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Abstrat

It is now widely aepted that, to model the dynamis of daily �nanial returns, volatility models have

to inorporate the so-alled leverage e�et. We derive the asymptoti behaviour of the squared residuals

autoovarianes for the lass of asymmetri power GARCH model when the power is unknown and is

jointly estimated with the model's parameters. We then dedue a portmanteau adequay test based on

the autoovarianes of the squared residuals. These asymptoti results are illustrated by Monte Carlo

experiments. An appliation to real �nanial data is also proposed.

Key words: Asymmetri power GARCH models, goodness-of-�t test, portmanteau test, residuals

autoovarianes, threshold models, validation.

1. Introdution

The autoregressive onditional heterosedasti (ARCH) model introdued by Engle (1982) expresses

the onditional variane (volatility) of the proess as a linear funtional of the squared past values. This

model has a lot of extensions. For instane, Bollerslev (1986) generalized the ARCH (GARCH) model by

adding the past realizations of the volatility. The GARCH models are also haraterized by a volatility

spei�ed as a linear funtion of the squared past innovations. Thus, by onstrution, the onditional

variane only depends on the modulus of the past variables: past positive and negative innovations

have the same e�et on the urrent volatility. This property is in ontradition with many empirial

studies on series of stoks, showing a negative orrelation between the squared urrent innovation and

the past innovations. For instane, Blak (1976) showed that the past negative returns seem to have

more impat on the urrent volatility than the past positive returns. Numerous �nanial series present

this stylised fat, known as the leverage e�et. Sine 1993, a lot of extensions are made to onsider

the leverage e�et. Among the various asymmetri GARCH proesses introdued in the eonometri

literature, the more general is the asymmetri power GARCH (APGARCH for short) model of Ding

et al. (1993). For some positive onstant δ, it is de�ned by















εt = ζtηt

ζδt = ω0 +

q
∑

i=1

α+
0i(ε

+
t−i)

δ + α−
0i(−ε−t−i)

δ +

p
∑

j=1

β0jζ
δ
t−j ,

(1)

where x+ = max(0, x) and x− = min(0, x). It is assumed that
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A0: (ηt) is a sequene of independent and identially distributed (iid, for short) random variables

with E|ηt|r < ∞ for some r > 0.
In the sequel, the vetor of parameter of interest (the true parameter) is denoted

ϑ0 = (ω0, α
+
01, . . . , α

+
0q, α

−
01, . . . , α

−
0q, β01, . . . , β0p, δ)

′
and satis�es the positivity onstraints ϑ0 ∈

]0,+∞[×[0,+∞[2q+p×]0,+∞[. The representation (1) inludes various GARCH time series models:

the standard GARCH of Engle (1982) and Bollerslev (1986) obtained for δ = 2 and α+
0i = α−

0i for

i = 1, . . . , q; the threshold ARCH (TARCH) model of Rabemananjara and Zakoïan (1993) for δ = 1
and the GJR model of Glosten et al. (1993) for δ = 2.

After identi�ation and estimation of the GARCH proesses, the next important step in the GARCH

modelling onsists in heking if the estimated model �ts the data satisfatorily. This adequay heking

step allows to validate or invalidate the hoie of the orders p and q. Thus it is important to hek the

validity of a GARCH(p, q) model, for given orders p and q. This paper is devoted to the problem of

the validation step of APGARCH(p, q) representations (1) proesses, when the power δ is estimated.

Based on the residual empirial autoorrelations, Box and Piere (1970) derived a goodness-of-�t test,

the portmanteau test, for univariate strong autoregressive moving-average (ARMA) models (i.e. under

the assumption that the error term is iid). Ljung and Box (1978) proposed a modi�ed portmanteau test

whih is nowadays one of the most popular diagnosti heking tool in ARMA modelling of time series.

Sine the artiles by Ljung and Box (1978) and MLeod (1978), portmanteau tests have been important

tools in time series analysis, in partiular for testing the adequay of an estimated ARMA(p, q) model.

See also Li (2004), for a referene book on the portmanteau tests.

The intuition behind these portmanteau tests is that if a given time series model with iid innovation

ηt is appropriate for the data at hand, the autoorrelations of the residuals η̂t should be lose to zero,

whih is the theoretial value of the autoorrelations of ηt. The standard portmanteau tests thus

onsists in rejeting the adequay of the model for large values of some quadrati form of the residual

autoorrelations.

Li and Mak (1994) and Ling and Li (1997) studied a portmanteau test based on the autoorrelations

of the squared residuals. Indeed the test based on the autoorrelations is irrelevant beause the proess

suh that this use to de�ne a GARCH model (η̂t = εt/σ̂t) with σ̂t independent of σ{ηu, u < t}, is
a martingale di�erene and thus is unorrelated. Conerning the GARCH lass model, Berkes et al.

(2003) developed an asymptoti theory of portmanteau tests in the standard GARCH framework.

Leuht et al. (2015) suggest a onsistent spei�ation test for GARCH(1, 1) model. This test is based

on a test statisti of Cramér-Von Mises type. Reently, Franq et al. (2016) proposed a portmanteau

test for the Log-GARCH model and the exponential GARCH (EGARCH) model. Carbon and Franq

(2011) work on the APARCH model when the power δ is known (and thus δ is not estimated) and

suggest a portmanteau test for this lass of models. However, in term of power performane, the authors

have showed that: these portmanteau tests are more disappointing sine they fail to detet alternatives

of the form δ > 2 when the null is δ = 2 (see the right array in Table 1 of Carbon and Franq (2011)).

To irumvent the problem, we propose in this work to adopt these portmanteau tests to the ase of

APGARCH model when the power δ is unknown and is jointly estimated with the model's parameters.

Consequently, under the null hypothesis of an APGARCH(p, q) model, we shown that the asymptoti

distributions of the proposed statistis are a hi-squared distribution as in Carbon and Franq (2011).

To obtain this result, we need the following tehnial (but not restritive) assumption:

A1: the support of ηt ontains at least eleven positive values or eleven negative values.

Notie that Carbon and Franq (2011) need that the support of ηt ontains at least three positive
values or three negative values only. This is due to the fat that δ was known in their work.

In Setion 2, we reall the results on the quasi-maximum likelihood estimator (QMLE) asymptoti

distribution obtained by Hamadeh and Zakoïan (2011) when the power δ is unknown. Setion 3

presents our main aim, whih is to omplete the work of Carbon and Franq (2011) and to extend

the asymptoti theory to the wide lass of APGARCH models (1) when the power δ is estimated with

the other parameters. In Setion 4, we test the null assumption of an APGARCH(p, q) with varying
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p and q and against di�erent APGARCH models. The null assumption of an APGARCH(1, 1) model

for di�erent values of δ are also presented. Setion 5 illustrates the portmanteau test for APGARCH

models applied to exhange rates. To obtain these results, we use the asymptoti properties obtained

by Hamadeh and Zakoïan (2011) for the APGARCH model (1).

