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Abstract14

We consider a multistage version of the Perfect Matching problem which models the15

scenario where the costs of edges change over time and we seek to obtain a solution that achieves16

low total cost, while minimizing the number of changes from one instance to the next. Formally,17

we are given a sequence of edge-weighted graphs on the same set of vertices V , and are asked to18

produce a perfect matching in each instance so that the total edge cost plus the transition cost19

(the cost of exchanging edges), is minimized. This model was introduced by Gupta et al. (ICALP20

2014), who posed as an open problem its approximability for bipartite instances. We completely21

resolve this question by showing that Minimum Multistage Perfect Matching (Min-MPM) does22

not admit an n1−ε-approximation, even on bipartite instances with only two time steps.23

Motivated by this negative result, we go on to consider two variations of the problem. In24

Metric Minimum Multistage Perfect Matching problem (Metric-Min-MPM) we are promised25

that edge weights in each time step satisfy the triangle inequality. We show that this problem26

admits a 3-approximation when the number of time steps is 2 or 3. On the other hand, we27

show that even the metric case is APX-hard already for 2 time steps. We then consider the28

complementary maximization version of the problem, Maximum Multistage Perfect Matching29

problem (Max-MPM), where we seek to maximize the total profit of all selected edges plus the30

total number of non-exchanged edges. We show that Max-MPM is also APX-hard, but admits31

a constant factor approximation algorithm for any number of time steps.32
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7:2 Multistage Matchings

1 Introduction41

In classical Combinatorial Optimization, given an instance of a problem the goal is to find a42

solution optimizing the value of the objective function. However, in many applications the43

instance may change over time and the goal is to find a tradeoff between the quality of the44

solution in each time step and the stability of the solution in consecutive time steps. As45

an example, consider an instance of an assignment problem, where the goal is to compute46

the best assignment of tasks to workers, assuming that we know the cost cij of performing47

task j by worker i. In the classical setting, it is possible to choose the assignment that48

minimizes the total cost in polynomial time. When the costs change over time (as for49

instance when a worker is not able to do some long task on a very busy day (infinite cost))50

the optimal solutions of each time step may differ, inducing a transition cost for setting new51

task-worker pairs between two consecutive solutions. Hence, the naïve approach of finding a52

new optimal solution in each time step has the drawback that it does not take care of the53

penalty (transition cost) that is induced by the changes in the solution.54

In this paper we study a multistage version of the Perfect Matching problem that follows55

this motivation and was originally introduced by Gupta, Talwar, and Wieder [11]. In this56

problem we are given a time horizon: t = 1, 2, . . . , T where for each time t we are given an57

instance Gt of Perfect Matching (that is, an edge-weighted graph) on the same set of vertices58

V . The goal is to determine a sequence of solutions S = (M1,M2, . . . ,MT ) that both (1) are59

near-optimal (quality), and (2) induce small transition costs (stability). In other words, the60

goal is to determine a sequence of perfect matchings, one for each stage (time step) t, such61

that their total cost is small and the solution does not change too radically from one step to62

the next.63

It was shown in [11] that this multistage problem is significantly harder than classical64

Perfect Matching. In fact, it is NP-hard to even approximate the optimal solution within65

n1−ε, for instances with only 8 times steps. Gupta et al. then posed as an explicit question66

whether the problem becomes easier for bipartite instances. Their work suggests also the67

question whether this hardness also applies for fewer than 8 steps. The bipartite restriction68

is especially interesting because Gupta et al. showed that related matroid-based optimization69

problems remain tractable for T = 2, and bipartite Perfect Matching can be seen as a matroid70

intersection problem. One could therefore hope that the matroid structure might make the71

bipartite case tractable for some small values of T , or at least approximable.72

Our main contribution in this paper is to settle this question from [11] in the negative:73

we show that Minimum Multistage Perfect Matching (Min-MPM) is n1−ε-inapproximable,74

even for T = 2 time steps, unless P = NP . Motivated by this very negative result, we75

then investigate two other version of the problem: the Metric Minimum Multistage Perfect76

Matching problem (Metric-Min-MPM), where the input is guaranteed to satisfy the triangle77

inequality, and the Maximum Multistage Perfect Matching problem (Max-MPM), where we78

consider the complementary optimization objective.79

Problem definition. Formally, the Min-MPM problem is defined as follows: We are given80

a sequence G1, . . . , GT of T undirected graphs, on the same set of vertices V . At each time81

step 1 ≤ t ≤ T , the graph Gt is given with a cost function ct on edges: ct(e) ∈ Q≥0 ∪ {+∞}.82

We are also given a transition cost M ≥ 0. A solution is a sequence S = (M1, . . . ,Mt) where83

