E sup
ϑ∈∆

|ζ̃2st | < ∞. (9)

Moreover, from (8), the mean-value theorem implies that

sup
ϑ∈∆

|ζ2t (ϑ)− ζ̃2t (ϑ)| ≤ Kρt sup
ϑ∈∆

max{ζ2t (ϑ), ζ̃2t (ϑ)}. (10)

For all d ≥ 1

E

∥

∥

∥

∥

sup
ϑ∈∆

1

ζτt (ϑ)

∂ζτt (ϑ)

∂ϑ

∥

∥

∥

∥

d

< ∞, E

∥

∥

∥

∥

sup
ϑ∈∆

1

ζτt (ϑ)

∂2ζτt (ϑ)

∂ϑ∂ϑ′

∥

∥

∥

∥

d

< ∞. (11)

There exists a neighborhood V(ϑ0) of ϑ0 su
h that for all ξ > 0 and a = 1− (δ/τ)(1 − s) > 0

sup
ϑ∈V(ϑ0)

(

ζ2t (ϑ0)

ζ2t (ϑ)

)

≤
(

K +K

q
∑

i=1

∞
∑

k=0

(1 + ξ)kρak|εt−i−k|2τ
)2/τ

,

and it holds that

E

∣

∣

∣

∣

∣

sup
ϑ∈V(ϑ0)

(

ζ2t (ϑ0)

ζ2t (ϑ)

)

∣

∣

∣

∣

∣

< ∞. (12)

The matrix J is invertible and

√
n(ϑ̂n − ϑ0) = J−1 1√

n

n
∑

t=1

st
1

ζ2t

∂ζ2t (ϑ0)

∂ϑ
+ oP(1), with st = η2t − 1. (13)

6.2. Proof of Theorem 3.1

The proof of Theorem 3.1 is 
lose to the proof of Carbon and Fran
q (2011). Only the invertibility

of the matrix D needs to be adapted. But, to understand the proofs and to have its own autonomy, we

rewrite all the proof. We also de
ompose this proof in 3 following steps.

(i) Asymptoti
 impa
t of the unknown initial values on the statisti
 r̂m.

(ii) Asymptoti
 distribution of

√
nr̂m.

(iii) Invertibility of the matrix D.

We now introdu
e the ve
tor of m auto
ovarian
es rm = (r1, . . . , rm)′ where the h-th element is de�ne

as

rh =
1

n

n
∑

t=h+1

stst−h , with st = η2t − 1 and 0 < h < n.

Let st(ϑ) = η2t (ϑ) − 1 with ηt(ϑ) = εt/ζt(ϑ) and s̃t(ϑ) = η̃2t (ϑ) − 1 with η̃t(ϑ) = εt/ζ̃t(ϑ). Let

rh(ϑ) obtained by repla
ing ηt by ηt(ϑ) in rh and r̃h(ϑ) by repla
ing ηt by η̃t(ϑ) in rh. The ve
tors

rm(ϑ) = (r1(ϑ), . . . , rm(ϑ))′ and r̃m(ϑ) = (r̃1(ϑ), . . . , r̃m(ϑ))′ are su
h that rm = rm(θ0), r̃m = r̃m(θ0)
and r̂m = r̃m(ϑ̂n).

(i) Asymptoti
 impa
t of the unknown initial values on the statisti
 r̂m.

We have st(ϑ)st−h(ϑ) − s̃t(ϑ)s̃t−h(ϑ) = at + bt with at = {st(ϑ) − s̃t(ϑ)}st−h(ϑ) and bt =
s̃t(ϑ){st−h(ϑ)− s̃t−h(ϑ)}. Using (10) and infϑ∈∆ ζ̃2t ≥ infϑ∈∆ ω2/τ > 0, we have

|at|+ |bt| ≤ Kρtε2t (ε
2
t−h + 1) sup

ϑ∈∆
max{ζ̃2t , ζ2t } .
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Using the inequality (a+ b)s ≤ as + bs, for a, b ≥ 0 and s ∈]0, 1[, (9) and Hölder's inequality, we have

for some s∗ ∈]0, 1[ su�
iently small

E

∣

∣

∣

∣

∣

1√
n

n
∑

t=1

sup
ϑ∈∆

|at|
∣

∣

∣

∣

∣

s∗

≤ K
1

ns∗/2

n
∑

t=1

ρts
∗ −→
n→∞

0.

