
HAL Id: hal-01926843
https://hal.science/hal-01926843

Submitted on 11 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Covariance Bell inequalities
Victor Pozsgay, Flavien Hirsch, Cyril Branciard, Nicolas Brunner

To cite this version:
Victor Pozsgay, Flavien Hirsch, Cyril Branciard, Nicolas Brunner. Covariance Bell inequalities. Phys-
ical Review A, 2017, 96 (6), pp.062128. �10.1103/PhysRevA.96.062128�. �hal-01926843�

https://hal.science/hal-01926843
https://hal.archives-ouvertes.fr


Covariance Bell Inequalities

Victor Pozsgay,1 Flavien Hirsch,1 Cyril Branciard,2 and Nicolas Brunner1
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We introduce Bell inequalities based on covariance, one of the most common measures of correlation.
Explicit examples are discussed, and violations in quantum theory are demonstrated. A crucial
feature of these covariance Bell inequalities is their nonlinearity; this has nontrivial consequences for
the derivation of their local bound, which is not reached by deterministic local correlations. For our
simplest inequality, we derive analytically tight bounds for both local and quantum correlations. An
interesting application of covariance Bell inequalities is that they can act as “shared randomness
witnesses”: specifically, the value of the Bell expression gives device-independent lower bounds on
both the dimension and the entropy of the shared random variable in a local model.

Bell inequalities limit the strength of possible correl-
ations for any model satisfying a natural definition of
locality formulated by Bell [1]. Thus, the violation of
a Bell inequality indicates that no local model (in the
sense of Bell) can reproduce the observed data, which is
therefore said to be (Bell) nonlocal. This can be the case
in quantum theory where, by performing well-chosen local
measurements on an entangled quantum system, one may
obtain nonlocal quantum correlations.

Beyond their fundamental interest, Bell inequalities are
widely used tools, in particular in quantum information
science [2]. Indeed, a Bell inequality violation represents
a simple and strong test for certifying the presence of en-
tanglement. Importantly this test is device-independent,
in the sense that, assuming quantum theory, a Bell in-
equality violation implies the presence of entanglement
without any assumption on the measuring devices, nor on
the Hilbert space dimension. Moreover, the violation of a
Bell inequality can also be used to certify the presence of
genuine quantum randomness [3, 4], or the security of a
cryptographic key [5].

Consider two separate observers, performing local meas-
urement on a shared physical system. The experiment
results in some data, namely the joint conditional prob-
abilities of observing a pair of outputs (measurement
results) given a pair of inputs (choice of measurement
settings). As they capture the strength of correlations in
the data, it is intuitive that Bell inequalities are construc-
ted based on some measure of correlation. For instance,
the simplest and most famous Bell inequality of Clauser-
Horne-Shimony-Holt (CHSH) [6] is a linear combination
of simple correlation functions (see below). As these cor-
relation functions are themselves linear combinations of
the joint conditional probabilities, the CHSH inequality
is a so-called linear Bell inequality. More generally, it is
known that the set of distributions that are Bell local can
be fully characterized via linear Bell inequalities [7], and
great efforts have been dedicated to find such inequalities,
see e.g. Refs. [8–13].

It is however natural to ask if other measures of correl-
ations can be used for devising Bell inequalities. Beyond

the purely conceptual interest, this could be relevant in a
practical context in which the full data is not available,
but only certain specific (not necessarily linear) functions
of the joint probabilities are. Moreover, it would be inter-
esting to devise new types of Bell inequalities for the case
of continuous measurement outcomes, for which the stand-
ard approach for constructing linear inequalities does not
work anymore.

Several works have explored these ideas. First, entropic
Bell inequalities [14–16] were obtained by considering the
mutual information between the measurement outcomes.
Later, inequalities based on higher moments of the dis-
tribution were also derived [17–20]. Finally, nonlinear
Bell inequalities have been developed for discussing the
generalization of Bell nonlocality to networks [21–25].