Mt is a perfect matching of Gt. Each solution (sequence) has two costs: a matching cost84

c(S) and a transition cost D(S). The goal is to minimize c(S) +D(S). A matching Mt has85

a matching cost ct(Mt) which is equal to the sum of the costs of the edges of the perfect86
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matching. The matching cost of S is c(S) =
∑T
t=1 ct(Mt). The transition cost is defined87

as D(S) =
∑T−1
t=1 Dt, where Dt = M · |Mt+1 \Mt| is proportional to the number of edges88

removed between time t and t+ 1 – which is equal to the number of added edges since the89

matchings are perfect. Notice that by allowing infinite cost on edges we may assume w.l.o.g.90

the graphs to be complete.91

In the Metric-Min-MPM, at each stage ct obeys the triangle inequality: ct(u, v) +92

ct(v, w) ≥ ct(u,w). Finally, in the Max-MPM version, we consider that ct(e) is the profit93

obtained by taking edge e (at time t). Then a solution sequence S has a matching profit94

c(S) =
∑
t ct(Mt). We define the transition profit D(S) as D(S) =

∑
t≤T−1 Dt where95

Dt = M · |Mt+1 ∩Mt| is proportional to the number of edges that remain between time t96

and t+ 1. The goal now is to maximize c(S) +D(S). Notice that in Max-MPM, we may97

no longer assume that the graphs are complete, since this assumption modifies the problem98

(we get profit by maintaining an edge, even of profit 0, from one time step to the next one).99

Related work. A model that is close to our setting is the reoptimization model of Schieber100

et al. [15]. In their work, they are given a starting solution and a new instance and the goal101

is to minimize the sum of the cost of the new instance and of the transition cost. The model102

of multistage optimization that we use in this work has been studied earlier by Buchbinder et103

al. [5] and Buchbinder, Chen and Naor [4] for solving a set of fractional problems. Eisenstat104

et al. [7] studied a similar multistage optimization model for facility location problems. Their105

main result was a logarithmic approximation algorithm, which was later improved to a106

constant factor approximation by An et al. [1]. More broadly, many classical optimization107

problems have been considered in online or semi-online settings, where the input changes over108

time and the algorithm tries to adjust the solution (re-optimize) by making as few changes109

as possible. We refer the reader to [2, 3, 6, 10, 13, 14] and the references therein.110

As mentioned, Gupta et al. [11] studied the Multistage Maintenance Matroid problem for111

both the offline and the online settings. Their main result was a logarithmic approximation112

algorithm for this problem, which includes as a special case a natural multistage version of113

Spanning Tree. The same paper also introduced the study of Min-MPM, which is the114

main problem we study here. They showed that the problem becomes hard to approximate115

even for a constant number of stages. More precisely, they showed the following result (n116

denotes the number of vertices in the graphs).117

I Theorem 1 ([11]). For any ε > 0, Min-MPM is not n1−ε-approximable unless P = NP .118

This holds even when the costs are in {0,∞}, M = 1, and the number of time steps is a119

constant.120

Theorem 1 is proved for T = 8, starting from the fact that 3-colorability is NP-hard in121

graphs of maximum degree 4 [8]. The authors leave as an open question the approximability of122

the problem in bipartite graphs, and ask for subcases with better approximatibility behavior.123

Our contribution. We answer the open question of [11] by showing that the problem is124

hard to approximate even for bipartite graphs and for the case of two steps (T = 2). Then,125

we focus on the case where the edge costs are metric within every time step (Metric-Min-126

MPM). On the negative side, we prove that the problem remains APX-hard even if T = 2.127

On the positive side, we show that Metric-Min-MPM admits a 3-approximation algorithm128

for two and three stages. Finally, for the maximization version of the problem, Max-MPM,129

we prove that it admits a constant factor approximation algorithm but is APX-hard.130

SWAT 2018



7:4 Multistage Matchings

2 Min-MPM for bipartite graphs131

We answer the open question of [11] about the approximability of bipartite Min-MPM.132

I Theorem 2. For any ε > 0, Min-MPM cannot be approximated within a factor of n1−ε,133

even if the input has T = 2 time steps, the input graphs are bipartite, M = 1 and the costs134

of edges are in {0,∞}, unless P=NP.135

Using infinite costs, the same result immediately holds for bipartite complete graphs, as well136

as for complete graphs.137

Proof. We give a gap-introducing reduction from Perfect 3DM (3-Dimensional Matching),138

known to be NP-complete [9]. We are given an instance of Perfect 3DM which consists of139

three sets X,Y, Z, with |X| = |Y | = |Z| = n, and a set Q of elements of X × Y × Z, with140

|Q| = m ≤ n3. We are whether there exists a subset of n pair-wise disjoint elements of Q, or141

not.142

We construct an instance of our problem as follows: first, we create four sets of vertices143

A,B,C,D with |A| = |B| = n and |C| = |D| = m. To ease notation suppose that the ele-144

ments of our sets X,Y, Z,Q,A,B,C,D are labeled as {x1, . . . , xn}, {y1, . . . , yn}, {z1, . . . , zn},145

{q1, . . . , qm}, {a1, . . . , an}, {b1, . . . , bn}, {c1, . . . , cm}, and {d1, . . . , dm} respectively.146

For any j ∈ {1, . . . ,m} we construct a set of 2nd 4
ε e new vertices. We connect cj to dj147

through a path traversing all these vertices (thus this is a path from cj to dj with 2nd 4
ε e + 2148

vertices). We set the cost of all the internal edges of these paths for both time-steps to 0.149

