N

N

Saving colors and Max Coloring: some fixed-parameter
tractability results

Bruno Escoffier

» To cite this version:

Bruno Escoffier. Saving colors and Max Coloring: some fixed-parameter tractability results. Theoret-
ical Computer Science, 2019, 758, pp.30-41. 10.1016/j.tcs.2018.08.002 . hal-01926891

HAL Id: hal-01926891
https://hal.science/hal-01926891
Submitted on 19 Nov 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01926891
https://hal.archives-ouvertes.fr

Saving colors and Max Coloring: some
fixed-parameter tractability results*

Bruno Escoffier

Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6 UMR 7606,
4 place Jussieu, 75005 Paris, France
bruno.escoffier@lip6.fr

Abstract. Max coloring is a well known generalization of the usual
Min Coloring problem, widely studied from (standard) complexity and
approximation viewpoints. Here, we tackle this problem under the frame-
work of parameterized complexity. In particular, we first show to what
extend the result of [3] - saving colors from the trivial bound of n on the
chromatic number - extends to Max Coloring. Then we consider possi-
ble improvements of these results by considering the problem of saving
colors/weight with respect to a better bound on the chromatic number.
Finally, we consider the fixed parameterized tractability of Max Coloring
in restricted graph classes under standard parameterization.

Keywords: Graph coloring, Paremeterized complexity, FPT algorithms, Max
coloring.

1 Introduction

As it is well known for decades, deciding whether a given simple graph is 3-
colorable is an N P-complete problem. As an immediate consequence, dealing
with parameterized complexity, the coloring problem parameterized by the value
of the solution (number of colors) is not in X P unless P = NP. This result
stimulates the study of this fundamental problem under other parameterizations.
For instance, in [2,15] is considered the coloring problem parameterized by the
distance (adding/removing vertices or edges) of the input graph to a polynomial
time solvable class of graphs. Chor et al. [3] considered the problem of “saving
k colors”, by addressing the following question: given a graph G = (V, E) with
n vertices and an integer k, is it possible to color G with n — k colors? In other
words, can we save k colors with respect to the trivial coloring (with n colors)?
They show that the problem is FPT, and admits a kernel with a linear (O(k))
number of vertices.

On the other hand, among the many variants or generalizations of the col-
oring problem, Max Coloring (sometimes called Weighted Coloring) has been

* This is an extended version of a work presented at the 42nd International Workshop
on Graph-Theoretic Concepts in Computer Science, WG 2016, [7].

deeply investigated in the last ten years, see for instance [1,4,5,16,17] and ref-
erences therein. In this problem, coming from batch scheduling, each vertex v
has a nonnegative integer weight w(v); the weight of a color class (we consider
in the article only proper colorings, i.e. two vertices sharing an edge cannot be
in the same color class) is the mazimum weight of its vertices, and the weight
of a coloring is the sum of the weights of its color classes. The goal is to find
a coloring of minimum weight.! This is a generalization of the usual coloring
problem, which corresponds to the particular case where all the vertices have
weight 1. Max Coloring is much harder than coloring; it is for instance N P-hard
in bipartite graphs [5], in interval graphs [8], and has been recently shown even
not solvable in polynomial time in trees under ETH [1].
The goal of this work is threefold, by addressing the following questions:

1. Is it possible to save weights for Max Coloring problem as it is possible to
save colors in the usual coloring problem?

2. Is it possible to strengthen these results by starting with a less trivial upper
bound on x(G)? This question holds for the usual coloring problem: can we
save k colors not with respect to n but with respect to another bound b < n?
If so, how does this extend to saving weights for Max Coloring?

3. Under the standard parameterization (number of colors), could we say some-
thing on Max Coloring in classes of graphs where the usual coloring problem
is polynomial?

Let us first deal with the first point. The bound of n for min coloring consists
of giving one color per vertex; this coloring has value W = Y"1 w(v;) for Max
Coloring. Assume that weights are in non-increasing order. Then, there are two
questions that naturally generalizes the question of coloring a graph with n — &
colors: given k, can we save a total weight of k, i.e., does there exist a coloring of
weight at most W — k7 Or, can we save k vertex weights, i.e., does there exist a
coloring of weight at most Z?;lk w(v;)? We tackle these questions in Section 3
and show that both problems are FPT with respect to k.

Let us now consider the second point, and let us focus on the usual coloring
problem. Saving k colors in FPT-time can be reached as follows: starting from
the initial coloring with n colors we save colors by merging together pairs of
non adjacent vertices. If it is possible to do this &k times, then we have saved k
colors. Otherwise, the graph is composed of a clique plus O(k) vertices, and an
optimal coloring is computable by matching techniques in FPT-time. Let us call
a coloring non trivial if it is not possible to merge two colors of this coloring. It
is very easy to build a non trivial coloring (in polynomial time), or to transform
a coloring into a non trivial one without increasing the number of colors. Let ¢
be the number of colors used by a non trivial coloring, and m be the number
of edges in the graph. Since we have an edge between any pair of colors, we

! In batch scheduling, a color class is a set of tasks (batch) processed together; then
the weight of the color class is the time to process the batch, and the total weight is
the time to process every batch, i.e., every task.

have m > ¢(c—1)/2, meaning x(G) < ¢ < f(m) = E +4/2m+ %J This bound
f(m) is generally much smaller than n, and it is worth considering the possibility
to save colors with respect to this bound f(m). In other words, the following
question holds: Given a graph G and an integer k, is it possible to color G with
f(m) —k colors?