Here we introduce a novel class of nonlinear Bell in-
equalities based on the covariance of measurement results,
a natural measure of correlations that is widely used in
many different areas of science. We propose a general way
to construct such Bell inequalities for covariances, and
present, in the simplest case, a method for computing
their local bound—a nontrivial problem due to the non-
linearity of the Bell expression. We show on a few explicit
examples that our inequalities can detect quantum nonloc-
ality. Moreover, we show that covariance Bell inequalities
can be used to characterize shared randomness in a Bell
test, providing device-independent lower bounds on the
dimension and the entropy of the shared random variable
in any local model.

Standard Bell inequalities.— Consider an experiment
in which two parties, Alice and Bob, can both locally test
different properties of a shared physical system. Let us
label by x the measurement choice of Alice and y that
of Bob, with the corresponding outcomes defining the
random variables Ax and By, which take the values a
and b, respectively. We will only consider non-signalling
scenarios, in which the statistics of Ax do not depend on
the choice of y, and similarly the statistics of By do not
depend on x.

The statistics of the whole experiment, and thereby
the correlations between Alice and Bob’s measurement
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outcomes, are characterized by the joint conditional prob-
ability distribution P (a, b|x, y) = P (Ax = a,By = b).
Such a distribution is called local (in the sense of Bell) if
it admits a decomposition of the form

P (a, b|x, y) =
∫
ρ(λ) PA(a|x, λ) PB(b|y, λ) dλ, (1)

where λ represents the possible values a shared classical
variable Λ (shared randomness), distributed with the dens-
ity function ρ(λ). The local response functions, defined
by the distributions PA(a|x, λ) and PB(b|y, λ) represent
the local behavior of Alice and Bob’s subsystems.

The set of local distributions—the “local set”—is con-
strained by linear Bell inequalities of the form

B =
∑
x,y,a,b

αab|xy P (a, b|x, y) ≤ β, (2)

with some real coefficients αab|xy, and where the “local
bound” β is the maximal value of the quantity B over
all local distributions. For any given (finite) number of
possible measurement settings and outcomes, the local
set forms a polytope, and is thus fully characterized by a
finite set of such linear Bell inequalities [7].

As a concrete example, consider the case of two meas-
urements for each party, labelled by x, y ∈ {0, 1}, with
binary outcomes a, b ∈ {+1,−1}. Here we have the well-
known CHSH inequality [6]

CHSH ≡ 〈A0B0〉+〈A0B1〉+〈A1B0〉−〈A1B1〉 ≤ 2, (3)

where the correlation functions 〈AxBy〉 are simply defined
as the expectation values of the products of outcomes,
〈AxBy〉 =

∑
a,b a bP (a, b|x, y). Like many other linear

Bell inequalities, the CHSH inequality can detect quantum
nonlocal correlations, obtained by performing well chosen
local measurements on a shared entangled state.

A Bell inequality for covariances.— Instead of using
the correlation functions 〈AxBy〉, other quantities can also
be considered to characterize local distributions; indeed,
Bell inequalities were for instance constructed for entropic
quantities [14–16]. In this work we focus on another
natural and widely used measure of correlation, namely
the covariance. As mentioned previously, this may be
of practical interest for situations where the full data is
not available, and only covariances can be estimated. An
advantage of using covariances is also that, like entropies,
they are naturally defined for any number of possible
measurement outcomes, and even for continuous outcomes.
Unlike entropies however, they depend on the specific
values given to the measurement outcomes; this allows
one, in particular, to distinguish correlations versus anti-
correlations.

The covariance of the two output variables Ax and By
is defined as

cov(Ax, By) = 〈AxBy〉 − 〈Ax〉〈By〉, (4)

with 〈AxBy〉 defined as above, and similarly with 〈Ax〉 =∑
a,b aP (a, b|x, y) and 〈By〉 =

∑
a,b b P (a, b|x, y) (for con-

tinuous values, the sums can simply be replaced by integ-
rals, and the probabilities by probability density functions;
note also that because of the non-signalling assumption,
〈Ax〉 does not depend on y, and 〈By〉 does not depend
on x). We emphasize that because of the product term
in Eq. (4), the covariance is a nonlinear function of the
joint probabilities P (a, b|x, y).

