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Abstract This paper deals with the applications of stochastic spectral methods
for structural topology optimization in the presence of uncertainties. A non-intru-
sive polynomial chaos expansion is integrated into a topology optimization algo-
rithm to calculate low-order statistical moments of the mechanical-mathematical
model response. This procedure, known as robust topology optimization, can op-
timize the mean of the compliance while simultaneously minimizing its standard
deviation. In order to address possible variabilities in the loads applied to the
mechanical system of interest, magnitude and direction of the external forces are
assumed to be uncertain. In this probabilistic framework, forces are described as
a random field or a set of random variables. Representation of the random ob-
jects and propagation of load uncertainties through the model are efficiently done
through Karhunen–Loève and polynomial chaos expansions. We take advantage of
using polygonal elements, which have been shown to be effective in suppressing
checkerboard patterns and reducing mesh dependency in the solution of topology
optimization problems. Accuracy and applicability of the proposed methodology
are demonstrated by means of several topology optimization examples. The ob-
tained results, which are in excellent agreement with reference solutions computed
via Monte Carlo method, show that load uncertainties play an important role in
optimal design of structural systems, so that they must be taken into account to
ensure a reliable optimization process.
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1 Introduction

Due to new requirements of design associated with the most modern engineering
applications, mechanical systems with very complex geometrical configurations
are becoming increasingly common. In this context, some of the most promising
design approaches are based on topology optimization (TO), which seeks to find
the best layout for a system, by optimizing the material distribution in a predefined
design domain [35, 8]. The growing popularity of TO solutions is demonstrated
by their wide range of application in various fields such as structural mechanics
[58, 59, 45, 43, 17, 33], composite and multi-materials [62, 67], nanotecnology [36],
fluid mechanics [39, 19], fluid-structure interaction [1], medicine [38], etc.

In general, the physical systems underlying TO applications are subjected to a
series of uncertainties (e.g. unknown loads, geometrical imperfections, fluctuations
in physical properties, etc) so that, usually, their response is not well predicted by
the traditional (deterministic) tools of engineering analysis. For this reason, there
is a consensus among computational engineering experts that uncertainties effects
must be incorporated into any computational predictive model [49]. The modeling
and quantification of uncertainties is necessary in order to predict a possible range
of variability for the mathematical model response, and to conduct applied tasks,
such as analysis and design, in a robust way [5, 51]. Notice, however, that the
majority of the works in TO area, currently available in the literature, are limited
to deterministic analyses.

The need for robust design and analysis of uncertainties in topological opti-
mization applications naturally induces the search for computationally efficient
frameworks for TO. For this purpose, TO literature started to take uncertainty
quantification (UQ) into account over the last decade, as can be seen in several pa-
pers addressing the two issues [65, 28, 16, 66, 42, 44, 68, 20, 27, 60, 3, 14, 25, 29, 61].

Some of these works are based on classical techniques for stochastic computa-
tion like Monte Carlo (MC) method [14, 20] or series expansion [16, 68, 27, 3, 25]
which, despite of being very simple in conceptual terms, they are limited by the
high computational cost, the former, or very small range of applicability, the latter.
These limitations open space for spectral-based approaches [29, 60, 44, 65, 42, 28],
that use state-of-the-art tools for representing and propagating uncertainties in
computational models, like Karhunen–Loève (KL) and generalized polynomial
chaos (gPC) expansions. A recent work by Keshavarzzadeh et. al [28] presents
a non-intrusive gPC strategy to propagate uncertainties in topology optimization
problems. They use non-intrusive polynomial chaos expansion to evaluate low-
order statistics of compliance and volume and the uncertainties are considered in
the applied loads and also in the geometry of the problems.

The classical formulation for topology optimization, which corresponds to min-
imize the structural compliance, is commonly carried out on uniform grids con-
sisting of Lagrangian-type finite elements (e.g., linear quads). However, this choice
of discretization, together with density methods, suffer from the well-known nu-
merical instabilities, such as the checkerboard patterns. Unstructured ”Voronoi”
meshes, generated from an initial set of random points, have been shown to be
effective in suppressing checkerboard patterns [58]. Moreover, compared to stan-
dard Lagrangian-type uniform grids, polygonal elements are more versatile in dis-
cretizing complex domains and in reducing mesh dependency in the solutions of
topology optimization [58, 2]. The geometrical flexibility of the polygonal finite
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elements also make them very attractive for adaptive mesh refinement schemes
in topology optimization problems [37, 26]. The computational code used here
was developed based on PolyTop [59], a MATLAB code for solving topology op-
timization problems using either structured or unstructured polygonal meshes in
arbitrary two-dimensional domains. The modular structure of PolyTop, where the
analysis routine and optimization algorithm are separated from the choice of topol-
ogy optimization formulation, together with a non-intrusive way of computing the
statistical measures, allowed us to implement a robust topology optimization code
in a very straightforward way, with only a few modifications in the original PolyTop
code.

The aim of this paper is to present a computationally efficient and accurate
non-intrusive robust topology optimization approach using polygonal elements.
For this purpose, the PolyTop framework by Talischi et al. [59], which employs
polygonal finite elements in TO, is combined with a consistent methodology for
stochastic analysis that uses a non-intrusive gPC strategy to propagate parame-
ters uncertainties through the computational model. This combination generates a
framework that is computationally efficient for stochastic simulations, and robust
to numerical instabilities typical of TO problems, such as checkerboards, one-node
connections, and mesh dependency. The novel approach is used to solve TO prob-
lems that seek to minimize an objective function based on the low-order statistical
moments of the compliance function of a structure, subjected to uncertainties on
the external load, and satisfying volume constraints.

The remainder of this paper is organized as follows. Stochastic spectral meth-
ods are introduced in section 2, together with the mathematical formulation and
basic steps to obtain KL and gPC expansions. In section 3, the TO problem is
briefly described, as well as stochastic procedure to propagate uncertainties within
TO, which is called robust topology optimization (RTO). In section 4, numerical
examples are presented, and the proposed methodology is compared with a refer-
ence result obtained with MC method. Finally, some remarks and suggestions for
future work are presented in section 5.

