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Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies with a mortality that is almost
identical to incidence. Because early detected PDAC is potentially curable, blood-based biomarkers that could detect currently
developing neoplasia would improve patient survival and management. PDAC develops from pancreatic intraepithelial neoplasia
(PanIN) lesions, graded from low grade (PanIN1) to high grade (PanIN3). We made the hypothesis that specific proteomic
signatures from each precancerous stage exist and are detectable in plasma.

Methods: We explored the peptide profiles of microdissected PanIN cells and of plasma samples corresponding to the different
PanIN grade from genetically engineered mouse models of PDAC using capillary electrophoresis coupled to mass spectrometry
(CE-MS) and Chip-MS/MS.

Results: We successfully characterised differential peptides profiles from PanIN microdissected cells. We found that plasma from
tumor-bearing mice and age-matched controls exhibit discriminative peptide signatures. We also determined plasma peptide
signatures corresponding to low- and high-grade precancerous step present in the mice pancreas using the two mass
spectrometry technologies. Importantly, we identified biomarkers specific of PanIN3.

Conclusions: We demonstrate that benign and advanced PanIN lesions display distinct plasma peptide patterns. This strongly
supports the perspectives of developing a non-invasive screening test for prediction and early detection of PDAC.

Pancreatic ductal adenocarcinoma (PDAC) is a rare disease but
this diagnosis sounds like a death sentence for most cases.
Incidence equals mortality because of a late diagnosis and the lack

of curative treatment for advanced disease. Therefore, one vital
question to answer is: who is likely to develop this cancer and who
already has it?
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This is an essential point because up to now surgical resection
remains the only potentially curative treatment for pancreatic
cancer patients. Patients with surgically resected localised disease
have a 5-year relative survival around 20%. The success rate of this
approach could be significantly improved if early forms of
pancreatic tumours could be routinely and reliably detected as
recently demonstrated (Canto et al, 2012). However, high-risk
individuals have significantly more prevalent pancreatic cysts
lesions and current imaging devices are still not sensitive enough to
detect pancreatic intraepithelial neoplasia (PanIN) that are
microscopic premalignant epithelial lesions.

Many studies using different kinds of –omics have been
performed in order to propose biomarkers for PDAC. Differen-
tially expressed genes, miRNA or proteins were included in a
catalog of potential biomarkers of pancreatic cancer based on their
report in published articles and in public repositories (Harsha et al,
2009; Cutts et al, 2011). However, they represent candidate
markers rather than validated markers and for most of them lack
sensitivity, specificity or reproducibility (Jamieson et al, 2011). The
main limitation is that the vast majority of previous published
studies used samples from patients that underwent surgical
resection and were therefore already diagnosed. The advanced
tumor stage restricts the value of these studies for screening
purposes. Their results may also reflect consequences rather than
predict the disease. Therefore the challenge of discovering markers
applicable to early detection of PDAC is still substantial.

Proteomic profiling of biological samples is increasingly used in
basic research to obtain more insight into the pathophysiology of
diseases, as well as in translational clinical studies to better
diagnose and monitor diseases, predict or follow response to
therapy. There has been a great interest in applying this technology
to pancreatic cancer blood biomarker, as detection of peptides as
plasma signatures predictive of PDAC would represent a great
advance in this field (Koomen et al, 2005; Tonack et al, 2009a;
2009b; Cecconi et al, 2011; Pan et al, 2011). Several previous
findings indicate that plasma proteomic analysis of genetically
engineered mouse (GEM) models of cancer provide a useful
strategy to identify candidate markers applicable to human cancer
(Kuick et al, 2007; Hung et al, 2009; Taguchi et al, 2011). In the
case of PDAC, GEM models expressing the driving oncogene
KrasG12D in the pancreas develop PanIN lesions and invasive
tumours histologically identical to those in humans (Hingorani
et al, 2003). Their potential utility for detection of early stage
PDAC has been recently published (Faca et al, 2008; Hocker et al,
2013).

Capillary electrophoresis coupled to mass spectrometry
(CE-MS) is increasingly employed in proteome analysis with focus
on biomarkers discovery to successfully improve diagnosis and
treatments of severe pathologies (Kolch et al, 2005; Mischak and
Schanstra, 2011). Chip-MS system is a microfluidic chip-based
technology designed for nanospray that allows for highly efficient
HPLC separation and superior sensitive MS detection of complex
proteomic mixtures (Vollmer and van de Goor, 2009). We
conducted proteomic studies using several GEM models expressing
KrasG12D in the pancreas using both technologies. We char-
acterised differential peptides profiles from PanIN microdissected
cells, determined plasma peptide profiles corresponding to benign
and advanced PanIN and identified biomarkers specific of each
precancerous stage.

