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Abstract

IDF is an Incremental Development Framework which
supports the development and the verification of UML mod-
els for concurrent and reactive systems. IDF offers refine-
ment and extension techniques the goal of which is to check
the preservation of liveness properties during the model de-
velopments. Here, we improve the framework in order to
analyze models from a safety point of view. Some techniques
such as refinement maintain safety properties, however, ex-
tension does not maintain such properties. For this purpose,
we associate IDF with the experienced tools of safety anal-
ysis based on the BIP language by translating UML models
into BIP. We demonstrate on a basic example the comple-
mentarity of liveness and safety analyses.

Keywords: UML composite components, BIP architec-
tures, conformance analysis, safety analysis, refinement, in-
cremental development, transformation of UML models into
BIP models.

1 Introduction

Designing UML models of software intensive reactive
systems is recognized to be a tricky and crucial task. Re-
activity means that such systems must continuously react to
their environment, at a speed defined by this environment.
It implies liveness properties, stating that the system will
eventually react as it must. These systems are also depend-
able, so that reliability, availability and robustness are of
primary importance. This implies safety properties, stating
that undesired behaviors of the system will never happen.

Despite the increasing number of conferences and re-
searches about UML, the use of UML is not yet fully ac-
cepted by industrialists [27]. The lack of a precise seman-
tics and the numerous ambiguities of UML could explain
this defeat. Another related main explanation is the lack of

support for UML designers in the process for both setting
up models and evaluating them. The rule of the thumb is
that an architecture assessment should be held as soon as
architecture decisions begin to be made and the cost of re-
versing those decisions would be more than conducing soft-
ware architecture evaluation [2]. However, few methods of
UML model development support model evaluation during
the design phases. The novelty of our proposed approach
is to consider at early steps of the design both liveness and
safety properties.

In a previous work [19, 18], we have presented our In-
cremental Development Framework (IDF) and its associ-
ated tool IDCM (Incremental Development of Conformance
Models). IDF supports the development and the evaluation
of UML models for reactive systems. It deals with UML
primitive components whose behavior is represented by a
state machine and UML composite components whose parts
are primitive components or composite ones. IDF allows
models to be developed step by step. At every step of the
design, the model is verified as being consistent with the
model obtained at the previous step, a step being a model
evolution which can be of four kinds: extension, refine-
ment, increment or substitution. The verification of these
four kinds of model evolution is based on a conformance
relation [22] which verifies that liveness properties defined
by a reference model are preserved. However, this work has
its own shortcomings: explicit verification of safety proper-
ties is not addressed. This article aims at enhancing IDF in
order to be able to model and check explicit safety proper-
ties. That is a way to cover the verification of the complete
properties of a system since it has been proved that the safe-
ty/liveness spectrum covers all linear-time properties of a
system under design [29].

We present in section 2 an example pointing out an in-
cremental development of a model whose liveness analysis
is demonstrated using IDCM, but suffering from a lack of
safety analysis. Section 3 presents the BIP meta-model that



has been selected as an intermediate format to analyze mod-
els in order to use D-Finder tool to check safety analysis.
The tool IDCM associated with IDF, as well as UML and
BIP models presented in this article, may be downloaded
on the website [1]. Section 5 presents related works. We
conclude in section 6 and present our future directions.

2 Motivating example

Let us consider MUTEX, a mutual exclusion system that
can process two orders of task execution in parallel: it has
two ports (see Fig.1), each of them allowing the reception
of a demand of task execution (operation start of interface
IUserIn) and the transmission of an acknowledgement at
the end (operation finish of interface IUserOut). The high
level specification of MUTEX represents the system from
an external point of view and does not yet represent the re-
source. It is modeled from a behavioral point of view by an
atomic UML component whose behavior is specified by a
state machine (see Fig.1b).

(a) Interfaces.

(b) MUTEX Atomic component.

Figure 1: MUTEX Behavioral specification.

The next step of modeling aims at representing the in-
ternal view of the system, i.e. the shared resource and the
two users. The interface provided by the resource offers
two actions: take and release. The designer thus specifies
the components SpecUser and SpecResource and their as-
sociated behaviors (cf. Fig. 2) in order to match MUTEX
high level specification. The first model set up by this way is
named MUTEXSpec: it is a composite component which as-
semblies two SpecUser components and one SpecResource
component (see Fig.3a).

