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Abstract

This article considers the problem of nonparametric estimation of the regression operator r in a functional regression
model Y = r(x) + ε with a scalar response Y , a functional explanatory variable x, and a second order stationary
error process ε. We construct a local polynomial estimator of r together with its Fréchet derivatives from functional
data with correlated errors. The convergence in mean squared error of the constructed estimator is studied for both
short and long range dependent error processes. Simulation studies on the performance of the proposed estimator are
conducted, and applications to independent data and El Niño time series data are given.

Keywords: El Niño time series, Fréchet derivatives, Functional fixed-design data, Local polynomial estimation,
Nonparametric regression operator, Short and long memory processes.

1. Introduction

Data in the form of a collection of continuous function curves become increasingly common in practice. Accord-
ingly, the interest in functional data analysis (FDA) has been growing steadily over the past few decades. The books
[14, 25, 38, 39], and the overview paper [18] provide a general coverage of FDA theory and methodology. More
recent contributions to this field can be found in the book [2]. FDA-based statistical techniques find applications in
a wide range of areas such as environmental, medical, meteorological sciences and statistical control processes [40].
Interestingly, FDA techniques were even applied to problems of radon entry rate estimation [15] and identification of
abnormal nitrogen oxides emission levels [21].

In the finite-dimensional framework, there is a vast literature on local polynomial regression estimation under
the assumption of independent random errors. In this regard, asymptotic expressions for the bias and variance of
the corresponding estimators can be found in [20] and [41]. In the case of regression estimation with dependent
errors, local polynomial estimation is studied under mixing conditions in [34], association in [33], and (stationary)
short range dependence in [26] and [36]. For more general stationary error processes (correlated errors) and local
polynomial estimators based on repeated independent observations, the rates of convergence of mean squared errors
(MSE) and asymptotic distributions were obtained in [7].

In the infinite-dimensional framework, in the case of dependent data and random functional designs, consistent
estimators of regression operators with scalar responses under certain mixing conditions were obtained in [24]. There
are many practical situations in which functional designs are fixed and the errors are correlated. For functional
fixed designs, the asymptotic properties of the Nadaraya–Watson kernel estimator in terms of MSE consistency and
asymptotic normality were obtained in [9]. Local linear regression for functional data and scalar response with
independent errors was introduced in [5] and [13]. The MSE consistency of the local linear regression estimator when
the covariate takes values in a Hilbert space, namely L2 [0, 1], was derived in [5]. An easier computational expression
for the local estimator was constructed and its almost complete convergence, along with the corresponding rates, was
shown in [6]. A more general approach for constructing the local linear estimator was taken in [12], where a bound
on the MSE was also given. Other related problems such as conditional quantile regression or conditional distribution
estimation based on local linear methods can be found in [37] and [43].

Here, we extend these results to the local polynomial estimation framework and study the effect of short and long
memory error processes, as defined in [11], on the rate of convergence of the MSE. More precisely, we construct a
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truncated local polynomial estimator of the regression operator together with its Fréchet derivatives based on func-
tional data with correlated errors, and then establish the asymptotic behavior, including the rate of convergence, of the
corresponding MSE. The procedure proposed in this article for the estimation of Fréchet derivatives of the regression
operator is nonparametric. To the best of our knowledge, the only earlier work involving estimation of functional
derivatives is due to Hall et al. [29]. In the construction and analysis of the proposed estimators, they used the first
order derivative of the regression operator taken at the orthonormal eigenfunctions of the estimated covariance kernel.

The nonparametric k-nearest-neighbor (kNN) smoothing technique was used by Kara et al. [31] in the estimation
of a regression operator for iid samples. In their approach, the value of the parameter k is fixed but the smoothing
parameter, the bandwidth, is data dependent. It is of interest to see how the kNN method works out in the setting
of dependent samples. A nonparametric approach with data-driven smoothing parameters to the regression operator
estimation was also investigated in [19] for iid errors. It seems worthwhile to investigate possible extensions of the
approach of this article to a semi-parametric set-up, functional single index model as investigated in [1] and [28], and
also to multiple index functional regression models as in [17].

In nonparametric time series modeling, to overcome the difficulty of using an overwhelmingly high number of
past observations, Aneiros and Vieu [3, 4] proposed a functional approach, namely the semi-functional partial linear
regression (SFPLR) model. The work reported in this article may be extended to their semi-parametric situations,
when the response, explanatory variables, dependence of data, and covariates are properly identified or introduced.
That being said, SFPLR modeling is interesting in its own right and certainly a promising approach for the myriad of
real life functional time series data. The results of this article are potentially useful for linear and nonlinear inverse
problems in geophysical sciences [35] as well. In our discussion and analysis, short and long memory dependent
errors are assumed. It is worth noting that the idea of functional canonical correlation coefficients as in [30] provides
another way to characterize the dependence structure between and within functional samples. All of these possible
extensions or further studies are beyond the scope of this article and thus will not be discussed further. However,
readers are referred to [27] and [32] for recent surveys on the topic of the nonparametric FDA.