MATERIALS AND METHODS

Mouse strains. The LSL-KrasG12D/þ and the LSL-p53R172H/þ

knock-in mouse strains were obtained from the Mouse Models of
Human Cancers Consortium Repository (NCI, Frederick, USA).

The Pdx1-Cre mouse strain was from the Douglas A. Melton’s
laboratory (Cambridge, MA, USA; Gu et al, 2002). The conditional
Ink4a/Arflox/lox mouse strain was from Ronald A. DePinho’s
laboratory (Aguirre et al, 2003). LSL-KrasG12D/þ and Pdx1-Cre
strains were bred to generate Pdx1-Cre;LSL-KrasG12D/þ mice
(named KC) and control littermates as previously described
(Hingorani et al, 2003). They were also bred to Ink4a/Arflox/lox

mice and to LSL-p53R172H to produce the Pdx1-Cre;LSL-KrasG12D/þ ;
Ink4a/Arflox/lox and Pdx1-Cre;LSL-KrasG12D/þ ;LSL-p53R172H/þ

(named KPC), respectively, as well as corresponding controls. All
experiments were approved by the animal care committee of
animal facility of INSERM-US006 and INSERM-U1068.

Sample collection. For the training plasma sample set, KC and
control mice were killed at different time points during 19 months
and plasma samples were collected at the time of killing from
the orbital sinus and frozen. Plasmas were collected from
Pdx1-Cre;LSL-KrasG12D/þ ; Ink4a/Arflox/lox mice exhibiting pancreatic
tumours at 8 weeks of age. For the validation set, plasma were from
KC and KPC killed at 6 months. Half of each pancreas was fixed in
10% neutral buffered formalin, embedded in paraffin, serially
sectioned (5 mm) and every 10 sections stained with hematoxylin
and eosin for histo-pathological analysis. Scoring of PanIN lesions
was performed using consensus criteria established at the Penn
Workshop (Hruban et al, 2006). Pancreas were graded by a
pathologist (TAS) according to the highest grade of PanIN found
in half of each pancreas serially sectioned. The other half of each
pancreas was frozen in cooled liquid isopentane for laser
microdissection.

Laser microdissection. Laser microdissection was performed with
an Arcturus ARC 2000 microscope using 10-mm thick pancreas
frozen sections. Sections were stained with cresyl violet for the
identification and grading of PanIN by a pathologist (TAS) before
microdissection. We microdissected 500–4000 cells from PanIN
lesions or acini in a maximum of 20–30min. Cells from several
caps were pooled until 4000 cells were collected and processed for
CE-MS analysis. In this way we collected 52 samples: 12 PanIN1,
20 PanIN2, 10 PanIN3 from 42 KC and 10 normal pancreatic
exocrine cells samples from 10 control mice.

Protein extraction from microdissected cells. Isolated cells
attached to the caps were suspended in 40 ml of Rapigest 0.1%
buffer (Waters). After 2min of sonication, solubilized proteins
were subjected to trypsin digestion (0.5ng ml� 1 sample, porcine
trypsin; Promega), 16 h at 37 1C. Reaction was stopped with 0.5%
trifluoroacetic acid before centrifugation at 13 000 r.p.m. for 5min.
Digested samples were subjected to a 20 kDa cut-off by
centrifugation at 2000 g, 45min, 4 1C in urea 2M, 100mM NaCl,
0.0125% NH4OH, 0.01% SDS buffer on Vivaspin 2 column
(Sartorius) and final desalting on NAP5 column (GE Healthcare).

Plasma sample preparation. To decrease the amount of the high-
abundance proteins and concentrate low-abundance proteins, we
used the ProteoMiner protein enrichment kit (Sennels et al, 2007),
according to Bio-Rad’s instructions. Briefly, 20 ml of plasma were
loaded on 20ml of beads. For CE-MS analysis, they were eluted in
40 ml of buffer with 8M urea, 2% CHAPS and 5% acetic acid.
Adjustment of pH to 8 was performed before digestion of proteins
with trypsin (0.5 ng ml� 1 sample). Digestion was stopped and
peptides were desalted as described for microdissected cells. For
Chip-MS, proteins were eluted from beads with 2� Laemmli
Buffer (Tris 80mM, pH 6.8, SDS 3%, glycerol 10%, DTT 80mM).
The samples were then reduced, alkylated before concentration and
desalting in a 7.5% SDS-PAGE. Proteins were stained by
Coomassie Blue. Each lane was cut and each gel piece was washed
several times in acetonitrile 100%, ammonium bicarbonate
100mM and dried in vacuo. Gel pieces were rehydrated with
20 ng ml� 1 trypsin prepared in ammonium bicarbonate 100mM,
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and submitted to in gel-digestion overnight at 37 1C. Peptides were
then extracted and purified from gel then subjected to mass
spectrometry analysis.