2 Stochastic spectral methods

2.1 Preliminary definitions and notation

Consider a probability space (Θ,F , P ), where Θ is the sample space, F a σ-field
over Θ, and P : F → [0, 1] denotes the probability measure. It is assumed that
the distribution PX(dx) of any real-valued random variable X in this probability
space admits a density x 7→ pX(x) with respect to dx. The set of values where this
density is not zero is dubbed the support of X, being denoted by SuppX.

In this probabilistic setting, any realization of random variable X is denoted
by X(θ) for θ ∈ Θ, and the mathematical expectation operator is defined by

E {X} =

∫
R
x PX(dx), (1)

so that the mean value and standard deviation of X are given by µX = E {X} and

σX = (E
{
X2
}
−E {X}2)1/2, respectively. The random variable X is said to be of
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second-order if

E
{
|X|2

}
=

∫
R
|x|2 PX(dx) < +∞. (2)

The space of all second-order random variables in (Θ,F , P ), denoted by L2(Θ,P ),
is a Hilbert space [12] equipped with the inner product 〈·, ·〉Θ : L2(Θ,P )×L2(Θ,P )→
R such that

〈X,Y 〉Θ = E {X Y } =

∫ ∫
R2

x y PX,Y (dx, dy), (3)

where PX,Y (dx, dy) is the joint distribution of the random variablesX,Y ∈ L2(Θ,P ).
This inner product induces a norm ‖·‖Θ : L2(Θ,P )→ R where

‖X‖Θ =
(
〈X,X〉Θ

)1/2
=

(∫
R
|x|2 PX(dx)

)1/2

. (4)

Further ahead it will also be helpful to consider L2(D), the set of all real-valued
square integrable functions defined on the spatial domain D ⊂ Rd, d ≥ 1. This set of
functions is also a Hilbert space [12], with inner product 〈·, ·〉D : L2(D)×L2(D)→ R
defined by 〈

φ, φ′
〉
D

=

∫
D
φ(x)φ′(x) dx, (5)

for φ, φ′ ∈ L2(D).

2.2 Karhunen–Loève expansion

The KL expansion [24, 63] is one of the most widely used and powerful techniques
for analysis and synthesis of random fields, providing a denumerable represen-
tation, in terms of the spectral decomposition of the correlation function, for a
random field parametrized by a nondenumerable index [51, 53].

Let the map (x, θ) ∈ D ×Θ 7→ U (x, θ) ∈ R be an arbitrary real-valued random
field, indexed by the spatial coordinate vector x ∈ D ⊂ Rd, d ≥ 1, denoted in
an abbreviated way as U(x) or U . By construction, for a fixed x ∈ D, U(x, ·) is
a real-valued random variable, and U(·, θ), for a fixed θ ∈ Θ, is a function of x,
dubbed realization of the random field.

The correlation of U(x) is the function KU (·, ·) : D × D → R defined for any
pair of vectors x and x′ by means of

KU (x,x′) = E
{
U(x)U(x′)

}
. (6)

Suppose that random field U(x) is second-ordered and mean-square continuous,
properties respectively defined by

E
{
|U(x)|2

}
< +∞, ∀x ∈ D, (7)

and

lim
x′→x

∥∥∥U(x′)− U(x)
∥∥∥2
Θ

= 0. (8)

Under these assumptions, the linear integral operator

KU φ (x) =

∫
D
KU (x,x′)φ(x′) dx′ (9)
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defines a Hilbert-Schmidt operator [53, 51], which has denumerable family of eigen-

pairs
{

(λn, φn)
}+∞
n=1

such that∫
D
KU (x,x′)φn(x′) dx′ = λn φn(x), x ∈ D, (10)

where λn are the eigenvalues and φn the corresponding eigenfunctions of the op-
erator defined by Eq.(9). Besides that, the sequence of eigenvalues is such that∑+∞
n=1 λn < +∞ and λ1 ≥ λ2 ≥ · · · ≥ λn ≥ · · · → 0; and the family of functions

{φn}+∞n=1 defines an orthonormal Hilbertian basis in L2(D), i.e.

〈φm, φn〉D = δmn , (11)

where Kronecker delta is such that δmn = 1 if m = n and δmn = 0 for m 6= n.
Therefore, applying two standard results of functional analysis [15], the theo-

rems of Hilbertian basis and orthogonal projection, it is possible to show that the
random field U(x) admits a decomposition

U(x) = µU (x) +
+∞∑
n=1

√
λn φn(x) ξn , (12)

where {ξn}+∞n=1 is a family of random variables defined by

ξn =
1√
λn
〈U − µU , φn〉D , (13)

which are centered (zero mean) and mutually uncorrelated i.e.

µξn = 0, and E {ξm ξn} = δmn . (14)

A finite dimensional approximation for U(x), denoted by Uνkl(x), is con-
structed by truncation of the series in Eq.(12) i.e.

Uνkl(x) = µU (x) +

νkl∑
n=1

√
λn φn(x) ξn, (15)

where the integer νkl is chosen such that

energy(νkl) =

∑νkl

n=1 λn∑+∞
n=1 λn

≥ τ, (16)

for a heuristically chosen threshold τ (e.g. τ = 90%). In practice, as a closed
formula for λn is not available in general, energy(νkl) is estimated using a finite
(but large) number of eigenvalues, instead of an infinite quantity. This procedure
is justified in light of the eigenvalues decreasing property.

One of the main difficulties to apply KL expansion to discrete random fields
is the determination of the eigenvalues and corresponding eigenfunctions of the
correlation function. Analytical solutions for the Fredholm integral equation in (10)
are almost never available. However, for some special cases, such as exponential
and Gaussian autocovariance functions, an analytical solution can be obtained
by converting the integral equation into a differential equation through successive
derivatives [24, 63].
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Several numerical methods can be used to solve the eigenvalue problem of
Eq.(10), such as the direct method, projection methods, among others [4, 9]. In
this study, the direct method is employed to transform the Fredholm integral equa-
tion into a finite dimensional eigenvalue problem, whose the solution provides an
approximation for the desired eigenvalues/eigenvectors of the infinite dimensional
problem.

In this numerical procedure, a set of M realizations of the random field U(x)
and its mean function µU (x) are numerically generated1 and grouped into the
matrices

U =


U1(x1) U2(x1) . . . UM (x1)

U1(x2) U2(x2) . . . UM (x2)
...

...
. . .

...