We will focus on this question in Section 4. Interestingly, we show that while
the problem of saving k colors with respect to f(m) is still FPT, it does not
admit a kernel with a linear number of vertices under ETH, but (only) one with
a quadratic number of vertices. Then we tackle the possible extension of this
result to Max Coloring. More precisely, we consider the question of determining
whether a coloring of weight at most Z{ (T) w(v;) — k exists or not. We show
that the problem is in XP. The core of the proof is a polynomial time reduction
to a very specific class of graphs, namely graphs made of two cliques plus O(k)
vertices. This reduction should be also useful while determining if the problem
is FPT, that we leave as an open question.

Then, in Section 5, we derive from previous works some results on Max Col-
oring under standard parameterization, in classes of graphs where min coloring
is polynomial but Max Coloring remains hard: Max Coloring is FPT in chordal
graphs (hence in interval graphs and trees), while it is not in XP for bipartite
graphs (hence for perfect graphs). We give in Section 6 some concluding remarks.

2 Preliminaries

We give in this section several (standard) definitions dealing with graphs and
parameterized complexity, that will be used along this article.

2.1 Graphs

We consider in this article undirected loopless graphs. A clique in a graph G
is a set of pairwise adjacent vertices. An independent set is a set of pairwise
non adjacent vertices. A (proper) coloring of G is a partition of the vertex set
into independent sets (called color classes). As mentioned before, we will only
consider proper colorings all along the article. The chromatic number of a graph
is the minimum number of colors needed to properly color the vertices of the
graph.
A graph is:

— Bipartite if its chromatic number is at most 2;

— An interval graph if we can associate to each vertex v; an interval I; C R in
such a way that v; and v; are adjacent if and only if I; and I; intersect;

— Chordal if every cycle on at least 4 vertices has a chord (edge linking two
non consecutive vertices of the cycle).

— Perfect if in any induced subgraph G’ of G the chromatic number of G’ is
equal to the size of a maximum clique in G’.

It is a well known fact that interval graphs are chordal, that bipartite graphs and
chordal graphs are perfect, and that the usual coloring problem is polynomial in
perfect graph (see for instance [10, 11]).

2.2 Complexity

The article focuses on parameterized complexity. A parameterized problem (see
[6] for more details) is said to be:

— in the class FPT (or fized parameter tractable) if it can be solved by an
algorithm whose complexity is f(k)n®™M), for some function f, where n is
the size of the instance and k the parameter.

— in the class XP if it can be solved by an algorithm whose complexity is
O(f(k)n9™®), for some functions f and g, where n is the size of the instance
and k the parameter.

We will use the term FPT-time (resp. XP-time) to denote time complexity
F(E)nPM) (resp. O(f(k)n?™*))). Roughly speaking, XP denotes parameterized
problems which can be solved in polynomial time for any fixed value k of the
parameter (but the degree of the polynomial may depend on k). The class FPT
further requires that the degree of the polynomial is independent of k; hence,
the complexity is polynomial in n (with a fixed degree), while the dependency
in the parameter is captured by a multiplicative factor f(k).

A kernelization algorithm for a parameterized problem is a polynomial time
algorithm which transforms an instance I with parameter k£ into an equivalent
instance (called kernel) I’ with parameter k', where |I’| < g(k) for some function
k. g(k) is the size of the kernel; we say that a kernel is linear (resp. quadratic)
if g(k) = O(k) (resp. g(k) = O(k?)). Dealing with graphs, we will be interested
in the size of a kernel in terms of number of vertices and/or number of edges.

We will also use the exponential time hypothesis, saying that 3-SAT cannot
be solved in subexponential time. More formally:

Exponential time hypothesis (ETH) [14]: there exists € > 0 such that there is
no algorithm solving 3-SAT in time O(2") where n is the number of variables.

3 Saving weight for Max Coloring

In the Max Coloring problem, the input is a vertex-weighted graph (G,w),
where w(v;) € N* denotes the weight of the vertex v;. Given a coloring C =
(S1,S52,...,5:) of G, the weight of a color S; is w(S;) = max{w(v;),v; € S;},
and the weight of the coloring - to be minimized - is w(C) = Y _, w(S;). We as-
sume that the vertices are ordered in non increasing weight, i.e. w(vy) > w(ve) >
<o+ > w(vy,). We also denote W = >"1" | w(v;).

As a generalization of the unweighted case, we consider the following problem.

Problem Saving weight

— Input: a vertex-weighted graph (G,w), and an integer k.
— Parameter: k
— Question: does there exist a coloring of G of weight at most W — k7

Let us also define the problem Saving color weights which is the same as
Saving weight up to the fact that the question is now to determine if there exists
a coloring of weight at most Z:.:lk w(v;).

We show that these problems are FPT. The technique generalizes the one
for the unweighted case, by using matchings in a properly weighted graph. More
precisely, we first show how matching techniques allow to solve Max Coloring
in complement of bipartite graphs in polynomial time (this result will be also
useful later in Section 4.2). Then we reduce the problem to the case where the
graph has a very large clique, and use brute force to produce an FPT number
of instances of Max Coloring in complement of bipartite graphs.

Lemma 1. Max Coloring is polynomially solvable in the class of complement of
bipartite graphs.

Proof. Let G be a graph, whose vertices are partitioned into 2 cliques Cy and Cj.
We consider the complement graph G of G (same vertex set, and an edge is in G
iff it is not in G), and we assign to edge (v;,v;) in G the weight min{w(v;), w(v;)}.
This corresponds to the amount of weight saved by using the same color for v;
and v;.