CE-MS technology. CE was performed on a P/ACE ProteomLAb
PA800 (Beckman Coulter, Fullerton, CA, USA). Fused silica
capillaries with a total length of 90 cm with 50 mm inner diameter
were used for separation. Twenty percent acetonitrile, 250mM
formic acid was used as background electrolyte. Sample injection
was performed for 99 s under pressure (1–6 psi); the sample plug
injected corresponding to 50–300 nl volume and separation voltage
was set at 25 kV for 60min. The temperature of capillary was set
to 35 1C during the entire run. A washing step with successive
H2O/NH4OH/H2O/background electrolyte injections was included
between runs.

MS was performed using a microTOF II (Bruker Daltonics,
Bremen, Germany) apparatus in a positive electrospray mode with
an ESI-TOF sprayer-kit from Agilent Technologies (Palo Alto, CA,
USA). The ESI sprayer was grounded and the ionspray interface
potential was set to � 4500V. CE-MS coupling was realized by a
coaxial sheath liquid interface (Agilent Technologies) with 30% v/v
isopropanol and 1% v/v formic acid in HPLC-grade water as
sheath liquid and a rate of 2 ml min� 1. Data acquisition and MS
methods were automatically controlled by CE apparatus via
contact-closure relays. Spectra were accumulated for 3 s each, over
a mass range from 350 to 3000m/z (mass/charge ratio).

Chip-MS/MS technology. The peptides mixtures were analysed
by nanoHPLC-chip-MS/MS with a system consisting of a nano-
pump, a capillary-pump (G1376A and G2226, Agilent) with two
four-channel micro-vacuum degassers (G1379B, Agilent), a
microfluidic chip cube (G4240-64000, Agilent) interfaced to an
Amazon ETD mass spectrometer (Bruker Daltonics, Germany). A
microfluidic reversed-phase HPLC chip (Zorbax 300SB-C18, 5mm
particle size, 75 mm internal diameter and 150mm length) was used
for peptide separation. Peptides were eluted using the following
gradient of solvent A (0.1% formic acid) and B (10% acetonitrile,
0.1% formic acid) at 300 nlmin� 1 flow rate: 0–1min, 3% B;
1–3min, 3–7% B; 3–44min, 7–45% B; 44–46min, 45–95% B;
46–50min, 95% B; 50–51min, 95–3% B.

For the profiling experiment, the mass spectrometer was
operated in full scan MS. Scans MS were acquired on the
300–1500m/z range in the enhanced-resolution mode. The
maximum accumulation time was set to 75ms. The voltage
applied to the chip was 1800–1900V, the dry gas flow was
4.0 l min� 1 at a temperature of 180 1C. A set of target peptides was
obtained after data analysis and an inclusion list was built to
fragment preferentially relevant peptides.

For peptide fragmentation, the Amazon was operated in data-
dependent acquisition mode with the trap control software. Scans
MS were acquired on the 300–1500m/z range in the enhanced-
resolution mode. MS/MS spectra were acquired using the
scheduled precursor list but the mass spectrometer was allowed
to acquire spectra in empty time intervals. The most intense ions
per scan were selected for collision induced fragmentation and
dynamic exclusion was employed within 12 s to prevent repetitive
selection of the same peptide. The fragmentation amplitude was set
to 0.6 V.

CE-MS and Chip-MS data analysis. The Bruker data files
(.d folder) generated with the CE-MS or Chip-MS technology
were loaded to Progenesis LC-MS version 4.0 (Nonlinear
Dynamics, UK). Automatic alignment was performed using an
algorithm that corrects retention time shifts. After checking
manually all runs, the peak picking was performed to detect
features (i.e., ions detected on the mass spectrometer) using
automatic parameters for sensitivity and retention time window.
To lower noise detection, sensitivity was set to its lower level.

