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November 19, 2018

Abstract

We consider the over-time version of the Max-Min Fair Allo-
cation problem. Given a time horizon t = 1, 2, . . . , T , with at each
time t a set of demands and a set of available resources that may
change over the time defining instance It, we seek a sequence of so-
lutions S1, S2, . . . , ST that (1) are near-optimal at each time t, and
(2) as stable as possible (inducing small modification costs). We focus
on the impact of the knowledge of the future on the quality and the
stability of the returned solutions by distinguishing three settings: the
off-line setting where the whole set of instances through the time hori-
zon is known in advance, the on-line setting where no future instance
is known, and the k-lookahead setting where at time t, the instances
at times t+ 1, . . . , t+ k are known. We first consider the case without
restrictions where the set of resources and the set of agents are the
same for all instances and where every resource can be allocated to
any agent. For the off-line setting, we show that the over-time version
of the problem is much harder than the static one, since it becomes
NP-hard even for families of instances for which the static problem
is trivial. Then, we provide a ρ

ρ+1 -approximation algorithm for the
off-line setting using as subroutine a ρ-approximation algorithm for
the static version. We also give a ρ

ρ+1 -competitive algorithm for the
online setting using also as subroutine a ρ-approximation algorithm
for the static version. Furthermore, for the case with restrictions, we
show that in the off-line setting it is possible to get a polynomial-time
algorithm with the same approximation ratio as in the case without
restrictions. For the online setting, we prove that it is not possible to
find an online algorithm with bounded competitive ratio. For the 1-
lookahead setting however, we give a ρ

2(2ρ+1) -approximation algorithm

using as subroutine a ρ-approximation algorithm for the static version.
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1 Introduction

Resource allocation problems have been intensively studied in the past [Lus12].
In such a problem, the aim is to find an allocation of a set of limited resources
to a set of competing agents in a way to optimize a given objective function
subject to a set of constraints (availability of resources, level of demands,
compatibility between agents and resources). The study of a large variety of
combinatorial optimization problems, including facility location, matching,
scheduling problems etc..., has been motivated by applications in logistics,
computer and telecommunication networks, air traffic management, energy
management etc... A special focus on resource allocation problems has been
given in multiagent settings, considering a fairness criterion/objective in the
allocation [BLFL05, GP10, BCM16]. Typically, these problems are studied
in the case where the instance is static, while in many applications the in-
stance changes over time. Take for example an energy company producing
electricity on a set of reactors. The electricity demands evolve over time, so
the company has to decide a production plan, all along a period of time, in
order (1) to satisfy the demand at every time, (2) to minimize the produc-
tion cost at each time, and (3) to minimize the cost of turning on/off the
reactors. The reader is refered to [LVB99, JMD05] for other applications in
dynamic contexts. It is only recently that resource allocation problems start
to be studied in such a dynamic context [EMS14, GTW14].

More formally, we are given a time horizon: t = 1, 2, . . . , T where at
each time t we have a new instance It of the considered resource allocation
problem. It is tempting to try to solve the problem for every new instance.
However in most practical applications, there is a non-negligible transition
cost for adopting modifications of the current allocation (solution). Hence,
the goal is to determine a sequence of solutions S1, S2, . . . , ST that both
(1) are near-optimal (quality), and (2) induce small modification costs (sta-
bility). An important aspect in this dynamic setting is the impact of the
knowledge of either the whole set of instances (off-line case), or a limited
number of instances, say k, in the near future (k-lookahead case), or no
future instance at all (on-line case) on the quality and the stability of the
returned solutions.

In this paper, we focus on the over-time version of different variants
of a basic resource allocation problem, the Max-Min Fair Allocation
problem where the aim is to determine an allocation of the resources to
the agents in a fair way. An instance of the Max-Min Fair Allocation
problem is characterized by a set R of n resources, a set P of m agents
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and a set of nonnegative values `(j, i), for every j ∈ R and every i ∈ P.
The value `(j, i) corresponds to the valuation of the agent i for the resource
j. An allocation is a partition R1, . . . ,Rm of the set of resources and the
valuation of agent i is equal to `(Ri) =

∑
j∈Ri `(j, i). The objective is to

find an allocation with the best possible valuation for the worst-off agent,
i.e. an allocation maximizing mini∈P

∑
j∈Ri `(j, i). Another name used

in the literature for this problem is the Santa Claus problem where the
resources correspond to gifts and the agents to children. The objective is to
find an allocation of gifts to the children so as to maximize the happiness
of the least happy child. In scheduling terms, this problem corresponds to
the problem of scheduling a set of jobs on a set of unrelated machines so
as to maximize the load of the least loaded machine. Here the resources
are the jobs and the agents are the machines. Important subproblems of
the Max-Min Fair Allocation problem is the Restricted Max-Min
Fair Allocation problem in which `(j, i) ∈ {0, `j} (each resource has a
fixed value, but only some agents are interested in it), the Homogeneous
Max-Min Fair Allocation problem in which `(j, i) = `j (each resource
has a fixed value) and the Uniform Max-Min Fair Allocation problem

in which `(j, i) =
`j
si

(where si is the speed of machine i in the scheduling
context).