The organization of this paper is as follows. In Section 2, we state the functional regression model and define
the aforementioned nonparametric estimator. In Section 3, we set up the appropriate assumptions and give the MSE
convergence of the local estimator of the regression operator and its Fréchet derivatives along with the corresponding
rates. Sections 4 and 5 are devoted to various simulation studies for both short and long memory error processes
and also to an application to spectrometric data and El Niño time series data. Finally, a summary and some further
comments are given in Section 6, and the proofs of the main results are presented in the Appendix. Moreover, the
codes and data for reproducing the simulations and data analysis are included in the Online Supplement.

2. Estimation of the regression operator and its Fréchet derivatives

We consider a regression model with regression operator r defined, for all i ∈ {1, . . . , n}, by

Yi = r(xi) + εi,

where Y1, . . . ,Yn are observations of the response variable Y , x1, . . . , xn the explanatory data of functional fixed-design
type, and ε1, . . . , εn correlated random errors. The response Y is a real-valued random variable such that E |Y | < ∞.
The explanatory variable x is assumed to belong to a metric space (H, d) equipped with the metric d. The random error
ε is assumed to be a centered second order stationary process with autocovariance function defined, for all i, j ∈ Z, by
E(εiε j) = ρε(i − j), and unit variance, viz. E(ε2

i ) = ρε(0) = 1.
In this section, a local polynomial estimator of the regression operator r, together with its Fréchet derivatives, is

proposed. In the next section, we investigate its asymptotic performance for both short and long range dependence (or
memory) error processes. For this, we recall briefly the definitions of short and long memory processes.

For some stochastic processes, such as the popular autoregressive and moving average models, the autocovariance
function decays exponentially and is summable, viz.

+∞∑
τ=−∞

|ρε(τ)| < ∞.
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These random processes are called short range dependent (SRD) or short range correlated stochastic processes. Some
standard time series models, such as the popular Fractional ARIMA processes or Fractional Difference processes,
assume the non-summability of the autocovariance sequence {ρε(i) : i ∈ Z}, which captures the intuition underlying
long range dependence (LRD) or long range memory, viz.

+∞∑
τ=−∞

|ρε(τ)| = ∞.

For instance, a stationary process {εt : t ∈ Z} is a long memory process if for some real γ ∈ (0, 1], and some positive
constant C, its autocovariance function satisfies, as j→ ∞,

|ρε( j)| ∼ C | j|−γ; (1)

see [11] for more details.
Let U be an open subset of H. If f : U → R is p + 1 times differentiable on U, the Taylor expansion of f around

x ∈ U is

f (y) =

p∑
j=0

1
j!

D j f (x) d j(x, y) + Rp(y),

where D j f (x) denote the jth Fréchet derivative of f at x, with x and y being points of U and d the metric of H. The
remainder is given by

Rp(y) =
1
p!

∫ 1

0
Dp+1 f {x + td(x, y)} dp+1(x, y)(1 − t)pdt = o{dp(x, y)}

as d(x, y)→ 0; see [16] and [42] for more details.
When the observations Y1, . . . ,Yn are possibly dependent, our goal is to estimate the regression operator r and its

Fréchet derivatives r j = D jr. To this end, we introduce a functional truncated version of the local polynomial kernel
estimate. The estimators of r0(x), . . . , rp(x) based on the observations Y1, . . . ,Yn and the functional fixed design
x1, . . . , xn are obtained for x ∈ U, by minimizing the criterion

n∑
i=1

Yi −

p∑
j=0

β j(x)d j(xi, x)


2

Kh{d(xi, x)}

with Kh(·) = h−1K(·/h) and β j(x) = r j(x)/ j!, for all j ∈ {0, . . . , p}, where the kernel K is a real-valued function defined
on R+ with a compact support and h = h(n) is the bandwidth such that h ∈ R+ and h→ 0 as n→ ∞.

Let Yn = (Y1, . . . ,Yn)> and denote the canonical basis of Rp+1 by (ek)p
k=0, i.e., the (k + 1)st component of the

column vector ek is 1 and the rest of the components are zeros. Define the n × (p + 1) matrix Xn by

Xn =


1 d1(x1, x) . . . dp(x1, x)
...

... . . .
...

1 d1(xn, x) . . . dp(xn, x)


and the diagonal matrix Wn = diag [Kh{d(x1, x)}, . . . ,Kh{d(xn, x)}]. Then the estimators r̂ j(x) are given, for all j ∈
{0, . . . , p}, by

r̂ j(x) = j! e>j β̂n(x), (2)

where β̂n(x) = (X>n WnXn)−1X>n WnYn.
The truncated functional Nadaraya–Watson estimator of the regression operator r can be obtained by taking j = 0

and p = 0, viz.
r̂NW (x) =

∑
xi∈B(x,h)

Wi(x) Yi

where B(x, h) = {y : d(x, y) ≤ h} is the ball with center x and radius h in the metric space (H, d), and Wi(x) =

∆i(x)/
∑

xi′∈B(x,h) ∆i′ (x) with ∆i(x) = Kh{d(x, xi)}.
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3. Asymptotic performance