Consider a matching in G. This defines a coloring of G: an unmatched vertex
constitutes one color, two matched vertices constitute one color. Reciprocally,
any coloring of G defines a matching in G. The weight of a matching M in G is
w(M) =3, v,yen min{w(v;), w(v;)}, and the weight of the associated coloring
C is:

w(C) = Z w(v) + Z max{w(v;), w(v;)}

veEM (visvj)eM
= Z w(v) — Z min{w(v;), w(v;)} = Z w(v) — w(M)
veV (vi,v;)EM veV

where M is the set of vertices unmatched in M. So we can solve Max Coloring
in G by computing a maximum weight matching in G. a

Theorem 1. Problems Saving weight and Saving color weights are FPT, solv-
able in time 20F1°9eF)p(n) for some polynomial p.

Proof. As for the unweighted case, consider first a maximal anti-matching (match-
ing in the complement graph). If it contains at least k anti-edges, it means that
we can save at least k weights, so a global weight at least k, and we answer
YES (for both problems). Otherwise, we have ¢t < k anti-edges in the matching,
meaning that the other n — 2t vertices form a clique. Let C be this clique, and
R be the endpoints of the anti-matching.

We consider all possible colorings of the vertices in R. Consider one of these
colorings, with colors Cr = (Ry,- - , Rs). We contract in G all colors R;, meaning
that we replace vertices in R; by one vertex r;, adjacent to all neighbors of the
contracted vertices, and assign the weight w(r;) = maz{w(v),v € R;} to this
new vertex. We also make the set of r;’s a clique. Clearly, there exists in G a
coloring of weight at most B where vertices in R are colored as in Cp if and
only if there exists a coloring of weight at most B in the contracted graph.
This contracted graph is made of 2 cliques, so we can solve Max Coloring in
polynomial time due to Lemma 1.

Then it is sufficient to produce all the possible colorings of R and to see if one
allows to answer YES. There are at most 20(t10gt) = 90(klogk) gych colorings,
so the result follows. O

Let us now speak about kernels. For saving colors in the usual coloring prob-
lem, a kernel with a linear number of vertices exists [3], and it is natural to
investigate the size of kernels that can be reached for our generalized problem.

Theorem 2. Problems Saving weight and Saving color weights admit a kernel
with O(k4F) vertices.

Proof. We first present the kernelization algorithm for Saving weight. As pre-
visouly, let us start with a maximal anti-matching. If it contains at least k
anti-edges, then we answer YES. Otherwise, we have ¢ < k anti-edges in the
matching, let R be the 2t endpoints of this matching and C' the remaining clique
of size n — 2t.

Let H = {uy,usg,...,up} be a set of vertices in C, sorted in non decreasing
weight order, which all have the same neighborhood. We consider the following
reduction rule.

RR: if f = h —2t > 0, then remove from G vertices ui,us,...,uy (k is not
modified).

Note that if RR is valid, then after this reduction rule we get a graph where
there are at most 2t vertices of C' with the same neighborhood. Since C' is a
clique, there are at most 22! possible neighborhoods for vertices in C. Then
|C] < 2t4*. Since |R| = 2t and ¢ < k the result follows.

It remains to show that RR is valid. Let us call (G, k) the graph obtained
after one application of this rule, and let M = sz:l w(u;). If there is a coloring
of weight w’ in G’, then by coloring the removed vertices with a new color we
get a coloring of G of weight w = w’' + M.

Conversely, suppose that there is a coloring of G with weight w. In this
coloring, since C'is a clique, at least f vertices of H are isolated. Suppose that one
vertex of H u; is isolated, while another one ; is not with 6 = w(w;)—w(u;) > 0.
Since u; and u; have the same neighborhood, we can switch the color of these
two vertices: u; becomes isolated instead of u;, so we reduce the weight of the
coloring by 4, while in the other color we increase it by at most d. The total
weight does not increase.

This means that we can assume that the f vertices of H of smallest weight are
isolated. Then, clearly the restriction of the coloring to G’ has weight w’ = w— M.

Hence, there is a coloring in G of weight (at most) w iff there is a coloring in
G’ of weight at most w’ = w — M. Since the total weight of G equals the total
weight of G’ plus M, the result follows.

Now, let us consider Saving color weights. The beginning of the proof is the
same, but we slightly modify the reduction rule in order to ensure that the
removed vertices do not affect the “saved weights” (k lightest weights). To do
this, we define RR2:

RR2:4f f = h—2t—k > 0, then remove from G vertices U1, Uk+42, - - -, Uk+f
(k is not modified).

By the very same reasoning as previously, setting M = Zfi,f 1 w(ug), we
know that there is a coloring in G of weight (at most) w iff there is a coloring
in G’ of weight at most w’ = w — M. Since the k vertices uq,...,u; remains
in G, we have that Z?Z,Ik wer (v)) = Y Fwa(vi) — M (where, with a slight
abuse of notation we subscript the graph to w, consider that v} are sorted in non
increasing order in G’ and v; are sorted in non increasing order in G).

Then RR2 is valid. After this reduction rule we get a graph where there are
at most 2t + k < 3k vertices of C' with the same neighborhood. Since C' is a
clique, there are at most 2% < 4% possible neighborhoods for vertices in C. Then
|C| < 3Kk4*. Since |R| = 2t < 2k the result follows. O

The size of the previous kernel is exponential in k. We leave as open the
question of getting a polynomial size kernel for problems Saving weight and
Saving color weights.

Let us remark that it does not seem obvious to generalize the approach of [3]
leading to a kernel with a linear number of vertices. Indeed, the crown reduction
does not seem to directly lead to such a result. The approach uses the fact that
in polynomial time we can:

1. either find a matching of size k in the complement G of G;
2. or find a crown decomposition in G;
3. or conclude that the graph has at most 3k vertices.

As previously, if we are in case 1 then we have a coloring where we save at least k
weights, so a weight at least k in total and the answer is yes. So the only case to
deal with is the crown decomposition (C, H, B) in G where C is an independent
set, C' has no neighbor in B, and there is a matching saturating H between H
and C.

