Anne-Lise Courbis

Thomas Lambolais

Thanh-Hung Nguyen

Safe Incremental Design of UML Architectures

Keywords: UML composite components, BIP architectures, conformance analysis, safety analysis, refinement, incremental development, transformation of UML models into BIP models

come L'archive ouverte pluridisciplinaire

Introduction

Designing UML models of software intensive reactive systems is recognized to be a tricky and crucial task. Reactivity means that such systems must continuously react to their environment, at a speed defined by this environment. It implies liveness properties, stating that the system will eventually react as it must. These systems are also dependable, so that reliability, availability and robustness are of primary importance. This implies safety properties, stating that undesired behaviors of the system will never happen.

Despite the increasing number of conferences and researches about UML, the use of UML is not yet fully accepted by industrialists [START_REF] Petre | UML in practice[END_REF]. The lack of a precise semantics and the numerous ambiguities of UML could explain this defeat. Another related main explanation is the lack of support for UML designers in the process for both setting up models and evaluating them. The rule of the thumb is that an architecture assessment should be held as soon as architecture decisions begin to be made and the cost of reversing those decisions would be more than conducing software architecture evaluation [2]. However, few methods of UML model development support model evaluation during the design phases. The novelty of our proposed approach is to consider at early steps of the design both liveness and safety properties.

In a previous work [START_REF] Lambolais | Designing and integrating complex systems: Be agile through liveness verification and abstraction[END_REF][START_REF] Lambolais | IDF: A framework for the incremental development and conformance verification of UML active primitive components[END_REF], we have presented our Incremental Development Framework (IDF) and its associated tool IDCM (Incremental Development of Conformance Models). IDF supports the development and the evaluation of UML models for reactive systems. It deals with UML primitive components whose behavior is represented by a state machine and UML composite components whose parts are primitive components or composite ones. IDF allows models to be developed step by step. At every step of the design, the model is verified as being consistent with the model obtained at the previous step, a step being a model evolution which can be of four kinds: extension, refinement, increment or substitution. The verification of these four kinds of model evolution is based on a conformance relation [START_REF] Luong | Implementation of the Conformance Relation for Incremental Development of Behavioural Models[END_REF] which verifies that liveness properties defined by a reference model are preserved. However, this work has its own shortcomings: explicit verification of safety properties is not addressed. This article aims at enhancing IDF in order to be able to model and check explicit safety properties. That is a way to cover the verification of the complete properties of a system since it has been proved that the safety/liveness spectrum covers all linear-time properties of a system under design [START_REF] Schneider | Decomposing Properties into Safety and Liveness using Predicate Logic[END_REF].

We present in section 2 an example pointing out an incremental development of a model whose liveness analysis is demonstrated using IDCM, but suffering from a lack of safety analysis. Section 3 presents the BIP meta-model that has been selected as an intermediate format to analyze models in order to use D-Finder tool to check safety analysis. The tool IDCM associated with IDF, as well as UML and BIP models presented in this article, may be downloaded on the website [START_REF]IDCM[END_REF]. Section 5 presents related works. We conclude in section 6 and present our future directions.

Motivating example

Let us consider MUTEX, a mutual exclusion system that can process two orders of task execution in parallel: it has two ports (see Fig. 1), each of them allowing the reception of a demand of task execution (operation start of interface IUserIn) and the transmission of an acknowledgement at the end (operation finish of interface IUserOut). The high level specification of MUTEX represents the system from an external point of view and does not yet represent the resource. It is modeled from a behavioral point of view by an atomic UML component whose behavior is specified by a state machine (see Fig. 1b). The next step of modeling aims at representing the internal view of the system, i.e. the shared resource and the two users. The interface provided by the resource offers two actions: take and release. The designer thus specifies the components SpecUser and SpecResource and their associated behaviors (cf. Fig. 2) in order to match MUTEX high level specification. The first model set up by this way is named MUTEXSpec: it is a composite component which assemblies two SpecUser components and one SpecResource component (see Fig. 3a).