U1(xn) U2(xn) . . . UM (xn)

 , µ =


µU (x1) µU (x1) . . . µU (x1)
µU (x2) µU (x2) . . . µU (x2)

...
...

. . .
...

µU (xn) µU (xn) . . . µU (xn)

 , (17)

which are used to define the zero mean matrix Û = U − µ. Then, the correlation
matrix is estimated with the aid of

KÛ =
1

M
ÛÛT , (18)

and the discrete eigenvalue problem

KÛΦ = ΛΦ, (19)

is solved to obtain the matrices Φ and Λ, which present approximations for the
first M eigenfunctions/eigenvalues on the columns/main diagonal.

For further details on theoretical and practical aspects of KL expansion the
reader is encouraged to see [34, 6, 40, 41].

2.3 Generalized polynomial chaos expansion

The gPC expansion is a theoretical tool used to construct representations for
random fields, with a denumerable or nondenumerable set of index, in terms of a
denumerable collection of random variables weigthed by deterministic coefficients
[51, 53]. It was introduced in the engineering community by R. Ghanem [24, 55, 22]
as a tool to compute approximate responses for problems involving random fields
with unknown distribution and since the early 2000s, especially after the work of
Xiu and Karniadakis [64], it has been used in many applications of computational
stochastic mechanics, a trend that should increase [56].

For the sake of theoretical development, consider a second-ordered random
variable U : Θ → R which can be written in terms of a (possibly infinity) set of
independent random variables ξ1(θ), ξ2(θ), ξ3(θ), · · · . Collecting these independent
variables into the random vector ξ(θ) = (ξ1(θ), ξ2(θ), ξ3(θ), · · · ), dubbed the germ,
it is possible to rewrite the original variable in the parametric form U = U(ξ).

1 These numerical realizations are defined in a computational mesh x1,x2, · · · ,xn.
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In this context of second-ordered random variables, gPC expansion theory says
that such random variable U admits a spectral representation

U(ξ) =
+∞∑
n=0

un ψn(ξ), (20)

where the set of orthonormal polynomials {ψ0, ψ1, ψ2, · · · } is a basis for L2(Θ,P ),
and the deterministic coefficients u0, u1, u2, · · · correspond to the coordinates of U
in this infinite dimensional base. By definition ψ0(ξ) = 1, and due to the orthogo-
nality property 〈ψm, ψn〉Θ = δmn, one has

µU = E {U} (21)

= E {ψ0 U}

=
+∞∑
n=0

un 〈ψ0, ψn〉Θ

= u0,

i.e., the mean of U is equal to the coordinate u0 of gPC expansion. Besides that,
it is easy to see that E {ψn} = 0, n ≥ 1. Thus, it can also be shown that standard
deviation of U can be written as

σ2U = E
{
U2
}
− E {U}2 (22)

= E


+∞∑
n=1

un ψn(ξ)

2


=
+∞∑
n=1

u2n.

The gPC expansion has attracted the attention of many researchers due to
its rapid convergence property and its capability to estimate statistical moments,
which allows this method to efficiently reduce computational effort in highly non-
linear engineering design applications [34, 41].

Of course, for any purpose of numerical computation, it is necessary to parametrize
the random variable U with a finite number νrv of independent random variables,
i.e., ξ = (ξ1, ξ2, · · · , ξνrv ), and restrict up to ppc the order of the polynomials in the
basis, so that the series in Eq.(20) is truncated with νpc+1 = (νrv+ppc)!/(νrv! ppc!)
terms, giving rise to the approximation

Uνpc(ξ) =

νpc∑
n=0

un ψn(ξ), (23)

which is mean-square convergent to U when ppc, νrv → +∞.
In practice, νrv is obtained from the stochastic modeling and ppc is specified

such that a compromise between accuracy and efficiency can be established. In
this work, the gPC polynomial order is selected such that the low-order statistics
estimations become invariant for increasing values of ppc.

This spectral expansion can be easily extended to a second-ordered random
field U : D × Θ → R, considering this field as a family of random variables
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U(x, ·) ∈ L2(Θ,P ), parameterized by the index x, and by letting the determin-
istic coefficients of the gPC expansion depend on x, i.e.

U(x, ξ) =
+∞∑
n=0

un(x)ψn(ξ), (24)

where the coordinates are now a deterministic function of x. As in the case of a
random variable, the truncation of the series in Eq.(24) results in the approxima-
tion

Uνpc(x, ξ) =

νpc∑
n=0

un(x)ψn(ξ). (25)

Basically, two approaches for implementing the gPC expansion are available
in the literature, one called the intrusive, and another one dubbed non-intrusive.
The intrusive approach is based on a stochastic version of Galerkin method [63],
and consists in modifying the deterministic model in order to take into account the
uncertainty propagation. The main disadvantage of this formalism is related to the
level of difficulty in modifying the code associated with the deterministic model,
particularly if commercial software is being used, due to code access restrictions
[51, 23].

On the other hand, the non-intrusive approach requires no modification in the
deterministic model and therefore, can be treated as a black box [51, 23]. In this
case, a probabilistic collocation approach, based on a sparse grid method [21], can
be used to estimate the coefficients (coordinates) of the expansion. In this work,
a different non-intrusive approach based on linear regression is employed, where
the random field (variable) of interest is evaluated in a finite set of νgq possible
realizations of the germ ξ, and thus the coefficients of the expansion are obtained
through u = (Ψ T Ψ)−1Ψ T U, the solution of the mean-square problem

Ψ u ≈ U, (26)

where 
ψ0 (ξ1) · · · ψνpc (ξ1)

...
. . .

...
ψ0

(
ξνgq

)
· · · ψνpc

(
ξνgq

)


︸ ︷︷ ︸
Ψ


u0
u1
...

uνpc


︸ ︷︷ ︸

u

≈


U(x, ξ1)

...
U(x, ξνgq )

 .
︸ ︷︷ ︸

U

(27)

For further information about the basic aspects of gPC expansion the reader
is encouraged to see the references [24, 63, 34, 41, 23, 31], and for more advanced
topics [53, 52, 50, 54, 32].

3 Topology optimization

3.1 Classical topology optimization

The main objective of TO is to find the optimal distribution of materials, for every
point x in a given design domain Ω ⊂ Rd, d = 2 or 3, which maximize a certain
performance measure subjected to a set of design constraints, i.e., to determine
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which regions in Ω should not present material (void regions), and obtain the final
topology of the structure.