2. Quasi-maximum likelihood estimation when the power δ is unknown

Let the parameter spae ∆ ⊆]0,+∞[×[0,+∞[2q+p×]0,+∞[.
For all ϑ = (ω,α+

1 , . . . , α
+
q , α

−
1 , . . . , α

−
q , β1, . . . , βp, τ)

′ ∈ ∆, we assume that ζt(ϑ) is the stritly

stationary and non-antiipative solution of

ζt(ϑ) =



ω +

q
∑

i=1

α+
i (ε

+
t−i)

τ + α−
i (−ε−t−i)

τ +

p
∑

j=1

βjζ
τ
t−j(ϑ)





1/τ

, (2)

where ϑ is equal to an unknown value ϑ0 belonging to ∆. In the sequel, we let ζt(ϑ0) = ζt. Given

the realizations ε1, . . . , εn (of length n) satisfying the APGARCH(p, q) representation (1), the variable

ζt(ϑ) an be approximated by ζ̃t(ϑ) de�ned reursively by

ζ̃t(ϑ) =



ω +

q
∑

i=1

α+
i (ε

+
t−i)

τ + α−
i (−ε−t−i)

τ +

p
∑

j=1

βj ζ̃
τ
t−j(ϑ)





1/τ

, for t ≥ 1,

onditional to the initial values ε0, . . . , ε1−q , ζ̃0(ϑ) ≥ 0, . . . , ζ̃1−p(ϑ) ≥ 0. The quasi-maximum likelihood

(QML) method is partiularly relevant for GARCH models beause it provides onsistent and asymp-

totially normal estimators for stritly stationary GARCH proesses under mild regularity onditions

(but with no moment assumptions on the observed proess). The QMLE is obtained by the standard

estimation proedure for GARCH lass models. Thus a QMLE of ϑ0 of the model (1) is de�ned as any

measurable solution ϑ̂n of

ϑ̂n = argmin
ϑ∈∆

1

n

n
∑

t=1

l̃t(ϑ), where l̃t(ϑ) =
ε2t

ζ̃2t (ϑ)
+ log(ζ̃2t (ϑ)). (3)

To ensure the asymptoti properties of the QMLE (for the model (1)) obtained by Hamadeh and

Zakoïan (2011), we need the following assumptions:

A2: ϑ0 ∈ ∆ and ∆ is ompat.

A3: ∀ϑ ∈ ∆,
∑p

j=1 βj < 1 and γ(C0) < 0 where γ(·) is the top Lyapunov exponent of the

sequene of matrix C0 = {C0t,t ∈ Z} where C0t is de�ned in the appendix (see (23)).

A4: If p > 0,Bϑ0
(z) = 1 −∑p

j=1 β0jz
j
has non ommon root with A+

ϑ0
(z) =

∑q
i=1 α

+
0iz

i
and

A−
ϑ0
(z) =

∑q
i=1 α

−
0iz

i
. Moreover A+

ϑ0
(1) +A−

ϑ0
(1) 6= 0 and α+

0q + α−
0q + β0p 6= 0.

A5: E[η2t ] = 1 and ηt has a positive density on some neighborhood of zero.

A6: ϑ0 ∈
◦
∆, where

◦
∆ denotes the interior of ∆.

To ensure the strong onsisteny of the QMLE, a ompatness assumption is required (i.e A2). The

assumption A3 makes referene to the ondition of strit stationarity for the model (1). Assumptions

A4 and A5 are made for identi�ability reasons and Assumption A6 preludes the situation where

ertain omponents of ϑ0 are equal to zero. Then under the assumptions A0, A2�A6, Hamadeh and

Zakoïan (2011) showed that ϑ̂n → ϑ0 a.s. as n → ∞ and

√
n(ϑ̂n − ϑ0) is asymptotially normal with

mean 0 and ovariane matrix (κη − 1)J−1
, where

J := Eϑ0

[

∂2lt(ϑ0)

∂ϑ∂ϑ′

]

= Eϑ0

[

∂ log(ζ2t (ϑ0))

∂ϑ

∂ log(ζ2t (ϑ0))

∂ϑ′

]

,with lt(ϑ) =
ε2t

ζ2t (ϑ)
+ log(ζ2t (ϑ))

where κη := E[η4t ] < ∞ by A0 and ζt(ϑ) is given by (2).
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3. Portmanteau test

To hek the adequay of a given time series model, for instane an ARMA(p, q) model, it is

ommon pratie to test the signi�ane of the residuals autoorrelations. In the GARCH framework

this approah is not relevant beause the proess ηt = εt/ζt is always a white noise (possibly a martingale

di�erene) even when the volatility is misspei�ed. To hek the adequay of a volatility model, under

the null hypothesis

H0 : the proess (εt) satis�es the model (1),

it is muh more fruitful to look at the squared residuals autoovarianes

r̂h =
1

n

n
∑

t=|h|+1

(η̂2t − 1)(η̂2t−|h| − 1), with η̂2t =
ε2t

ζ̂2t
,

for |h| < n and where ζ̂t = ζ̃t(ϑ̂n) is the quasi-maximum likelihood residuals. For a �xed integer m ≥ 1,
we onsider the vetor of the �rst m sample autoovarianes de�ned by

r̂m = (r̂1, . . . , r̂m), suh that 1 ≤ m < n.

Let Ik the identity matrix of size k. The following theorem gives the asymptoti distribution for

quadrati forms of autoovarianes of squared residuals.

Theorem 3.1. Under the assumptions A0�A6, if (εt) is the non-antiipative and stationary solution

of the APGARCH(p, q) model (1), then, when n → ∞, we have

√
nr̂m

L−→ N (0,D) where D = (κη − 1)2Im − (κη − 1)CmJ−1C ′
m

is nonsingular and where the matrix Cm is given by (15) in the proof of Theorem 3.1.

The proof of this result is postponed to Setion 6.

The standard portmanteau test for heking that the data is a realization of a strong white noise

is that Box and Piere (1970) or Ljung and Box (1978). Both of these tests are based on the residuals

autoorrelations ρ̂(h) and they are de�ned by

Qbp

m = n

m
∑

h=1

ρ̂2(h) and Qlb

m = n(n+ 2)

m
∑

h=1

ρ̂2(h)

n− h
, (4)

where n is the length of the series and m is a �xed integer. Under the assumption that the noise

sequene is iid, the standard test proedure onsists in rejeting the strong white noise hypothesis

if the statistis (4) are larger than a ertain quantile of a hi-squared distribution. These tests are

not robust to onditional heterosedastiity or other proesses displaying a seond order dependene.