3.1. Notations and assumptions
The following notations and assumptions are required for the statements of the main results. The kernel K is a

function with compact support on [0, 1] and has a continuous derivative in (0, 1) such that

K(1) > 0 and K′(s) ≤ 0. (3)

Thus the kernel K is a decreasing function that gives more weight to the argument close to zero.
For all j ∈ {0, . . . , p} and a bandwidth h > 0, let

ϕ j(h) =
1
n

n∑
i=1

d j(xi, x)
h j 1B(x,h)(xi)

where 1D(x) stands for the indicator function of a set D in H, and for all k, ` ∈ {0, . . . , p} and s, s′ ∈ (0, 1],

µk,`(hs, hs′) =
1
n2

∑
1≤i, j≤n

i, j

dk(xi, x)
(hs)k

d`(x j, x)
(hs′)`

ρε(i − j)1B(x,hs)(xi)1B(x,hs′)(x j).

In the functional random design, the small ball probabilities are determined by the distribution function Fx(t) =

Pr{d(X, x) ≤ t}, and E{d j(X, x)} represents the jth moment of the random variable d(X, x). In the functional fixed
design, this is equivalent to the empirical jth moment frequency ϕ j(t). Likewise, µk,`(t, s) represents the empirical
(k, `)th joint weighted moment frequency. Then we assume that ϕ j and µk,` satisfy a certain regular variation condition
at the origin, i.e., as h→ 0,

τh
j (s) = ϕ j(hs)/ϕ j(h)→ τ j(s) (4)

and

ψh
k,`(s, s′) = µk,`(hs, hs′)/µk,`(h, h)→ ψk,`(s, s′). (5)

When Fréchet derivatives of the regression operator are estimated, assumptions (4) and (5) are natural extensions of
the assumptions considered in [9] and [22], which correspond to the case j = 0 of this article.

Finally, we list the following constants that are related to K, the τ js, and ψs; they will be used in the next section.
For ν ∈ {1, 2},

Cν
j = Kν(1) −

∫ 1

0
τ j(s)s j(Kν)′(s)ds,

C1,1
k,` = K2(1) − K(1)

∫ 1

0
ψk,`(s, 1)K′(s)ds − K(1)

∫ 1

0
ψk,`(1, s)K′(s)ds +

∫ 1

0

∫ 1

0
ψk,`(s, t)K′(s)K′(t)dsdt. (6)

3.2. Asymptotic results
For the asymptotic expressions of the bias and the variance of the local polynomial estimators, we have the

following results.

Theorem 1. Assume that the regression operator r is p + 1 times continuously differentiable around x. If assumptions
(3) and (4) are satisfied, then for all j ∈ {0, . . . , p}, we have

E{r̂ j(x)} − r j(x) = j!
rp+1(x)
(p + 1)!

hp+1− j e>j Σ
−1
h µ̃h{1 + o(1)},

where Σh = (ϕk+`(h)C1
k+`)k,`∈{0,...,p} is a (p + 1) × (p + 1) matrix, µ̃h = (ϕp+1(h)C1

p+1, . . . , ϕ2p+1(h)C1
2p+1)> is a column

vector of size p + 1, and the constants C1
j are as in (6).
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Theorem 2. Assume that the regression operator r is p + 1 times continuously differentiable around x. If assumptions
(3), (4), and (5) are satisfied, then for all j ∈ {0, . . . , p}, we have

var{̂r j(x)} =
1
n

e>j H−1Σ−1
h (Σ(2)

h + nΣ(1,1)
h )Σ−1

h H−1e j{1 + o(1)},

where H = diag(1, h, . . . , hp), the matrices Σ(2)
h = (ϕk+`(h)C2

k+`)k,`∈{0,...,p} and Σ(1,1)
h = (µk,`(h, h)C1,1

k,` )k,`∈{0,...,p} are of
size (p + 1) × (p + 1), and the constants C2

j and C1,1
k,` are as in (6).

We can obtain simpler expressions of the asymptotic bias and variance terms under some assumptions on the
empirical frequencies.

Corollary 1. Assume that there exist some positive constants α0, . . . , αp and γk,`, for all k, ` ∈ {0, . . . , p} such that, as
h→ 0, ϕ j(h)/ϕ0(h)→ α j and µk,`(h, h)/µ0,0(h, h)→ γk,`, then under assumptions (3), (4), and (5), we have

E{r̂ j(x)} − r j(x) = j!
rp+1(x)
(p + 1)!

hp+1− j e>j M−1µ{1 + o(1)}

and

var{̂r j(x)} =
1

nh2 jϕ0(h)
e>j M−1M(2)M−1e j{1 + o(1)} +

µ0,0(h, h)
h2 jϕ2

0(h)
e>j M−1M(1,1)M−1e j{1 + o(1)},

where µ = (αp+1C1
p+1, . . . , α2p+1C1

2p+1)> is a column vector of size p + 1, M = (αk+`C1
k+`)k,`∈{0,...,p}, M(2) = (αk+`

C2
k+`)k,`∈{0,...,p}, and M(1,1) = (γk,` C1,1

k,` )k,`∈{0,...,p} are matrices of size (p + 1) × (p + 1).