In the Over-Time Max-Min Fair Allocation problem, we are given
a sequence I1, . . . , IT of instances of the Max-Min Fair Allocation prob-
lem, with T ≥ 2. For every instance It, we have a set of mt agents
Mt = {1, . . . ,mt}, a set of nt resources Nt = {1, . . . , nt} and a valuation
of the agent i for the resource j, denoted by `t(j, i) ∈ R for every j ∈ Nt

and i ∈ Mt. We are also given a reward equal to K ∈ R+ for every re-
source that is allocated to the same agent in two consecutive solutions (this
reward for our maximization problem corresponds to the transition cost in
[EMS14, GTW14] for minimization problems).

A solution sequence S = (O1, . . . , OT ), where Ot is a solution of It,
defines

• a Santa Claus revenue, `(S) =
∑T

t=1 `t(Ot) such that

`t(Ot) = min
i∈{1,...,mt}

nt∑
j=1

lt(j, i) · xt,j,i

with xt,j,i = 1 if the resource j is allocated to the agent i in Ot, and
0 otherwise. This corresponds to the sum of the valuations of the
worst-off agents over all solutions Ot, for t = 1, 2, . . . T ,
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• a transition revenue, D(S) =
∑T−1

t=1 Dt(S), where

Dt(S) = K × |resources remaining on a same agent in Ot and Ot+1|.

Intuitively, the larger the transition revenue, the more stable the se-
quence of the solutions.

Overall, we seek for a solution sequence that yields a good trade-off between
quality and stability, and in what follows our goal will be the maximization
of the sum of f(S) = `(S) +D(S).

Example 1. Suppose that we have n = 4 resources and m = 2 agents,
K = 1. We have 3 time steps. We are in the homogeneous case, and here
are the valuation of resources:

t = 1 t = 2 t = 3

Resource 1 3 6 2

Resource 2 2 4 1

Resource 3 1 8 2

Resource 4 2 1 3

Let us consider this first solution sequence S1 (for column t = 1 and line
Agent 1, (2, 4) are the resources allocated to Agent 1 at time 1):

t = 1 t = 2 t = 3

Agent 1 (2,4) (1,2) (2,4)

Agent 2 (1,3) (3,4) (1,3)

We have `(S1) = 4 + 9 + 4 = 17 (these are actually the best solutions
at each time step). Since 2 resources remain allocated to the same agent
between times 1 and 2, and 2 as well between times 2 and 3, we have D(S1) =
2K + 2K = 4. Hence, f(S1) = 21.

One may consider S2 which is the same as S1 but resource 4 is given
to agent 1 in time step 2. Then `(S2) = `(S1) − 1 = 16, but D(S2) =
3K + 3K = 6, so f(S2) = 22 > f(S1).

Recall that a ρ-approximation algorithm for an optimization problem
is a polynomial-time algorithm returning a solution whose value is within
a factor of ρ of the value of an optimal solution for all the instances of
the problem [WS11]. ρ is called the approximation ratio of the algorithm.
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For a maximization problem like the Max-Min Fair Allocation problem
studied in this paper, 0 ≤ ρ ≤ 1 (ρ = 1 corresponds to an exact algo-
rithm). The definition of a c-competitive algorithm is similar to the one of
a ρ-approximation algorithm where the on-line algorithm is compared with
respect to the optimal off-line algorithm that knows the entire sequence of
the input data.

Variants. We distinguish between two cases: the case where there are
restrictions on the set of agents on which a resource can be allocated (Sec-
tion 3.2) and the case where there are no restrictions (Section 3.1).

2 Previous results

The (static) problem has been first studied in a game theoretic context
[LMMS04]. Bezáková and Dani have shown that it is NP-hard to approx-
imate the Max-Min Fair Allocation problem to within a factor better
than 1/2 and they provided the first non-trivial approximation algorithm
[BD05]. Later, Bansal and Sviridenko [BS06] presented a configuration lin-

ear program for the problem with an integrality gap of Ω
(

1√
m

)
. Asad-

pour and Saberi [AS10] proposed an Ω
(

1√
m log3(m)

)
-approximation algo-

rithm. This result has been improved by Saha and Srinivasan who gave an

Ω
(

log logm√
m logm

)
-approximation algorithm [SS10]. The best result with respect

to the number of resources is an Ω
(

1
nε

)
-approximation algorithm running in

O(n
1
ε ), for any ε > 0 [BCG09, CCK09].

A lot of progress has been done for the Restricted Max-Min Fair
Allocation problem. While the same inapproximability result holds in this

case, Bansal and Sviridenko [BS06] proposed an Ω
(
log log logm
log logm

)
-approximation

algorithm. Haeupler et al. presented a constant factor approximation al-
gorithm, but the constant was large and unspecified. Asadpour and Saberi
[AS10] showed that the integrality gap of the configuration linear program
is bounded by 1/4. Annamalai, Kalaitzis and Svensson proposed recently a
combinatorial algorithm with approximation ratio 1

6+2
√
10+ε

which runs in

|I|
1
ε2

log( 1
ε
), for any ε > 0 and where |I| is the size of the instance [AKS17].