A new modeling step is starting to set up a possible implementation of MUTEXSpec architecture (see Fig. 3b) based on components User and Resource. User is not detailed since it is not required to understand the example. Resource is presented in Fig. 5a. Both User and Resource have been checked by IDCM as extending and thus conforming their specification (Fig. 3c). The conformance relation [START_REF] Leduc | A framework based on implementation relations for implementing LOTOS specifications[END_REF] between an implementation model and a spec- ification model guarantees that actions that are mandatory after any trace of the specification must also be accepted by the implementation after the same trace. This relation has been implemented with its variant, refines and extends, in [START_REF] Luong | Implementation of the Conformance Relation for Incremental Development of Behavioural Models[END_REF]. It requires models to be transformed into LTS (Labelled Transition System) that is automatically achieved using IDCM and CADP toolbox [START_REF] Garavel | CADP 2011: a toolbox for the construction and analysis of distributed processes[END_REF] (see [START_REF] Lambolais | Designing and integrating complex systems: Be agile through liveness verification and abstraction[END_REF][START_REF] Lambolais | IDF: A framework for the incremental development and conformance verification of UML active primitive components[END_REF] for more details about the transformation). In the following, we give an interpretation of these relations on the MUTEX models.

For formal definitions, see [START_REF] Lambolais | IDF: A framework for the incremental development and conformance verification of UML active primitive components[END_REF]. MUTEX composite component conforms to MUTEXSpec component: it is a suitable implementation of the specification. MUTEXSpec architecture is a refinement of MUTEX behavioral specification: it has no extra traces and realizes all mandatory part of the specification. Resource component conforms to Resource-Spec and is an extension: Resource is able to behave like its specification but has also extra behavior which does not conflict with its specification. This example points out that MUTEX is a "good" realization of the initial specification from a liveness point of view as defined by the ISO standard [START_REF]Information technology -open systems interconnection -conformance testing methodology and framework -part 1: General concepts[END_REF]. However, we are not able to verify the safety property stating that the resource has to be exclusive. We may interpret this property in terms of states that the components of the system may or may not reach. If the resource R1 is exclusive, it means that U1 and U2, the two users of MUTEX may not be at the same time in state Starting, which is the output state of the transition start/takeResource, while R1 is in state Busy.

IDF relations cannot verify an explicit property such as this one. It is thus necessary to associate another tool with IDCM. IDF. The BIP (Behavior, Interaction and Priority) modeling and verification framework is based on several principles which match with IDF: development of correctness-byconstruction model, incrementality, compositionality and composability [START_REF] Bensalem | Incremental component-based construction and verification using invariants[END_REF]. It includes many tools for safety property analysis and model transformation from several languages such as AADL and Lustre. To the best of our knowledge, there is no available transformation tool from UML to BIP taking into account both primitive and composite component descriptions. We have thus developed a module of IDCM that may be uploaded on the IDCM website [START_REF]IDCM[END_REF]. The transformation principle is presented and illustrated in section 4.

BIP language

BIP is a powerful language for modeling heterogeneous real-time systems. We only focus on specific concepts useful to understand the safety analysis purpose and the transformation from UML to BIP. As we do not consider data analysis of UML models, we will not consider data modeling in BIP. In the same way, we will not deal with priority concepts of the BIP language. Refer to [START_REF] Basu | Modeling heterogeneous real-time components in BIP[END_REF] for detailed information about the BIP language. Fig. 4 gives an overview of the main classes of BIP meta-model corresponding to UML concepts we deal with.

BIP describes compound components by a set of interactions between atomic components whose behaviors are represented by LTS. Two kinds of interactions are possible: strong (also called rendezvous) and weak (broadcast). In this study, we restrict interactions to rendezvous which are defined on ports representing actions.