For all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} we do the following: if xi ∈ qj we set the cost of the150

edge (ai, cj) to 0 in time step 1; if yi ∈ qj we set the cost of the edge (ai, cj) to 0 in time151

step 2; if zi ∈ qj we set the cost of the edge (bi, dj) to 0 in both time steps. All other edge152

costs are set to ∞ (or some other sufficiently large value). This completes the construction.153

Observe that the new graph has 5n+ 3m+ 2mnd 4
ε e vertices, so at most C · n 4

ε+4 (for some154

constant C) since m ≤ n3. Note also that the new graph is bipartite because the paths155

that we added from cj to dj have odd lengths, hence the bipartition (A ∪D,B ∪ C) can be156

extended to a bipartition of the whole graph.157

Suppose that the original instance has a set Q′ ⊆ Q such that |Q′| = n and no element of158

X ∪ Y ∪ Z appears in two elements of Q′. We obtain a multistage matching as follows: For159

each qj ∈ Q′ such that qe = (xi1 , yi2 , zi3) we use the edge (ai1 , cj) in step 1, the edge (ai2 , cj)160

in step 2, and the edge (bi3 , dj) in both time steps. Note that this fully specifies how the161

vertices of A ∪B are matched. We now complete the matching by selecting a set of edges162

from the paths connecting each cj to dj : if qj ∈ Q′, then both cj , dj have been matched163

to A ∪B in both time steps, and we select in both time steps the unique perfect matching164

of the path connecting them; if qj 6∈ Q′, then neither cj , dj is matched to A ∪ B in either165

time step, so we select the perfect matching on the path from cj to dj , including these two166

vertices. Observe that the cost of all edges we use is 0, while we only change at most n edges167

from one time step to the other, hence the total transition cost is at most nM .168

Suppose that the original instance does not have a solution and consider any multistage169

matching in the new instance. We will show that it must make at least n 4
ε changes from one170

time step to the other. We will say that qj ∈ Q is selected in time step 1, if in that time step171

cj is matched to an element of A. If qj is selected in time step 1, then dj is matched to an172

element of B in that time step, otherwise it would be impossible to have a perfect matching173

on the path connecting cj to dj . If some qj is selected in time step 1, but not in time step 2,174

then the solution must change all internal edges on the perfect matching on the path from175

cj to dj , hence it makes at least n 4
ε changes, and we are done. What remains therefore to176
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show is that if the solution maintains the set of selected qj in the two time steps, then we177

can construct a solution to the original instance. Indeed, since all of A ∪B is matched, we178

have n selected qj ’s. Each element of C ∪D has at most one edge connecting it to A ∪B in179

each step, hence if it is selected this edge must be used. But if we select qj1 , qj2 that overlap,180

then two selected elements will have a common neighbor in A ∪B and will therefore not be181

matched, contradiction.182

Since the new graph has N vertices with n 1
ε ≤ N ≤ Cn

4
ε+4 vertices, it is NP-hard to183

distinguish if the optimal is at most nM ≤ N εM or at least n 4
εM ≥ N1−εM/C. J184

3 Metric-Min-MPM185

We consider in this section that ct obeys the triangle inequality: ct(u, v) + ct(v, w) ≥ ct(u,w).186

In particular, the graph is complete. As seen before, the problem is hard to approximate187

even if there are only 2 time steps with general costs. We show here that while the problem188

is APX-hard in the metric case even with only 2 time steps (Section 3.1), it admits a189

3-approximation algorithm in this case (2 time steps), see Section 3.2. We then extend this190

last result to the case of 3 time steps in Section 3.3.191

3.1 APX-hardness for 2 time steps192

In the case of 2 time steps the following result is proved.193

I Theorem 3. Metric-Min-MPM is APX-hard, even if the input has T = 2 time steps.194

Proof. We give a gap-preserving reduction from Max 3DM. We are given an instance of Max195

3DM which consists of three sets X,Y, Z, with |X| = |Y | = |Z| = n, a set Q of elements196

of X × Y × Z, with |Q| = m, and an integer k. We are asked if there exists a subset of k197

pair-wise disjoint elements of Q. We assume that n, m and k are even (if not simply make two198

independent copies of the initial instance). This problem is APX-hard even if the occurence199

of each element is bounded above by a constant C = 3 [12]. Note that in this case the200

optimum value is at least m/7 (greedy algorithm; at most 6 incompatible triplets are removed201

when a triplet is chosen). So m, n and k are linearly related (3n ≥ m ≥ k ≥ m/7 ≥ n/21).202

We construct an instance of Metric-Min-MPM as follows: first, we create five sets203

of vertices X,Y, Z,G,D with X = {x1, . . . , xn}, Y = {y1, . . . , yn}, Z = {z1, . . . , zn}, G =204

{g1, . . . , gm} and D = {d1, . . . , dm}.205

The graph is complete, and we set the following costs:206

At time step 1, Z is seen as a single point very far from the rest of the graph: (zi, zj) has207

cost 0 for zi, zj ∈ Z, and (zi, v) has infinite cost for zi ∈ Z, u 6∈ Z.208

The same is done for X at time 2.209

The m edges (gi, di) have cost 1 at both time steps.210

For each triplet qi = (xj , yp, zs): at time 1 edges (xj , gi) and (di, yp) have cost a (a is a211

sufficiently large constant, to be specified later), and, for the triangle inequality to hold,212