Remark 1. The asymptotic MSE of the Nadaraya–Watson estimator r̂NW can be deduced from Theorems 1 and 2 by
taking j = 0 and p = 0 (local constant)

MSE(r̂NW ) = O(h2) +
1

nϕ0(h)
C2

0

(C1
0)2

+
µ0,0(h, h)
ϕ2

0(h)

C1,1
0,0

(C1
0)2
{1 + o(1)},

where ϕ0(h) is the empirical frequency of curves belonging to the closed ball of center x and radius h. In this case, the
dominant term in the variance is of order O{µ0,0(h)/ϕ2

0(h)} for a long memory error process, and O[1/{nϕ0(h)}] for a
short memory error process.

We also deduce from Theorems 1, 2 and Corollary 1, the corresponding rates of convergence of the local estimator
of the regression operator and its Fréchet derivatives when the errors are iid.

Corollary 2. If Y1, . . . ,Yn (or ε1, . . . , εn) are independent and identically distributed, then under assumptions (3), (4),
and (5), and if nh2 jϕ0(h)→ ∞ as n→ ∞, we have

MSE{̂r j(x)} = O(h2(p+1− j)) +
1

nh2 jϕ0(h)
e>j M−1M(2)M−1e j{1 + o(1)}.

In the case of long and short memory error processes, we deduce the following rates of convergence of the local
estimator of r and its Fréchet derivatives.

Corollary 3. In the case of a long memory, under Assumptions (1), (3), (4), and (5) we have that if {nϕ0(h)}γh2 j → ∞

as n→ ∞, then

MSE{̂r j(x)} = O(h2(p+1− j)) + O

[
1

{nϕ0(h)}γh2 j

]
.

Corollary 4. In the case of a short memory, under Assumptions (3), (4), and (5) we have that if nϕ0(h)h2 j → ∞ as
n→ ∞, then

MSE{̂r j(x)} = O(h2(p+1− j)) + O

{
1

nϕ0(h)h2 j

}
.
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It should be noted that, as in the finite-dimensional framework, the performance in terms of the rate of convergence
of the MSE declines when higher Fréchet derivatives of the regression operator are estimated. The bias term is of
smaller order for higher-order polynomial approximation. The rate of convergence of the variance does not depend
on the order p and hence can only be affected by the order of approximation through the asymptotic constant.

It can also be observed from these results that if the local polynomials are used for estimating any order Fréchet
derivative r1, . . . , rp, the rate of convergence coming from the variance component is lower in the case of the long
memory error process than in the case of the short memory error process.

4. Simulation studies

This section gives some simulations which show the advantage of using the local polynomial estimates of the
regression operator r in the case of the functional fixed design model with correlated errors. To this end, we simulate
two types of smooth curves: parabolic curves and sinusoidal curves. A sample of 100 curves of each type is plotted
in Figure 1.

For both cases, we generate different curves of sample size n = 200; each curve is discretized with 100 equidistant
values in [0, 1]. The response variable is obtained from the model defined, for all k ∈ {1, . . . , n}, by

yk = r(xk) + εk.

Recall that the error process ε is a second order stationary process. As a short memory process, we consider an
Ornstein–Uhlenbeck process (OU) which satisfies the stochastic differential equation

dεt = (θ1 − θ2 εt) dt + θ3 dWt,

where θ1, θ2 and θ3 are three deterministic parameters and Wt denotes the Wiener process. Here, we take θ1 = 0,
θ2 = 0.75 and θ3 = 0.5. For a long memory error process, we use an autoregressive fractionally integrated moving
average ARFIMA(p, d, q) with parameters p = q = 0 and fractional differencing parameter d = 0.3.

The standard deviation σε of the error process is controlled by considering various values of the Signal-to-Noise
Ratio (SNR), namely: 2, 3, 5, 10 and 20, where

SNR =
σ2

r

σ2
ε

=
1

nσ2
ε

n∑
k=1

{r(xk) − r(x)}2

and r(x) denotes the average of the r(xk)s.
Our main goal here is to compare the performance of the following estimators of the regression operator r:

a) the Nadaraya–Watson (NW) estimator obtained for j = 0 and p = 0;

b) the linear estimator obtained for j = 0 and p = 1;

c) the quadratic estimator obtained for j = 0 and p = 2.

Fig. 1. A sample of 100 curves of parabolic and sinusoidal curves.
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The three estimators are constructed from the Epanechnikov kernel. The explanatory variable x belongs to the
metric space L2 [0, 1] equipped with the metric d: for any two curves xk and xk′ ,

d(xk, xk′ ) =

√∫ 1

0
{xk(t) − xk′ (t)}2 dt.

The selection of a proper smoothing parameter (bandwidth) is a crucial step for the estimation of the regression
operator. We use a local bandwidth choice which is known to outperform the global one; see [8]. The method for
selecting the bandwidth h at the curve x consists of choosing ĥx to minimize, over a particular subset Hn of smoothing
parameters to be specified, the local cross-validation criterion

LCVx(h) =
1
n

n∑
i=1

{Yi − r̂i
h(xi)}2 Wn,x(xi),

where r̂i
h is the leave-one-curve-out estimate of r. The locally selected bandwidth is

ĥx = arg min
h∈Hn

LCVx(h).