By convention, points where material exists are represented by a density value
of 1, otherwise, the density value is 0. Note that, in this way, one has an integer-
programming problem, where the distribution of material is defined by the density
map x ∈ Ω 7→ ρ(x) ∈ {0, 1}, for

ρ(x) =

{
1 if x is structural member,

0 if x is void.
(28)

In this paper the optimization problem seeks to minimize an objective function
defined by the continuum structure compliance, denoted here by c, subject to
a constraint on the final volume of the structure and satisfying the equilibrium
equations for a linear Hookean solid material. This formulation, which is equivalent
to maximize the structural stiffness subject to the same constraints (see reference
[8] for further details), can be stated as

min
ρ

c
(
u(ρ), ρ

)
=

∫
Ω

1

2
σ : ε dΩ,

s.t. v(ρ) =

∫
Ω

ρ(x) dΩ ≤ vS ,
(29)

where σ and ε represent the tensors of stress and strain, respectively, vS is a
specified upper bound on the optimized structure volume, and the map x ∈ Ω 7→
u(ρ(x)) ∈ Rd is the continum structure displacement, parametrized by ρ and im-
plicitly defined by the elasticity equations

∇ · σ(u) = 0,

σ(u) = σ(u)T ,

ε(u) = 1
2

(
∇u +∇uT

)
,

σ(u) = C(ρ) : ε(u),

(30)

and the boundary conditions

σ(u) · n = t inΓN ,
u = 0 inΓD,

(31)

where ΓD is the partition of ∂Ω on which the displacements are prescribed, ΓN is
the complimentary partition of ∂Ω on which tractions t are prescribed such that
ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅ and C(ρ) is the 4th order stiffness tensor that
depends on the density function ρ. As posed, finding ρ and C(ρ) becomes a large
integer programming problem, which can be impractical to solve. Thus, we recast
ρ as a continuous scalar field, ρ(x) ∈ [0, 1]. In order to recover the binary nature
of the problem, the SIMP [8] model is employed and the stiffness tensor can be
expressed as

C(ρ) =
[
ε+ (1− ε)ρp

]
C0, (32)

where p > 1 is the penalty parameter, C0 is the elasticity tensor of the constituent
material, and 0 < ε � 1 is a positive parameter ensuring well-posedness of the
governing equations.
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In terms of computational implementation, the domain is splited into N el-
ementary regions, i.e., Ω = ∪Ne=1Ω

e, and the finite element method is employed
for the solution of the elasticity equations. Thus, the following finite dimensional
version of the optimization problem is considered

min
ρ

C(ρ) = F T U(ρ), (33)

s.t. V (ρ) =
N∑
e=1

ρe |Ωe| − vS ≤ 0, (34)

with K(ρ)U(ρ) = F, (35)

where ρ = (ρ1, ρ2, · · · , ρN ) is a discretized version of the density map, |Ωe| denotes
the volume of the element e, U is the discrete displacement vector, parametrized
by ρ and implicitly defined by the equilibrium equation, F is the global loading
vector and K represents the global stiffness matrix, which is also dependent on ρ.

In order to use gradient-based optimization algorithms to solve the above for-
mulation, gradients of the objective function as well as the volume constraint
function are needed. The sensitivity of the objective function C(ρ) with respect to
the design variables ρ, is expressed in component form as

∂C

∂ρe
= −UT ∂K

∂ρe
U. (36)

The gradient of the volume constraint function V (ρ) with respect to the design
variable ρe is given as

∂V

∂ρe
= |Ωe|. (37)

During the solution of a TO problem it is very common to deal with numerical
anomalies, such as checkerboards, which are traditionally treated through the use
of higher-order elements or filters [48, 13]. However, Talischi et al. [59] have shown
that the use of the PolyTop framework, which employs polygonal finite elements,
can naturally address the checkerboard problem. Besides that, this approach also
allows flexibility in the optimization strategy to be used, being compatible with
the classical approaches based on the optimality criteria (OC) [7] and the method
of moving asymptotes (MMA) [57].

An overview of the classical TO procedure, used in PolyTop framework to
obtain an optimal design, is illustrated in Figure 1. The sensitivity analysis step
described in this schematic is explained in details in section 3.5.

3.2 Robust design optimization

Robust optimization, also known as robust design optimization (RDO), is a mathe-
matical procedure that simultaneously addresses optimization and robustness anal-
ysis, obtaining an optimal design that is less susceptible to variabilities (uncertain-
ties) in the system parameters. In contrast to conventional optimization, that is
deterministic, RDO considers parameters that are random so that it consists of a
stochastic problem. The general overview of RDO is explained in Figure 2, which
shows a computational model where the input is subjected to uncertainties —
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Finite Element Method
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Figure 1 Overview of the classical topology optimization procedure (adapted from [8]).

Computational Model
i i

Robust Design
Optimization

(Output variable)

Response metric

(Input variable)

Model parameters

Robustness

Robust
Design

Figure 2 General overview of the robust design optimization procedure.

that can be in material or geometrical properties, loadings, boundary conditions
etc. — and, therefore, the model response has a certain probability distribution.
This distribution is used to compute some kind of statistical response of the sys-
tem, which is conveniently used to update the model input, in order to reduce the
output uncertainty.

In this context, it is essential to understand the mathematical definition of ro-
bustness, i.e., the choice of the robustness measure that is generally expressed by
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the combination of statistical properties of the objective function. Several defini-
tions of measures of robustness have been proposed in literature [10, 11, 18, 47] and
the weighted sum of both the mean and the standard deviation of the objective
function is often considered. The tradeoff between these two statistical measures
gives rise to a final design that is less sensitive to parameters variations, i.e., a
kind of robust design.

3.3 Robust topology optimization

In order to increase the optimal design robustness, the concept of robust optimiza-
tion described in section 3.2 can be applied to TO. This possibility is addressed
in this paper where variabilities in the external loading acting on the structure of
interest are taken into account. Thus, the force vector and the compliance func-
tion become random objects, more precisely, a random vector F(θ) and a random
variable C(ρ, θ), both defined on the probability space (Θ,F , P ).