Each vertex of C' must receive a different color, and none of these colors can
be used for vertices in B. In the unweighted case, each vertex of H can be as-
signed to a color used for coloring C' (his mate in the matching), which is clearly
the best we can do. However, here, we may save a larger weight by grouping
vertices of H in another color (not used for C'), for example if all the vertices in
H have a large weight. By matching technique, we can optimally color C' U H,
but the extra colors may be used in B so the problem in B is not independent
from our coloring of C'U H.

4 Saving colors from non trivial colorings

4.1 Coloring with f(m) — k colors

We now concentrate on saving colors with respect to an (improved) upper bound
on the chromatic number. As explained in the introduction, we consider here
the problem of saving k colors with respect to the ‘non trivial coloring bound’,

formalized as follows - where f(m) = E +4/2m+ H

Problem: Saving non trivial colors

— Input: A graph G = (V, E) on n edges and m vertices, an integer k.
— Parameter: k
— Question: is x(G) < f(m) — k?

We first show that the problem is FPT and provide a kernel with O(k?)
vertices and edges for it. The idea of the FPT algorithm is to reduce the problem
to the one of saving k colors from the trivial coloring with n colors. Note that
the bounds n and f(m) become equal (only) when the graph is complete. The
distance between the bounds gets bigger while the density of the graph decreases.
Even for graphs of density 1/2, we have roughly n?/4 edges, so f(m) is roughly
n/ V2, much lower than n. So for the reduction we need to reach a graph which
is almost complete; this is achievable by iteratively removing vertices of ‘low’
degree.

Theorem 3. Saving non trivial colors is FPT. It admits a kernel with O(k?)
vertices and edges.

Proof. Let (G, k) be an instance of the problem. Let b = f(m) — k.

It is easy to see that if a vertex v of a graph H has degree d(v) < ¢, then H
is c-colorable if and only if H \ {v} is c-colorable. Then starting from (G, k) we
apply the following reduction rule:

Rule 1: while there exists a vertex of degree at most b — 1, remowve it from G.

Note that we consider that b is fixed: b = f(m) — k where m is the number
of edges of the initial graph, we do not update b when the graph is reduced.
After the application of Rule 1, we get a graph G’ = (V’, E’) with n’ vertices
and m’ edges, and every vertex of degree at least b = f(m) — k > f(m/) — k.
Clearly, G’ is b-colorable iff G is b-colorable. Note that if f(m’) < 2k then the
problem is trivially solvable in FPT-time, so assume now that f(m’) > 2k + 1.
Summing up the degrees, we get 2m’ = > ., dg/(v) > n/(f(m') — k). Then,
since v2m/ < f(m’) + 1/2:

(f(m') +1/2)* — f(m")(f(m') — k)
)

n' = f(m') <

T =
g

where the last inequality uses f(m') > 2k + 1.

So, b= f(m)—k=> f(m')—k>n'"—3k—2.If b > n' the answer is trivially
yes (G’ is b-colorable, and so is), otherwise we solve the problem in FPT-time
using the FPT algorithm of [3] for deciding whether G’ is b = n’ — k’ colorable
or not, where k' =n' —b < 3k + 2 (and k¥’ > 0).

The previous arguments can be easily turned into a kernelization algorithm:

— We first apply Rule 1, and get the graph G’. (G,k) is a yes-instance iff
(G, ky) with k1 =k + f(m') — f(m) < k is a yes-instance.

— If f(m') < 2k, we have m’ = O(k?) and n’ < 2m’ = O(k?) (since isolated
vertices can be removed), so we have the claimed quadratic kernel.

— Otherwise we have f(m’) — k1 =n' — k' for ¥’ = O(k). Applying the ker-
nelization by Chor et al. [3], either we find an answer, or we have a graph
(G",K") where G” has O(k') = O(k) vertices - hence O(k?) edges - such
that G’ has an n” — k" coloring iff G’ has a n’ — k’ coloring, hence iff G has
a f(m) —k coloring. n” — k" = f(m") — ko for some ky < k”, and the result
follows. ad

The kernelization algorithm produces a graph with O(k?) vertices and edges.
While being of the same order in terms of size of the graph O(m + n), the
size of the kernel in terms of number of vertices is significantly bigger than the
one obtained by [3] with the problem of coloring a graph with n — k colors.
However, we show that finding a smaller kernel for Saving non trivial colors is
quite improbable, since this would contradict the ETH.

Theorem 4. Saving non trivial colors does not admit a kernel with o(k?) ver-
tices under ETH.

Proof. Min coloring is not solvable in subexponential time under ETH even in
graphs with a linear number of edges?. More precisely, under ETH there exist
two constant € > 0 and d such that min coloring is not solvable in time O(2")
in graphs where m < dn.

Suppose that there is for Saving non trivial colors a kernelization algorithm
that, given an instance (G, k), produces an equivalent instance (G', k") where
the number of vertices in G’ is n’ = o(k?). Take a graph G with m < dn
edges. Let ¢ < n, we want to determine whether G is c-colorable or not. Let
k= f(m)—c If k < 0 we can easily find a c-coloring of G in polynomial
time. Otherwise, apply the kernelization algorithm to get in polynomial time
(G', k") where G" is (f(m’) — k’)-colorable iff G is c-colorable, with n’ = o(k?).
k < f(m) = O(ym) = O(y/n) (since m < dn), so n’ = o(k?) = o(n). We
can optimally color G’ in time 20("") = 2°(") thus determining in time 2°(") if
G is c-colorable or not. Then we can determine the chromatic number of G in
subexpontential time, thus contradicting ETH. a

2 A classical reduction from 3-SAT produces a graph with @ (var + clauses) vertices
and edges, where var and clauses are the number of variables and clauses, see for
instance http://cgi.csc.liv.ac.uk/ igor/COMP309/3CP.pdf.