For the Homogeneous Max-Min Fair Allocation problem, Deuer-
meyer, Friesen and Langston [DFL82] showed that the classical LPT (Longest

5



Processing Time) algorithm is a 3
4 -approximation algorithm. Csirik, Kellerer

and Woeginger [CKW92] improved the analysis showing that the approx-
imation ratio of LPT is in fact 3m−1

4m−2 . Woeginger [Woe97] and also Ochel
with Voecking [OV09] proposed a polynomial time approximation scheme
for the problem: for any ε > 0, there exists a (polynomial time) (1 − ε)-
approximation algorithm. Epstein and Sgall proposed a polynomial time
approximation scheme for the Uniform Max-Min Fair Allocation prob-
lem [ES04].

3 Our results

Our goal is to measure to what extend the over-time setting is harder to
solve than the static one, with respect to the quality of solutions an al-
gorithm can compute in polynomial time. In particular, for cases where
`(j, i) = `(j) (homogeneous case) or when `(j, i) ∈ {0, `(j)}, the static prob-
lem has constant ratio approximation algorithms as mentioned above; is
it still the case in the over-time setting? We provide some answers which
depend on the assumptions made on the knowledge of the future (off-line/on-
line/k-lookahead), and on the possibility to have incompatibilities between
resources and agents (case with restriction) or not.

More precisely, in Section 3.1 we study the case without restrictions
where the set of resources and the set of agents are the same for all in-
stances and where every resource can be allocated to any agent. For the
off-line setting, we first show that the over-time version of the problem is
much harder than the static one with respect to the computational complex-
ity. Then, we propose a ρ

ρ+1 -approximation algorithm for the off-line setting
using as subroutine a ρ-approximation algorithm for the static version, thus
getting a constant ratio approximation algorithm for the over-time setting
whenever the static problem has one. We improve this approximation ra-
tio when the number of steps T or the number of agents m is bounded.
Then, we show that a similar result can be obtained in the on-line setting,
since we devise a ρ

ρ+1 -competitive algorithm using also as subroutine a ρ-
approximation algorithm for the static version.

In Section 3.2, we study the case with restrictions. We show that in
the off-line setting it is possible to get a polynomial-time algorithm with
the same approximation ratio as in the case without restrictions. For the
on-line setting, we prove that it is not possible to find an on-line algorithm
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with bounded competitive ratio. Interestingly, we show that knowing only
one time step in advance (1-lookahead setting) is sufficient to again obtain
a constant approximation algorithm whenever the static case has one; more
precisely, we give a ρ

4ρ+2 -approximation algorithm using as subroutine a
ρ-approximation algorithm for the static version.

3.1 The case Without-Restrictions

We consider the case where the set of resources and the set of agents are
the same for all the instances. Therefore, n1 = ... = nT = n and m1 = ... =
mT = m. In addition, every resource can be allocated to any agent.

As a first result, we illustrate the fact that the over-time problem is
significantly harder than the static Max-Min Fair Allocation problem,
since it remains NP-hard even in a very restricted case.

Theorem 1. Max-Min Fair Allocation is NP-hard even in an off-line
setting with no restriction, with only 2 agents and in the homogeneous case,
with furthermore `t(j, i) = `t(j) ∈ {0, 1}.

Note that these instances are trivial in the static case.

Proof. We show this result using a reduction from the Maximum Cut prob-
lem. In this problem, known to be NP-hard [GJ79], we are given an undi-
rected graph G = (V,E) and an integer s. The question is whether we can
partition the set V of vertices into (V1, V2) in such a way that at least s
edges have one endpoint in V1 and one in V2.

Given G = (V,E) and s with V = {v1, . . . , v|V |} and E = {e1, . . . , e|E|},
we build an instance of Max-Min Fair Allocation with 2 agents, |V |
resources (call them {v1, . . . , v|V |}) and T = |E| time steps. At time step i
agents 1 and 2 give valuation 1 to the two endpoints of edge ei, and 0 to
all other resources. We set K sufficiently large, say K = |E|+ 1. We claim
that there is a cut with at least s edges in G if and only if there is a solution
sequence of value at leat K(T − 1)|V |+ s in the instance of Max-Min Fair
Allocation.