Only features with o6 charges were kept for further analysis.
Normalisation to all features was also processed. An experimental
design was set up to compare the different groups. In order to
select features of interest, statistical filters were set and only
features matching all filters were kept. Filters used were:
P-valueo5% (Student’s t-test), max fold change 41.5, power
480%. A .csv file was then exported from Progenesis and
loaded to R 2.13.2. Descriptive statistics and principal component
analysis (PCA) were performed using mixOmics R Package
(Le Cao et al, 2009).

Identification of proteins. As potential biomarkers, relevant
features selected by Progenesis were exported in .mgf files and
the corresponding proteins were identified using the MASCOT
software (http://www.matrixscience.com/) and SwissProt database
(http://web.expasy.org/docs/swiss-prot_guideline.html). Mascot
files were then imported in Progenesis software to select the most
relevant identified proteins. Protein hits were validated if they
satisfied one of the following criteria: identification with at least
one top ranking peptide with a Mascot score of443 or at least two
top ranking peptides each with a Mascot score of 423.

Statistical analysis. Descriptive statistics are presented as PCA
that allows exploratory data analysis combining samples and
proteins. A Tukey test was used to analyse coefficient of variation
(CV) in order to compare variability between groups and
variability within groups. Statistical analysis were done with
FactoMineR package for R software (http://cran.r-project.org/
web/packages/FactoMineR/).

Enzyme-linked immunosorbent assay. Plasma levels of ITIH3
were measured using commercially available mouse kit obtained
from Mybiosource.Com. Plasma was diluted 1 : 2000. Enzyme-
linked immunosorbent assay (ELISA) was performed according to
the manufacturers’ protocols and samples were assayed in
duplicate. Statistical significance (Po0.05) was determined by
Mann-Whitney’s test.

RESULTS

Differential peptide profiles from microdissected PanIN. PDAC
develops through increasing grades of non-invasive PanIN lesions.
PanIN are divided into three grades based on cytological and
architectural abnormalities: benign PanIN1 lesions show no
nuclear abnormalities and develop cytoplasmic mucin, PanIN2
demonstrate moderate dysplasia with stratification and nuclear
crowding, PanIN3 have lost their polarity and show marked atypia
similar to in situ carcinoma, they are the immediate precursor of
metastatic PDAC (Figure 1A). As phenotypical changes were
observed during PanIN development in parallel to molecular
alterations, we wanted to compare peptide signatures from cells
from different PanIN grades to test the accuracy of the peptide
profiling approach. For this purpose we performed laser-based
microdissection to get cells free of contaminating and unwanted
tissue components and determine differentially expressed proteins
in the different PanINs using control and KC (Figures 1B and C).
We chose acinar cells as matched normal cells because of the
scarcity of normal ductal epithelial cells. They were microdissected
from control littermates pancreas.

Proteins were extracted from 4000 control acinar cells or PanIN,
separated and analysed with the CE-MS technology. CE-MS raw
files were pre-processed and compared using Progenesis LC-MS
Software. In this software package, all peaks in the raw files are
aligned according to their retention time by a graphical detection
algorithm. This algorithm detects the peptides peaks in a gel-view
representation of the mass spectrometry data and matches
corresponding peaks, termed as features, between samples.
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Each feature corresponds to a peptide characterised by its
migration time, m/z and intensity. Then PCA is performed in
order to reveal whether main sources of variability in the data are
owing to the groups of samples.

To validate the overall CE-MS workflow, we first compared the
biological variability between groups and within groups. As shown
in Figure 1D, biological variability between groups (70%) was
higher than the variability within groups (49–57%). Moreover
Tukey test on CV (defined as the ratio of the standard deviation to
the mean) shows that the difference observed between each CV is

significant (adjusted P-valueo5%), thus validating that statistical
analysis of differences between groups was strictly related to
biological parameters. PCA was then used to analyse peptide
profiles, visualise each data set and detect eventual outliers.
After statistical filters (P-valueo5%, max fold change 41.5, power
480% and q-valueo0.0001), a total of 1556 selected features (over
15 381) were retained for further analysis. Individual factor map
shows that controls, PanIN1 and PanIN2/PanIN3 are sequentially
separated in the first dimension (Dim1 on the horizontal axis)
from left to right (Figure 1E). This result is slightly blurred by the
specific position of sample P3.52 on the left side of the plot.

These results argue in favour of differences in peptide profiles
between cells from normal tissue and different PanIN grades in
agreement with phenotype and molecular differences between
these cells which could induce different pathophysiological
responses detectable in plasma.