(xj , di) and (gi, yp) have cost a+ 1. Similarly at time 2: (zs, gi) and (di, yp) have cost a,213

and, for the triangle inequality to hold, (zs, di) and (gi, yp) have cost a+ 1.214

All non yet defined costs are equal to 2a. The transition cost is M = 1. Figure 1 gives an215

illustration of the construction.216

Note that the triangle inequality holds in both time steps.217

We show that (1) if there is a 3DM of size k then there exists a solution of Metric-Min-218

MPM whose total cost is at most 2m+ 4an− k/2, and (2) conversely from a solution of the219

SWAT 2018



7:6 Multistage Matchings

X

Q

G D Y

a

a

a

a

a

1

1

1

... ...

...

Figure 1 An illustration of the reduction at time t = 1, without representing Z - the construction
is symmetric for time step t = 2. The third element of X is in the first, third and last triplet of Q.
The second element of Y is in the second and third triplet. The dashed edges have costs a + 1. Not
represented edges have cost 2a..

multistage problem of total cost z we can construct a 3DM of size at least 2(2m+ 4an− z).220

This proves APX-hardness since a is a constant, and m, n and k are linearly related.221

Let us first prove (1), and suppose that we have a 3DM of size k, say (for ease of notation)222

q1, . . . , qk where qi = (xi, yi, zi). Then we define a solution S of the multistage matching as223

follows:224

We take the (m− k) edges of triplets (gj , dj) not in the 3DM, at both time steps 1 and 2;225

For qi, 1 ≤ i ≤ k: we take edges (xi, gi) at time 1, (zi, gi) at time 2, and (yi, di) at time 1226

and 2.227

We match together the (n− k) remaining vertices of Y , choosing the same n−k
2 edges at228

both time steps.229

We match together the (n − k) remaining vertices of X at time 1. At time 2 we keep230

these n−k
2 edges and match the remaining k vertices of X together.231

We do the same for Z.232

We get a solution (M1,M2) whose costs are:233

At time 1, the matching cost is (m− k) + 2ak + 2an−k2 + 2an−k2 = m+ 2an− k;234

The matching cost at time 2 is the same.235

The number of modifications is 3k/2: k edges (xi, gi) become (zi, gi), and k/2 edges in Z236

disappear at time 1 (k/2 edges appear in X at time 2).237

In all, (M1,M2) has cost 2m+ 4an− k/2.238

239

Conversely, suppose that we have a solution (M0
1 ,M

0
2 ) of total cost z for the instance240

of Metric-Min-MPM. We first structure this solution using local modifications, and then241

show how to derive a matching from it.242

Replacement 1. First, suppose that M0
1 takes (at time 1) an edge (xj , gi) of cost 2a - so243

xj is not in the i-th triplet qi of Q. Then di is matched with a vertex v with an edge244

of cost at least a. By replacing (at time 1) (xj , gi) and (di, v) by (xj , v) and (gi, di) we245

get a matching cost for these two edges at most 2a + 1 instead of (at least) 3a. Even246
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considering that the transition cost may have increased by two, this replacement does247

not increase the cost of the solution for a ≥ 3. The same argument applies for an edge248

(xj , di) (time step 1), an edge (yj , di) or (yj , gi) (time step 1 or 2) and for an edge (zj , gi)249

or (zj , di) in M0
2 .250

Replacement 2. Now, suppose that M0
1 takes an edge of cost 2a in G ∪D, say (gi, gj)251

with i 6= j (the very same argument works for the 2 other cases (gi, dj) and (di, dj)).252

Let v and w be the neighbors of di and dj in M0
1 . By replacing the three edges (gi, gj),253

(di, v) and (dj , w) by (gi, di), (gj , dj) and (v, w), we get a matching cost at most (2a+ 2)254

instead of (at least) 4a. Even considering that the transition cost may have increased by255

three, this replacement does not increase the cost of the solution for a ≥ 5/2. The same256

holds for M0
2 .257

Replacement 3. Last, suppose that edges (yj , gi) and (ys, di) are both taken at time 1258

and 2. This costs 2(a + a + 1) = 4a + 2. Then we can take instead edges (gi, di) and259

(yj , ys) at both time steps, with the same cost 2 + 2(2a) = 4a+ 2.260

In this way, we transform (M0
1 ,M

0
2 ) into a solution (M1,M2) of cost at most z such that:261

No gi (and no di) is matched using an edge of cost 2a (replacements 1 and 2).262

gi and di cannot be both matched to the same vertices at time 1 and 2, unless they are263

matched together (replacement 3).264

We now show how to find a 3DM from this solution (M1,M2). Let:265

Nx and Nz be respectively the number of edges in X×(G∪D) at time 1 and in Z×(G∪D)266

at time 2.267

N1
y and N2

y be respectively the number of edges in Y × (G ∪D) at time 1 and time 2,268

among which λ1 (resp., λ2) are of cost a+ 1.269

Ny be the number of edges in Y × (G ∪D) that are taken at both times 1 and 2.270

At time 1, besides these Nx + N1
y edges and the n/2 edges of cost 0 (vertices of Z), the271

other edges of (M1,M2) have cost either 1 (edges (gi, di)) or 2a. Since Nx +N1
y vertices in272