For the sake of computational implementation, these objects are parametrized
by a set of νrv suitable random variables that are lumped into the germ ξ(θ) =(
ξ1(θ), ξ2(θ), · · · , ξνrv (θ)

)
so that force vector and compliance can be expressed as

F(ξ) and C(ρ, ξ).
A straightforward measure of structural performance (robustness of the objec-

tive function) in RDO framework is given by the mean of the compliance µC(ρ,ξ).
However, the final design may still be sensitive to the fluctuation due to external
loading uncertainties and this may give rise to the need for a more robust design
[20]. Then, the standard deviation of the compliance σC(ρ,ξ) is also introduced

into the formulation of the structural performance measure C̃, so that it is a linear
combination between the mean and standard deviation of the random compliance
C(ρ, ξ). By combining these two statistics it is possible to improve the design by
minimizing the variability of the structural performance, satisfying the volume
constraint.

This procedure, called robust topology optimization (RTO), can be mathemat-
ically formulated as

min
ρ

C̃(ρ) = µC(ρ,ξ) + wσC(ρ,ξ), (38)

s.t. V (ρ) =
N∑
e=1

ρe |Ωe| ≤ vS ,

which depends on the weight w ≥ 0 and on the random displacement map U(ρ, ξ),
implicitly defined by the random equilibrium equation

K(ρ)U(ρ, ξ) = F(ξ). (39)

The RTO problem defined in (38) can be solved by considering non-intrusive
methods for stochastic computation. The basic idea of non-intrusive methods is
to use a set of deterministic model evaluations to construct an approximation of
the desired (random) output response. The deterministic evaluations are obtained
for a finite set of realizations of parameter ξ with the aid of a deterministic solver
(e.g. finite element code), that is used as a black box. Thus, non-intrusive meth-
ods offer a very simple way to propagate uncertainties in complex models, such
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as structural optimization, where only deterministic solvers are available. In this
study the focus is on two non-intrusive techniques, namely, MC simulation [30, 46]
and gPC expansion [63, 23].

3.4 Low-order statistics for compliance

Monte Carlo (MC) method is one of the simplest crude techniques for stochastic
simulation and may be used to construct mean-square consistent and unbiased
estimations (approximations) — see [30] for details — for µC = µC(ρ,ξ) and σC =
σC(ρ,ξ), respectively defined by

µ̂C =
1

νmc

νmc∑
n=1

Cn, (40)

and

σ̂C =

 1

νmc − 1

νmc∑
n=1

(Cn − µ̂C)2

1/2

, (41)

where Cn = C(ρ, ξn), ξn is the n-th realization of the germ ξ and νmc denotes the
number of MC realizations.

Despite its simplicity, the slow convergence rate of MC method (∼ 1/
√
νmc)

usually makes it a very expensive stochastic solver in terms of computational cost,
particularly for TO problems, where a large number of deterministic model reso-
lutions needs to be obtained to achieve an adequate response characterization. For
this reason, a gPC procedure for low-order statistics estimation is also considered
in this work.

Using the gPC approach, an spectral representation of the compliance function
can be written as

C(ρ, ξ) =
+∞∑
n=0

cn(ρ)ψn(ξ), (42)

in a way that, because of properties E {ψ0} = 1 and E {ψn} = 0, n ≥ 1, the mean
value of C(ρ, ξ) writes as

µC = E
{
C(ρ, ξ)

}
= c0(ρ), (43)

where an approximation for the PCE coefficient c0 is obtained from the linear
regression (26). This procedure induces a Gaussian quadrature estimation of µC ,
defined by the estimator

µ̂
′

C =

νgq∑
j=1

Wj Cj , (44)

where Cj = C(ρ, ξj) corresponds to the evaluation of the compliance at the Gauss

points and the quadrature weights Wj = Ψ†1j are given by the first line entries of

Ψ† = (ΨT Ψ)−1 ΨT , the pseudoinverse of the νgq × νpc regression matrix Ψ .
By definition, the standard deviation of compliance is written as

σC =

(
E
{
C(ρ, ξ)2

}
− E

{
C(ρ, ξ)

}2)1/2

, (45)
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so that a procedure similar to that used to construct the estimator of Eq.(44) can
be adopted now to propose

σ̂
′

C =

νgq∑
j=1

Wj C
2
j −

(
µ̂

′

C

)21/2

, (46)

as an estimator for σC .

The gPC-based estimators defined by Eqs.(44) and (46) provide a very accurate
and efficient framework for estimation of the compliance low-order statistics, that
demands a small number of deterministic model evaluations, once in practice νgq �
νmc.

3.5 Sensitivity analysis

The partial derivative of the objective function C̃, defined in the optimization
problem (38), with respect to the element density function ρe is given by

∂C̃

∂ρe
=
∂µC
∂ρe

+ w
∂σC
∂ρe

, (47)

where the partial derivatives on the right hand side can be approximated, via crude
MC, with the aid of the estimators

∂µC
∂ρe

≈ ∂̂µC
∂ρe

=
1

νmc

νmc∑
n=1

∂Cn
∂ρe

(48)

and

∂σC
∂ρe

≈ ∂̂σC
∂ρe

=
1

(νmc − 1) σ̂C


νmc∑
n=1

Cn
∂Cn
∂ρe

− νmc µ̂C ∂̂µC
∂ρe

 . (49)

However, from the point of view of computational cost, it is more efficient to
obtain these sensitivity coefficients using the gPC estimators, i.e.

∂µC
∂ρe

≈ ∂̂µC
∂ρe

′

=

νgq∑
j=1

Wj
∂Cj
∂ρe

(50)

and

∂σC
∂ρe

≈ ∂̂σC
∂ρe

′

=
1

σ̂
′
C


νgq∑
j=1

Wj Cj
∂Cj
∂ρe

− µ̂ ′

C
∂̂µC
∂ρe

′
 , (51)

obtained from Eqs.(44) and (46) by differentiation with respect to ρe.
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3.6 Algorithm for robust topology optimization

The results obtained from the TO algorithm, i.e., the compliance and sensitivities,
are used to compute statistical measures in a non-intrusive way. Therefore, the
RTO algorithm, for problems with uncertain loading, can be described as follows:

1. Topology Optimization Data: define finite element model, set optimizer and
underlying numerical and control parameters;

2. Stochastic Model: parametrize aleatory objects with a set of independent ran-
dom variables defined by the germ ξ. Choose an appropriate family of orthog-
onal polynomials, define weight factor w and gPC order ppc;

3. Objective Function
– for each germ realization ξn perform finite element analysis using Eq.(39)

and compute compliance sensitivities with Eq.(36);
– Compute gPC coefficients from Eq.(26);
– Compute statistical estimates for mean and standard deviation with aid of

Eqs.(44) and (46);
– Compute the sensitivity of the objective function from Eq.(47).