Differential plasma peptide profiles from mice with PDAC. We
first subjected plasma proteins from tumor-bearing mice and age-
matched littermate controls to CE-MS profiling. Plasma was
collected from one well-characterised model of PDAC, the Pdx1-
Cre;LSL-KrasG12D/þ ;Ink4a/Arflox/lox mice and corresponding con-
trol littermates at 8 weeks of age. Although we analysed plasma
samples from several mice, all Pdx1-Cre;LSL-KrasG12D/þ ;Ink4a/
Arflox/lox mice were housed in the same facility and had the same
genetic background. Therefore, to better reflect the clinical
situation where individuals with different genetic background
and environmental conditions would be screened, we also analysed
plasma samples from KC that developed tumours after 12 months
of age. These KC and corresponding control mice were housed in a
different facility.

We validated that statistical analysis of differences between
groups was strictly related to biological parameters (Figure 2A) and
representative score plots illustrate classification of samples in two
separated groups (control and tumours) emphasising the hypoth-
esis of peptide profiles specific of each group (Figure 2B). These
results overcome differences in genetic background and clearly
argue in favour of potential discriminant plasmatic signatures from
PDAC-bearing mice compared with control mice.

Differential plasma peptide profiles from mice with PanIN.
Next, we made the hypothesis of proteomic signatures that are
specific of each precancerous stage and are detectable in plasma.
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Figure 1. Histology, laser-microdissection and CE-MS of PanIN.
(A) Representative PanIN1 (black line), PanIN2 (white line) and PanIN3
(white dashed line) on a hematoxylin and eosin stained KC mice
pancreas section are shown; ‘a’ indicates acinar cells; ‘i’ indicates islets;
‘v’ indicates vessels. (B) Representative PanIN1 (left), PanIN2 (middle)
and PanIN3 on a cresyl violet stained frozen section of murine
pancreas. (C) Representative example of PanIN1 before and after laser
microdissection. The area of interest is pulsed with laser (left) and
captured cells are retrieved on a cap (middle), remnant tissue remains
on the slide (right). (D) Validation of CE-MS workflow. Box plots
representative of intra-groups and inter-groups CV (in percentage) from
control cells (ctrl) and PanIN1 (p1), PanIN2 (p2), PanIN3 (p3) lesions in
comparison with biological CV (CV_bio) of all samples taken together.
***Po0.001 adjusted from Tukey’s test, in comparison with CV_bio.
(E) Score plots from results of PCA of peptide profiles from micro-
dissected control cells (black, n¼ 10) and PanIN1 (red, n¼ 12), PanIN2
(green, n¼ 20), PanIN3 (blue, n¼ 10) lesions according to the first two
principal components (Dim 1: 44.47%; Dim 2: 16.36%). Colour code is
used to distinguish samples in accordance to their group memberships.
Confidence ellipses at 95% around each samples from each group are
also represented.
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We tested this hypothesis by determining plasma peptide profiles
of individuals for which we have performed the histo-pathological
analysis and scoring of PanIN lesions of their pancreas. Proteins
from 40 plasma samples were separated and analysed with CE-MS.
Over these plasma samples, 16 were from control mice, 12 from
KC with benign (PanIN1) and 12 from KC with advanced
(PanIN2/3) precursor lesions as diagnosed by histopathology.

To validate the overall CE-MS workflow, we first compared the
biological variability between groups and intra-groups. Biological
variability between groups (51%) was higher than the intra-group
variability (39–47%; Figure 2C). Moreover Tukey test on CV shows
that the difference observed between each CV is significant
(adjusted P-valueo5%), thus validating that statistical analysis of
differences between groups was strictly related to biological
parameters. After statistical filters (P-valueo5%, max fold change
41.5, power 480% and q-valueo0.05), a total of 902 selected
features were retained among the 22 277 for further analysis.
Individual factor map illustrates group separation and shows a
horizontal axis (Dim1 on the horizontal axis) that separates
distinctly advanced PanIN2/3 lesions from controls and benign
PanIN1 lesions (Figure 2D). This result is slightly blurred by the
specific position of sample P2/3.34 on the right side of
the plot.