G∪D are already matched at time 1, there are at most 2m−Nx−N1
y

2 edges of cost 1 at time 1.273

Similarly, there are at most 2m−Nz−N2
y

2 edges of cost 1 at time 2.274

Then, computing the matching cost of (M1,M2) we have275

c(M1,M2) ≥ a
(
Nx +Nz +N1

y +N2
y

)
+ λ1 + λ2 +

4m−Nx −Nz −N1
y −N2

y

2276

+2a
(
n−Nx + n−N1

y + n−Nz + n−N2
y

2

)
277

≥ 2m+ 4na+ λ1 + λ2 −
Nx +Nz +N1

y +N2
y

2 .278

Now, note that at time 1 at least Nx +N1
y −Ny + Nz

2 edges disappear, so D(M1,M2) ≥279

Nx + N1
y − Ny + Nz

2 . Similarly, at least Nz + N2
y − Ny + Nx

2 edges appear at time 2. So280

D(M1,M2) ≥ Nz +N2
y −Ny + Nx

2 . Then,281

D(M1,M2) ≥
Nx +Nz +N1

y +N2
y

2 −Ny + Nx +Nz
4 .

This gives:282

z ≥ c(M1,M2) +D(M1,M2) ≥ 2m+ 4na+ λ1 + λ2 −Ny + Nx +Nz
4 .283
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7:8 Multistage Matchings

Now, consider the set of indices i such that edge (yj , di) is taken at both time steps, or284

edge (yj , gi) is taken at both time steps. Since, thanks to the preprocessing, for a given i285

this cannot concern both di or gi, we know that there are exactly Ny such indices (edges).286

Since there are λ1 + λ2 edges of cost a+ 1 between Y and G∪D, among these Ny indices at287

least Ny − (λ1 + λ2) are such that: (1) edge (di, yj) is used at both time steps (2) an edge288

(xs, gi) of cost a is used at time 1 (since no edge of cost 2a is used for vertices in G) and (3)289

an edge (zp, gi) of cost a is used at time 2.290

In other words these at least Ny − (λ1 + λ2) indices correspond to triplets of a 3DM. So
we have a 3DM of size (at least) k = Ny − (λ1 + λ2). Then, Nx ≥ Ny − (λ1 + λ2) = k and
similarly Nz ≥ k, so Nz+Nx

4 ≥ k
2 . All together, we get

z ≥ 2m+ 4an− k + k

2 = 2m+ 4an− k

2 .

J291

3.2 A 3-approximation algorithm for 2 time steps292

We now devise an approximation algorithm. Informally, this algorithm first guesses the293

number k of edges that an optimal solution keeps between steps 1 and 2. Then it computes294

a set of k edges with low matching cost that it maintains between time 1 and 2. Finally,295

it completes this set of k edges into two perfect matchings, in such a way that, using the296

triangle inequality, the matching cost does not increase too much.297

Formally, the algorithm Metric2 runs the following procedure for k from 0 to n/2.298

1. Let G1+2 be the graph where the edge costs are c(u, v) = c1(u, v) + c2(u, v). Compute a299

minimum cost matching Mk of size exactly k in G1+2.300

2. Compute a minimum cost perfect matching M1 in G1, and a minimum cost perfect301

matching M2 in G2.302

3. Consider the symmetric difference of the two matchings Mk and M1 in G1. This is a303

(vertex disjoint) set of paths P1, . . . , Pp and cycles. Define Mk
1 as Mk plus the p edges304

linking the first vertex and last vertex of each path Pj .305

4. Do the same to get Mk
2 .306

5. Consider Sk = (Mk
1 ,M

k
2 ).307

Metric2 outputs the best solution Sk.308

309

I Theorem 4. Metric2 is a (polytime) 3-approximation algorithm for Metric-Min-MPM310

when T = 2.311

Proof. We first prove that Sk is a feasible solution, i.e., Mk
i is a perfect matching of Gi.312

Since Mi is a perfect matching, in all paths Pj the first and last edges belong to Mi. Hence313

the first and last vertices are not covered by Mk, so Mk
1 is a matching. Every other vertex is314

covered by Mk, so the matching is perfect.315

Now, let us prove the claimed approximation ratio. Let us denote S∗ = (M∗1 ,M∗2 ) be an316

optimal solution, and consider Sk where k = |M∗1 ∩M∗2 |.317

Since at least Mk is common between Mk
1 and Mk

2 , at least k edges are maintained318

between time 1 and 2 in Sk, as in S∗. So:319

D(Sk) ≤ D(S∗). (1)320
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Now, let us prove that:321

c1(Mk
1 ) + c2(Mk

2 ) ≤ 3c1(M∗1 ) + 3c2(M∗2 ). (2)322

Thanks to the triangle inequality, in a path P = (v0, v1, . . . , vt), ci(v0, vt) ≤
∑
j ci(vj , vj+1):323

when adding edges (v0, vt) we add in total at most the total length of the paths, hence at324

most ci(Mi) + ci(Mk). So ci(Mk
i ) ≤ ci(Mi) + 2ci(Mk). Using that ci(Mi) ≤ ci(M∗i ), we get:325

c1(Mk
1 ) + c2(Mk

2 ) ≤ c1(M∗1 ) + c2(M∗2 ) + 2(c1(Mk) + c2(Mk)).