D-Finder: a toolbox for safety analysis

D-FINDER provides methods and tools to compute invariants of BIP models. Such invariants are interesting since they preserve safety properties. There are two kinds of invariants: component invariants which are over approximation of reachable states, and interaction invariants which define global boolean constraints dealing with the synchronization of components. D-FINDER is based on an abstraction technique allowing the state space to be reduced. Its strength is to perform incremental constructions of models and incremental computations of invariants [START_REF] Bensalem | Incremental component-based construction and verification using invariants[END_REF] allowing large-scale systems to be checked. D-Finder uses BDD library for the symbolic computation of interaction invariants, and then the SAT-solver tool Yices [START_REF] Dutertre | [END_REF] for checking satisfiability. Verifying a safety property consists in demonstrating using Yices that the negation of the property is unsatisfiable in a context defined by the set of invariant expressions generated by D-Finder. The invariants are expressed by Boolean Behavioral Constraints [START_REF] Nguyen | Constructive verification for componentbased systems[END_REF].

Illustration of a safety property for MUTEX

Let us consider the MUTEX specification and implementation architectures (Fig. 3a and3b). We aim at checking if the mutual exclusion property is satisfied. Equation 1expresses the non expected property: two users U1 and U2 can be both in Starting state while the shared resource R1 is in busy state. We have to demonstrate that this property can never be satisfied.

(and R1 busy-(and U1 Starting-U2 Starting-)) (1)

The following section focuses on UML model transformation into BIB and points out results of safefy analysis of MUTEX models after their transformation.

4 From UML to BIP architectures UML and BIP share the same view about component concepts: a UML component whose behavior is defined by a state machine matches the BIP atomic component concept, a UML composite component matches the BIP compound component (see Table 1). The concept of UML interface (set of visible operations) does not explicitly exist in BIP. However, it may be translated into exported ports. A matching is possible between operations belonging to interfaces associated with UML ports and the BIP ports. For instance, the port P of component User which is associated with the interface IResource will correspond to two BIP ports named P TAKE and P RELEASE since interface IResource contains the two operations TAKE and RELEASE. This is why the relation between UML port and BIP ports is of cardinality n in Table 1

Transformation of atomic components

We have given in [START_REF] Lambolais | IDF: A framework for the incremental development and conformance verification of UML active primitive components[END_REF] a LTS semantics to UML state machines. BIP atomic models have a LTS semantics [START_REF] Basu | Modeling heterogeneous real-time components in BIP[END_REF]. The mapping from UML to BIP is thus trivial. It is important to note that UML is more concrete than the LTS language and allows more complex structures to be modeled, such as actions on data or call events through ports. Hence, this semantics abstracts some concepts of UML like data, events, time, ports, guards, thanks to the intrinsic non-deterministic nature of LTS. The rules allowing the UML atomic transformation into LTS are detailed in [START_REF] Lambolais | IDF: A framework for the incremental development and conformance verification of UML active primitive components[END_REF]. Figure 5a represents the state machine of component Resource of MUTEX architecture and figure 6 gives the corresponding BIP model that is automatically generated by the module UMLtoBIP of IDCM.

Transformation of composite components

There is a direct mapping between UML composite component and BIP compound components (see Table 2): a UML composite component consists of a set of Parts which match BIP Components. A UML assembly Connector matches a set of BIP connectors. Indeed, a BIP connector is relative to the synchronization of a single operation shared by two interconnected ports, while a UML connector is relative to the synchronization of the set of operations belonging to interfaces associated with the interconnected ports. The Port of a Part belonging to a delegate connector will be exported and renamed by the name of the port of the compound component. Table 2 summarizes the matching of concepts between UML composite components and BIP compound components. To illustrate this transformation, we give in Figure 7 the BIP code of the MUTEX architecture represented in Figure 3b. This code is automatically generated by the transformation module UMLtoBIP of IDCM. the mutual exclusion whose negation is expressed in equation 1 of section 3.3. For SpecMUTEX, the property is unsatisfied: it means that the resource mutual exclusion has been properly implemented in this architecture. That is not the case for the MUTEX architecture. Indeed, the state machine associated with the Resource (see Fig. 5a) points out that it may be used concurrently by two users. On this example, the error is obvious, but it is not the case for large system for which components may be designed by third parties according to a high level specifications: conformance does not guarantee safety preservation and a complete specification has to define both the expected behavior (liveness properties) and unexpected states or sequence of events (safety properties). IDCM associated with BIP and its associated tools is a good way to cover all these aspects.