We then used a second proteomic approach to confirm
differential plasma peptide profiling and identify plasma proteins
specific of each pancreatic precancerous state PanIN1, PanIN2 and

PanIN3. Comparative protein expression differences were mea-
sured by Chip-MS/MS. The inter-groups biological variability was
higher (53%) than the intra-group variability (40–44%) and
Tukey test on CV shows that the difference observed between
each CV was significant (adjusted P-valueo0.005%; Figure 3A).
After statistical filters (P-valueo5%, max fold change 41.5, power
480% and q-valueo0.05), a total of 6401 selected features among
the 290 075 were retained for classification. Individual factor map
illustrates group separation and shows a horizontal axis (Dim1)
that separates distinctly PanIN3 from controls, PanIN1, PanIN2
and PanIN3 and a vertical axis that separates distinctly controls
and PanIN1 from PanIN2 (Figure 3B).

Identification of PanIN biomarkers. Fourteen proteins with a
significant Mascot score were identified. Table 1 shows that
proteins identified are differentially expressed in plasma from mice
with PanIN2 or PanIN3 compared with plasma from control mice.
Inter-alpha-trypsin inhibitor, heavy chain 4 (ITIH4), inter-alpha-
trypsin inhibitor, heavy chain H3 (ITIH3), Ig alpha chain C region
(IGHA) and complement C3 (CO3) discriminate mice with
PanIN3 from control mice. Fibronectin and alpha-2-macroglobulin
discriminate mice with PanIN2 from mice with PanIN3.

A separate mice cohort composed of KC, KPC and control mice
aged of 6 months was used for validation. Individual factor map
shows a horizontal axis (Dim1) that separates distinctly two
groups (Figure 3C). Importantly, again we identified ITIH3 as
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in comparison with CV_bio. (D) Score plots from results of PCA of peptide profiles from control mice (black, n¼16), PanIN1-bearing mice (red,
n¼12) and PanIN2/3-bearing mice (green, n¼12) plasmas according to the first two principal components (Dim 1: 31.33%; Dim 2: 12.61%).
Confidence ellipses at 95% around each samples from each group are also represented. Colour code is used to distinguish samples in accordance
to their group memberships.
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differentially expressed in plasma of these two groups (23 peptides,
score: 739, P¼ 0.0378, 1.9 fold). Pathological analysis validated the
presence of PanIN3 in the pancreas of KC and KPC (Table 3).

To verify the differential abundance of plasma proteins from
PanIN3-bearing mice, we measured the levels of ITIH3 by ELISA

in plasma from the same individual mice used for the Chip-MS/MS
discovery and validation sets (Table 2 and Table 3). As shown in
Figure 3D, plasma levels of these two proteins allowed to
distinguish PanIN3-bearing mice from mice without PanIN lesions
with statistical significance.
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Figure 3. Analysis of plasma samples submitted to Chip-MS analysis. (A) Box plots representative of intra-groups and inter-groups CV
(in percentage) from control mice (ctrl) and PanIN-bearing mice plasmas (p1, p2, p3) in comparison with biological CV (CV_bio) of all samples taken
together.***Po0.001 adjusted from Tukey’s test, in comparison with CV_bio. (B) Score plots from results of PCA of peptide profiles from control
mice (black, n¼10), PanIN1-bearing mice (red, n¼ 10), PanIN2 (green, n¼5) and PanIN3-bearing mice (blue, n¼ 12) plasmas according to the first
two principal components (Dim 1: 17.32%; Dim 2: 13.53%). Confidence ellipses at 95% around each samples from each group are also
represented. Colour code is used to distinguish samples in accordance to their group memberships. (C) Score plots from results of PCA of peptide
profiles from control mice (black, n¼6) and PanIN3-bearing mice (red, n¼7) plasmas according to the first two principal components
(Dim 1: 50.71%; Dim 2: 13.05%). Confidence ellipses at 95% around each samples from each group are also represented. (D) Quantitative analysis
by Elisa of ITIH3 in the plasma of control mice (white box, n¼ 5) and of PanIN3-bearing KC and KPC mice (grey box, n¼ 13), *Po0.05.