4. Constraint Function: compute volume constraint using Eq.(34) and its sensi-
tivity with Eq.(37);

5. Update the design variables ρ according to the optimizer. Repeat from step 3
until convergence is achieved;

A flowchart of the proposed RTO algorithm is depicted in Figure 3.

4 Numerical examples

The effectiveness of the proposed gPC RTO algorithm is addressed in this section
by means of a study that considers bidimensional mechanical systems subjected
to uncertain loads. The goal is to show that different statistical responses can be
obtained when using the proposed gPC RTO design algorithm and a non-robust
design strategy, where TO is done first (deterministically) and the propagation of
uncertainties is computed later, considering the deterministic optimized topology.

For the sake of accuracy verification, a reference crude Monte Carlo RTO so-
lution is employed. This comparison allows one the verify the accuracy of the
statistical measures obtained with the proposed gPC approach. The influence of
the weight factor in the robust design is also addressed, as well as the different
effects that are observed when a random load is treated as a random variable or a
random field.

For the examples presented in the following section, consistent units are used.

4.1 Cantilever beam design

This first example consists of a simple cantilever beam subjected to a pair of
vertical loads, with uncertain magnitudes, applied at the two right edge corners,
as illustrated in Figure 4(a). This problem has been studied by Wu et al.[61].

The vertical and horizontal dimensions of the structure are 30 and 60 units
of length, respectively. The structure is composed of an isotropic material with
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Figure 3 General flow chart of the gPC RTO integrated procedure.

(a) (b)

60

F
1

F
2

30

Figure 4 Cantilever beam structure: (a) original configuration, (b) non-robust TO design.

Young modulus E0 = 1 and Poisson ratio ν = 0.3. For the void material an elastic
modulus value equal to Emin = 10−9 is employed. The prescribed volume fraction
of material is set as 0.3, the filter radius as 1.5, the penalization factor 3, and the
design domain is discretized by means of a polygonal mesh with N = 7, 200 finite
elements. The nominal (deterministic) configuration for this problem adopts the
magnitude of the two vertical forces as F1 = F2 = 1, respectively.
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On the other hand, in the stochastic case, magnitudes of the forces are assumed
to be uncertain and modeled by independent random variables θ ∈ Θ 7→ F1(θ) ∈ R
and θ ∈ Θ 7→ F2(θ) ∈ R, both defined on a suitable probability space (Θ,F , P ).
For the sake of simplicity, but being consistent with the physics of the mechanical
problem, it is assumed that these two random variables are uniformly distributed
on the same positive support SuppF = [Fmin, Fmax] ⊂ (0,+∞). Three numerical
studies are conducted in this example, where SuppF is chosen as [Fmin, Fmax] =
[0.95, 1.05], [Fmin, Fmax] = [0.9, 1.1] and [Fmin, Fmax] = [0.8, 1.2]. Note that these
intervals correspond to symmetrical variabilities of up to 5%, 10% and 20% around
the mean values µF1

= µF2
= 1, respectively.

The non-robust TO, obtained using the PolyTop with MMA optimizer, is shown
in Figure 4(b). The lack of material on the left side of the cantilever is due to
the two forces of equal magnitudes applied in opposite directions. Therefore, the
stress in the cantilever is distributed only on the right side of the domain. However,
to avoid instability (displacements going to infinity), a minimum value of elastic
modulus Emin is used.

In order to perform the gPC RTO one needs to define the germ ξ = (F1, F2),
which is over the region [Fmin, Fmax]× [Fmin, Fmax] ⊂ (0,+∞)× (0,+∞), so that
νrv = 2. In this case the optimal base for gPC expansion is given by the Legendre
polynomials [63]. For the three different types of uniform distribution considered,
a weight factor w = 1 is employed, together with an expansion of order ppc = 5
(so that 1 + νpc = 21)(this value was heuristically chosen to ensure the stochastic
convergence.). A total number of νgq = 36 collocation points is used to generate
realizations of ξ = (F1, F2). To check the accuracy of the gPC RTO strategy, the
same problem is addressed using the MC simulation with νmc = 104 scenarios of
loading magnitudes, a reference result dubbed MC RTO.

(a) gPC RTO design

(b) MC RTO design

Figure 5 Optimized topologies for the cantilever beam using gPC RTO and MC RTO designs,
for uniform distributions over the intervals [Fmin, Fmax] = [0.95, 1.05] (left), [Fmin, Fmax] =
[0.9, 1.1] (center) and [Fmin, Fmax] = [0.8, 1.2] (right).
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In Figure 5 the reader can see the optimum topologies obtained by gPC RTO
(top) and MC RTO (bottom), for different support of the random variable F . The
topologies shown in Figure 5 are different from the deterministic counterparts in
Figure 4(b) – some extra members can be observed on the left side of the structure
– for different levels of uncertainties (length of SuppF ). As the level of uncertainty
increases, more members appear in the final topology. Finally, the robust designs
using MC simulation present equivalent topologies and statistical measures, which
demonstrates the accuracy of the proposed gPC RTO approach.

Table 1 compares statistical estimates for the compliance expected value µC
and standard deviation σC , in the cases of robust and non-robust design. Remem-
ber that, in this context, non-robust design means first optimizing the topology
via classical (deterministic) TO and then using MC simulation to propagate the
loading uncertainties through the mechanical system. A good agreement between
robust strategies based on gPC and MC is noted, as well as that the statistical
measures for the non-robust design tend to approach infinity, since there is no
connection between the left and right sides of the domain. It is also worth noting
that, while the MC RTO needs 104 evaluations of the compliance function, the
gPC RTO only needs 36 evaluations. This difference of three orders of magnitude
demonstrates the efficiency of the gPC RTO implementation.

Table 1 Low-order statistics of cantilever beam compliance for robust and non-robust TO
strategies.