We dedu
e that n−1/2
∑n

t=1 supϑ∈∆ |at| = oP(1). We have the same 
onvergen
e for bt, and for the

derivatives of at and bt. Consequently, we obtain

√
n‖rm − r̃m‖ = oP(1), sup

ϑ∈∆

∥

∥

∥

∥

∂rm
∂ϑ

− ∂r̃m
∂ϑ

∥

∥

∥

∥

= oP(1), as n → ∞. (14)

The unknown initial values have no asymptoti
 impa
t on the statisti
 r̂m.

(ii) Asymptoti
 distribution of

√
nr̂m.

We now show that the asymptoti
 distribution of

√
nr̂m is dedu
ed from the joint distribution of√

nrm and of the QMLE. Using (14) and a Taylor expansion of rm(·) around ϑ̂n and ϑ0, we obtain

√
nr̂m =

√
nr̃m(ϑ0) +

∂r̃m(ϑ∗)

∂ϑ

√
n(ϑ̂n − ϑ0)

=
√
nrm +

∂rm(ϑ∗)

∂ϑ

√
n(ϑ̂n − ϑ0) + oP(1),

for some ϑ∗
i , i = 1, . . . , 2q + p + 2 between ϑ̂n and ϑ0. In view of (12), there exists a neighborhood

V(ϑ0) of ϑ0 su
h that

E sup
ϑ∈V(ϑ0)

∥

∥

∥

∥

∂2st−h(ϑ)st(ϑ)

∂ϑ∂ϑ′

∥

∥

∥

∥

< ∞.

For a �xed rh, using these inequalities, (11) and Assumption A0 (κη < ∞), the almost sure 
onvergen
e

of ϑ∗
to ϑ0, a se
ond Taylor expansion and the ergodi
 theorem, we obtain

∂rh(ϑ
∗)

∂ϑ
=

∂rh(ϑ0)

∂ϑ
+ oP(1) −→

n→∞
ch := E

[

st−h(ϑ0)
∂st(ϑ0)

∂ϑ

]

= −E

[

st−h
1

ζ2t (ϑ0)

∂ζ2t (ϑ0)

∂ϑ

]

by the fa
t E[st(ϑ0)∂st−h(ϑ0)/∂ϑ] = 0. Note that, ch is the almost sure limit of the row h of the matrix

Ĉm. Consequently we have

∂rm(ϑ0)

∂ϑ
−→
n→∞

Cm :=







c′1
.

.

.

c′m






. (15)

It follows that √
nr̂m =

√
nrm + Cm

√
n(ϑ̂n − ϑ0) + oP(1). (16)

Denote

√
nrm = n−1/2

∑n
t=1 stst−1:t−m, where st−1:t−m = (st−1, . . . , st−m)′. We now derive the asymp-

toti
 distribution of

√
n(ϑ̂′

n − ϑ′
0, r

′
m)′. In view of (13), the 
entral limit theorem of Billingsley (1961)

applied to the martingale di�eren
e pro
ess

{

Υt =

(

st
1

ζ2t (ϑ0)

∂ζ2t (ϑ0)

∂ϑ′
, sts

′
t−1:t−m

)′

;σ(ηu, u ≤ t)

}

,

shows that

√
n(ϑ̂′

n − ϑ′
0, r

′
m)′ =

1√
n

n
∑

t=1

Υt + oP(1)
L−→

n→+∞
N
(

0,E[ΥtΥ
′
t]
)

, (17)
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where

E
[

ΥtΥ
′
t

]

= (κη − 1)

(

J−1 −J−1C ′
m

−CmJ−1 (κη − 1)Im

)

.

Using (16) and (17) we obtain the distribution of

√
nr̂m. Indeed

√
nr̂m

L−→ N (0,D) where D is de�ned

by

D := (κη − 1)2Im − (κη − 1)CmJ−1C ′
m.

(iii) Invertibility of the matrix D.
We now show that D is invertible. Assumption A5 entails that the law of η2t is non degenerated,

therefore κη > 1. Thus study the invertibility of the matrix D is similar to study the invertibility of

(κη − 1)Im − CmJ−1C ′
m. Let

V = st−1:t−m + CmJ−1 1

ζ2t (ϑ0)

∂ζ2t (ϑ0)

∂ϑ
su
h that E

[

V V ′
]

= (κη − 1)Im − CmJ−1C ′
m.