We take, for all i ∈ {1, . . . , n}, the local weights

Wn,x(xi) =

{
1 if d(xi, x) < h,
0 otherwise.

In practice, one replaces the minimization of LCVx over the infinite set (0,∞) (i.e., h > 0) with a minimization
problem over a finite set. To this end, we consider the local bandwidth hk(x) such that the ball centered at x of
radius hk(x) contains exactly k neighbors (i.e., k curves around x). As a direct consequence, we have for all x ∈ H,
W1,x(xi) + · · · + Wn,x(xi) = k when h = hk(x). In this way, we can look for the optimal local bandwidth among those
which consider respectively one neighbor, two neighbors, etc. The optimal retained number kopt of neighbors allows
to build the optimal local bandwidths hkopt (x) at any x ∈ H. Finally, the performance of an estimator r̂ is evaluated by
computing the relative mean squared error, viz.

RMSE(r̂) =

n∑
k=1

{yk − r̂(xk)}2/
n∑

k=1

(yk − y)2.

4.1. Parabolic curves and linear operator

We first generate 200 parabolic smooth curves by setting, for all k ∈ {1, . . . , 200} and t ∈ [0, 1], xk(t) = kt2. We
take the following linear regression operator

r(x) =

∫ 1

0
x(t) dt.

Figure 2 gives the plot of the yks versus the r(xk)s for the two error processes when SNR = 10. The simulation
results are summarized in Table 1. The values of RMSE of each estimator increase when the SNR decreases. It appears
that our estimators (linear and quadratic) outperforms the Nadaraya–Watson estimator regardless of the type of error
process and the value of SNR that are being used. For instance, when SNR = 10, there is a reduction of the RMSE,
26% for OU and 33% for ARFIMA (respectively 56% for OU and 54% for ARFIMA), of the local linear estimator
(respectively the local quadratic estimator) over the NW estimator. Lastly, Figures 3–4 give a graphical comparison
by displaying the estimated responses in terms of the observed responses for the two types of error processes when
SNR = 10.
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Table 1
Parabolic curves: RMSE of each estimator in terms of error processes, ARFIMA and OU, for different values of SNR.

Error Process SNR NW Linear Quadratic
20 0.00162 0.00114 0.00063
10 0.00310 0.00230 0.00136

OU 5 0.00604 0.00471 0.00294
3 0.00998 0.00797 0.00523
2 0.01488 0.01213 0.00814

20 0.02805 0.01926 0.01310
10 0.05581 0.03729 0.02569

ARFIMA 5 0.10551 0.06778 0.04731
3 0.15977 0.09971 0.07024
2 0.21188 0.13002 0.09211

Fig. 2. Parabolic curves: yks versus r(xk)s with SNR = 10.

Fig. 3. Parabolic curves: SNR = 10, OU error process: yks versus their estimations.

4.2. Sinusoidal curves and nonlinear operator

The second simulation study consists in creating a set of 200 sinusoidal smooth curves by setting, for all k ∈
{1, . . . , 200} and t ∈ [0, 1], xk(t) =

√
k sin{4(k − t)}. We take the following nonlinear regression operator:

r(x) =

∫ 1

0

dt
1 + x2(t)

.

Figure 5 gives the plot of the yks versus the r(xk)s for the two error processes.
Once again, the simulation results summarized in Table 2 show the superiority of the local linear and quadratic

estimators over the Nadaraya–Watson estimator. For instance, when SNR = 10 there is a significant reduction of the
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Fig. 4. Parabolic curves: SNR = 10, ARFIMA error process: yks versus their estimations.

RMSE, 81% for OU and 51% for ARFIMA (respectively 90% for OU and 57% for ARFIMA), of the local linear
estimator (respectively the local quadratic estimator) over the NW estimator. As in the parabolic curves situation, the
performance of the estimators is affected by the nature of the error process. To illustrate this point, we displayed in
Figures 6–7 the observed responses in terms of their estimations when SNR = 10. Moreover, it seems from these
figures that the linear and the quadratic estimators are more robust with respect to some high values (outliers) than the
classical NW estimator. Finally, The shape of the curves has an impact on the quality of the estimation. The estimates
obtained are less efficient than those of parabolic curves.

Table 2
Sinusoidal curves: RMSE of each estimator in terms of error processes, ARFIMA and OU, for different values of SNR.

Error Process SNR NW Linear Quadratic
20 0.10374 0.01430 0.01016
10 0.11012 0.02055 0.01147

OU 5 0.12091 0.03200 0.01763
3 0.13366 0.04515 0.02892
2 0.14819 0.06169 0.04375

20 0.12086 0.04064 0.03324
10 0.15040 0.07399 0.06397

ARFIMA 5 0.20712 0.13691 0.11923
3 0.27356 0.20925 0.18117
2 0.34200 0.28051 0.24283

Fig. 5. Sinusoidal curves: yks versus r(xk)s with SNR = 10.
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Fig. 6. Sinusoidal curves: SNR = 10, OU error process: yks versus their estimations.