SuppF gPC RTO MC RTO Non-robust TO

µC σC µC σC µC σC

[0.95, 1.05] 21.4 1.2 21.4 1.2 5.7 E7 6.7 E7
[0.90, 1.10] 23.5 2.9 23.4 2.8 2.3 E8 2.7 E8
[0.80, 1.20] 29.4 7.7 29.4 7.6 9.1 E8 1.1 E9

4.2 Michell type structure

In this second example RTO is performed on a simple Michell type structure
considering three loads, with uncertain directions, applied at the bottom edge of
the two dimensional system, as illustrated in Figure 6(a).

The length and height of the structure are equal to 120 and 50 units, respec-
tively. The design domain is discretized with a polygonal mesh with N = 12, 000
finite elements, and all other parameters are the same as in the first example. For
the deterministic case, magnitudes and directions of the three forces are defined
as F1 = 1, F2 = 2, F3 = 1, and α1 = α2 = α3 = −90o, respectively.

Meanwhile, on the stochastic case, the forces directions are modeled as the
independent and identically distributed random variables θ ∈ Θ 7→ A1(θ) ∈ R,
θ ∈ Θ 7→ A2(θ) ∈ R and θ ∈ Θ 7→ A3(θ) ∈ R. Three scenarios of probabilistic distri-
bution are analyzed: (i) Normal, (ii) Uniform, and (iii) Gumbel. For the Normal
and Gumbel distributions, mean values are assumed to be equal to the nominal val-
ues of α1, α2 and α3, with all the standard deviations equal to 10o. In the Uniform



Title Suppressed Due to Excessive Length 19

(a) (b)

120

F
1

F
3

50

F
2

4040

60

Figure 6 Michell type structure: (a) original configuration, (b) non-robust TO design.

case, the three supports are defined by the interval [Amin, Amax] = [−100o,−80o].
The probability density functions of these distributions are illustrated in Figure 7.
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Figure 7 Probability distributions for the loads angles: normal (left), uniform (center) and
Gumbel (right).

Now the germ is defined as ξ = (A1, A2, A3), thus νrv = 3, and the family of or-
thogonal polynomials (basis) is chosen according to the germ support. For simplic-
ity, Hermite polynomials are used in the case of Gaussian or Gumbel parameters,
while Legendre polynomials are the option when the germ is uniform distributed.
Employing gPC RTO with an expansion of order ppc = 5 (thus 1 + νpc = 56) total
number of νgq = 216 collocation points and and weight factor value w = 1, one
obtains the robust designs shown in Figure 8, where connections at fixed points are
created to balance the horizontal components of non-vertical forces. Note that the
non-robust design in Figure 6(b) only presents four bars connected at the forces
application points, no connection at the joints can be seen. This occurs because
the forces are always vertical. However, when gPC RTO design is used, there are
connections at the joints, because the angle variability induces horizontal force
components.

The statistical results of the robust design compared with the non-robust coun-
terpart can be appreciated in Figure 9 and Table 2, which show the compliance
probability densities and their low order statistics, respectively, for the different
distributions considered in the force angle. One can observe from these simulation
results that the range variability of compliance is reduced, which implies that the
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(a) Normal

(b) Uniform

(c) Gumbel

Figure 8 Optimized topologies for the Michell type structure using gPC RTO design, with
different probability distributions for load angle: (a) Normal, (b) Uniform and (c) Gumbel.

robust design is less sensitive to loading uncertainties than its non-robust counter-
part. As shown in Figure 8, the final topologies are symmetric for the normal and
uniform distributions but is asymmetric for the Gumbel distribution.

Table 2 Low-order statistics of the compliance for the Michell type structure using robust
and non-robust TO strategies.

distribution gPC RTO Non-robust TO

µC σC µC σC

Normal 251.6 6.0 314.2 113.3
Uniform 253.3 5.7 262.7 33.3
Gumbel 249.1 6.7 312.5 128.9

In the second analysis for this example, the influence of the weighting factor in
the robust optimization process is addressed. The aim is to minimize the variability
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Figure 9 Probability density function of the compliance for the Michell type structure using
non-robust and gPC RTO robust design, with different probability distributions for load angle:
(a) Normal, (b) Uniform and (c) Gumbel.
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(a) w = 0

(b) w = 1

(c) w = 2

(d) w = 3

Figure 10 Optimized topologies for the Michell type structure using gPC RTO strategy, for
different values of weight w and different uniform distributions for the angle: [−95o,−85o]
(left), [−100o,−80o] (middle) and [−110o,−70o] (right).

by increasing the value of w, because this factor is directly related to the standard
deviation term on the objective function.

Three different uniform distributions are considered for the random angle of the
force and their supports are respectively defined by the intervals [Amin, Amax] =
[−95o,−85o], [Amin, Amax] = [−100o,−80o] and
[Amin, Amax] = [−110o,−70o]. The gPC RTO design strategy is employed for
w ∈ {0, 1, 2, 3}, generating the optimal topologies shown in Figure 10. According
to Table 3, all the designs shown in Figure 10 present significant lower expected
compliance and standard deviation values when compared to the non-robust solu-
tion. The highest values of standard deviation are obtained using w = 0, since we
are minimizing only the expected compliance. For w > 0, both expected compli-
ance and its standard deviation contribute to the objective function and we can
observe that as the value of w increases, the standard deviation decreases. Based on
the numerical experiments presented in Table 3, we recommend the value w = 3,
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for practical use, because it leads to the best values of standard deviation with
only a slight change in the expected compliance values.

Table 3 Low-order statistics of the compliance for the Michell type structure using gPC RTO,
with different force angles distributions and different weight factors.

SuppA

[−95o,−85o] [−100o,−80o] [−110o,−70o]
w µC σC µC σC µC σC

gPC RTO 0 241.8 5.2 256.0 10.6 249.0 10.2
gPC RTO 1 247.2 4.3 253.3 5.7 249.2 6.4
gPC RTO 2 253.0 3.1 249.7 4.0 250.0 6.0
gPC RTO 3 248.9 2.4 247.0 2.9 250.1 5.6

Non-robust TO - 364.4 14.2 366.1 28.4 373.0 56.9

4.3 2D bridge structure

This last example corresponds to a simple bridge structure subjected to an uncer-
tain distributed loading at the top edge, as illustrated in Figure 11(a). The nominal
load is uniform throughout the structure, with magnitude per unit of length equal
to F = 1.