By optimality of Mk and since S∗ has k common edges between times 1 and 2, these k326

common edges induce a cost in S∗ at least c1(Mk) + c2(Mk). Then:327

c1(Mk
1 ) + c2(Mk

2 ) ≤ c1(M∗1 ) + c2(M∗2 ) + 2(c1(M∗1 ) + c2(M∗2 ))

and Equation 2 follows. From Equations 1 and 2 we derive:

c(S) +D(S) ≤ 3c(S∗) +D(S∗).

The result immediately follows. J328

3.3 A 3-approximation algorithm for 3 time steps329

We now extend the previous result to the case of T = 3. As previously, if an optimal solution330

preserves in total k edges (operates in total n− k modifications between time steps 1 and 2,331

and 2 and 3) we would like to first compute a set of k ‘preserved’ edges inducing a low cost,332

and then to complete this set as perfect matchings in each of the time steps. Now things get333

more complex since an edge can be preserved between steps 1 and 2, between steps 2 and 3,334

or during the whole process. It seems hard to mimic an optimal solution on these 3 types of335

edges (while inducing a low matching cost), but this difficulty can be overcome as follows.336

337

Let G be the graph with edge cost w = min{c1 + c2 + c3, c1 + c2 +M, c2 + c3 +M}. If338

the minimum is c1 + c2 + c3 (resp., c1 + c2 +M , c2 + c3 +M) we say that the edge is of type339

1 (resp., 2, 3). Intuitively, edges of type 1 will be taken in steps 1, 2 and 3, edges of type340

2 (resp., 3) will be taken in steps 1 and 2 (resp., 2 and 3). We present a 3-approximation341

algorithm Metric3. It runs the following procedure for k from 0 to n/2.342

1. Compute a minimum cost matching Mk of size exactly k in G. Denote Mk
1 the set of343

edges of Mk of type 1 or 2, Mk
2 = Mk and Mk

3 the set of edges of Mk of type 1 or 3.344

2. Compute a minimum cost perfect matching Mi in Gi, i = 1, 2, 3.345

3. Consider the symmetric difference of the two matchings Mk
i and Mi in Gi. This is a346

(vertex disjoint) set of paths P1, . . . , Pp and cycles. Define M ′ki as the set of p edges347

linking the first vertex and last vertex of each path Pj .348

4. Consider Sk = (Mk
1 ∪M ′k1 ,Mk

2 ∪M ′k2 ,Mk
3 ∪M ′k3 ).349

Then Metric3 outputs the best solution Sk.350

351

I Theorem 5. Metric3 is a (polytime) 3-approximation algorithm for Metric-Min-MPM352

when T = 3.353
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Proof. We first note that, as in the case for T = 2 time steps, Mk
i ∪M ′ki is a perfect matching354

of Gi, so Sk is a feasible solution.355

Now let us deal with the approximation ratio. Let S∗ = (M∗1 ,M∗2 ,M∗3 ) be an optimal356

solution. Let us consider the set H = (M∗1 ∩M∗2 )∪ (M∗2 ∩M∗3 ) of edges in S∗ that are in (at357

least) two consecutive steps. Note that H is a matching (it is included in M∗2 ). Consider Sk358

where k = |H|. We now prove the following result:359

I Lemma 6. D(Sk) +
∑
i ci(Mk

i ) ≤ D(S∗) + c(S∗).360

Proof. To prove this, let k1 = |M∗1 ∩M∗2 ∩M∗3 | be the number of edges in S∗ that are taken361

at each of the 3 time steps. Hence, k − k1 edges are taken at (only) 2 consecutive time steps.362

So there are (n/2 + n/2− 2k1 − (k − k1)) modifications in total, and:363

D(S∗) = M(n− k − k1). (3)364

Recall that in G, w = min{c1 + c2 + c3, c1 + c2 +M, c2 + c3 +M}. k1 edges of H are present365

on the 3 time steps (matching cost c1 + c2 + c3), while k − k1 are present in two consecutive366

time steps (matching cost c1 + c2 or c2 + c3).367

w(H) ≤ c(S∗) +M(k − k1). (4)368

Similarly, let λ1 be the number of edges of type 1 in Mk. There are (k − λ1) edges of369

type 2 or 3, hence370

w(Mk) =
∑
i

ci(Mk
i ) +M(k − λ1). (5)371

Indeed, in G cost c1 applies to edges of type 1 and 2 (c1(Mk
1 )), cost c2 applies to all edges of372