If the matrix E [V V ′] is singular, then there exist a ve
tor λ = (λ1, . . . , λm)′ not equal to zero su
h that

λ′V = λ′
st−1:t−m + λ′CmJ−1

(

1

ζ2t (ϑ0)

∂ζ2t (ϑ0)

∂θ
+

1

ζ2t (ϑ0)

∂ζ2t (ϑ0)

∂τ

)

= 0, a.s. (18)

sin
e ϑ = (θ′, τ)′. Using the fa
t that

1

ζ2t (ϑ0)

∂ζ2t (ϑ0)

∂θ
=

2

τ

1

ζτt (ϑ0)

∂ζτt (ϑ0)

∂θ
and

1

ζ2t (ϑ0)

∂ζ2t (ϑ0)

∂τ
= − 2

τ2
log(ζτt (ϑ0)) +

2

τ

1

ζτt (ϑ0)

∂ζτt (ϑ0)

∂τ
,

we 
an rewrite the equation (18) as follow

λ′V = λ′
st−1:t−m + µ′ 1

ζτt (ϑ0)

(

τ
∂ζτt (ϑ0)

∂θ
− ζτt (ϑ0) log(ζ

τ
t (ϑ0)) + τ

∂ζτt (ϑ0)

∂τ

)

= 0, a.s. (19)

with µ′ = (2/τ2)λ′CmJ−1
. We remark that µ 6= 0. Otherwise λ′

st−1:t−m = 0 a.s., whi
h implies that

there exists j ∈ {1, ...,m} su
h that st−j is measurable with respe
t to the σ−�eld generated by sr
for t − 1 ≤ r ≤ t − m with r 6= t − j. This is impossible be
ause the st's are independent and non

degenerated.

We denote µ = (ν ′1, ν2)
′
, where ν ′1 = (µ1, . . . , µ2q+p+1)

′
and ν2 = µ2q+p+2; and we rewrite (19) as

λ′V = λ′
st−1:t−m + ν ′1τ

1

ζτt (ϑ0)

∂ζτt (ϑ0)

∂θ
+ ν2

1

ζτt (ϑ0)

(

−ζτt (ϑ0) log(ζ
τ
t (ϑ0)) + τ

∂ζτt (ϑ0)

∂τ

)

= 0, a.s.

or equivalent,

λ′
st−1:t−mζτt (ϑ0) + ν ′1τ

∂ζτt (ϑ0)

∂θ
+ ν2

(

−ζτt (ϑ0) log(ζ
τ
t (ϑ0)) + τ

∂ζτt (ϑ0)

∂τ

)

= 0, a.s. (20)

The derivatives involved in (20) are de�ned re
ursively by

∂ζτt (ϑ)

∂θ
= ct(ϑ) +

p
∑

j=1

βj
∂ζτt−j(ϑ)

∂θ
,

∂ζτt (ϑ)

∂τ
=

q
∑

i=1

α+
i log(ε+t−i)(ε

+
t−i)

τ + α−
i log(−ε−t−i)(−ε−t−i)

τ +

p
∑

j=1

βj
∂ζτt−j(ϑ)

∂τ
,
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where ct(ϑ) is de�ned by repla
ing ζ̃τt (ϑ) by ζτt (ϑ) in c̃t(ϑ) (see (5)). We remind that ε+t = ζtη
+
t and

ε−t = ζtη
−
t and let Rt a random variable measurable with respe
t to σ{ηu, u ≤ t}. We de
ompose (20)

in four terms and we have

ν ′1τ
∂ζτt (ϑ0)

∂θ
= µ2τζ

τ
t−1(η

+
t−1)

τ + µq+2τζ
τ
t−1(−η−t−1)

τ +Rt−2,

ζτt = α+
1 ζ

τ
t−1(η

+
t−1)

τ + α−
1 ζ

τ
t−1(−η−t−1)

τ +Rt−2,

−ν2ζ
τ
t (ϑ0) log(ζ

τ
t (ϑ0)) = −ν2

(

α+
1 ζ

τ
t−1(η

+
t−1)

τ + α−
1 ζ

τ
t−1(−η−t−1)

τ +Rt−2

)

× log
(

α+
1 ζ

τ
t−1(η

+
t−1)

τ + α−
1 ζ

τ
t−1(−η−t−1)

τ +Rt−2

)

λ′st−1:t−m = λ1η
2
t−1 +Rt−2,

that gives

λ′st−1:t−mζτt = λ1ζ
τ
t−1

[

α+
1 (η

+
t−1)