Indeed suh nonlinearities may arise for instane when the observed proess (εt) follows a GARCH

representation. Other situations where the standard tests are not robust an be found for instane

in Franq et al. (2005) or Boubaar Mainassara (2011), who showed that: for an ARMA model with

unorrelated but dependent noise proess, the asymptoti distributions of the statistis de�ned in (4)

are no longer hi-squared distributions but a mixture of hi-squared distributions. In the APGARCH

framework, we may wish to simultaneously test the nullity of the �rst m autoovarianes using more

robust portmanteau statistis.

In order to state our seond result, we also need further notations. Let κ̂η , Ĵ and Ĉm be weakly

onsistent estimators of κη, J and Cm involved in the asymptoti normality of

√
nr̂m (see Theorem 3.1).

For instane, κη and J an be estimated by their empirial or observable ounterparts given by

κ̂η =
1

n

n
∑

t=1

ε4t

ζ̃4t (ϑ̂n)
and Ĵ =

1

n

n
∑

t=1

∂ log ζ̃2t (ϑ̂n)

∂ϑ

∂ log ζ̃2t (ϑ̂n)

∂ϑ′
.
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We an write the vetor of parameters ϑ := (θ′, τ)′ where θ ∈ R
2q+p+1

depends on the oe�ients

ω,α+
1 , . . . , α

+
q , α

−
1 , . . . , α

−
q , β1, . . . , βp. The parameter of interest beomes ϑ0 := (θ′0, δ)

′
, where θ0 =

(ω0, α
+
01, . . . , α

+
0q, α

−
01, . . . , α

−
0q, β01, . . . , β0p)

′
. With the previous notation, for all ϑ = (θ′, τ)′ ∈ ∆, the

derivatives in the expression of Ĵ an be reursively omputed for t > 0 by

∂ζ̃τt (ϑ)

∂θ
= c̃t(ϑ) +

p
∑

j=1

βj
∂ζ̃τt−j(ϑ)

∂θ
,

∂ζ̃τt (ϑ)

∂τ
=

q
∑

i=1

α+
i log(ε+t−i)(ε

+
t−i)

τ + α−
i log(−ε−t−i)(−ε−t−i)

τ +

p
∑

j=1

βj
∂ζ̃τt−j(ϑ)

∂τ
,

with the initial values ∂ζ̃t(ϑ)/∂ϑ = 0, for all t = 0, . . . , 1− p and

c̃t(ϑ) = (1, (ε+t−1)
τ , . . . , (ε+t−q)

τ , (−ε−t−1)
τ , . . . , (−ε−t−q)

τ , ζ̃τt−1(ϑ), . . . , ζ̃
τ
t−p(ϑ))

′. (5)

By onvention, log(ε+t ) = 0 if εt ≤ 0 and respetively log(−ε−t ) = 0 if εt ≥ 0.
For the matrix Ĉm of size m× (2q + p+ 2), one an take

Ĉm(h, k) = − 1

n

n
∑

t=h+1

(η̂2t−h − 1)
1

ζ̃2t (ϑ̂n)

∂ζ̃2t (ϑ̂n)

∂ϑk
for 1 ≤ h ≤ m and 1 ≤ k ≤ 2q + p+ 2, (6)

where Ĉm(h, k) denotes the (h, k) element of the matrix Ĉm. Let D̂ = (κ̂η−1)2Im− (κ̂η−1)ĈmĴ−1Ĉm

be a weakly onsistent estimator of the matrix D. The following result is established in the ase where

the power is unknown and estimated with the others parameters.

Theorem 3.2. Under Assumptions of Theorem 3.1 and H0, when n → ∞, we have

nr̂′mD̂−1
r̂m

L−→ χ2
m.

The proof of this result is postponed to Setion 6.

The adequay of the APGARCH(p, q) model (1) is then rejeted at the asymptoti level α when

nr̂′mD̂−1
r̂m > χ2

m(1− α), (7)

where χ2
m(1 − α) represents the (1 − α)−quantile of the hi-square distribution with m degrees of

freedom.

4. Numerial illustration

By means of Monte Carlo experiments, we investigate the �nite sample properties of the test in-

trodued in this paper. The numerial illustrations of this setion are made with the free statistial

software RStudio (see https://www.rstudio.om) in Rpp language. We simulated N = 1, 000 in-

dependent repliations of size n = 500 and n = 5, 000 of the APGARCH(p, q) model (1) with the

orders (p, q) ∈ {0, 1, 2} × {1, 2, 3}. The distribution of ηt is a Student law with 9 degrees of freedom,

standardized to obtain a variane equal to 1.

For eah of these N repliations and eah APGARCH(p, q) models onsidered, we use the QMLE

method to estimate the orresponding oe�ients ϑ0,pq and we apply portmanteau test to the squared

residuals for di�erent values of m, where m is the number of autoorrelations used in the portmanteau

test statisti. At the nominal level α = 5% the on�dene interval of the nominal level is [3.6%, 6.4%]
with a probability 95% and [3.2%, 6.8%] with a probability 99%.

The left array in Tables 1 (resp. Tables 2) represents the number of rejetion in perentage of the

orders p and q for the orresponding APGARCH(p, q) models for n = 500 (resp. n = 5, 000). These
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tests are done for the nominal level α = 5%. As exepted, for all models the perentages of rejetion

belongs to the on�dent interval with probabilities 95% and 99%, exept for the APGARCH(2, 1) and
APGARCH(1, 3) models when = 500 and m ≥ 4. Consequently the proposed test well ontrols the

error of �rst kind for the andidates models when the number of observations is n = 5, 000, whih ould

orrespond in pratie to the length for daily �nanial series or higher-frequeny data.

We now study the empirial power under the null of an APGARCH(1, 2) model. The right array

in Tables 1 (resp. Tables 2) displays the relative rejetion frequenies (also in perentage) over the

N independent repliations in the ase that the null is an APGARCH(1, 2) model for n = 500 (resp.

n = 5, 000). In these ases, we also estimate the power τ of di�erent models with true value δ = 1,
whih orrespond to the TGARCH models of Rabemananjara and Zakoïan (1993). The test makes the

di�erene between the models when the size n inreases (see right array in Table 2).

Carbon and Franq (2011) work on the APARCH model when the power δ is known and suggest

a portmanteau test for this lass of models. However, in term of power performane, the authors have

showed that: these portmanteau tests are more disappointing sine they fail to detet alternatives of

the form δ > 2 when the null is δ = 2 (see the right array in Table 1 of Carbon and Franq (2011)).

Contrary to Carbon and Franq (2011), we estimate the power δ and onsequently we an not ompare

our simulations. Nevertheless, in Table 3 we present the frequenies of rejetion in perentage for the

model APGARCH(1, 1) when the power δ ∈ [0.5,3] is estimated. To simulate the di�erent trajetories,

we use the parameter θ0 = (0.04, 0.02, 0.13, 0.85)′ used by Carbon and Franq (2011). However, from

Table 3 the test do not rejet the null hypothesis when δ is higher than 2. So, this problem seems to

be overome when the power δ is unknown and is jointly estimated with the model's parameters. We

draw the same onlusion that the test also ontrols well the error of �rst kind at di�erent asymptoti

level α.