To conclude this section, let us briefly mention other bounds on the chromatic
number. A well known upper bound is x(G) < A + 1 where A is the maximum
degree of vertices in the graph. However, 3-coloring is N P-complete in graphs of
maximum degree 4 [9], meaning that saving k colors with respect to the bound
A+1isnot in XP if P # NP. The same occurs for a refinement of this bound,
namely x(G) < max{min{d(v;) + 1,i},i = 1,--- ,n}. Dealing with the lower
bound w(G) (size of the maximum clique), the N P-completeness of 3-coloring
[9] also shows that determining whether a graph is w(G) + k colorable is not in
XPif P# NP (even if a maximum clique is given).

4.2 Coloring with weight sz;’{’) w(v;) — k

We now generalize Saving non trivial colors to Max Coloring. Since any non
trivial coloring uses at most f(m) = E +4/2m + %J colors, there always exists

a coloring of weight at most ZL(T) w(v;) (recall that v; are in non-increasing
order of weight). So we consider the following problem.

Problem Saving non trivial weight.

— Input: a vertex-weighted graph (G,w), and an integer k.
— Parameter: k .
— Question: does there exist a coloring of G of weight at most Z{LT) w(v;) —k?

In this problem, we can save weight either by reducing the number of colors
(with respect to f(m)), or by producing colors with “small” weights, for instance
by grouping together vertices of large weights. Note that an optimal solution for
max coloring may use a number of colors much larger than the chromatic number,
such as ©(logn) colors in a tree (see [5] for general bounds).

A first idea would be to use Rule 1 devised for the unweighted case (removing
vertices of low degree), but this is no longer sound, because of this possibility
to save on color weights. Even if there is an isolated vertex of large weight,
removing it does not produce an equivalent instance (putting it with another
vertex of large weight allows to save something). This case of isolated vertices
can be handled (by properly modifying some weight in the remaining instance)
but vertices of large weights cannot be removed even if they have small degree.

Then, vertices of large weight behave differently than vertices of small weight.
Thus we decompose the vertex set according to the weights of the vertices, and
this distinction is crucial in the solution of the problem. To make this distinction,
we define w* = w(vf(my)): this is the smallest weight considered in the bound

Z{:(T) w(v;). We define V5 (resp. V<) as the set of vertices of weight greater
than w* (resp. at most w*), and n> = |V5|, n< = |V<|.

The idea is to show that, unless a particular case occurs where we can safely
answer YES, we can reduce the instance to a very particular case where the input
graph is made of two cliques, plus O(k) vertices (Lemma 4). Then, in XP-time
we can further reduce the graph to two cliques, instance on which we can solve

the Max Coloring problem in polynomial time using Lemma 1 (Theorem 5). It
is worth noticing that the only ‘XP-time’ step consists of dealing with the O(k)
extra-vertices.

We first consider two reduction rules.

Rule 2. While there exists in V< a vertex of degree at most f(m)—k—1, remove it.

The following Lemma states that this rule is sound.

Lemma 2. Let (G, w,k) be an instance of Saving non trivial weight, vy a vertex
in V< of degree at most f(m) —k — 1, and G’ the graph obtained from G by
removing vg3. Let k' = Zf(m) wv]) + k — Zf(T) w(v;). Then (G,w,k) is a
YES-instance iff (G',w, k") is a YES-instance.

Proof. Clearly if (G,w,k) is a YES-instance, so is (G',w, k’): a coloring of G
gives a coloring of at most the same weight in G’.
Conversely, suppose that (G',w, k') is a YES-instance, consider a non triv-

ial coloring C' = (57,---,8,) of G’ of weight at most Zf(m) () — K =

Zf (m) w(v;) — k, where colors are ordered in non increasing weight. Since v, has
degree at most f(m) — k — 1, we can add vy to one of the first f(m) — k colors
of C’ to produce a non trivial coloring C of G, say color S; with j < f(m) — k.

If w(ve) < w(S}) then the weight of C is the same as the weight of C’, so
(G, w, k) is a YES-instance.

Otherwise, since vy € V<, w* > w(vg) > w(S}). But this means that in C each
color S;» with 5/ > j has weight (strictly) smaller than w*. Since j < f(m) — k,
we get:

f(m)—k f(m) f(m
w(C) < Z w(v;) + Z (w* =1) w(
i=1 i=f(m)—k+1 i=1
So (G, w, k) is a YES-instance. O

Note that after this step if &’ < 0 we can safely answer YES.

Rule 3. Compute a mazimal matching M in the complement of G[V~]. If M has
size at least k, answer YES.

Lemma 3. Rule 8 is sound.

Proof. Suppose that M has size at least k. Color the vertices of V5 with a non
trivial coloring with ¢ < |V5| — k colors. Then add the other vertices greedily.
This produces a non trivial coloring C, hence with at most f(m) colors. At least
k colors receive a weight at most w* instead of their ‘original’ weight in the
bound which is greater, so at least k is saved with respect to the bound. More
formally:

3 We use v} to denote vertices of G’ (so v; = v; for i < £ and v} = v;41 for i > £).

— The first ¢ colors of C have a total weight at most 2221 w(v;);
— All other colors of C have weight at most w*, and C has at most f(m) colors.