τ+2 + α−
1 (−η−t−1)

τ+2
]

+λ1η
2
t−1Rt−2+Rt−2+

[

(η+t−1)
τ + (−η−t−1)

τ
]

Rt−2,

and

ν2τ
∂ζτt (ϑ0)

∂τ
= ν2τα

+
1 log

(

ζt−1(η
+
t−1)

)

ζτt−1(η
+
t−1)

τ + ν2τα
−
1 log

(

ζt−1(−η−t−1)
)

ζτt−1(−η−t−1)
τ +Rt−2,

= ν2α
+
1 log

(

ζτt−1(η
+
t−1)

τ
)

ζτt−1(η
+
t−1)

τ + ν2α
−
1 log

(

ζτt−1(−η−t−1)
τ
)

ζτt−1(−η−t−1)
τ +Rt−2.

Following these previous expressions, (19) entails that almost surely

λ′V = λ1ζ
τ
t−1

[

α+
1 (η

+
t−1)

τ+2 + α−
1 (−η−t−1)

τ+2
]

+ η2t−1Rt−2 +
[

Rt−2 + ν2α
+
1 Rt−2 log(ζt−1(η

+
t−1))

]

(η+t−1)
τ

+
[

Rt−2 + ν2α
−
1 Rt−2 log(ζt−1(−η−t−1))

]

(−η−t−1)
τRt−2 +Rt−2

− ν2
(

α+
1 ζ

τ
t−1(η

+
t−1)

τ + α−
1 ζ

τ
t−1(−η−t−1)

τ +Rt−2

)

log
(

α+
1 ζ

τ
t−1(η

+
t−1)

τ + α−
1 ζ

τ
t−1(−η−t−1)

τ +Rt−2

)

= 0,

or equivalent to the two equations

λ1ζ
τ
t−1α

+
1 (η

+
t−1)

τ+2 −
(

ν2α
+
1 ζ

τ
t−1(η

+
t−1)

τ +Rt−2

)

log
(

α+
1 ζ

τ
t−1(η

+
t−1)

τ +Rt−2

)

+
[

Rt−2 + ν2α
+
1 Rt−2 log(ζt−1(η

+
t−1))

]

(η+t−1)
τ + η2t−1Rt−2 +Rt−2 = 0, a.s.

(21)

λ1ζ
τ
t−1α

−
1 (−η+t−1)

τ+2 −
(

ν2α
−
1 ζ

τ
t−1(−η−t−1)

τ +Rt−2

)

log
(

α−
1 ζ

τ
t−1(−η−t−1)

τ +Rt−2

)

+
[

Rt−2 + ν2α
−
1 Rt−2 log(ζt−1(−η−t−1))

]

(−η−t−1)
τ + η2t−1Rt−2 +Rt−2 = 0, a.s..

(22)

Note that an equation of the form

a|x|τ+2 + [b+ c(|x|τ )] log[b+ c(|x|τ )] + [d+ e log(|x|)]|x|τ + fx2 + g = 0


annot have more than 11 positive roots or more than 11 negative roots, ex
ept if a = b = c = d =
e = f = g = 0. By assumption A1, Equations (21) and (22) thus imply that λ1(α

+
1 + α−

1 ) = 0 and

ν2(α
+
1 + α−

1 ) = 0. If λ1 = 0 and ν2 = 0 then λ′
st−1:t−m := λ′

2:mst−2:t−m. By (20), we 
an write that

[

α+
1 ζ

τ
t−1(η

+
t−1)

τ + α−
1 ζ

τ
t−1(−η−t−1)

τ
]

λ′
2:mst−2:t−m = −µ2ζ

τ
t−1(η

+
t−1)

τ + µq+2ζ
τ
t−1(−η−t−1)

τ +Rt−2,

whi
h entails

α+
1 ζ

τ
t−1(η

+
t−1)

τλ′
2:mst−2:t−m = −µ2ζ

τ
t−1(η

+
t−1)

τ +Rt−2

and a similar expression with (−η−t−1)
τ

an be obtained. Subtra
ting the 
onditional expe
tation with

respe
t to Ft−2 = σ{η+r , η−r ; r ≤ t− 2} in both sides of the previous equation, we obtain

α+
1 ζ

τ
t−1λ

′
2:mst−2:t−m

[

(η+t−1)
τ − E[(η+t−1)

τ |Ft−2]
]

= µ2ζ
τ
t−1

[

E[(η+t−1)
τ |Ft−2]− (η+t−1)

τ
]

, a.s.