A new modeling step is starting to set up a possible
implementation of MUTEXSpec architecture (see Fig.3b)
based on components User and Resource. User is not de-
tailed since it is not required to understand the example.
Resource is presented in Fig. 5a. Both User and Resource
have been checked by IDCM as extending and thus con-
forming their specification (Fig.3c). The conformance re-
lation [20] between an implementation model and a spec-

(b) (a)

Figure 2: (a) SpecUser and (b) SpecResource state ma-
chines

ification model guarantees that actions that are mandatory
after any trace of the specification must also be accepted
by the implementation after the same trace. This relation
has been implemented with its variant, refines and extends,
in [22]. It requires models to be transformed into LTS (La-
belled Transition System) that is automatically achieved us-
ing IDCM and CADP toolbox [15] (see [19, 18] for more
details about the transformation). In the following, we give
an interpretation of these relations on the MUTEX models.
For formal definitions, see [18]. MUTEX composite com-
ponent conforms to MUTEXSpec component: it is a suitable
implementation of the specification. MUTEXSpec architec-
ture is a refinement of MUTEX behavioral specification: it
has no extra traces and realizes all mandatory part of the
specification. Resource component conforms to Resource-
Spec and is an extension: Resource is able to behave like
its specification but has also extra behavior which does not
conflict with its specification.

This example points out that MUTEX is a “good” realiza-
tion of the initial specification from a liveness point of view
as defined by the ISO standard [16]. However, we are not
able to verify the safety property stating that the resource
has to be exclusive. We may interpret this property in terms
of states that the components of the system may or may not
reach. If the resource R1 is exclusive, it means that U1 and
U2, the two users of MUTEX may not be at the same time
in state Starting, which is the output state of the transition
start/takeResource, while R1 is in state Busy.

IDF relations cannot verify an explicit property such as
this one. It is thus necessary to associate another tool with
IDCM.

3 Safety analysis of architectures

We are interested in explicitly modeling safety proper-
ties in order to complement incremental techniques. We
are looking for a method which takes into account the in-
cremental aspect of modeling in order to be integrated into

2



(a) MUTEXSpec composite component

(b) MUTEX composite component.

(c) Liveness relations between MUTEX components.

Figure 3: Incremental development of the MUTEX system.

IDF. The BIP (Behavior, Interaction and Priority) model-
ing and verification framework is based on several princi-
ples which match with IDF: development of correctness-by-
construction model, incrementality, compositionality and
composability [5]. It includes many tools for safety prop-
erty analysis and model transformation from several lan-
guages such as AADL and Lustre. To the best of our knowl-
edge, there is no available transformation tool from UML to
BIP taking into account both primitive and composite com-
ponent descriptions. We have thus developed a module of
IDCM that may be uploaded on the IDCM website [1]. The
transformation principle is presented and illustrated in sec-
tion 4.

3.1 BIP language

BIP is a powerful language for modeling heterogeneous
real-time systems. We only focus on specific concepts use-
ful to understand the safety analysis purpose and the trans-
formation from UML to BIP. As we do not consider data
analysis of UML models, we will not consider data model-
ing in BIP. In the same way, we will not deal with priority
concepts of the BIP language. Refer to [4] for detailed in-
formation about the BIP language. Fig. 4 gives an overview
of the main classes of BIP meta-model corresponding to
UML concepts we deal with.

BIP describes compound components by a set of inter-
actions between atomic components whose behaviors are
represented by LTS. Two kinds of interactions are possible:
strong (also called rendezvous) and weak (broadcast). In
this study, we restrict interactions to rendezvous which are
defined on ports representing actions.

Figure 4: Main BIP classes.

3.2 D-Finder: a toolbox for safety analysis

D-FINDER provides methods and tools to compute in-
variants of BIP models. Such invariants are interesting since
they preserve safety properties. There are two kinds of in-
variants: component invariants which are over approxima-
tion of reachable states, and interaction invariants which
define global boolean constraints dealing with the synchro-
nization of components. D-FINDER is based on an abstrac-
tion technique allowing the state space to be reduced. Its
strength is to perform incremental constructions of mod-
els and incremental computations of invariants [5] allow-
ing large-scale systems to be checked. D-Finder uses BDD
library for the symbolic computation of interaction invari-
ants, and then the SAT-solver tool Yices [13] for checking
satisfiability. Verifying a safety property consists in demon-
strating using Yices that the negation of the property is un-
satisfiable in a context defined by the set of invariant expres-
sions generated by D-Finder. The invariants are expressed
by Boolean Behavioral Constraints [23].
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3.3 Illustration of a safety property for MUTEX

Let us consider the MUTEX specification and imple-
mentation architectures (Fig. 3a and 3b). We aim at check-
ing if the mutual exclusion property is satisfied. Equation 1
expresses the non expected property: two users U1 and U2
can be both in Starting state while the shared resource R1 is
in busy state. We have to demonstrate that this property can
never be satisfied.
(and R1 busy- (and U1 Starting- U2 Starting-)) (1)

The following section focuses on UML model transfor-
mation into BIB and points out results of safefy analysis of
MUTEX models after their transformation.