Empirial Size Empirial Power

level

(p, q)
m m

2 4 6 8 10 12 2 4 6 8 10 12

(0, 1) 4.8 5.7 4.5 6.3 5.7 4.6 15.4 19.0 18.4 15.7 16.6 13.6

(1, 1) 3.7 4.3 5.1 6.0 5.7 6.8 6.6 7.7 7.3 8.8 8.2 7.8

(1, 2) 4.3 4.2 6.1 4.7 4.1 4.3 4.3 4.2 6.1 4.7 4.1 4.3

(1, 3) 5.8 7.1 10.1 8.1 9.6 8.9 10.6 13.2 15.2 10.6 12.5 12.2

(2, 1) 6.8 8.0 8.5 10.3 8.9 8.9 10.1 9.8 9.6 10.9 9.2 8.7

Table 1: Relative frequenies (in %) of rejetion when n = 500

Left part: Relative frequenies of rejetion for di�erent APGARCH(p, q) models with the power estimated.

Right part: Relative frequenies of rejetion when the model is an APGARCH(1, 2) with
ϑ0,12 = (0.04, 0.02, 0.005, 0.13, 0.05, 0.6, 1)′.

Empirial Size Empirial Power

level

(p, q)
m m

2 4 6 8 10 12 2 4 6 8 10 12

(0, 1) 4.5 4.7 4.2 5.9 6.3 5.5 99.6 99.9 99.4 99.7 99.6 99.0

(1, 1) 4.6 6.5 4.6 4.8 7.2 6.3 24.2 18.6 16.4 14.6 11.6 9.8

(1, 2) 4.4 5.5 5.7 4.8 5.2 5.2 4.4 5.5 5.7 4.8 5.2 5.2

(1, 3) 5.5 6.5 6.2 6.3 6.2 8.0 10.6 14.5 14.5 14.4 13.4 11.9

(2, 1) 4.7 6.2 4.7 6.3 6.1 6.5 42.2 38.7 35.2 33.0 32.5 28.5

Table 2: Relative frequenies (in %) of rejetion when n = 5, 000

Left part: Relative frequenies of rejetion for di�erent APGARCH(p, q) models with the power estimated.

Right part: Relative frequenies of rejetion when the model is an APGARCH(1, 2), with
ϑ0,12 = (0.04, 0.02, 0.005, 0.13, 0.05, 0.6, 1)′.
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level

δ
m

2 4 6 8 10 12

α = 1%

0.5 1.0 1.2 1.1 1.2 2.3 2.4

1 1.3 1.3 1.4 1.7 1.3 1.7

1.5 1.4 1.2 1.0 1.7 1.3 1.7

2 1.8 1.4 1.0 1.4 1.8 1.7

2.5 1.1 1.1 0.9 1.8 1.8 1.1

3 1.3 1.9 1.2 1.7 1.7 1.6

level

δ
m

2 4 6 8 10 12

α = 5%

0.5 4.7 5.6 4.8 6.0 6.0 6.4

1 3.2 4.4 5.8 5.4 5.4 5.1

1.5 4.4 4.2 5.5 6.0 4.6 5.1

2 5.2 4.7 5.5 5.1 5.7 7.4

2.5 3.7 4.9 4.9 4.3 5.0 5.3

3 3.8 3.4 4.8 5.4 4.9 6.6

Table 3:

Relative frequenies (in %) of rejetion for an APGARCH(1, 1) model with di�erent power oe�ients and

ϑ0,11 := (0.04, 0.02, 0.13, 0.85, δ)′. Left part: the nominal level is α = 1% and α = 5% in the right part.

5. Adequay of APGARCH models for real datasets

We onsider the daily return of four exhange rates EUR/USD (Euros Dollar), EUR/JPY (Euros

Yen), EUR/GBP (Euros Pounds) and EUR/CAD (Euros Canadian dollar). The observations overed

the period from November 01, 1999 to April 28, 2017 whih orrespond to n = 4, 478 observations. The
data were obtain from the website of the National Bank of Belgium (https://www.nbb.be).

Table 4 displays the p−values for adequay of the APGARCH(p, q) for daily returns of ex-

hange rates based on m squared residuals autoovarianes, as well as the estimated power. The

APGARCH(0, 1) model assumption is rejeted for eah series and is not adapted to these kinds of series.

The APGARCH(1, 2) model is rejeted for EUR/GBP and EUR/CAD whereas the APGARCH(1, 1)
and APGARCH(2, 1) models seem the most appropriate for the exhange rates. The APGARCH(2, 2)
model assumption is only rejeted for the exhange rates EUR/CAD. From the last olumn of Table

4, we an also see that the estimated power τ̂ is not neessary equal to 1 or 2 and is di�erent for eah

series.

The portmanteau test is thus an important tool in the validation proess. From the empirial results

and the simulation experiments, we draw the onlusion that the proposed portmanteau test based on

squared residuals of an APGARCH(p, q) (when the power is unknown and is jointly estimated with the

model's parameters) is e�ient to detet a misspei�ation of the order (p, q).
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m
τ̂

1 2 3 4 5 6 7 8 9 10 11 12

Portmanteau tests for adequay of the APGARCH(0,1)

USD 0.009 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.77

JPY 0.160 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.23

GBP 0.697 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.98

CAD 0.049 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.35

Portmanteau tests for adequay of the APGARCH(1,1)

USD 0.888 0.533 0.715 0.671 0.764 0.814 0.687 0.704 0.788 0.817 0.874 0.906 1.05

JPY 0.113 0.261 0.442 0.605 0.735 0.442 0.550 0.578 0.591 0.342 0.401 0.478 1.11

GBP 0.037 0.087 0.181 0.166 0.242 0.346 0.362 0.292 0.377 0.410 0.406 0.490 1.33

CAD 0.027 0.078 0.157 0.254 0.174 0.254 0.291 0.269 0.346 0.435 0.517 0.536 1.56

Portmanteau tests for adequay of the APGARCH(1,2)

USD 0.673 0.489 0.672 0.648 0.739 0.780 0.647 0.646 0.739 0.767 0.832 0.870 1.08

JPY 0.003 0.009 0.025 0.051 0.089 0.055 0.086 0.098 0.121 0.063 0.083 0.114 1.11

GBP 0.000 0.000 0.001 0.001 0.003 0.006 0.007 0.005 0.009 0.011 0.015 0.023 1.33

CAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.53

Portmanteau tests for adequay of the APGARCH(2,1)