If there is a cut (V1, V2) with at least s edges, then give vertices of V1
to agent 1 and vertices of V2 to agent 2, at any time (no modification of
solution). Then the transition revenue is K(T − 1)|V |. If an edge ei is in
the cut, then at time i one endpoint is given to agent 1, the other 1 to agent
2, and the Santa Claus revenue at time i is 1. Then we have a solution
sequence of value at least K(T − 1)|V |+ s.
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Conversely, note that the Santa Claus revenue is at most 1 at any time
step, so at most |E| in total. So, if a solution sequence makes at least
one modification in the solutions, it will have value at most K(T − 1)|V | −
K + |E| < K(T − 1)|V |. Hence, a solution sequence with value at least
K(T − 1)|V | + s does not make any modification. Let V1 be the set of
resources given to agent 1, and V2 the ones given to agent 2. The solution
sequence has (at least) s time steps with Santa Claus revenue 1. This means
that there are at least s edges with one endpoint in V1 and one in V2.

Now, we give some approximation algorithms for the problem, first in
an off-line setting and then in an on-line setting.

3.1.1 Off-line case

In order to find a good solution sequence for the revenue, we use as a subrou-
tine an algorithm A for the static Max-Min Fair Allocation problem.
Then Algorithm 1 works as follows:

• Apply A on each instance It, denote by Õt the obtained solution.

• Build a first solution sequence S0 = (Õ1, Õ2, . . . , ÕT ).

• For any t consider the solution sequence St = (Õt, Õt, . . . , Õt) (no
modification).

• Output the best of the T + 1 previous solutions.

The idea is that the first solution performs well with respect to the Santa
Claus revenue `(S), while the others perform well with respect to the tran-
sition revenue D(S). More precisely, we have the following result.

Theorem 2. If A is a (polytime) ρ-approximation algorithm for the static
case, then Algorithm 1 is a (polytime) Tρ

(T−1)ρ+T -approximation algorithm
for the over-time problem.

Note that this ratio decreases with T down to ρ
ρ+1 (T unbounded).

Proof. Let S∗ = (O∗1, ..., O
∗
T ) be an optimal solution sequence, and denote

by S the solution output by the algorithm. As A is a ρ-approximation
algorithm for the static case, we get `t(Õt) ≥ ρ`t(O∗t ) for any t. Then:

f(S) ≥ `(S0) ≥ ρ
T∑
i=1

`t(O
∗
t ) = ρ`(S∗) (1)
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Now, since in Si (i ≥ 1) no modification is made, then clearly Si has maxi-
mum transition revenue, so:

f(S) ≥ f(Si) ≥ ρ`i(O∗i ) +D(S∗) (2)

Now, sum Equation (2) for i = 1, . . . , T , multiply by ρ and add (T−ρ) times
Equation (1). This gives:

(Tρ+ T − ρ)f(S) ≥ ρ(ρ`(S∗) + TD(S∗)) + (T − ρ)ρ`(S∗)

We derive (Tρ+ T − ρ)f(S) ≥ Tρf(S∗), which gives the claimed ratio.

Note that the analysis is tight when ρ = 1, for any T , even in the
homogeneous case. Consider the following instance, with T agents and n =
T 2 resources (i, t), i = 1, . . . , T , t = 1, . . . , T . The value of resource (i, t) is
KT at time t, 0 at time t′ 6= t. Then at time t exactly T resources ((i, t),
i = 1, . . . , T ) have non zero value KT . So an optimal solution gives at time
t (i, t) to agent i. The others have value 0 so they can be placed anywhere.
Then consider that Algorithm 1 wrongly allocates these other resources, in
such a way that no resource is given to the same agent between time t and
time t+ 1. Then solution S0 has value TKT (KT at each time step), while
Si has value KT + (T − 1)KT = TKT .

Of course, an optimal solution sequence is to allocate (i, t) to i at any
time, with value TKT + (T − 1)TK = 2TKT − KT . The ratio is 1

2−1/T ,
which is the claimed ratio for ρ = 1.

One might note that Algorithm 1 could easily perform better on the
previous instance, by optimizing the number of resources that are not real-
located between the solutions computed at times t and t+1. As a matter of
fact, we now show that the previous result can be slightly improved in the
homogeneous case when the number of agents is bounded. Indeed, in this
case a permutation on the agents does not modify the Santa Claus revenue
at a given time step. Then we can improve solution S0 of algorithm 1 by
trying to find a permutation minimizing the number of re-allocations when
moving from solution Õt to Õt+1.

To do this, consider two allocations (Rt1, . . . ,Rtm) and
(Rt+1

1 , . . . ,Rt+1
m ) of resources to agents at times t and t+ 1. Build the com-

plete bipartite graph with 2m vertices at1, . . . , a
t
m and at+1

1 , . . . , at+1
m where

the edge (atj , a
t+1
j′ ) has weight |Rtj ∩R

t+1
j′ |. Consider a perfect matching on

this graph. The weight of this matching is the total number of resources that
remain to the same agent if we permute the second allocation according to
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the matching (if (atj , a
t+1
j′ ) is in the matching the agent j receives resources

Rtj at time t and Rt+1
j′ at time t+ 1). Then computing a perfect matching

of maximum weight in this graph gives the permutation which maximizes
the number of resources that remain allocated to the same agent. Consider
now Algorithm 1′ which is the same as Algorithm 1 up to the fact that,
when computing S0, we sequentially permute solutions Õt in order to get
the maximum number of ‘non modified’ resources from time t− 1 to time t.