So:

i=1
t ns f(m)
<Sw)+ 3 (@) — 1)+ (fm) —ns)w’ = > w(wg) - (ns — t)
i=1 i=t+1 =1
f(m)
< w(v;) — k

O

As a consequence, once Rules 2 and 3 have been applied, we get an equivalent
instance where:

— Condition 1: every vertex in V< has degree at least f(m) — k;
— Condition 2: V5 is made of a clique Cs on at least ns — 2k vertices, plus at
most 2k vertices.

Now, we consider Algorithm 1.

Algorithm 1
STEP 0: Compute a coloring C = (51,52, ...) of G;
STEP 1: While there exists a vertex v in S; which has no neighbor
in some color S; with ¢ < j, color v with S;;
STEP 2: If it is possible to empty a color .S;, do it and go to STEP 1.
STEP 3: Take any pair of colors of size 2, any pair of colors of size 1.
If it is possible to re-color these 6 vertices with 3 colors,
do it and go to STEP 1.

Lemma 4. Algorithm 1 runs in polynomial time. Moreover, let (G,w, k) be an
instance satisfying conditions 1 and 2. If G has more than (k + 1)* edges, then
Algorithm 1:

— Fither produces a coloring with at most f(m) — k colors;
— Or allows to find a decomposition of V into (Cy,Ca,T) where C1 and Co are
two cliques, and |T| = O(k).

Proof. We first explain why Algorithm 1 takes polynomial time:

— Step 1 is clearly polynomial, since each vertex changes color at most n times.

— For the second step, S; being an independent set, emptying S; is not possible
if and only if there is a vertex in S; adjacent to all other colors, so this step
is also polynomial.

— Step 3 is clearly polynomial, since it involves 4 colors and 6 vertices.
— Since the number of colors reduces in steps 2 and 3, the steps are executed
O(n) times.

Now we deal with the claimed property. Let C = (S1,...,S,) be the coloring
output by the algorithm.

Thanks to Step 1, C is non trivial, hence p < f(m). If p < f(m) — k, then
the property of the Lemma holds (case 1). So we consider that p > f(m) — k,
meaning f(m) < p+k — 1. Since f(m) +1/2 > /2m, we get:

m < (p+k)?/2 (1)
Note that since m > (k + 1)*, we have p > k2 + k, so
k<+p (2)

Let s be the number of colors of size at least 2. Assume? that these are the
first s colors in C. We first show that almost all colors have size 1, as stated in
the following fact.

Fact 1. The number of colors of size at least 2 is s = o(p).

Proof of Fact 1. Due to Step 1, every vertex in S; has at least j — 1 neighbors,
so we have:

mZZ(j—l)\SﬂZp(p—l)/2+8(8—1)/2 3)

As a consequence of inequalities (1) and (3), we get:

(s—12 _ss=1 _(p+k)?—(p-1) _ pRk+2)+k -1
2~ 2 =~ 2 2

Using (2) we get s = O(vkp) = o(p). O

Now, thanks to Step 2, in each color S; there is a vertex which is adjacent
to all other colors, let z; be such a vertex. Note that for i > s z; is the unique
vertex of S;. Denote Z7 = {z;,i < s}, Zo = {z;,i > s} and Z = Z; U Z>. We
show that almost all vertices of ‘small’ weights are in Z. More precisely, let Q
be the set of vertices outside Z of ‘small’ weight: Q@ = V< \ Z and ¢ = |Q)|.

Fact 2. The number of vertices in Q is q < 4k + 10.

Proof of Fact 2. Since z; and z; are adjacent for all ¢ € {1,...,p} and all j > s
(j # 1), we have at least (p —s)(p —s —1)/2+ s(p — s) edges (2, 2;) in G[Z].

4 Thanks to Step 2, each color of size 1 is adjacent to all other colors, so we can reorder
colors if needed to put colors of size 1 at the end while preserving the fact that each
vertex in S; is adjacent to each color S;, 7 < j.

Each of the ¢ vertices in @ have degree at least f(m)—k > p — k, thanks to
Condition 1. So we have:

2 2
m> 1=k p=s)p-s-D+2s(p-5) alp-k)+ @ —s"+s5-p)
2 2 9
S ap=Fk) +pp—1) —s(s—1)
- 2
Using (1) and (3) we have s(s—1) < (p+k)?—p(p—1). Using (1) for bounding
m, we obtain:

2 k)2 —2 -1 4k + 2) + 2k k% + 2k
< 2otk = 2pp 1) _ pUk+2)+2k7 o 6T
p—Fk p—Fk p—Fk
Since as noted before p > k2 + k, we get ¢ < 4k + 10. O

Now, thanks to condition 2, the set of vertices of large weight V5 is made of a
clique Cs plus O(k) vertices. Then, besides Z and C, G contains O(k) vertices:
O(k) vertices from V< (the set @), and the remaining O(k) vertices from V<.

The third and last step of the proof is to show that Z is almost a clique, and
this is where Step 3 of the algorithm intervenes: we show now that Z is almost
a clique otherwise we could recolor 2 colors of size 2 and 2 colors of size 1 with
3 colors in total.

Fact 8. Z is made of a clique plus O(k) vertices.

Proof of fact 3. Z = Z1 U Zs; we already know that Z5 is a clique, and that every
vertex in Z is adjacent to every vertex in Z;. So we only have to show that Z;
is almost a clique (a clique plus O(k) vertices).

Consider the O(k) vertices that are outside Z U C~. These vertices are con-
tained in sg = O(k) colors. Remove the vertices in these colors. Then in the
remaining graph we have

— p — s colors of size 1 (colors {z;}, for j > s);
— s — g colors of size exactly two, made of one vertex from Cs and one vertex
from 7.

Among the s — sy colors of size 2, suppose that in two of these colors S; =
{zi,w;}, Sy = {zy,wir} (1,7 < s) z; and z are not adjacent.