USD 0.471 0.544 0.682 0.622 0.733 0.787 0.651 0.659 0.750 0.781 0.843 0.877 1.05

JPY 0.379 0.680 0.855 0.941 0.977 0.657 0.763 0.796 0.747 0.342 0.294 0.351 1.10

GBP 0.193 0.362 0.566 0.455 0.564 0.687 0.689 0.587 0.676 0.696 0.669 0.746 1.34

CAD 0.170 0.277 0.440 0.594 0.403 0.523 0.567 0.515 0.607 0.698 0.768 0.779 1.61

Portmanteau tests for adequay of the APGARCH(2,2)

USD 0.849 0.448 0.630 0.600 0.715 0.784 0.634 0.693 0.779 0.815 0.870 0.907 1.02

JPY 0.057 0.154 0.291 0.439 0.579 0.285 0.387 0.437 0.434 0.217 0.243 0.304 1.10

GBP 0.008 0.016 0.034 0.033 0.050 0.081 0.107 0.095 0.136 0.166 0.167 0.220 1.34

CAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.61

Table 4: Portmanteau test p−values for adequay of the APGARCH(p, q) for daily returns of exhange rates, based on

m squared residuals autoovarianes.

6. Appendix : Proofs

We reall that for all ϑ ∈ ∆, ζt(ϑ) is the stritly stationary and non-antiipative solution of (2).

The matrix J an be rewritten as

J = Eϑ0

[

1

ζ4t (ϑ0)

∂ζ2t (ϑ0)

∂ϑ

∂ζ2t (ϑ0)

∂ϑ′

]

.

First, we shall need some tehnial results whih are essentially ontained in Hamadeh and Zakoïan

(2011). Let K and ρ be generi onstants, whose values will be modi�ed along the proofs, suh that

K > 0 and ρ ∈]0, 1[.

6.1. Reminder on tehnial issues on quasi likelihood method for APGARCH models

The starting point is the asymptoti irrelevane of the initial values. Under A0, A2�A6, Hamadeh

and Zakoïan (2011) show that:

sup
ϑ∈∆

|ζτt (ϑ)− ζ̃τt (ϑ)| ≤ Kρt. (8)
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Similar properties also hold for the derivatives with respet to ϑ of ζτt (ϑ) − ζ̃τt (ϑ). We sum up the

properties that we shall need in the sequel. We refer to Hamadeh and Zakoïan (2011) for a more

detailed treatment. For some s ∈]0, 1[, we have

E|ε0|2s < ∞, E sup
ϑ∈∆

|ζ2st | < ∞, E sup
ϑ∈∆

|ζ̃2st | < ∞. (9)

Moreover, from (8), the mean-value theorem implies that

sup
ϑ∈∆

|ζ2t (ϑ)− ζ̃2t (ϑ)| ≤ Kρt sup
ϑ∈∆

max{ζ2t (ϑ), ζ̃2t (ϑ)}. (10)

For all d ≥ 1

E

∥

∥

∥

∥

sup
ϑ∈∆

1

ζτt (ϑ)

∂ζτt (ϑ)

∂ϑ

∥

∥

∥

∥

d

< ∞, E

∥

∥

∥

∥

sup
ϑ∈∆

1

ζτt (ϑ)

∂2ζτt (ϑ)

∂ϑ∂ϑ′

∥

∥

∥

∥

d

< ∞. (11)

There exists a neighborhood V(ϑ0) of ϑ0 suh that for all ξ > 0 and a = 1− (δ/τ)(1 − s) > 0

sup
ϑ∈V(ϑ0)

(

ζ2t (ϑ0)

ζ2t (ϑ)

)

≤
(

K +K

q
∑

i=1

∞
∑

k=0

(1 + ξ)kρak|εt−i−k|2τ
)2/τ

,

and it holds that

E

∣

∣

∣

∣

∣

sup
ϑ∈V(ϑ0)

(

ζ2t (ϑ0)

ζ2t (ϑ)

)

∣

∣

∣

∣

∣

< ∞. (12)

The matrix J is invertible and

√
n(ϑ̂n − ϑ0) = J−1 1√

n

n
∑

t=1

st
1

ζ2t

∂ζ2t (ϑ0)

∂ϑ
+ oP(1), with st = η2t − 1. (13)

6.2. Proof of Theorem 3.1

The proof of Theorem 3.1 is lose to the proof of Carbon and Franq (2011). Only the invertibility

of the matrix D needs to be adapted. But, to understand the proofs and to have its own autonomy, we

rewrite all the proof. We also deompose this proof in 3 following steps.

(i) Asymptoti impat of the unknown initial values on the statisti r̂m.

(ii) Asymptoti distribution of

√
nr̂m.

(iii) Invertibility of the matrix D.

We now introdue the vetor of m autoovarianes rm = (r1, . . . , rm)′ where the h-th element is de�ne

as

rh =
1

n

n
∑

t=h+1

stst−h , with st = η2t − 1 and 0 < h < n.

Let st(ϑ) = η2t (ϑ) − 1 with ηt(ϑ) = εt/ζt(ϑ) and s̃t(ϑ) = η̃2t (ϑ) − 1 with η̃t(ϑ) = εt/ζ̃t(ϑ). Let

rh(ϑ) obtained by replaing ηt by ηt(ϑ) in rh and r̃h(ϑ) by replaing ηt by η̃t(ϑ) in rh. The vetors

rm(ϑ) = (r1(ϑ), . . . , rm(ϑ))′ and r̃m(ϑ) = (r̃1(ϑ), . . . , r̃m(ϑ))′ are suh that rm = rm(θ0), r̃m = r̃m(θ0)
and r̂m = r̃m(ϑ̂n).

(i) Asymptoti impat of the unknown initial values on the statisti r̂m.

We have st(ϑ)st−h(ϑ) − s̃t(ϑ)s̃t−h(ϑ) = at + bt with at = {st(ϑ) − s̃t(ϑ)}st−h(ϑ) and bt =
s̃t(ϑ){st−h(ϑ)− s̃t−h(ϑ)}. Using (10) and infϑ∈∆ ζ̃2t ≥ infϑ∈∆ ω2/τ > 0, we have

|at|+ |bt| ≤ Kρtε2t (ε
2
t−h + 1) sup

ϑ∈∆
max{ζ̃2t , ζ2t } .
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Using the inequality (a+ b)s ≤ as + bs, for a, b ≥ 0 and s ∈]0, 1[, (9) and Hölder's inequality, we have

for some s∗ ∈]0, 1[ su�iently small

E

∣

∣

∣

∣

∣

1√
n

n
∑

t=1

sup
ϑ∈∆

|at|
∣

∣

∣

∣

∣

s∗

≤ K
1

ns∗/2

n
∑

t=1

ρts
∗ −→
n→∞

0.