Proposition 1. If A is a ρ-approximation algorithm, then in the homoge-
neous case Algorithm 1′ is a Tρ−ρ/m

(T−1)ρ+T−T/m -approximation algorithm.

Proof. Given two allocations at times t and t + 1, if we apply a random
permutation (all permutations being chosen with the same probability) on
the agents at time t + 1, then a resource remains given to the same agent
between time t and t + 1 with probability 1/m. So, in average (among all
permutations) a fraction 1/m of resources are not re-allocated. A maximum
weight perfect matching performs at least as well as average (since it is
optimal), so at least a fraction 1/m of resources are not re-allocated in the
computed solution. Then Equation (1) becomes:

f(S) ≥ ρ`(S∗) +
1

m
D(S∗) (3)

Now, summing Equation (2) for i = 1, . . . , T , multiplying by mρ−1 and
adding (T − ρ)m times Equation (3) leads to the claimed ratio.

As pointed out in introduction, Max-Min Fair Allocation has an ap-
proximation scheme in the homogeneous case, and a r = 1

6+2
√
10+ε

-approximation

algorithm in the case where `(j, i) ∈ {`j , 0}. We get the following:

Corollary 1. For any ε > 0, Over-Time Max-Min Fair Allocation is
approximable within ratio:

• T−1m
2T−1−T/m − ε

T→∞−−−−→ 1
2−1/m − ε in the homogenenous case;

• Tr
(T−1)r+T − ε

T→∞−−−−→ 1
7+2
√
10
− ε in the case where `t(j, i) ∈ {`t(j), 0}.

So in the homogeneous case the ratio is (1/2− ε) if the number of agents
is unbounded. For 2 agents, the improvement with the matching technique
allows to increase the ratio up to (3/4− ε).

Note that for the case where `t(j, i) ∈ {`t(j), 0}, the ratio is only slightly
decreasing from the static case to the over-time setting, from (nearly) 1/12.3
to 1/13.3.
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3.1.2 On-line case

In the on-line setting, we only know the instance It at time t. We have to
build the solution at time t without knowledge on what will be the instances
at times t′ > t.

Algorithm 1 is of course no longer possible in the on-line setting. We
cannot build the solution sequences, neither compare them at the beginning
of the time period. We now devise an on-line algorithm which gives the
same approximation ratio as the off-line one when the number of steps is
unbounded. Algorithm 2 also uses as subroutine an algorithm A for the
static case, and works as follows:

• Apply A on instance I1, denote by Õ1 the obtained solution. Set
O1 = Õ1

• For t from 2 to T :

– Apply A on instance It.

– If the Santa Claus value of this solution is greater than Kn then
set Ot = Õt.

– Otherwise set Ot = Ot−1.

• Output S = (O1, . . . , OT ).

Theorem 3. If A is a ρ-approximation algorithm, then Algorithm 2 is a
ρ
ρ+1 -approximation algorithm.

Proof. Let S∗ = (O∗1, ..., O
∗
T ) be an optimal solution sequence. By construc-

tion we have:

• `1(S) ≥ ρ`1(O∗1), and for any t = 2, . . . , T , Dt−1(S) + `t(S) is at least
ρ`t(O

∗
t ); so D(S) + `(S) ≥ ρ`(S∗).

• For any t = 2, . . . , T , Dt−1(S) + `t(S) ≥ Kn ≥ Dt−1(S
∗), so D(S) +

`(S) ≥ D(S∗).

A combination of these two inequalities with coefficients 1 and ρ gives the
claimed ratio.

Note that the analysis is tight when ρ = 1, even with T = 2 and in
the homogeneous case. Consider this example with T = 2, K = 1, with 2
agents and 2 resources. At time 1 resources have respective valuations 0,2
while at time 2 they have valuations 2,2. Suppose that the A gives resource
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1 to agent 1 and resource 2 to agent 2 at time 1, and vice-versa at time 2.
Then the on-line algorithm produces a solution of value 2, while of course
maintaining the same resource to each agent gives value 4.

As in the offline case, this trivial example suggests the same improvement
for the homogeneous case: when the algorithm applies A on instance It, it
performs the matching technique and permutes the allocation in order to
maximize the number of resources not reallocated, leading to Algorithm 2′.
Then at least a fraction of 1/m of the resources are not reallocated, and we
get the following result (details omited).

Theorem 4. If A is a ρ-approximation algorithm, in the homogeneous case
Algorithm 2′ is a ρ

ρ+1−1/m -approximation algorithm.