If there exists j,j' > s such that {z;,w;},{z;;,wy} ¢ E, then we would be
able to recolor these 4 colors in 3 colors (z; and z; together, w; and z;, and wy
and z;/), which is impossible thanks to Step 3. It means that for a pair z;, z; of
non adjacent vertices we get at least (p — s)/2 edges from Zs to w; or wy .

Take a maximal set of (independent) such pairs z;, 2/, and denote by ¢’ the
number of these pairs. Zs is a clique, and each vertex in Z; is adjacent to all
p — 1 other colors, so this already gives at least p(p — 1)/2 edges. Then we must
have:

¢(p—s) plp—1) (p+ k)2
< < =7
5 T g =M=

We get ¢’ < p(%;rflzm. As noted before, s = O(y/kp) and p > k2, so ¢’ = O(k).

O
Then, from the previous facts we immediately get that our graph has:
— A clique Cz which is a subset of Z
— A clique Cs which is a subset of Vs
— O(k) other vertices. O

Now, we are ready to show that the Saving non trivial weight is in XP.
Theorem 5. Saving non trivial weight is in XP.

Proof. We apply rules 2 and 3. Either we answer YES, or we have an equivalent
instance satisfying conditions 1 and 2.

First consider the case where m < (k + 1)%. In this case we can solve the
problem in FPT time. Indeed, if there are at least two isolated vertices y1,y2 in
the graph with w(y;) > w(ys), they can be replaced by one vertex y with weight
w(y1): optimal colorings have obviously the same weight before and after this
replacement, so we just have to adjust (reduce) the parameter if w(y2) > w*, so

that the value Zlf:(ql) w(v;) — k remains the same.

Hence, we can assume that there is at most one isolated vertex in G, and
n <2m+1<2(k+1)*+ 1, so the graph is already a kernel.

Now, suppose that m > (k+ 1)*. Then we apply Algorithm 1. If this gives a
coloring using at most f(m) — k colors, then this coloring has a weight at most
SR (vs) < 210 () — k so we answer YES.

Otherwise, using Lemma 4 we get a partition of the graph into 2 cliques C;
and Cy and a set T of size |T| = O(k).

Intuitively, we first consider all possible ways to partition vertices of Co UT
into color classes, and then in each case we ‘match’ them in an optimal way
with vertices of C; using Lemma 1. More precisely, vertices of T'U Cs will be
colored with between |C2| and |T'|+ |Cs| colors: for vertices of T', we consider the
O((|Cy| + [Ty = nO®) possibilities for vertices in T, by putting each vertex
in one of the possible colors. In each of these cases, we contract the vertices
in the same color into one vertex (with weight the maximum weight of merged
vertices), and produce in each case a clique C5. Then we only have to solve the
problem on the obtained graph made of 2 cliques Cy and C%, in polynomial time,
using Lemma 1. The global running time is n°*) so the result follows. a

Theorem 5 leaves the question of fixed-parameter tractability open: is Saving
non trivial weight FPT? In the light of our proof, it suffices to show that the
problem is (or is not) FPT on the class of graphs that are the union of two
cliques C1, Cs and a set of T of O(k) vertices.

Note then none of the ideas leading to Theorems 1 and 2 seem to work here.
In Theorem 1 we consider all possible colorings of T' and then polynomially solve
each case; here, by doing this we get a graph made of 3 cliques, where coloring
problems are already hard. In Theorem 2, we use a dominance condition which,

given a set of vertices in the clique with the same neighborhood, allows to remove
all but only O(k) vertices (of largest weights) in this set. Here, if we consider
a set of vertices with the same neighborhood in T, there is no more dominance
condition because the neighborhood in C; U Cs also matters.

5 Max Coloring under standard parameterization

As mentioned in introduction, Max Coloring is hard to solve in classes of graphs
where the usual coloring problem is polynomial. In particular:

— It is N P-hard in bipartite and interval graphs (hence in chordal and perfect
graphs) [5, 8];
— It is not solvable in polynomial time in trees under ETH [1].

Note that Max Coloring is in APX in perfect graphs [17], and admits an
approximation scheme in interval graphs [16].

The question of the parameterized complexity of this problem under stan-
dard parameterization occurs for Max Coloring in these graph classes.

Problem Parameterized maz coloring

— Input: a vertex-weighted graph (G, w), an integer B.
— Parameter: B.
— Question: does there exist a coloring with weight at most B?

Dealing with bipartite graphs, the following result settles the question.

Theorem 6. [5] In bipartite graphs, it is NP-hard to distinguish between in-
stances where there exists a coloring of weight at most 7 from instances where
each coloring has weight at least 8.

As an immediate corollary, we get that Parameterized max coloring is not in
XP in bipartite graphs assuming P # N P.

Let us now concentrate on trees/interval graphs/chordal graphs. We show
that Parameterized mazx coloringis FPT in these classes of graphs, using dynamic
programming on tree decompositions, based on the the following result.

Theorem 7. [12] In graphs of mazimum treewidth k, the problem of finding a
lightest coloring having at most r colors is solvable in O(n"*1).

Here, the O-notation hides the dependency in k, which is 7©*). Actually, a first
step in the proof of this theorem is to prove a result which can be stated as
follows:

Lemma 5. [12] Given any sets of v integers a1 > ag > -+ > a, > 0, determin-
ing whether there exists a coloring with r colors Sy, ..., Sy such that w(S;) < a;
can be done in time rOFnCW) in graphs of treewidth at most k.

Theorem 7 follows from Lemma 5 by performing an exhaustive search over
all possible tuples (ay,...,a,) (thus the term in n” in the theorem).

We use instead Lemma 5, from which we can derive that Parameterized mazx
coloring is FPT in chordal graphs.