Fig. 7. Sinusoidal curves: SNR = 10, ARFIMA error process: yks versus their estimations.

5. Application to real data

This section aims to confirm the superiority of the local linear and quadratic estimators over the (local constant)
Nadaraya–Watson one using two well-known functional data sets: the spectrometric curves (case of independent
errors) and El Niño time series (case of dependent errors).

5.1. Spectrometric data

For the ith unit among 215 pieces of finely chopped meat, we observe one spectrometric curve xi which corre-
sponds to the absorbency measured at 100 wavelengths, and its fat content yi is obtained by an analytical chemical
process.

We also compare the performance of the three estimators by computing the relative mean squared errors of the
215 estimated values ŷi. The corresponding results are shown in Table 3. Furthermore, we compare the estimation
performance of the three estimators constructed from the semi-metric based on the second derivative because of the
smoothness of the spectrometric curves; see Figure 8.

When the L2 metric is used, there is an important gain of 74% (respectively 68%) in RMSE of linear estimator
(respectively quadratic estimator) compared to the NW one. The use of the semi-metric based on the second derivative

Table 3
Spectrometric data: RMSE of each estimator with L2 metric and semi-metric based on second derivative.

Distance NW Linear Quadratic
L2 0.24886 0.06371 0.07866

Second derivative 0.01292 0.00659 0.00635

10



Fig. 8. The spectrometric curves.

significantly improves the quality of the estimation of each estimator, but the linear and quadratic estimators outper-
form the NW estimator. Moreover, it is seen that for this data set, there is no need to use a higher-order approximation
since the local linear estimator already has a very good performance. All these facts are illustrated in Figure 9, where
the estimated fat values of each estimator are plotted versus the observed ones with respectively L2 metric and second
derivative semi-metric.

5.2. El Niño data

The second application concerns the El Niño time series which gives monthly sea surface temperatures over 54
years, from June, 1950 to May, 2004. This series was considered by [23] for dependent functional data. The data are
recorded as a sequence of 648 real values as follows.

Fig. 9. Spectrometric data: Estimated versus observed fat values for the three estimators with L2 metric (top panels) and second derivative semi-
metric (bottom panels).
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Let Z(1), . . . ,Z(648) be the El Niño time series. Then as in [23], we can construct subsequences by setting
zi(t) = Z{12(i − 1) + t} for all t ∈ {1, . . . , 12} and i ∈ {1, . . . , 54}. Because the climatic phenomenon is changing
continuously over time, it is natural to consider each annual curve as a continuous curve {zi(t) : t ∈ [0; 12)} observed
at 12 discretized points. Therefore, this time series can be viewed as a sample of 54 dependent functional data.

In order to study the performance of our estimators we will ignore the 54th year and will predict it from the 53
previous ones. That is, for all i ∈ {1, . . . , 52} and any fixed δ ∈ {1, . . . , 12}, we take Yi(δ) = zi+1(δ). In this way, we
build a sample of 52 dependent pairs (Y1(δ), z1), . . . , (Y52(δ), z52) where the Yi(δ)s are real-valued random variables
and the zis are functional data.

Our main goal here is to predict, for each of the 12 months, the sea surface temperature of the 54th year by means
of the Niño data of the 53 previous years. The corresponding estimates based on L2 metric are numerically illustrated
by computing the mean squared error

12∑
δ=1

{ŷ53(δ) − y53}
2

over the 12 estimated temperatures. They are as follows:

NW Linear Quadratic
0.233 0.617 2.624

While the performance of the local linear estimate is good, there is no real improvement of these local polynomial
estimates over the classical estimates for prediction purposes. Moreover, it is seen for this data set that the higher-
order approximation does not bring a major improvement over the local constant or linear estimates. This may be due
to the fact that the bandwidths used in the three local estimates, local constant (p = 0), linear (p = 1) and quadratic
(p = 2) are very different and this has a significant effect on the bias and the variance. Besides, the local polynomial
estimate depends very much on the inverse of a matrix and this may be subject to high numerical instability when the
sample size n and the order p increase.

Other semi-metrics could be used, such as the one based on principal component analysis. However, the main
goal here is not really the choice of the semi-metric but a comparison in terms of performance of the three estimators
corresponding to p ∈ {0, 1, 2}.

6. Further comments

We established some asymptotic results for estimating the regression operator and its Fréchet derivatives from a
polynomial approximation of any order in a Banach space equipped with a metric. We showed how these asymptotic
performances are affected by the order of the local polynomial estimation. When the curves live in a semi-metric
space with a semi-metric based on the derivatives of the curves, namely for every integer ` ≥ 2,√∫ {

x(`)
k (t) − x(`)

k′ (t)
}2

dt,

we conducted simulations studies with ` = 2 using the same type of curves and regression operators and arrived at
the same conclusions as in the metric space considered in Section 4 (` = 0). However, the theoretical results in this
work cannot be generalized to a semi-metric space because the polynomial expansion of the regression operator is
not available. The case with random designs and correlated errors involves more technical difficulties and should be
treated separately in possible further work. For instance, we can refer to [10] when the Nadaraya–Watson estimator of
r is used. Extensions of this work to semi-parametric functional models could also be considered in future research.