Safety analysis of MUTEX architecture

Discussion and Related work

Most of behavioral analyzes of UML models (75% according to [START_REF] Lucas | A systematic review of UML model consistency management[END_REF]) are done by transformation of UML models into formal languages that can be handled by model checkers or theorem provers. Some of them are referenced below. However, to the best of our knowledge, no framework support the incremental development of UML architecture models by analyzing both liveness and safety behavioral aspects. In particular, no framework is able to consider abstract and non-deterministic UML models and few frameworks are able to consider UML models partially covering the requirements. Hence, even if some work addresses refinement of models, they do not focus on the reduction of non-determinism, and most of them cannot analyze models the specification of which is extended, despite it is a key action for designing complex systems and managing model evolution. Refer to [START_REF] Lambolais | IDF: A framework for the incremental development and conformance verification of UML active primitive components[END_REF] to have more arguments and a complete state of the art about formal verification of models.

To argue this discussion, let us take some representative works about UML/SysML architecture model verification [START_REF] Kmimech | Checking component assembly in ACME: an approach applied on UML 2.0 components model[END_REF][START_REF] Pétin | Combining SysML and formal models for safety requirements verification[END_REF][START_REF] Chouali | Formal verification of components assembly based on SysML and interface automata[END_REF][START_REF] Ober | Unambiguous UML composite structures: the OMEGA2 experience[END_REF][START_REF] Baresi | Formal verification and validation of embedded systems: the UML-based MADES approach[END_REF]. Although [START_REF] Daw | UML-VT: A Formal Verification Environment for UML Activity Diagrams[END_REF] focuses on UML activity diagrams, we must pay attention to the sound discussion about model checking that is the base of our approach. [START_REF] Kmimech | Checking component assembly in ACME: an approach applied on UML 2.0 components model[END_REF] defines a UML profile to transform models into Wright for using the FDR model checker [START_REF]Failures-Divergence Refinement (FDR2 User Manual)[END_REF]. FDR focuses on liveness and safety. It deals with several refinements and provides deadlock detection. However, it does not support analysis of extended models and models are not verified under fairness assumption, which is the main drawback as pointed out in [START_REF] Lambolais | IDF: A framework for the incremental development and conformance verification of UML active primitive components[END_REF]: FDR can not distinguish between 'critical' livelocks (when there may exist executions where the system won't never exit some infinite internal paths) and 'false' livelocks, where under a fairness assumption, the system may leave internal infinite paths or loops. [START_REF] Chouali | Formal verification of components assembly based on SysML and interface automata[END_REF] defines and verifies component assemblies and performs a behavioral compatibility verification but extension and refinement techniques are not supported. [START_REF] Ober | Unambiguous UML composite structures: the OMEGA2 experience[END_REF] have extended the techniques proposed by [START_REF] Cuccuru | Meaningful composite structures[END_REF] who has defined the OMEGA 2, a UML profile. Architectures are translated into IF/IFx models [START_REF] Bozga | The IF Toolset[END_REF] allowing LTS models to be generated and analyzed by the CADP model checker [START_REF] Garavel | CADP 2011: a toolbox for the construction and analysis of distributed processes[END_REF]. [START_REF] Baresi | Formal verification and validation of embedded systems: the UML-based MADES approach[END_REF] uses a notation integrating concepts of both UML and MARTE [START_REF]OMG formal/2011-06-02. UML profile for MARTE -Modeling and Analysis of Real-time Embedded Systems[END_REF] and transforms models into temporal logic descriptions that can be analyzed by the model checker Zot [START_REF] Pradella | Bounded satisfiability checking of metric temporal logic specifications[END_REF]. Other approaches about AADL aims at transforming models into intermediate models such as FIACRE [START_REF] Chkouri | Prototyping of distributed embedded systems using AADL[END_REF][START_REF] Berthomieu | Formal Verification of AADL models with Fiacre and Tina[END_REF] or BIP [START_REF] Chkouri | Prototyping of distributed embedded systems using AADL[END_REF] to use appropriate model checkers such as TINA [START_REF] Berthomieu | The tool TINA: Construction of abstract state spaces for Petri nets and time Petri nets[END_REF] or Yices [START_REF] Dutertre | [END_REF]. These approaches are powerful from the safety point of view but they are not able to integrate liveness analysis for incremental development of models as it is done in IDCM.