Theorem 8. Parameterized mazx coloring is FPT in chordal graphs.

Proof. Given a chordal graph G, let ¢ be the size of a maximum clique (com-
putable in polynomial time). If ¢ > B then we can safely answer NO. Otherwise,
¢ < B. GG being chordal, its treewidth isc—1 < B — 1.

On the other hand, there exists at most (B + 1) ways to choose B weights
a; > as > --- > ap > 0 whose sum is at most B, hence (B + 1) tuples of
color weights to check in order to determine if there exists a coloring of weight

at most B. Using Lemma 5, we conclude that the problem is solved FPT-time
QO(BlogB)nO(l). O

To conclude this section, let us mention that another parameterization is very
natural: the maximum weight of vertices. When parameterized by the maximum
weight of vertices w4, Max Coloring is:

— not in XP in bipartite graphs (from the fact that in Theorem 6 weights at
most 4 are used):

— FPT in trees, from Theorem 8 since in trees the optimum value is at most
twice the maximum weight (take a coloring with two colors).

However, what happens in interval (or chordal) graphs? As far as we know,
the (standard) complexity of Max Coloring in interval graphs with bounded
weights is still an open question. Dealing with parameterized complexity: is Max
Coloring FPT in interval graphs when parameterized by the maximum weight?
Is it in XP?

6 Conclusion

Besides the open questions mentioned above, and besides other coloring problems
where a similar approach could be considered, analogous questions should be also
interesting for other kinds of problems. Let us mention that the same arguments
as for coloring show that the problem of saving k bins in bin packing is FPT,
as well as other partitioning problems. Indeed, consider a problem where we
have to partition a set X of size n into a minimum number of subsets, where
only some subsets are admissible - stable sets in coloring, elements with sum of
lengths at most 1 in bin packing - (see [13] for similar questions dealing with
approximation). If any subset of an admissible subset is admissible, as it is the
case in the two previous problems, then the question of determining whether
there exists a partition with at most n — k sets or not is FPT. Indeed, one
computes a maximal set of admissible pairs. If there are at least k pairs then
we are done (singletons are admissible, otherwise the problem has no feasible
solution), otherwise the remaining n — O(k) elements must be each in a separate

subset. Then using brute force on the O(k) elements in the pairs and solving
maximum matchings, we get an FPT algorithm. Improving upon better bounds
could be also interesting for these problems.

References

10.

11.

12.

13.

14.

15.

16.

Julio Aratjo, Nicolas Nisse, and Stéphane Pérennes. Weighted coloring in trees.
SIAM J. Discrete Math., 28(4):2029-2041, 2014.

Leizhen Cai. Parameterized complexity of vertex colouring. Discrete Applied Math-
ematics, 127(3):415-429, 2003.

Benny Chor, Mike Fellows, and David W. Juedes. Linear kernels in linear time, or
how to save k colors in O(n2) steps. In Juraj Hromkovic, Manfred Nagl, and Bern-
hard Westfechtel, editors, WG 2004, volume 3353 of Lecture Notes in Computer
Science, pages 257—-269. Springer, 2004.

Dominique de Werra, Marc Demange, Bruno Escoffier, Jérome Monnot, and Van-
gelis Th. Paschos. Weighted coloring on planar, bipartite and split graphs: Com-
plexity and approximation. Discrete Applied Mathematics, 157(4):819-832, 2009.
Marc Demange, Dominique de Werra, Jérome Monnot, and Vangelis Th. Paschos.
Time slot scheduling of compatible jobs. J. Scheduling, 10(2):111-127, 2007.
Rodney G. Downey and M. R. Fellows. Parameterized Complexity. Springer Pub-
lishing Company, Incorporated, 2012.

Bruno Escoffier. Saving colors and max coloring: Some fixed-parameter tractability
results. In Pinar Heggernes, editor, WG 2016, volume 9941 of Lecture Notes in
Computer Science, pages 50-61. Springer, 2016.

Bruno Escoffier, Jérome Monnot, and Vangelis Th. Paschos. Weighted coloring:
further complexity and approximability results. Inf. Process. Lett., 97(3):98-103,
2006.

Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified
NP-complete graph problems. Theor. Comput. Sci., 1(3):237-267, 1976.

Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals
of Discrete Mathematics, Vol 57). North-Holland Publishing Co., Amsterdam, The
Netherlands, 2004.

Martin Grotschel, Lészlo Lovész, and Alexander Schrijver. Geometric Algorithms
and Combinatorial Optimization, volume 2 of Algorithms and Combinatorics.
Springer, 1988.

D. J. Guan and Xuding Zhu. A coloring problem for weighted graphs. Inf. Process.
Lett., 61(2):77-81, 1997.

Refael Hassin and Jérome Monnot. The maximum saving partition problem. Oper.
Res. Lett., 33(3):242-248, 2005.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J.
Comput. Syst. Sci., 62(2):367-375, 2001.

Bart M. P. Jansen and Stefan Kratsch. Data reduction for graph coloring problems.
Inf. Comput., 231:70-88, 2013.

Tim Nonner. Clique clustering yields a PTAS for max-coloring interval graphs.
In Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, ICALP 2011, Proceed-
ings, Part I, volume 6755 of Lecture Notes in Computer Science, pages 183-194.
Springer, 2011.

17. Sriram V. Pemmaraju and Rajiv Raman. Approximation algorithms for the max-
coloring problem. In Luis Caires, Giuseppe F. Italiano, Luis Monteiro, Catuscia
Palamidessi, and Moti Yung, editors, ICALP 2005, volume 3580 of Lecture Notes
in Computer Science, pages 1064—1075. Springer, 2005.