Appendix

In the following proofs, we will use the fact that from assumptions (3), (4) and (5), for any ν ∈ {1, 2} and as h→ 0,

Cν
j(h) = Kν(1) −

∫ 1

0
τh

j (s)s j(Kν)′(s)ds → Cν
j
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and

C1,1
k,` (h) = K2(1) − K(1)

∫ 1

0
ψk,`(hs, h)K′(s)ds

− K(1)
∫ 1

0
ψk,`(h, hs)K′(s)ds +

∫ 1

0

∫ 1

0
ψk,`(hs, ht)K′(s)K′(t)dsdt → C1,1

k,` ,

where Cν
j and C1,1

k,` are as in (6).

Proof of Theorem 1. Write rn = (r(x1), . . . , r(xn))> and define the (p + 1)× (p + 1) matrix Sn = X>n WnXn with (k, `)th
element given by

sk+` =

n∑
i=1

dk+`(xi, x)Kh{d(xi, x)}.

It follows from the definition of the estimator (2) that E{β̂n(x)} = S−1
n X>n Wnrn. The Taylor expansion of r(xi) up to

order p + 1 yields

r(xi) = r(x) + d(xi, x)r1(x) + · · · +
dp+1(xi, x)
(p + 1)!

rp+1(x) + o{dp+1(xi, x)}

and thus

rn = Xnβ(x) + {βp+1 + o(1)}


dp+1(x1, x)

...
dp+1(xn, x)

 .
As a result, the bias in the estimation of β(x) is

E{β̂n(x)} − β(x) = {1 + o(1)}βp+1S−1
n cn,

where cn = (sp+1, . . . , s2p+1)>. We approximate the elements of the matrix Sn as follows.
For each i ∈ Dx(h), we have

Kh{d(xi, x)} = K(1)1B(x,h)(xi) −
∫ 1

0
1B(x,hs)(xi)K′(s)ds.

Then

sk+` = K(1)nhk+`ϕk+`(h) − nhk+`

∫ 1

0
ϕk+`(hs)sk+`K′(s)ds = nhk+`ϕk+`(h)

{
K(1) −

∫ 1

0
τh

k+`(s)sk+`K′(s)ds
}
.

From assumption (4) with ν = 1, we then have, for all k, ` ∈ {0, . . . , p},

sk+` = nhk+`ϕk+`(h)C1
k+`(h){1 + o(1)}.

It follows that Sn = n{1 + o(1)}HΣhH. Now,

cn =


sp+1
...

s2p+1

 =


nhp+1ϕp+1(h)C1

p+1(h){1 + o(1)}
...

nh2p+1ϕ2p+1(h)C1
2p+1(h){1 + o(1)}

 = nhp+1Hµ̃h{1 + o(1)},

so that S−1
n cn = hp+1H−1Σ−1

h µ̃h{1 + o(1)} and hence

E{β̂n(x)} − β(x) = βp+1hp+1H−1Σ−1
h µ̃h{1 + o(1)},

from which the asymptotic bias expression of r̂ j(x), for all j ∈ {0, . . . , p}, in Theorem 1 is obtained. �
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Proof of Theorem 2. Define the n × n matrix Vn = {ρε(i − j)} and the (p + 1) × (p + 1) matrix S∗n = X>n WnVnWnXn.
Noting that var(Yn) = Vn, we can see from the definition of the estimator (2) that

var{β̂n(x)} = S−1
n S∗nS−1

n ,

where the (k, `)th element of the matrix S∗n is

s∗k,` =

n∑
i=1

n∑
j=1

dk(xi, x)d`(x j, x)∆i(x)∆ j(x)ρε(i − j)

=

n∑
i=1

dk+`(xi, x)∆2
i (x)ρε(0) +

∑
1≤i, j≤n

i, j

dk(xi, x)d`(x j, x)∆i(x)∆ j(x)ρε(i − j).

For the first term, following the same steps as for deriving the asymptotic approximation of the elements sk+` of the
matrix Sn, we obtain

n∑
i=1

dk+`(xi, x)∆2
i (x)ρε(0) = nhk+`ϕk+`(h)C2

k+`(h)ρε(0){1 + o(1)}.

For the second term, let Dx(h) = {i : d(x, xi) ≤ h} = {i : xi ∈ B(x, h)}. Then using the assumption (5), we deduce
that ∑

1≤i, j≤n
i, j

dk(xi, x)d`(x j, x)∆i(x)∆ j(x)ρε(i − j) = K2(1)
∑

i, j∈Dx (h)
i, j

dk(xi, x)d`(x j, x)ρε(i − j)

− K(1)
∫ 1

0
dsK′(s)

∑
i∈Dx (h)∩Dx (hs)

j∈Dx (h)
i, j

dk(xi, x)d`(x j, x)ρε(i − j)

− K(1)
∫ 1

0
dsK′(s)

∑
j∈Dx (h)∩Dx (hs)

i∈Dx (h)
i, j

dk(xi, x)d`(x j, x)ρε(i − j)

+

∫ 1

0

∫ 1

0
dsds′K′(s)K′(s′)

∑
i, j∈Dx (hs)

i, j

dk(xi, x)d`(x j, x)ρε(i − j).