Conclusion

In this article, we have pointed out the interest for incremental development of UML models and the complementarity between safety and liveness analyses. We have defined a transformation of UML models into the BIP formalism which is implemented into the tool IDCM we have developed. By this way, the liveness and safety analyses are automated. Safety properties are expressed by proposi-tional calculus and requires designers to manipulate a specific syntax. Further steps consist in developing a support to help designers to express the safety properties in terms of UML concepts regardless the theorem prover syntax, and studying their automatic rewording when UML models are refined or extended.

 (a) Interfaces. (b) MUTEX Atomic component.

Figure 1 :

 1 Figure 1: MUTEX Behavioral specification.

Figure 2 :

 2 Figure 2: (a) SpecUser and (b) SpecResource state machines

 (a) MUTEXSpec composite component (b) MUTEX composite component. (c) Liveness relations between MUTEX components.

Figure 3 :

 3 Figure 3: Incremental development of the MUTEX system.

Figure 4 :

 4 Figure 4: Main BIP classes.

(a)

 a Resource state machine. (b) Resource LTS.

Figure 5 :

 5 Figure 5: Resource component transformation into LTS.

Figure 6 :

 6 Figure 6: Resource BIP model.

Table 2 :

 2 Despite MUTEX architecture conforms to MU-TEXSpec, we have to verify the safety property about Correspondence between concepts of UML composite components and BIP compound components model Mutex i n c l u d e U s e r . b i p i n c l u d e R e s o u r c e . b i p c o n n e c t o r t y p e r e n d e z v o u s 2 (P o r t p1 , P o r t p2) d e f i n e [p1 p2] end compound t y p e MutexType component R e s o u r c e R1 component U s e r U2 component U s e r U2 c o n n e c t o r r e n d e z v o u s 2 C 1 r e l e a s e (U1 . P RELEASE , R1 . PR RELEASE) c o n n e c t o r r e n d e z v o u s 2 C 1 t a k e (U1 . P TAKE , R1 . PR TAKE) c o n n e c t o r r e n d e z v o u s 2 C 2 r e l e a s e (U2 . P RELEASE , R1 . PR RELEASE) c o n n e c t o r r e n d e z v

Figure 7 :

 7 Figure 7: Mutex BIP model.

Table 1 :

 1 . Correspondence between UML and BIP concepts

	UML Concept	BIP Concept	card.
	Atomic Component	AtomicType	1
	Composite Component	CompoundType	1
	Port	Port	n
	Interface	-	0

Safety analysis of architecturesWe are interested in explicitly modeling safety properties in order to complement incremental techniques. We are looking for a method which takes into account the incremental aspect of modeling in order to be integrated into

Acknowledgement: This research was supported by The National Foundation for Science and Technology Development (NAFOSTED) under Grant 102.03-2013.39: Automated verification and error localization methods for component-based software.