We dedue that n−1/2
∑n

t=1 supϑ∈∆ |at| = oP(1). We have the same onvergene for bt, and for the

derivatives of at and bt. Consequently, we obtain

√
n‖rm − r̃m‖ = oP(1), sup

ϑ∈∆

∥

∥

∥

∥

∂rm
∂ϑ

− ∂r̃m
∂ϑ

∥

∥

∥

∥

= oP(1), as n → ∞. (14)

The unknown initial values have no asymptoti impat on the statisti r̂m.

(ii) Asymptoti distribution of

√
nr̂m.

We now show that the asymptoti distribution of

√
nr̂m is dedued from the joint distribution of√

nrm and of the QMLE. Using (14) and a Taylor expansion of rm(·) around ϑ̂n and ϑ0, we obtain

√
nr̂m =

√
nr̃m(ϑ0) +

∂r̃m(ϑ∗)

∂ϑ

√
n(ϑ̂n − ϑ0)

=
√
nrm +

∂rm(ϑ∗)

∂ϑ

√
n(ϑ̂n − ϑ0) + oP(1),

for some ϑ∗
i , i = 1, . . . , 2q + p + 2 between ϑ̂n and ϑ0. In view of (12), there exists a neighborhood

V(ϑ0) of ϑ0 suh that

E sup
ϑ∈V(ϑ0)

∥

∥

∥

∥

∂2st−h(ϑ)st(ϑ)

∂ϑ∂ϑ′

∥

∥

∥

∥

< ∞.

For a �xed rh, using these inequalities, (11) and Assumption A0 (κη < ∞), the almost sure onvergene

of ϑ∗
to ϑ0, a seond Taylor expansion and the ergodi theorem, we obtain

∂rh(ϑ
∗)

∂ϑ
=

∂rh(ϑ0)

∂ϑ
+ oP(1) −→

n→∞
ch := E

[

st−h(ϑ0)
∂st(ϑ0)

∂ϑ

]

= −E

[

st−h
1

ζ2t (ϑ0)

∂ζ2t (ϑ0)

∂ϑ

]

by the fat E[st(ϑ0)∂st−h(ϑ0)/∂ϑ] = 0. Note that, ch is the almost sure limit of the row h of the matrix

Ĉm. Consequently we have

∂rm(ϑ0)

∂ϑ
−→
n→∞

Cm :=







c′1
.

.

.

c′m






. (15)

It follows that √
nr̂m =

√
nrm + Cm

√
n(ϑ̂n − ϑ0) + oP(1). (16)

Denote

√
nrm = n−1/2

∑n
t=1 stst−1:t−m, where st−1:t−m = (st−1, . . . , st−m)′. We now derive the asymp-

toti distribution of

√
n(ϑ̂′

n − ϑ′
0, r

′
m)′. In view of (13), the entral limit theorem of Billingsley (1961)

applied to the martingale di�erene proess

{

Υt =

(

st
1

ζ2t (ϑ0)

∂ζ2t (ϑ0)

∂ϑ′
, sts

′
t−1:t−m

)′

;σ(ηu, u ≤ t)

}

,

shows that

√
n(ϑ̂′

n − ϑ′
0, r

′
m)′ =

1√
n

n
∑

t=1

Υt + oP(1)
L−→

n→+∞
N
(

0,E[ΥtΥ
′
t]
)

, (17)
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where

E
[

ΥtΥ
′
t

]

= (κη − 1)

(

J−1 −J−1C ′
m

−CmJ−1 (κη − 1)Im

)

.

Using (16) and (17) we obtain the distribution of

√
nr̂m. Indeed

√
nr̂m

L−→ N (0,D) where D is de�ned

by

D := (κη − 1)2Im − (κη − 1)CmJ−1C ′
m.

(iii) Invertibility of the matrix D.
We now show that D is invertible. Assumption A5 entails that the law of η2t is non degenerated,

therefore κη > 1. Thus study the invertibility of the matrix D is similar to study the invertibility of

(κη − 1)Im − CmJ−1C ′
m. Let

V = st−1:t−m + CmJ−1 1

ζ2t (ϑ0)

∂ζ2t (ϑ0)

∂ϑ
suh that E

[

V V ′
]

= (κη − 1)Im − CmJ−1C ′
m.

If the matrix E [V V ′] is singular, then there exist a vetor λ = (λ1, . . . , λm)′ not equal to zero suh that

λ′V = λ′
st−1:t−m + λ′CmJ−1

(

1

ζ2t (ϑ0)

∂ζ2t (ϑ0)

∂θ
+

1

ζ2t (ϑ0)

∂ζ2t (ϑ0)

∂τ

)

= 0, a.s. (18)

sine ϑ = (θ′, τ)′. Using the fat that

1

ζ2t (ϑ0)

∂ζ2t (ϑ0)

∂θ
=

2

τ

1

ζτt (ϑ0)

∂ζτt (ϑ0)

∂θ
and

1

ζ2t (ϑ0)

∂ζ2t (ϑ0)

∂τ
= − 2

τ2
log(ζτt (ϑ0)) +

2

τ

1

ζτt (ϑ0)

∂ζτt (ϑ0)

∂τ
,

we an rewrite the equation (18) as follow

λ′V = λ′
st−1:t−m + µ′ 1

ζτt (ϑ0)

(

τ
∂ζτt (ϑ0)

∂θ
− ζτt (ϑ0) log(ζ

τ
t (ϑ0)) + τ

∂ζτt (ϑ0)

∂τ

)

= 0, a.s. (19)

with µ′ = (2/τ2)λ′CmJ−1
. We remark that µ 6= 0. Otherwise λ′

st−1:t−m = 0 a.s., whih implies that

there exists j ∈ {1, ...,m} suh that st−j is measurable with respet to the σ−�eld generated by sr
for t − 1 ≤ r ≤ t − m with r 6= t − j. This is impossible beause the st's are independent and non

degenerated.

We denote µ = (ν ′1, ν2)
′
, where ν ′1 = (µ1, . . . , µ2q+p+1)

′
and ν2 = µ2q+p+2; and we rewrite (19) as

λ′V = λ′
st−1:t−m + ν ′1τ

1

ζτt (ϑ0)

∂ζτt (ϑ0)

∂θ
+ ν2

1

ζτt (ϑ0)

(

−ζτt (ϑ0) log(ζ
τ
t (ϑ0)) + τ

∂ζτt (ϑ0)

∂τ

)

= 0, a.s.

or equivalent,

λ′
st−1:t−mζτt (ϑ0) + ν ′1τ

∂ζτt (ϑ0)

∂θ
+ ν2

(

−ζτt (ϑ0) log(ζ
τ
t (ϑ0)) + τ

∂ζτt (ϑ0)

∂τ

)

= 0, a.s. (20)

The derivatives involved in (20) are de�ned reursively by

∂ζτt (ϑ)

∂θ
= ct(ϑ) +

p
∑

j=1

βj
∂ζτt−j(ϑ)