If m is unbounded, then we get ratio ρ
ρ+1 . Note that this is tight for ρ = 1

even in the homogeneous case, even with T = 2: take n = m2 resources, and
K = 1. At time 1, the first m resources have valuation 1, while the others
have 0. Suppose that the algorithm chooses to give all the last m2 − m
resources to agent 1. At time 2, all the resources have valuation m. If the
algorithm chooses to keep the same solution it gets transition revenue Km2,
and Santa Claus revenue 1 +m, so the value is Km2 +m+ 1 = m2 +m+ 1.
An optimal solution at time 2 gives m resources to each agent, with Santa
Claus revenue m2. At best the transition revenue if the algorithm chooses
such an optimal solution is K(2m−1) = 2m−1. So in all the solution com-
puted by the algorithm has value at most m2 + 2m. An optimal solution
sequence consists of giving the same m resources at time 1 and 2 for each
agent, with a value m + m2 + m2. The ratio goes to 1/2 when m goes to
infinity.

For the on-line case, we get:

Corollary 2. For any ε > 0, Over-Time Max-Min Fair Allocation in
the on-line setting is approximable within ratio:

• 1
2−1/m − ε in the homogenenous case;

• 1
7+2
√
10
− ε in the case where `t(j, i) ∈ {`t(j), 0}.

3.2 The case With Restrictions

We consider the variant where some resources cannot be allocated to some
agents at some point of the time. In that case, for every i ∈ M , j ∈ N , we
have lt(j, i) = −∞ if the agent i cannot receive the resource j at time t.

12



3.2.1 Off-line case

As in the case without restrictions, we would like to build a first solution
S0 with good Santa Claus revenue `(S0), and another solution S1 with good
transition revenue D(S1). However, due to the restrictions, the maximal
transition revenue between two consecutive instances is not always nK as
it was in the case without restrictions. A first question is then to devise, if
possible, a procedure which computes a solution sequence maximizing the
transition revenue.

To do this, let us consider Algorithm 3 which greedily affects each re-
source to the agent where it can stay for the longest period of time. More
precisely, let Q(j, i, t) be the number of (consecutive) time steps during
which resource j can be allocated to agent i starting at time t (Q(j, i, t) = 0
if j cannot be given to i at time t). Then Algorithm 3 initially allocates
resource j to the agent i on which it can stay the longer (argmaxiQ(j, i, 1)),
and keep it as long as possible (i.e. t = Q(j, i, 1) steps). Then at time t+ 1,
j has to change, and Algorithm 3 allocates it to argmaxiQ(j, i, t + 1), and
keeps it as long as possible (i.e. Q(j, i, t+ 1) steps), and so on.

We have the following property.

Lemma 1. Algorithm 3 outputs a solution sequence with maximum transi-
tion revenue.

Proof. We prove that this is true for each resource. Let S be the solution
returned by Algorithm 3. Let Dt(S, j) be the contribution of the resource j
to the transition revenue of S up to time t, and Dt(S

′, j) the contribution
for another solution sequence S′.

• At t = 1, Dt(S, j) = 0 = Dt(S
′, j).

• Suppose that Dp(S, j) ≥ Dp(S
′, j) for p = 1, . . . , t, and consider time

t+1. If j remains to the same agent i in S between time t and t+1, or if
j moves in S′ between t and t+1, then clearly Dt+1(S, j) ≥ Dt+1(S

′, j).
Otherwise, let k be the last time at which j moves in S′ (between
solution at time k− 1 and k). Since j can stay in S′ at time t+ 1 and
not in S, by principle of the algorithm, j has been given to the same
agent i in S before time k, it was already given to i at time k − 1.
Since Dk−1(S, j) ≥ Dk−1(S

′, j), and between k − 1 and k, j moves in
S′ but not in S, we have Dk(S, j) ≥ Dk(S

′, j) + K. Then the next
modification is between t and t + 1, so Dt(S, j) ≥ Dt(S

′, j) + K and
then Dt+1(S, j) ≥ Dt+1(S

′, j).

This is true for each resource, so the result follows.

13



Then, consider Algorithm 3′ which computes two solutions S1 and S2,
and outputs the best one. S1 is the solution given by Algorithm 3, and
S2 = (Õ1, ..., ÕT ), where Õt is obtained by applying a subroutine algorithm
A for the static case of the Max-Min Fair Allocation problem on in-
stance It.

Theorem 5. If A is a (polytime) ρ-approximation algorithm for the static
case, then Algorithm 3′ is a ρ

ρ+1 -approximation for the off-line problem with
restrictions.

Proof. Let S∗ = (O∗1, . . . , O
∗
T ) be an optimal solution sequence. By Lemma 1,

D(S1) is maximum so D(S1) ≥ D(S∗). Consequently, f(S1) ≥ D(S∗).
We also have `t(Õt) ≥ ρ · `t(O∗t ) for every t ∈ {1, ..., T}, so `(S2) =∑T

t=1 `t(Õt) ≥ ρ ·
∑T

t=1 `t(O
∗
t ) = ρ · `(S∗), and this gives f(S2) ≥ ρ · `(S∗).

This implies ρ · f(S1) + f(S2) ≥ ρ · (`(S∗) + D(S∗)) ≥ ρ · f(S∗). Then,
(ρ+ 1) · f(S) ≥ ρ · f(S∗).