For the stochastic case, the load magnitude per unit of length in each point
is assumed to be a Gaussian random field (θ, x) ∈ Θ × [0, l] 7→ F (θ, x) ∈ R with
correlation function

KF (x, x′) = σF , (52)

such that the loads at any pair of points x, x′ are fully correlated. The mean
and standard deviation of the random field F (θ, x) are assumed as µF = 1 and
σF = 0.3, respectively.

For the optimization process, the prescribed volume fraction of material is set
as 0.3, the filter radius is set as 3, the penalization factor 3, and the design domain
is discretized with a polygonal mesh with N = 10, 000 finite elements. The non-
robust TO of the 2D bridge, performed using PolyTop with MMA optimizer, is
shown in Figure 11(b). Furthermore, the first two rows of finite elements on the top
of structure are fixed during the optimization process, to ensure that the bridge
remains attached to the loading conditions. Allowing the final results to be more
realistic. It is observed in Figure 11(b) that the non-robust design leads to a final
topology which is similar to the classical case of a 2D bridge under an uniformly
distributed load.

For the purpose of numerical computation, the random field F (θ, x) is dis-
cretized by means of ξ = (F1), a single Gaussian random variable for which low-
order statistics are the same as for the random field. The gPC RTO design is
obtained using an expansion of order ppc = 5 (with 1 + νpc = 6) and a total num-
ber of νgq = 6 collocation points for Hermite orthogonal polynomials, and weight
factor values w ∈ {0, 1, 2, 3}.
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Figure 11 2D Bridge structure: (a) original configuration, (b) non-robust RO design.

The final results are shown in Figure 12, where one can observe that some bars
connected at the bottom of the bridge are different from those of the non-robust
case in Figure 11(b). Moreover, as the value of w increases, the structure presents a
more robust physical form, which represents a consistent result, because the stan-
dard deviation of the compliance is being forced to be smaller. The corresponding
mean value and standard deviation of the compliance function, for the different
values of w employed, are given in Table 4.

Table 4 Low-order statistics of the compliance for a 2D bridge using gPC RTO and different
weight factors.

w µC σC

0 5.4443 E5 3.0666 E5
1 5.4481 E5 3.0657 E5
2 5.4462 E5 3.0646 E5
3 5.4455 E5 3.0642 E5

As a second analysis, the random load F (θ, x) is assumed to have the same
low-order statistics as before, but an exponentially decaying correlation function

KF (x, x′) = σF exp

(
−|x− x

′|
lcorr

)
, (53)
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Figure 12 Robust design for the 2D bridge structure with fully correlated distributed load,
for different values of weight w.

where lcorr is a correlation length for the random field. Note that, by this assump-
tion, the loads at any two points x, x′ in the 2D bridge are partially correlated.
If the correlation length is increased, a strong correlation is obtained between
the points x, x′, so that lcorr = ∞ implies a perfectly correlated random field
— the previous case where the field depends on a single random variable. On
the other hand, when lcorr = 0, the random field is completely uncorrelated —
many independent random variables are necessary for an accurate computational
representation. In order to avoid the two limit cases, lcorr = 120 is chosen.

In terms of computational representation for numerical calculations, the ran-
dom field F (θ, x) is discretized with the aid of Karhunen–Loève expansion de-
scribed in section 2.2. The number of terms in this expansion is chosen in a heuris-
tic way, seeking to satisfy the criterion presented in (16). A good compromise
between accuracy and computational efficiency is obtained with νkl = 7. There-
fore, the germ is ξ = (F1, F2, · · · , Fνrv ), a set of νrv = 7 independent Gaussian
random variables for which low-order statistics are the same as for the random
field. Then, for this case we use a total number of νgq = 279936 collocation points.

A comparison between non-robust and gPC RTO design, for w = 1 and the dif-
ferent types of distributed load considered, are shown in Figure 13. The difference
between the three obtained topologies is very clear, and can also be appreciated
in Table 5, which shows the low-order statistics of the compliance in all cases
analyzed.

This example clearly shows that the nature of the distributed load has a signifi-
cant effect on the RTO. Also from Table 5, it is possible to see that the compliance
low-order statistics for a 2D bridge under a distributed load, emulated by a par-
tially correlated random field, are smaller than those for a fully correlated field.
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Figure 13 Optimized topologies for the 2D bridge structure: (a) non-robust TO with fully
correlated load, (b) gPC RTO with fully correlated load, (c) gPC RTO with partially correlated
load.

Table 5 Low-order statistics of the compliance for a 2D bridge considering different design
scenarios.

Non-robust TO RTO full corr RTO partial corr
µC σC µC σC µC σC

5.449 E5 3.076 E5 5.448 E5 3.066 E5 2.361 E5 9.708 E4

5 Conclusions

In the present paper RTO problem has been formulated and solved by means
of an optimization procedure which integrates a classical TO algorithm with a
stochastic spectral expansion based on gPC. Monte Carlo simulation is used to
verify the accuracy and efficiency of the proposed methodology. This approach
is introduced to reduce the variability due to uncertain loadings applied to the
mechanical structure of interest. The objective function of the robust problem is
defined as the weighted sum of the mean and standard deviation of the compli-
ance, and it can be computed by considering a number of additional load cases.
This makes the RTO computationally tractable and accessible by any TO algo-
rithm. Furthermore, the gPC is compatible with RTO for computing the statis-
tical measures of the compliance. The numerical examples presented here show
a substantial benefit and exhibits topology changes within their design domains
compared with their deterministic counterpart. The optimal topology configura-
tions confirm that the uncertainty parameters might change the deterministically
obtained optimal topologies. The proposed methodology allows to obtain approx-
imate outcomes with a much lower computational cost than that associated with
Monte Carlo simulation, which makes it attractive, particularly in the context of
structural topology optimization. Moreover, when using random load fields, the
results show different topologies because the forces are correlated, i.e., each force
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depends on the other and therefore, their interactions with the structure have sig-
nificant effects on the robust design. The limitation of the gPC can be observed
when a large number of random variables is used to parametrize the stochastic
model, since in this case a substantial number of terms is necessary to construct
the expansion, and, consequently, the computational cost increases significantly
with the dimension. This is often referred to as the curse of dimensionality, and it
can be reduced using adaptive techniques such as the adaptive sparse grid.
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