∂θ
,

∂ζτt (ϑ)

∂τ
=

q
∑

i=1

α+
i log(ε+t−i)(ε

+
t−i)

τ + α−
i log(−ε−t−i)(−ε−t−i)

τ +

p
∑

j=1

βj
∂ζτt−j(ϑ)

∂τ
,
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where ct(ϑ) is de�ned by replaing ζ̃τt (ϑ) by ζτt (ϑ) in c̃t(ϑ) (see (5)). We remind that ε+t = ζtη
+
t and

ε−t = ζtη
−
t and let Rt a random variable measurable with respet to σ{ηu, u ≤ t}. We deompose (20)

in four terms and we have

ν ′1τ
∂ζτt (ϑ0)

∂θ
= µ2τζ

τ
t−1(η

+
t−1)

τ + µq+2τζ
τ
t−1(−η−t−1)

τ +Rt−2,

ζτt = α+
1 ζ

τ
t−1(η

+
t−1)

τ + α−
1 ζ

τ
t−1(−η−t−1)

τ +Rt−2,

−ν2ζ
τ
t (ϑ0) log(ζ

τ
t (ϑ0)) = −ν2

(

α+
1 ζ

τ
t−1(η

+
t−1)

τ + α−
1 ζ

τ
t−1(−η−t−1)

τ +Rt−2

)

× log
(

α+
1 ζ

τ
t−1(η

+
t−1)

τ + α−
1 ζ

τ
t−1(−η−t−1)

τ +Rt−2

)

λ′st−1:t−m = λ1η
2
t−1 +Rt−2,

that gives

λ′st−1:t−mζτt = λ1ζ
τ
t−1

[

α+
1 (η

+
t−1)

τ+2 + α−
1 (−η−t−1)

τ+2
]

+λ1η
2
t−1Rt−2+Rt−2+

[

(η+t−1)
τ + (−η−t−1)

τ
]

Rt−2,

and

ν2τ
∂ζτt (ϑ0)

∂τ
= ν2τα

+
1 log

(

ζt−1(η
+
t−1)

)

ζτt−1(η
+
t−1)

τ + ν2τα
−
1 log

(

ζt−1(−η−t−1)
)

ζτt−1(−η−t−1)
τ +Rt−2,

= ν2α
+
1 log

(

ζτt−1(η
+
t−1)

τ
)

ζτt−1(η
+
t−1)

τ + ν2α
−
1 log

(

ζτt−1(−η−t−1)
τ
)

ζτt−1(−η−t−1)
τ +Rt−2.

Following these previous expressions, (19) entails that almost surely

λ′V = λ1ζ
τ
t−1

[

α+
1 (η

+
t−1)

τ+2 + α−
1 (−η−t−1)

τ+2
]

+ η2t−1Rt−2 +
[

Rt−2 + ν2α
+
1 Rt−2 log(ζt−1(η

+
t−1))

]

(η+t−1)
τ

+
[

Rt−2 + ν2α
−
1 Rt−2 log(ζt−1(−η−t−1))

]

(−η−t−1)
τRt−2 +Rt−2

− ν2
(

α+
1 ζ

τ
t−1(η

+
t−1)

τ + α−
1 ζ

τ
t−1(−η−t−1)

τ +Rt−2

)

log
(

α+
1 ζ

τ
t−1(η

+
t−1)

τ + α−
1 ζ

τ
t−1(−η−t−1)

τ +Rt−2

)

= 0,

or equivalent to the two equations

λ1ζ
τ
t−1α

+
1 (η

+
t−1)

τ+2 −
(

ν2α
+
1 ζ

τ
t−1(η

+
t−1)

τ +Rt−2

)

log
(

α+
1 ζ

τ
t−1(η

+
t−1)

τ +Rt−2

)

+
[

Rt−2 + ν2α
+
1 Rt−2 log(ζt−1(η

+
t−1))

]

(η+t−1)
τ + η2t−1Rt−2 +Rt−2 = 0, a.s.

(21)

λ1ζ
τ
t−1α

−
1 (−η+t−1)

τ+2 −
(

ν2α
−
1 ζ

τ
t−1(−η−t−1)

τ +Rt−2

)

log
(

α−
1 ζ

τ
t−1(−η−t−1)

τ +Rt−2

)

+
[

Rt−2 + ν2α
−
1 Rt−2 log(ζt−1(−η−t−1))

]

(−η−t−1)
τ + η2t−1Rt−2 +Rt−2 = 0, a.s..

(22)

Note that an equation of the form

a|x|τ+2 + [b+ c(|x|τ )] log[b+ c(|x|τ )] + [d+ e log(|x|)]|x|τ + fx2 + g = 0

annot have more than 11 positive roots or more than 11 negative roots, exept if a = b = c = d =
e = f = g = 0. By assumption A1, Equations (21) and (22) thus imply that λ1(α

+
1 + α−

1 ) = 0 and

ν2(α
+
1 + α−

1 ) = 0. If λ1 = 0 and ν2 = 0 then λ′
st−1:t−m := λ′

2:mst−2:t−m. By (20), we an write that

[

α+
1 ζ

τ
t−1(η

+
t−1)

τ + α−
1 ζ

τ
t−1(−η−t−1)

τ
]

λ′
2:mst−2:t−m = −µ2ζ

τ
t−1(η

+
t−1)

τ + µq+2ζ
τ
t−1(−η−t−1)

τ +Rt−2,

whih entails

α+
1 ζ

τ
t−1(η

+
t−1)

τλ′
2:mst−2:t−m = −µ2ζ

τ
t−1(η

+
t−1)

τ +Rt−2

and a similar expression with (−η−t−1)
τ
an be obtained. Subtrating the onditional expetation with

respet to Ft−2 = σ{η+r , η−r ; r ≤ t− 2} in both sides of the previous equation, we obtain

α+
1 ζ

τ
t−1λ

′
2:mst−2:t−m

[

(η+t−1)
τ − E[(η+t−1)

τ |Ft−2]
]

= µ2ζ
τ
t−1

[

E[(η+t−1)
τ |Ft−2]− (η+t−1)

τ
]

, a.s.

α+
1 ζ

τ
t−1λ

′
2:mst−2:t−m

[

(η+t−1)
τ − E[(η+t−1)

τ ]
]

= µ2ζ
τ
t−1

[

E[(η+t−1)
τ ]− (η+t−1)

τ
]

, a.s..