So, S is a ρ
ρ+1 -approximate solution sequence.

Let us consider an instance with T = 2 time steps, three agents and
three resources. There is no restriction at time 1, but at time 2 resource
i cannot be given to agent i. Their respective valuations are 0,0,0 at time
1, and 3,3,3 at time 2. K = 1. Then Algorithm 3′ may choose a solution
S1 where resources 1 and 3 are given to agent 2 and resource 2 to agent 1,
both at time 1 and 2. It has transition revenue 3, but `(S1) = 0. S2 may
give resource i to agent i at time 1, and then at time 2 a solution of value
3 (one resource per agent) but with no transition revenue (because of the
constraints). An optimal solution would be to give resource 1 to agent 2, 2
to 3 and 3 to 1 both at time 1 and 2, with value 3 + 3 = 6. The ratio is 1/2
(with ρ = 1).

3.2.2 On-line case

Now, we consider the on-line case where at time t we have not any knowledge
on what will be happen at time t′ > t. Interestingly, while in the unrestricted
case we can devise an on-line algorithm with (nearly) the same ratio as in
the off-line case, we show that in the case with restrictions being blind makes
it impossible to get any algorithm with guaranteed competitive ratio.

Proposition 2. There is no on-line algorithm with bounded competitive
ratio even for the homogeneous case with restrictions.

14



Proof. Consider two agents, one single resource, and K the transition re-
ward. Let us also consider two time-steps, T = 2. At time t = 1, the
valuation of the resource is 0 for both agents. The resource could be allo-
cated to any agent. Suppose w.l.o.g. that it is allocated to the first agent by
an on-line algorithm. At t = 2, the resource is allowed to be allocated only
to the second agent, and has valuation 0 for this agent. Hence, the on-line
algorithm is forced to allocate the resource to agent two. In this way, it gets
a revenue of 0, while the optimum would be to allocate the resource to the
second agent in both timesteps resulting to a total revenue of K.

3.2.3 1-lookahead case

As mentioned in the introduction, in the setting of over-time optimization
it seems reasonable to consider limited lookahead: we may have rather good
information on what will happen tomorrow or in a few days (time steps)
from today, while we may have no clue on what will be the situation one
month from now. Motivated by the dramatic difference on what can be
obtained in the off-line case (ratio ρ/(ρ + 1), Theorem 5) and in the on-
line case (no competitive ratio), we consider now the situation where we
have lookahead 1: at time t when we have to decide the allocation of the
resources for instance It, we know also It+1. We show in the following that
this is sufficient to get a good (constant) approximation ratio.

We use the same idea as previously, namely at each time we try to max-
imize either the Santa Claus revenue, or the transition revenue. However,
because of the restrictions, we introduce a third option: choose an alloca-
tion maximizing the transition revenue between the current instance and
the instance that will follow. We choose the third option when the potential
transition revenue is at least two times larger than the revenue of the two
other options.

Let us now present Algorithm 4, where A is, as previously, an algorithm
for the static problem. Also, for every t ∈ {1, . . . , T − 1}, P 1

t and P 2
t

denote two allocations for It and It+1 respectively, such that Dt(P
1
t , P

2
t ) is

maximum (simply affect a resource to the same agent at time t and t+ 1 if
possible). We denote byDmax

t = Dt(P
1
t , P

2
t ). The solution S = (O1, . . . , OT )

is built in the following way:

• At t = 1: compute Õ1 = A(I1) and two allocations P 1
1 on I1 and P 2

1 on

I2. We compute max
(
l1(Õ1),

Dmax
1
2

)
and we choose for O1 between Õ1

and P 1
1 accordingly (O1 = Õ1 if l1(Õ1) ≥

Dmax
1
2 , otherwise O1 = P 1

1 ).
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• At time t = 2, . . . , T − 1: Similarly, compute Õt = A(It) and two
allocations P 1

t on It and P 2
t on I2. We distinguish two cases:

– If at time t − 1 we have selected Ot−1 = P 1
t−1, then, at t, we

compute max
(
Dmax
t−1 , `t(Õt),

Dmax
t
2

)
and we choose for Ot between

P 2
t−1, Õt and P 1

t accordingly.

– If not, then we compute max
(
lt(Õt),

Dmax
t
2

)
and we choose for Ot

between Õt and P 1
t accordingly.

• At time T , we do the same up to the fact that there is no Dmax
T (no

P 1
T , P

2
T ).

Theorem 6. If A is a (polytime) ρ-approximation algorithm for the static

case, then Algorithm 4 has an approximation ratio of ρ

4ρ+2− 2ρ+1

2T−1

T→∞−−−−→ ρ
4ρ+2 .

Proof. Let V be the set of time-steps where we selectedOt = P 2
t−1 orOt = Õt

(but not Ot = P 1
t ). Note that T ∈ V . In the proof we partition the time

period into |V | periods which end at some time t ∈ V . Intuitively, we prove
the claimed ratio in each of these sub-periods.