Table 1. List of proteins identified by Chip-MS/MS in the plasma of Ctrl and of mice having P1, P2 and P3 in their pancreas

Accession Peptides Score Anova (P) Fold High Low Description
ITIH4_MOUSE 13 763 0.00040 1.7 P3 Ctrl Inter-alpha-trypsin inhibitor, heavy chain

CO3_MOUSE 21 808 0.00055 1.7 Ctrl P3 Complement C3

IGHA_MOUSE 10 478 0.00197 3.1 P3 Ctrl Ig alpha chain C region

FINC_MOUSE 19 735 0.00267 1.6 P3 P2 Fibronectin

APOA4_MOUSE 4 167 0.00298 2.1 P1 P3 Apolipoprotein A-IV

ITIH1_MOUSE 2 75 0.00303 1.8 P3 P2 Inter-alpha-trypsin inhibitor heavy chain H1

HVM16_MOUSE 1 77 0.00337 1.6 P3 P1 Ig heavy chain V region MOPC 21 (fragment)

ITIH3_MOUSE 11 413 0.00515 1.9 P3 Ctrl Inter-alpha-trypsin inhibitor heavy chain H3

IGG2B_MOUSE 4 98 0.00519 2.1 P2 Ctrl Ig gamma-2B chain C region

FETUA_MOUSE 2 171 0.00544 3.4 P2 P3 Alpha-2-HS-glycoprotein

LUM_MOUSE 2 55 0.01094 1.6 Ctrl P3 Lumican

IGHM_MOUSE 6 278 0.01632 1.9 Ctrl P2 Ig mu chain C region secreted form

THRB_MOUSE 3 165 0.01663 1.6 P3 P2 Prothrombin

A2M_MOUSE 9 341 0.02465 1.9 P2 P3 Alpha-2-macroglobulin

Abbreviations: Chip-MS¼Chip-mass spectrometry; Ctrl¼ control mice; P1¼PanIN1; P2¼PanIN2; P3¼PanIN3.
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DISCUSSION

Using a well-established GEM recapitulating the molecular and
morphological stages of human PDAC development we first
identified peptide signatures that can discriminate between
morphologically normal pancreatic tissue and each of the PanIN:
PanIN1, PanIN2 and PanIN3. Until now, most of tissue-based
proteomics studies did not differentially discriminate PanIN
according to their grade or identified biomarkers from pancreatic
cancer (Cui et al, 2009; Pan et al, 2009; Turtoi et al, 2011; Wang
et al, 2011). To our knowledge only one other study used
microdissected cells of different PanIN grade to investigate the
pancreatic proteome by 2D-DIGE and reported differentially
regulated proteins involved in pancreatic tumor progression

(Sitek et al, 2009). Therefore, this first set of results establishes a
solid basis for developing a non-invasive screening method for
early diagnosis using proteomics.

Many studies reported the identification of circulating proteins
as markers of pancreatic cancer. For example, 18 peaks were
identified to be differentially expressed between pancreatic cancer
and healthy volunteers (Xue et al, 2010). Several proteins were
characterised and evaluated alone or in combination with CA19-9
for their discriminating power for pancreatic cancer diagnosis
(Fiedler et al, 2009; Takano et al, 2010; Fakelman et al, 2010;
Matsubara et al, 2011; Tonack et al, 2013). However none of them
could detect early stages of cancer development as these markers
have been investigated on patients with established PDAC. To
circumvent this issue, we explored differences in plasmatic protein
profiles in validated GEM models. Profiling of blood samples is
usually quite challenging because of the presence of abundant
proteins such as albumin. However, we overcame this major
obstacle to blood biomarker discovery as we obtained differential
peptide profiles in plasma from mice. A further noticeable result is
that we were able to detect precancerous pancreatic lesions without
sample pooling thus providing an effective methodology for the
screening of individuals.

Importantly we discovered candidate blood biomarkers that
discriminate high-grade PanIN lesions showing that the presence
of microscopic and non-invasive precancerous lesions may be
detected in blood circulation. Of note, plasma was obtained from
mice before pancreatic cancer has developed. This gives to the
proteins that we identified the value of true precancerous
biomarkers whose expression is not influenced by the presence
of a tumor. Four plasma proteins were differentially present in the
plasma of mice with PanIN3 and of control mice suggesting
potential early detection of PDAC by combining these proteins.

Table 3. Grade of detected PanIN lesions in the pancreas of
the mice used for Chip-MS/MS plasma set 2

Number Strain Age (months) PanIN3
407a KC 6 Yes

371a KPC 6 Yes

384a KPC 6 Yes

415a KPC 6 Yes

359a KC 6 Yes

363a KC 6 Yes

B790a KC 6 Yes

Abbreviations: Chip-MS¼Chip-mass spectrometry; KC¼Pdx1-Cre;LSL-KrasG12D/þ mice;
KPC¼Pdx1-Cre;LSL-KrasG12D/þ ;LSL-p53R172H/þ .
aIndicate plasma used for validation by ELISA.