Given that Dx(hs) ⊂ Dx(h) for all s ∈ [0, 1], we have Dx(h) ∩ Dx(hs) = Dx(hs), it follows that∑
1≤i, j≤n

i, j

dk(xi, x)d`(x j, x)∆i(x)∆ j(x)ρε(i − j) = K2(1)n2hk+`µk,`(h, h) − K(1)n2hk+`

∫ 1

0
µk,`(hs, h)K′(s)ds

− K(1)n2hk+`

∫ 1

0
µk,`(h, hs)K′(s)ds + n2hk+`

∫ 1

0

∫ 1

0
µk,`(hs, ht)K′(s)K′(t)dsdt

= n2hk+`µk,`(h, h){K2(1) − K(1)
∫ 1

0
ψk,`(s, 1)K′(s)ds

− K(1)
∫ 1

0
ψk,`(1, s)K′(s)ds +

∫ 1

0

∫ 1

0
ψk,`(s, t)K′(s)dsK′(t)dt}{1 + o(1)}

= n2hk+`µk,`(h, h)C1,1
k,` (h){1 + o(1)}.

Therefore, combining the two asymptotic expressions, we have

s∗k,` = nhk+`ϕk+`(h)C2
k+`(h)ρε(0){1 + o(1)} + n2hk+`µk,`(h, h)C1,1

k,` (h){1 + o(1)}.

It follows that
S∗n = nHΣ(2)

h Hρε(0){1 + o(1)} + n2HΣ(1,1)
h H{1 + o(1)}
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and

var{β̂(x)} = S−1
n S∗nS−1

n

=
1
n

H−1Σ−1
h H−1

{
nHΣ(2)

h Hρε(0) + n2HΣ(1,1)
h H

} 1
n

H−1Σ−1
h H−1{1 + o(1)}

=
1
n

H−1Σ−1
h

{
Σ

(2)
h ρε(0) + nΣ(1,1)

h

}
Σ−1

h H−1{1 + o(1)}.

This concludes the argument. �

Proof of Corollary 3. Let nx(h) = card {i : xi ∈ B(x, h)} = card {Dx(h)}, so that ϕ0(h) = nx(h)/n. Then under
assumptions (1), (3), (4), and (5), we have, for some constant C,∣∣∣µ0,0(h, h)

∣∣∣ =
1
n2

∑
1≤i, j≤n

i, j

|ρε(i − j)| 1B(x,h)(xi)1B(x,h)(x j)

≤
1
n2

∑
i, j∈Dx (h)

i, j

C |i − j|−γ ≤
2C
n2

∑
i, j∈Dx (h)

i< j

|i − j|−γ ≤
2C
n2

nx(h)∑
k=1

{nx(h) − k}k−γ

≤
2Cnx(h)2−γ

n2 ×
1

nx(h)

nx(h)∑
k=1

{
1 −

k
nx(h)

}{
k

nx(h)

}−γ
�

nx(h)2−γ

n2

∫ 1

0
(1 − u)u−γdu �

ϕ0(h)2

{nϕ0(h)}γ

where the notation an � bn is used to indicate that an = O(bn) or bn = O(an) as n → ∞. Under the assumptions of
Corollary 1, we deduce that

var{̂r j(x)} = O

{
1

nh2 jϕ0(h)

}
+ O

 µ0,0(h)
h2 jϕ2

0(h)

 = O

{
1

nh2 jϕ0(h)

}
+ O

[
1

h2 j{nϕ0(h)}γ

]
= O

[
1

h2 j{nϕ0(h)}γ

]
since nϕ0(h)→ ∞ as n→ ∞ and γ ∈ (0, 1). �

Proof of Corollary 4. From assumptions (3), (4) and (5) and using the same notations as in the previous proof, we
have, for some constant C,

∣∣∣µ0,0(h, h)
∣∣∣ =

1
n2

∑
1≤i, j≤n

i, j

|ρε(i − j)| 1B(x,h)(xi)1B(x,h)(x j) ≤
2
n2

∑
i, j∈Dx (h)

i≤ j

|ρε(i − j)| ≤
2
n2

nx(h)∑
k=1

{nx(h) − k} |ρε(k)| ≤
nx(h)

n2

n∑
k=1

|ρε(k)| .

Given that the error process is of short memory, we have
∑n

k=1 |ρε(k)| = O(1). It then follows that

µ0,0(h, h) = O{nx(h)/n2} = O{n−1ϕ0(h)}.

Therefore,

var{̂r j(x)} = O

{
1

nh2 jϕ0(h)

}
,

which concludes the argument. �
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