α+
1 ζ

τ
t−1λ

′
2:mst−2:t−m

[

(η+t−1)
τ − E[(η+t−1)

τ ]
]

= µ2ζ
τ
t−1

[

E[(η+t−1)
τ ]− (η+t−1)

τ
]

, a.s..

Sin
e the law of ηt is non degenerated, we have α
+
1 = µ2 = 0 and symmetri
ally α−

1 = µq+2 = 0. But for
APGARCH(p, 1) models, it is impossible to have α+

1 = α−
1 = 0 by the assumption A4. The invertibility

of D is thus shown in this 
ase. For APGARCH(p, q) models, by iterating the previous arguments, we


an show by indu
tion that (19) entails α+
1 +α−

1 = . . . = α+
q +α−

q = 0. Thus λ1 = · · · = λm = 0 whi
h
leads to a 
ontradi
tion. The non-singularity of the matrix D follows. ✷
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6.3. Proof of Theorem 3.2

The almost sure 
onvergen
e of D̂ to D as n goes to in�nity is easy to show using the 
onsisten
y

result. The matrix D 
an be rewritten as D = (κη − κ̂η)B + (κ̂η − 1)A, where the matri
es A and B
are given by

A = (Cm − Ĉm)J−1C ′
m + Ĉm(J−1 − Ĵ−1)C ′

m + ĈmĴ−1(C ′
m − Ĉ ′

m) + Â,

B = (A− Â) + (κη − κ̂η)Im + B̂,

with Â = ĈmĴ−1Ĉ ′
m and B̂ = (κ̂η − 1)Im − Â. Finally, we have

D − D̂ = (κη − κ̂η)B + (κ̂η − 1)
[

(A− Â) + (κη − κ̂η)Im

]

.

For any multipli
ative norm, we have

‖D − D̂‖ ≤ |κη − κ̂η |‖B‖+ |κ̂η − 1|
[

‖A− Â‖+ |κη − κ̂η|m
]

and

‖A− Â‖ ≤ ‖Cm − Ĉm‖‖J−1‖‖C ′
m‖+ ‖Ĉm‖‖J−1‖‖Ĵ − J‖‖Ĵ−1‖‖C ′

m‖+ ‖Cm‖‖Ĵ−1‖‖C ′
m − Ĉ ′

m‖.

In view of (11), we have ‖Cm‖ < ∞. Be
ause the matrix J is nonsingular, we have ‖J−1‖ < ∞ and

‖Ĵ−1 − J−1‖ −→
n→+∞

0, a.s.

by 
onsisten
y of ϑ̂n. Under Assumption A5, we have |κη − 1| ≤ K. Using the previous arguments

and also the strong 
onsisten
y of ϑ̂n, we have

|κη − κ̂η | −→
n→+∞

0, a.s. and ‖Cm − Ĉm‖ −→
n→+∞

0, a.s.

We then dedu
e that ‖B‖ ≤ K and the 
on
lusion follows. Thus D̂ → D almost surely, when n → +∞.

To 
on
lude the proof of Theorem 3.2, it su�
es to use Theorem 3.1 and the following result: if√
nr̂m

L−→ N (0,D), with D nonsingular, and if D̂ → D in probability, then nr̂′mD̂−1
r̂m

L−→ χ2
m. ✷

6.4. Condition of stri
t stationarity of model (1)

The probabilisti
 properties of the model (1) rely on the sequen
e of matri
es (C0t) de�ned by

C0t =









κ(ηt) β0p α[2:q−1] α[q:q]

Ip−1 0(p−1)×1 0(p−1)×2(q−2) 0(p−1)×2

η
t

02×1 02×2(q−2) 02×2

02(q−2)×(p−1) 02(q−2)×1 I2(q−2) 02(q−2)×2









, (23)

where Ik denotes the identity matrix of size k and, for i ≤ j,

κ(ηt) =
(

β01 + α+
01(η

+
t )

δ + α−
01(−η−t )

δ, β02, . . . , β0p−1

)

,

α[i:j] = (α+
0i, α

−
0i, . . . , α

+
0j , α

−
0j), η

t
=

(

(η+t )
δ 01×(p−1)

(−η−t )
δ 01×(p−2)

)

.
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