Mk (c2(Mk
2 )), cost c3 applies to edges of type 1 and 3 (c3(Mk

3 )), and cost M to the (k − λ1)373

edges of type 2 and 3.374

Also, the number of preserved edges in Sk is at least k + λ1, so:375

D(Sk) ≤M(n− k − λ1). (6)376

Since H is a matching, in G we have w(H) ≥ w(Mk). This gives using Equations 4 and 5:377 ∑
i

ci(Mk
i ) +M(k − λ1) ≤ c(S∗) +M(k − k1)

so
∑
i ci(Mk

i ) ≤ c(S∗) +M(λ1 − k1). Then using Equations 3 and 6 we get:378

∑
i

ci(Mk
i ) +D(Sk) ≤ c(S∗) +M(λ1 − k1) +M(n− k − λ1) = c(S∗) +M(n− k − k1)

= c(S∗) +D(S∗)

which concludes the proof of Lemma 6. J379

Now, by triangle inequality, and the fact that ci(Mi) ≤ ci(M∗i ), we know that:380

ci(M ′ki ) ≤ ci(M∗i ) + ci(Mk
i ). (7)381

Then, from Lemma 6 and Equation 7 we get:382
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c(Sk) +D(Sk) =
∑
i

(ci(Mk
i ) + ci(M ′ki )) +D(Sk) ≤

∑
i

(2ci(Mk
i ) + ci(M∗i )) +D(Sk)383

≤ c(S∗) + 2
(∑

i

ci(Mk
i ) +D(Sk)

)
≤ 3c(S∗) + 2D(S∗).384

The result follows. J385

4 Max-MPM386

In the maximization version, we consider that ct(e) is the profit obtained by taking edge e (at387

time t). Then a solution sequence S has a matching profit c(S) =
∑
t ct(Mt). We define the388

transition profit D(S) as D(S) =
∑
t≤T−1 Dt where Dt = M · |Mt+1 ∩Mt| is proportional389

to the number of edges that remain between time t and t+ 1. The goal now is to maximize390

c(S) + D(S). Recall that in the maximization version we may no longer assume that the391

graphs are complete.392

4.1 APX-hardness for 2 time steps393

We first show that Max-MPM, even in the case of 2 time steps is APX-hard.394

I Theorem 7. Max-MPM is APX-hard even if T = 2.395

Proof. As previously, we consider the maximum 3DM problem in the case where the396

occurrence of each element is bounded by 3, hence the optimal value, the number of triplets397

and the size of the ground sets are linearly related.398

Given three sets X,Y, Z each of size n, and m triplets qi of X × Y × Z, we build two399

graphs G1 and G2 with n′ = 2m+ 4n vertices:400

4 sets D,E, F,G of size n;401

2 sets A = {a1, . . . , am} and B = {b1, . . . , bm} of size m.402

Vertices of D will represent elements of X, vertices of E and F elements of Y (twice), vertices403

of G elements of Z. Each triplet qi is represented by one edge (ai, bi) in both graphs. It has404

cost 0.405

If a triplet qi is (xj , yk, zl) then:406

In G1 we put edges (dj , ai) and (bi, ek), both with cost M ′;407

In G2 we put edges (fk, ai) and (bi, zl), both with cost M ′.408

Note that vertices in F,G have degree 0 in G1, vertices in D,E have degree 0 in G2.409

We fix M ′ = M+1
4 , and M ≥ 3.410

Let us show that there is a 3DM of size (at least) k if and only if there is a solution of411

profit at least Mm+ k.412

Suppose first that there is a set S of k independent triplets. Then we build matchings413

(M1,M2) as follows:414

if qi is not in S, we take (ai, bi) both inM1 andM2. This gives transition profitM(m−k).415

if qi = (xj , yk, zl) is in S, then we take in M1 the two edges (dj , ai) and (bi, ek), and in416

M2 the two edges (fk, ai) and (bi, zl). This gives a matching profit 4kM ′.417

Note that since any element of X,Y, Z is in at most one triplet of S, vertices in D,E, F,G418

are adjacent to at most one chosen edge. In other words M1 and M2 are matchings.419

The profit of the solution is 4kM ′ +M(m− k) = k(M + 1) +M(m− k) = Mm+ k.420
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Suppose now that there is a solution (M1,M2) of profit at least Mm+ k. Suppose first421

that there is an edge (ai, bi) which is in M1 but not in M2. Then we get no transition profit422

for this edge. In M2 we have taken at most one edge incident to ai, and one edge incident423

to bi, with matching profit at most 2M ′. Since these edges are not in G1 they cannot give424

transition profit. So we can put in M2 the edge (ai, bi) and remove the edges incident to ai425

and bi (if any). The profit increases by M − 2M ′ = M/2− 1/2 ≥ 0.426

So we can assume that M1 and M2 have the same set of edges between A and B.427

Suppose now that there are two edges (ai, bi) and (as, bs) both not in M1 (equiv. not in M2)428

corresponding to two intersecting triplets. Suppose for instance that xj is in both triplets.429

This means that in M1 we cannot take both edges (cj , ai) and (cj , as), for instance (cj , as) is430

not in M1. Then we can add (as, bs) is M1 and M2, and remove the (at most) 3 incident431

edges. This increases profit by M − 3M ′ ≥ 0.432

So, the set of edges (ai, bi) not in M1 (or not in M2) corresponds to a set of independent433

triplets. Let t the number of such edges. Since M1 is a matching, besides these edges between434