Sine the law of ηt is non degenerated, we have α
+
1 = µ2 = 0 and symmetrially α−

1 = µq+2 = 0. But for
APGARCH(p, 1) models, it is impossible to have α+

1 = α−
1 = 0 by the assumption A4. The invertibility

of D is thus shown in this ase. For APGARCH(p, q) models, by iterating the previous arguments, we

an show by indution that (19) entails α+
1 +α−

1 = . . . = α+
q +α−

q = 0. Thus λ1 = · · · = λm = 0 whih
leads to a ontradition. The non-singularity of the matrix D follows. ✷
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6.3. Proof of Theorem 3.2

The almost sure onvergene of D̂ to D as n goes to in�nity is easy to show using the onsisteny

result. The matrix D an be rewritten as D = (κη − κ̂η)B + (κ̂η − 1)A, where the matries A and B
are given by

A = (Cm − Ĉm)J−1C ′
m + Ĉm(J−1 − Ĵ−1)C ′

m + ĈmĴ−1(C ′
m − Ĉ ′

m) + Â,

B = (A− Â) + (κη − κ̂η)Im + B̂,

with Â = ĈmĴ−1Ĉ ′
m and B̂ = (κ̂η − 1)Im − Â. Finally, we have

D − D̂ = (κη − κ̂η)B + (κ̂η − 1)
[

(A− Â) + (κη − κ̂η)Im

]

.

For any multipliative norm, we have

‖D − D̂‖ ≤ |κη − κ̂η |‖B‖+ |κ̂η − 1|
[

‖A− Â‖+ |κη − κ̂η|m
]

and

‖A− Â‖ ≤ ‖Cm − Ĉm‖‖J−1‖‖C ′
m‖+ ‖Ĉm‖‖J−1‖‖Ĵ − J‖‖Ĵ−1‖‖C ′

m‖+ ‖Cm‖‖Ĵ−1‖‖C ′
m − Ĉ ′

m‖.

In view of (11), we have ‖Cm‖ < ∞. Beause the matrix J is nonsingular, we have ‖J−1‖ < ∞ and

‖Ĵ−1 − J−1‖ −→
n→+∞

0, a.s.

by onsisteny of ϑ̂n. Under Assumption A5, we have |κη − 1| ≤ K. Using the previous arguments

and also the strong onsisteny of ϑ̂n, we have

|κη − κ̂η | −→
n→+∞

0, a.s. and ‖Cm − Ĉm‖ −→
n→+∞

0, a.s.

We then dedue that ‖B‖ ≤ K and the onlusion follows. Thus D̂ → D almost surely, when n → +∞.

To onlude the proof of Theorem 3.2, it su�es to use Theorem 3.1 and the following result: if√
nr̂m

L−→ N (0,D), with D nonsingular, and if D̂ → D in probability, then nr̂′mD̂−1
r̂m

L−→ χ2
m. ✷

6.4. Condition of strit stationarity of model (1)

The probabilisti properties of the model (1) rely on the sequene of matries (C0t) de�ned by

C0t =









κ(ηt) β0p α[2:q−1] α[q:q]

Ip−1 0(p−1)×1 0(p−1)×2(q−2) 0(p−1)×2

η
t

02×1 02×2(q−2) 02×2

02(q−2)×(p−1) 02(q−2)×1 I2(q−2) 02(q−2)×2









, (23)

where Ik denotes the identity matrix of size k and, for i ≤ j,

κ(ηt) =
(

β01 + α+
01(η

+
t )

δ + α−
01(−η−t )

δ, β02, . . . , β0p−1

)

,

α[i:j] = (α+
0i, α

−
0i, . . . , α

+
0j , α

−
0j), η

t
=

(

(η+t )
δ 01×(p−1)

(−η−t )
δ 01×(p−2)

)

.

13



Referenes

Berkes, I., Horváth, L., and Kokoszka, P. (2003). Asymptotis for GARCH squared residual orrelations.

Eonometri Theory, 19:515�540.

Billingsley, P. (1961). The Lindeberg-Lévy theorem for martingales. Pro. Amer. Math. So., 12:788�

792.

Blak, F. (1976). Studies of stok prie volatility hanges. In proeedings from the ASA. Business and

Eonomi Statistis Setion, pages 177�181.

Bollerslev, T. (1986). Generalized autoregressive onditional heteroskedastiity. Journal of Eonomet-

ris, 31:307�327.

Boubaar Mainassara, Y. (2011). Multivariate portmanteau test for strutural VARMA models with

unorrelated but non-independent error terms. J. Statist. Plann. Inferene, 141(8):2961�2975.

Box, G. E. and Piere, D. A. (1970). Distribution of residual autoorrelations in autoregressive-

integrated moving average time series models. Journal of the Amerian statistial Assoiation,

65:1509�1526.

Carbon, M. and Franq, C. (2011). Portmanteau goodness-of-�t test for asymmetri power GARCH

models. Austrian Journal of Statistis, 40:55�64.

Ding, Z., Granger, C. W., and Engle, R. F. (1993). A long memory property of stok market returns

and a new model. Journal of empirial �nane, 1:83�106.

Engle, R. F. (1982). Autoregressive onditional heterosedastiity with estimates of the variane of

United Kingdom in�ation. Eonometria: Journal of the Eonometri Soiety, pages 987�1007.

Franq, C., Roy, R., and Zakoïan, J.-M. (2005). Diagnosti heking in ARMAmodels with unorrelated

errors. J. Amer. Statist. Asso., 100(470):532�544.

Franq, C., Wintenberger, O., and Zakoïan, J.-M. (2016). Goodness-of-�t tests for Log-GARCH and

EGARCH models. TEST, pages 1�25.

Glosten, L. R., Jagannathan, R., and Runkle, D. E. (1993). On the relation between the expeted value

and the volatility of the nominal exess return on stoks. The journal of �nane, 48:1779�1801.

Hamadeh, T. and Zakoïan, J.-M. (2011). Asymptoti properties of LS and QML estimators for a lass

of nonlinear GARCH proesses. Journal of Statistial Planning and Inferene, 141:488�507.

Leuht, A., Kreiss, J.-P., and Neumann, M. H. (2015). A model spei�ation test for GARCH(1,1)

proesses. Sandinavian Journal of Statistis, 42:1167�1193.

Li, W. K. (2004). Diagnosti heks in time series. Boa Raton, Florida: Chapman and Hall.

Li, W. K. and Mak, T. (1994). On the squared residual autoorrelations in non-linear time series with

onditional heteroskedastiity. Journal of Time Series Analysis, 15:627�636.

Ling, S. and Li, W. K. (1997). On frationally integrated autoregressive moving-average time series

models with onditional heterosedastiity. Journal of the Amerian Statistial Assoiation, 92:1184�

1194.

Ljung, G. M. and Box, G. E. (1978). On a measure of lak of �t in time series models. Biometrika,

pages 297�303.

14



MLeod, A. (1978). On the distribution of residual autoorrelations in Box-Jenkins models. Journal of

the Royal Statistial Soiety. Series B (Methodologial), pages 296�302.

Rabemananjara, R. and Zakoïan, J.-M. (1993). Threshold ARCH models and asymmetries in volatility.

Journal of Applied Eonometris, 8:31�49.

15