4 From UML to BIP architectures

UML and BIP share the same view about component
concepts: a UML component whose behavior is defined by
a state machine matches the BIP atomic component con-
cept, a UML composite component matches the BIP com-
pound component (see Table 1). The concept of UML in-
terface (set of visible operations) does not explicitly exist
in BIP. However, it may be translated into exported ports.
A matching is possible between operations belonging to in-
terfaces associated with UML ports and the BIP ports. For
instance, the port P of component User which is associ-
ated with the interface IResource will correspond to two BIP
ports named P TAKE and P RELEASE since interface IRe-
source contains the two operations TAKE and RELEASE.
This is why the relation between UML port and BIP ports
is of cardinality n in Table 1.

UML Concept BIP Concept card.

Atomic Component AtomicType 1
Composite Component CompoundType 1
Port Port n
Interface − 0

Table 1: Correspondence between UML and BIP concepts

4.1 Transformation of atomic components

We have given in [18] a LTS semantics to UML state ma-
chines. BIP atomic models have a LTS semantics [4]. The
mapping from UML to BIP is thus trivial. It is important
to note that UML is more concrete than the LTS language
and allows more complex structures to be modeled, such as
actions on data or call events through ports. Hence, this se-
mantics abstracts some concepts of UML like data, events,
time, ports, guards, thanks to the intrinsic non-deterministic
nature of LTS. The rules allowing the UML atomic transfor-
mation into LTS are detailed in [18]. Figure 5a represents

the state machine of component Resource of MUTEX ar-
chitecture and figure 6 gives the corresponding BIP model
that is automatically generated by the module UMLtoBIP
of IDCM.

(a) Resource state ma-
chine.

(b) Resource LTS.

Figure 5: Resource component transformation into LTS.

package Resource
a t om ic t y p e Resource

e x p o r t p o r t P o r t PR TAKE
e x p o r t p o r t P o r t PR RELEASE
p o r t P o r t i
p l a c e P s e u d o s t a t e 1 , i d l e , busy
i n i t i a l t o P s e u d o s t a t e 1
on i from P s e u d o s t a t e 1 t o i d l e
on PR TAKE from i d l e t o busy
on PR TAKE from busy t o busy
on PR RELEASE from busy t o busy

end
end

Figure 6: Resource BIP model.

4.2 Transformation of composite components

There is a direct mapping between UML composite com-
ponent and BIP compound components (see Table 2): a
UML composite component consists of a set of Parts which
match BIP Components. A UML assembly Connector
matches a set of BIP connectors. Indeed, a BIP connec-
tor is relative to the synchronization of a single operation
shared by two interconnected ports, while a UML connec-
tor is relative to the synchronization of the set of operations
belonging to interfaces associated with the interconnected
ports. The Port of a Part belonging to a delegate connector
will be exported and renamed by the name of the port of
the compound component. Table 2 summarizes the match-
ing of concepts between UML composite components and
BIP compound components. To illustrate this transforma-
tion, we give in Figure 7 the BIP code of the MUTEX ar-
chitecture represented in Figure 3b. This code is automat-
ically generated by the transformation module UMLtoBIP
of IDCM.

4.3 Safety analysis of MUTEX architecture

Despite MUTEX architecture conforms to MU-
TEXSpec, we have to verify the safety property about
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UML Concept BIP Concept card.