We start by again considering the case of two meas-
urements per party (x, y ∈ {0, 1}), but with now out-
comes Ax and By that can take any values a, b in the
interval [−1,+1]; this implies in particular that −1 ≤
cov(Ax, By) ≤ 1 (note that if a, b are taken in any other
bounded interval, they can, together with the correspond-
ing covariance, simply be rescaled so that they lie in
[−1,+1]). Our goal is to bound the set of possible values
of the four covariances cov(Ax, By) for local distributions—
the “local set” for covariances. To get some intuition, and
inspired by the form of CHSH in Eq. (3), one may look
for instance at the projection of this local set onto the
2-dimensional (covCHSH, covCHSH′) plane, with

covCHSH ≡ cov(A0, B0) + cov(A0, B1)
+ cov(A1, B0)− cov(A1, B1), (5)

and with covCHSH′ defined similarly, except that
cov(A0, B1) and cov(A1, B0) come with minus signs. By
optimizing the values of covCHSH(′) numerically (but
with reliable enough results), we obtained the local set
represented in Fig. 1.

One immediately sees that contrary to the standard
local polytope in the probability space, the local set in the
covariance space is nonconvex, and that (unsurprisingly)
it cannot be fully described by a finite number of Bell
inequalities based on linear combinations of the covari-
ances. Its full characterization thus looks much more
complicated than that of the standard local polytope.
Nevertheless, one can still derive some Bell inequalities
for covariances that provide an outer approximation of
the local set. As illustrated on Fig. 1, an example of such
covariance Bell inequalities is the following:

covCHSH ≤ 16
7 . (6)

In order to prove that this inequality indeed holds
for any local distribution, it is in fact sufficient to re-
strict to distributions with binary outputs ±1. Those can
be written as convex mixtures of finitely many determ-
inistic (local) distributions, and one can then optimize
the expression covCHSH over the corresponding weights.
To take into account the constraint that these weights
must be nonnegative and sum up to 1, one can intro-
duce Karush-Kuhn-Tucker (KKT) multipliers [26], which
provide necessary conditions for a solution to be optimal.
By considering decompositions onto different sets of de-
terministic distributions with nonzero weights, these KKT
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Figure 1. Projection of the local set for covariances
(shaded region) onto the upper-right quadrant of the
(covCHSH, covCHSH′) plane; the other three quadrants are
obtained by symmetry, see inset. All local distributions give
values in the local set and satisfy the covariance Bell inequality
covCHSH ≤ 16

7 . This inequality is saturated by the distribu-
tions that project onto POpt; those require mixing at least 3
deterministic strategies, while mixing 2 allows one to obtain for
instance the point P2 (see main text). Quantum distributions
can reach the dashed green circle and can thus violate the
covariance Bell inequality, with PQ corresponding to a distri-
bution that also maximally violates the CHSH inequality. The
no-signaling set is limited by the solid red line (as it satisfies
covCHSH + covCHSH′ = 2[cov(A0, B0) − cov(A1, B1)] ≤ 4),
where PPR corresponds to a PR nonlocal box.

conditions simplify to a number of linear systems, which
can easily be solved. The full details of the proof are given
(together with an alternative approach) in Appendix A.

It is instructive to look more closely in the proof at
decompositions with a given number d of deterministic dis-
tributions with nonzero weights. First note that for d = 1,
i.e., for deterministic distributions, all covariances are 0,
and therefore one also obtains covCHSH = 0. To obtain
a nonzero value, one thus needs to consider mixtures of at
least 2 distributions. For d = 2, one finds that the max-
imal possible value is covCHSH = 2, obtained for instance
by the distribution P2 = 1

2
[
(+ + /+−) + (−− /−+)

]
(which also gives covCHSH′ = 2, see Fig. 1)—where the
notation (A0A1/B0B1) denotes a strategy in which Alice
and Bob deterministically output Ax and By for inputs
x and y, respectively. In order to reach the local upper
bound in Eq. (6), one needs to go to d = 3; the distribu-
tion POpt = 3

7 (+ + /+ +) + 2
7 (−+ /−−) + 2

7 (−− /−+),
for instance, gives covCHSH = 16

7 (and covCHSH′ = 16
49 ,

see Fig. 1). One thus sees that reaching a given value of

covCHSH requires mixing a certain number of determin-
istic strategies; this is an interesting feature, which will
allow one to use the covariance inequality as a shared
randomness witness (see below).