Formally, let u, u + 1, ..., v − 1, v be consecutive time-steps such that
u, u + 1, ..., v − 1 6∈ V , and v ∈ V . Suppose first that u ≤ v − 1 (meaning
v − 1 6∈ V ). For every t ∈ {u, ..., v − 1}, we have selected Ot = P 1

t . This
means that:

• Dmax
t
2 ≥ Dmax

t−1 , implying:

Dmax
v−1 ≥ 2Dmax

v−2 ≥ 22Dmax
v−3 ≥ ... ≥ 2v−u−1Dmax

u (4)

• Dmax
t ≥ 2`t(Õt). Since from the previous item Dmax

v−1 ≥ 2v−t−1Dmax
t ,

we have :
Dmax
v−1 ≥ 2v−t`t(Õt) (5)

Summing Equation (4) for t from u to v − 1 we get:

v−1∑
t=u

Dmax
t ≤ Dmax

v−1

v−1∑
t=u

1

2v−t−1
= Dmax

v−1

(
2− 1

2v−u−1

)
(6)

Doing the same with Equation (5) we get:

v−1∑
t=u

`t(Õt) ≤ Dmax
v−1

v−1∑
t=u

1

2v−t
= Dmax

v−1

(
1− 1

2v−u

)
(7)

16



At time v, the algorithm chooses either P 2
v−1 or Õv, with a reward rv

at least max
(
Dmax
v−1 , `v(Õv),

Dmaxv
2

)
. This reward rv verifies thanks to Equa-

tion (6) (and using v − u ≤ T − 1)

v∑
t=u

Dmax
t ≤ Dmax

v−1

(
2− 1

2v−u−1

)
+Dmax

v ≤ rv
(

4− 1

2T−2

)
(8)

Thanks to Equation (7) we have also

v∑
t=u

`t(Õt) ≤ Dmax
v−1

(
1− 1

2v−u

)
+ `v(Õv) ≤ rv

(
2− 1

2T−1

)
(9)

Let S∗ = (O∗1, ..., O
∗
T ) be an optimal solution. Let us denote fu,v(S) =∑v

t=u(Dt(S
∗) + `t(O

∗
t )) (with by convention DT (S∗) = 0). Since Dt(S

∗) ≤
Dmax
t and `t(O

∗
t ) ≤

`t(Õt)
ρ , we have:

fu,v(S
∗) ≤

v∑
t=u

(
Dmax
t +

`t(Õt)

ρ

)
≤ rv

(
4 +

2

ρ
− 2 + 1/ρ

2T−1

)
(10)

Note that this is also trivially true if u = v.1 Hence, in each of our
sub-periods, we get a reward which is a fraction of at least 1

4+ 2
ρ
− 2+1/ρ

2T−1

of the

reward of the optimal solution on the same period. The result follows.

Consider an example with T time steps, such that for t ∈ {1, ..., T − 1},
`max
t =

Dmax
t
2 = 2t, `max

T = 2T +1, and Dmax
T = 0. We have then

Dmax
t
2 ≥ `max

t

and
Dmax
t
2 ≥ Dmax

t−1 for t ∈ {1, ..., T − 1} and also `max
T > Dmax

T−1 and `max
T >

Dmax
T . Using an exact algorithm A, the solution obtained by the algorithm

would be S = (P 1
1 , ..., P

1
T−1, ÕT ). This would give 1 = u, ..., T − 1 6∈ V and

T = v ∈ V . The approximation ratio of S in this case tends to 1
6 when

T →∞, indicating that the previous analysis is tight.

From Theorem 6 we get:

Corollary 3. For any ε > 0, Over-Time Max-Min Fair Allocation
with restriction and lookahead 1 is approximable within (constant) ratio:

• 1
6 − ε in the homogenenous case;

• 1
16+4

√
10
− ε in the case where `t(j, i) ∈ {`t(j), 0}.

1we get rv ≥ max
(
lv(Õv),

Dmax
v
2

)
, so fv,v(S

∗) ≤ (2 + 1
ρ
)rv.
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4 Conclusion

We have provided several constant ratio approximation algorithms for an
over-time version of the Max-Min Fair Allocation, based on a recently
introduced [GTW14] model which combines quality and stability of alloca-
tions over time. One striking point of this work is the introduction in this
setting of the notion of k-lookahead, which allows tradeoffs between on-line
and off-line settings. We show an application of this concept for the problem
we consider, since 1-lookahead is sufficient to reach constant approximation
algorithm for the problem with restriction, while no ratio can be guaranteed
in the on-line case. We do believe that this notion is worth being studied for
other multiagent optimization problems over time. Another direction that
might be studied deals with the agregation function: in this work we made
a sum of the value of solutions at each time step, and of the transition rev-
enues. There are many other ways to combine two objectives (bounding the
number of modifications, finding Pareto-efficient solutions,. . . ) that could
be investigated. Finally, dealing with allocation of resources, other criteria
or properties (fairness in average and not step by step, envy-freeness, non
manipulability,. . . ) could be also considered.
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