Part Component 1
Assembly connector Connector BIP n
Delegate connector export Port n

Table 2: Correspondence between concepts of UML com-
posite components and BIP compound components

model Mutex
i n c l u d e User . b i p
i n c l u d e Resource . b i p
c o n n e c t o r t y p e r e n d e z v o u s 2 ( P o r t p1 , P o r t p2 )

d e f i n e [ p1 p2 ]
end
compound t y p e MutexType

component Resource R1
component User U2
component User U2
c o n n e c t o r r e n d e z v o u s 2

C 1 r e l e a s e ( U1 . P RELEASE , R1 . PR RELEASE )
c o n n e c t o r r e n d e z v o u s 2

C 1 t a k e ( U1 . P TAKE , R1 . PR TAKE )
c o n n e c t o r r e n d e z v o u s 2

C 2 r e l e a s e ( U2 . P RELEASE , R1 . PR RELEASE )
c o n n e c t o r r e n d e z v o u s 2

C 2 t a k e ( U2 . P TAKE , R1 . PR TAKE )
e x p o r t p o r t P o r t PMUTEX1 FINISH i s U1 . PIN FINISH
e x p o r t p o r t P o r t PMUTEX1 START i s U1 . PIN START
e x p o r t p o r t P o r t PMUTEX2 FINISH i s U2 . PIN FINISH
e x p o r t p o r t P o r t PMUTEX2 START i s U2 . PIN START

end
component MutexType Mutex
end

Figure 7: Mutex BIP model.

the mutual exclusion whose negation is expressed in
equation 1 of section 3.3. For SpecMUTEX, the property
is unsatisfied: it means that the resource mutual exclusion
has been properly implemented in this architecture. That
is not the case for the MUTEX architecture. Indeed, the
state machine associated with the Resource (see Fig.5a)
points out that it may be used concurrently by two users.
On this example, the error is obvious, but it is not the case
for large system for which components may be designed
by third parties according to a high level specifications:
conformance does not guarantee safety preservation and
a complete specification has to define both the expected
behavior (liveness properties) and unexpected states or
sequence of events (safety properties). IDCM associated
with BIP and its associated tools is a good way to cover all
these aspects.

5 Discussion and Related work

Most of behavioral analyzes of UML models (75% ac-
cording to [21]) are done by transformation of UML models
into formal languages that can be handled by model check-
ers or theorem provers. Some of them are referenced be-
low. However, to the best of our knowledge, no framework
support the incremental development of UML architecture

models by analyzing both liveness and safety behavioral as-
pects. In particular, no framework is able to consider ab-
stract and non-deterministic UML models and few frame-
works are able to consider UML models partially covering
the requirements. Hence, even if some work addresses re-
finement of models, they do not focus on the reduction of
non-determinism, and most of them cannot analyze models
the specification of which is extended, despite it is a key
action for designing complex systems and managing model
evolution. Refer to [18] to have more arguments and a com-
plete state of the art about formal verification of models.

To argue this discussion, let us take some representative
works about UML/SysML architecture model verification
[17, 26, 10, 24, 3]. Although [12] focuses on UML ac-
tivity diagrams, we must pay attention to the sound discus-
sion about model checking that is the base of our approach.
[17] defines a UML profile to transform models into Wright
for using the FDR model checker [14]. FDR focuses on
liveness and safety. It deals with several refinements and
provides deadlock detection. However, it does not support
analysis of extended models and models are not verified
under fairness assumption, which is the main drawback as
pointed out in [18]: FDR can not distinguish between ‘crit-
ical’ livelocks (when there may exist executions where the
system won’t never exit some infinite internal paths) and
‘false’ livelocks, where under a fairness assumption, the
system may leave internal infinite paths or loops. [10] de-
fines and verifies component assemblies and performs a be-
havioral compatibility verification but extension and refine-
ment techniques are not supported. [24] have extended the
techniques proposed by [11] who has defined the OMEGA
2, a UML profile. Architectures are translated into IF/IFx
models [8] allowing LTS models to be generated and an-
alyzed by the CADP model checker [15]. [3] uses a no-
tation integrating concepts of both UML and MARTE [25]
and transforms models into temporal logic descriptions that
can be analyzed by the model checker Zot [28]. Other ap-
proaches about AADL aims at transforming models into in-
termediate models such as FIACRE [9, 6] or BIP [9] to use
appropriate model checkers such as TINA [7] or Yices [13].
These approaches are powerful from the safety point of
view but they are not able to integrate liveness analysis for
incremental development of models as it is done in IDCM.

6 Conclusion

In this article, we have pointed out the interest for in-
cremental development of UML models and the comple-
mentarity between safety and liveness analyses. We have
defined a transformation of UML models into the BIP for-
malism which is implemented into the tool IDCM we have
developed. By this way, the liveness and safety analyses
are automated. Safety properties are expressed by proposi-
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tional calculus and requires designers to manipulate a spe-
cific syntax. Further steps consist in developing a support
to help designers to express the safety properties in terms of
UML concepts regardless the theorem prover syntax, and
studying their automatic rewording when UML models are
refined or extended.
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