Table 2. Quantification of PanIN lesions in the pancreas of the KC training set mice (Chip-MS/MS plasma set 1)

PanIN1 PanIN2 PanIN3

Training set (n¼21) Number Age (months) n Area (% total) n Area (% total) n Area (% total)
PanIN1 (n¼10) P1–21 6 3 0.044 0 — — —

P1–22 1 5 0.075 0 — — —

P1–23 1 6 0.044 0 — — —

P1–24 15 9 0.234 0 — — —

P1–25 2 13 0.322 0 — — —

P1–26 2 33 0.499 0 — — —

P1–27 4 13 0.208 0 — — —

P1–28 9 80 1.737 0 — — —

P1–29 6 18 0.144 0 — — —

P1–30 6 11 0.283 0 — — —

PanIN2 (n¼5) P2–31 9 24 0.466 4 0.603 0 —

P2–32 9 2 0.072 2 0.138 0 —

P2–33 9 10 0.370 2 0.230 0 —

P2–34 9 30 0.273 3 0.181 0 —

P2–35 11 29 0.776 3 0.356 0 —

PanIN3 (n¼6) P3–36a 11 47 1.352 2 0.543 8 1.981

P3–37a 11 31 0.651 3 0.155 5 0.625

P3–38a 15 15 0.374 2 0.467 1 0.182

P3–39a 15 15 0.492 2 0.613 2 0.417

P3–40a 18 56 1.811 17 0.912 7 1.315

P3–41a 18 144 4.964 14 1.130 13 2.724

Abbreviations: Chip-MS¼Chip-mass spectrometry; Ctrl¼ control mice; KC¼Pdx1-Cre;LSL-KrasG12D/þ mice.
aIndicate plasma used for validation by ELISA.
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Among them, two proteins, ITIH3 and ITIH4, belong to the family
of inter-alpha-trypsin inhibitor (ITIH). They were previously
identified in plasma of mice with PanIN and PDAC, but not linked
specifically to the presence of PanIN3 (Faca et al, 2008). ITIH4 has
been associated with several disease conditions and proposed to be
used as potential biomarker of breast cancer (Song et al, 2006).
Importantly, we validated ITIH3 using both mass spectrometry
and ELISA in mice with different ages, genotypes and strain
backgrounds. It is also worthy of note that ITIH3 has been
identified as a novel potential biomarker for PDAC detection in a
recent proteomics determination (Tonack et al, 2013). Our data
lead us to believe that this protein might be present at high amount
in the blood of individuals with non-invasive cancer. ITIH3
screening could help to characterize the critical step before the fatal
disease and the presence of PanIN3 that is currently impossible to
do. This is strongly supported by the identification of ITIH3 as a
biomarker of early stage of gastric cancer patients and of the
formation of neoplastic polyps in the Apc Min/þ mouse (Chong
et al, 2010; Ivancic et al, 2013). In contrast with our results, CO3
was found to be elevated in plasma of mice with PanIN (Faca et al,
2008). Reasons for this discrepancy may rely on methodological
differences as our study detected candidate biomarkers in
individuals and not in pooled samples. Indeed, CO3 is an acute-
phase protein and its presence in the blood of pancreatic cancer
patients was linked to the inflammatory component of PDAC
(Hanas et al, 2008). Thus one cannot exclude that outliers of the
pooled PanIN samples could mask other samples.

Taken together, our data could argue in favour of strategies
for discriminating ‘low-risk’ or ‘high-risk’ patients for PDAC
development as advanced PanIN3 lesions probably represent a
decisive step to neoplastic lesion (Crnogorac-Jurcevic et al, 2013).
Beyond PDAC prediction, such approaches could also be relevant
for follow-up of ‘high-risk’ patients and monitoring of future
tailored therapies of PDAC.

Because of biological heterogeneity between species, it is
possible that biomarkers from mice will not necessarily be of
clinical utility in humans even if strong concordance between
mouse and human cancer has already been observed (Kuick et al,
2007; Faca et al, 2008; Hung et al, 2009; Taguchi et al, 2011).
Nonetheless, one can expect that validation of pre-analytical
sample management and technological performance (sensitivity,
robustness, specificity and multiplex characteristics) could be
extrapolated to studies in humans. For now, accessibility to human
samples, especially at early stages of pancreatic cancer development
remains the main drawback for prospective validation studies.
However, future studies conducted on samples from patients
associated with known pancreatic cancer risk and on
pre-diagnosed samples from large cohorts should allow the
development of early detection tools for this lethal pathology.
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