A and B, there is at most two edges for each (ai, bi) not in M1. Similarly, there is at most435

two edges in M2 for each (ai, bi) not in M2. So the matching profit is at most 4tM ′, and436

the transition profit is M(m− t). The profit is M(m− t) + 4tM ′ = Mm+ t ≥Mm+ k. So437

t ≥ k. J438

4.2 Constant factor approximation algorithms439

I Theorem 8. Max-MPM is 1/2-approximable. If T = 2 it is 2/3-approximable, if T = 3440

it is 3/5-approximable.441

Proof. Note that if the graphs are assumed to be complete (bipartite complete) then the442

ratio 1/2 is easily achievable. Indeed, consider two solutions:443

The first one S1 consisting of the same perfect matching M0 at all time steps;444

The second one S2 consisting of a matching M̂t of maximum profit on Gt for each t.445

Output the best one.446

Let S∗ = (M∗1 , . . . ,M∗T ) be an optimal solution. Clearly the profit of S1 is at least the447

transition profit D(S∗) of S∗. Also, c(M∗i ) ≤ c(M̂i) so the matching profit of S∗ is at most448

the one of S2. The ratio 1/2 follows.449

If the graphs are not assumed to be complete things get harder since one cannot trivially450

optimize the transition profit by keeping a perfect matching along the multistage process.451

Let us consider three consecutive time steps t− 1, t, t+ 1. Let us consider the graph G′t452

which is the same as Gt up to the profit on edges, which is now c′t(e) where:453

1. c′t(e) = ct(e) + 2M if e is in Gt−1 and Gt+1;454

2. otherwise, c′t(e) = ct(e) +M if e is in Gt−1 or Gt+1;455

3. otherwise c′t(e) = ct(e).456

Let us consider a matching M ′t of maximum profit in G′t.457

I Lemma 9. c′t(M ′t) ≥ Dt−1(S∗) + ct(M∗t ) +Dt(S∗).458

Proof. Let us consider the profit of M∗t on G′t. Since the set of edges preserved from time459

t − 1 to time t is included in M∗t , the profit Dt−1(S∗) appears in the profit of M∗t on G′t460

(+M on each common edges between the two consecutive graphs). This is also the case461

for Dt(S∗), for the same reason. Of course, the profit ct(e) appears as well. Since M ′t is of462

maximum profit, the Lemma follows. J463
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Because of Lemma 9, choosing the matching M ′t at time steps t − 1, t and t + 1 in a464

solution generates a profit at least Dt−1(S∗) + ct(M∗t ) +Dt(S∗).465

Note that, with similar arguments, if two times steps t, t+ 1 are involved, we can compute466

a matching Hi that we take at time steps t, t+ 1 generating a profit at least ct(M∗t ) +Dt(S∗).467

Symmetrically, we can compute a matching H ′i that we take at time steps t, t+ 1 generating468

a profit at least ct+1(M∗t ) +Dt(S∗).469

470

Now we consider the following 2 solutions:471

S1 consists of choosing H1 at steps 1, 2, H3 at step 3, 4, . . . . If T is even then we are472

done, otherwise we take an optimal matching M̂T at step T .473

S2 consisting of choosing an optimal matching M̂1 at step 1, then H2 at steps 2, 3, H4 at474

steps 4, 5,. . . . If T is even we take an optimal matching M̂T at step T .475

Output the best of these two solutions. Then: S1 covers the transition profit of an optimal476

solution Dt for t odd, plus the matching profits for t odd. S2 covers the transition profit477

of an optimal solutionDt for t even, plus the matching profits for t even. The ratio 1/2 follows.478

479

Improvement for T = 3. The previous solutions S1 and S2 have profit (respectively) at480

least c1(S∗) +D1(S∗) + c3(S∗) and c1(S∗) +D2(S∗) + c2(S∗). S3 takes M̂1 at step 1 and H ′2481

at time steps 2 and 3, with profit at least c1(S∗) +D2(S∗) + c3(S∗); S4 takes H ′1 at steps 1482

and 2, and M̂3 at step 3, with profit at least D1(S∗) + c2(S∗) + c3(S∗). S5 uses M ′2 at the 3483

steps with profit at least D1(S∗) + c2(S∗) +D2(S∗) (thanks to Lemma 9). Take the best of484

these 5 solutions, and the ratio follows.485

Improvement for T = 2. Simply take 3 solutions: S1 is defined as previously, with profit486

at least c1(S∗) +D1(S∗). S2 takes H ′1 at both steps with profit at least D1(S∗) + c2(S∗). S3487

consists of one optimal matching at step 1, and an optimal matching at step 2, with profit at488

least c1(S∗) + c2(S∗). The ratio 2/3 follows.489

J490

5 Concluding remarks491

Following the results of Section 3, we leave as an open question the existence of a constant492

factor approximation algorithm for the metric case for a number of time steps bigger than 3.493

Also, we considered here an off-line version of the problem where the whole set of instances494

is known in advance. It would be worth investigating the on-line case where data are not495

known in advance.496
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