One may also look at possible violations of the cov-
ariance Bell inequality (6). One finds that it can in-
deed detect quantum nonlocality: that is, one can ob-
tain covCHSH > 16

7 by performing local measurements
on an entangled state. For example, the quantum cor-
relations that reach the maximal quantum value (the
“Tsirelson bound” [27]) of CHSH=2

√
2 have vanishing

marginals 〈Ax〉 = 〈By〉 = 0, and therefore also give
covCHSH=2

√
2 > 16

7 (point PQ on Fig. 1). In fact, this is
the largest possible quantum violation, as one can prove
that all quantum correlations must satisfy the inequality

covCHSH ≤ 2
√

2 . (7)

This is shown in Appendix B, where we also give a tighter
characterization of the quantum set in terms of covari-
ances. Note that in contrast to the local bound, marginals
do not play any role in reaching the Tsirelson bound for
covCHSH. Nevertheless, the nonlinearity of the Bell ex-
pression covCHSH also has interesting consequences in
the quantum case. For instance, one can find two pure
entangled states such that none of the states can individu-
ally violate the inequality (6), whereas a mixture of the
two states can violate it; see Appendix C for details.

Note, finally, that given the range of output variables,
we have |cov(Ax, By)| ≤ 1, and therefore the algebraic
maximum possible value of covCHSH is 4 (just like for
CHSH). This value can be reached by the non-signalling
distribution known as the Popescu-Rohrlich (PR) nonlocal
box [28] (point PPR on Fig. 1), which again has vanishing
marginals and also reaches the algebraic maximum of the
CHSH expression.

Constructing other covariance Bell inequalities.— One
can follow similar ideas to the ones developed above and
derive other Bell inequalities based on covariances.

In the case of ternary inputs x, y ∈ {0, 1, 2} and binary
outputs a, b ∈ {+1,−1} for instance, the local set in
the space of expectation values 〈AxBy〉 is again fully
characterized by CHSH-like inequalities; however, when
considering the full probability space, i.e., including the
marginals 〈Ax〉, 〈By〉, one gets a new inequivalent family
of Bell inequalities of the form [9, 10, 29]

I3322 ≡ 〈A0B0〉+ 〈A0B1〉+ 〈A0B2〉+ 〈A1B0〉
+〈A1B1〉 − 〈A1B2〉+ 〈A2B0〉 − 〈A2B1〉

+〈A0〉+ 〈A1〉 − 〈B0〉 − 〈B1〉 ≤ 4. (8)

Inspired by the previous example of CHSH, one may
look at the local bound when the expectation values
〈AxBy〉 are replaced by the covariances cov(Ax, By). Mar-
ginal terms, viewed e.g. as 〈Ax〉 = 〈Ax11B〉 (where 11B is
the identity measurement operator for Bob, that always
outputs b = 1) then simply drop out, as cov(Ax, 11B) = 0.
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We thus get the covariance Bell inequality (that allows
for any outputs a, b ∈ [−1,+1])

cov3322 ≡ cov(A0, B0) + cov(A0, B1) + cov(A0, B2)
+ cov(A1, B0) + cov(A1, B1)− cov(A1, B2)

+ cov(A2, B0)− cov(A2, B1) ≤ 9
2 . (9)

Here the local bound was obtained through numerical
optimization (up to machine precision); nevertheless, the
reproducibility and reliability of the numerical results
make us quite confident that the bound is correct. In
Appendix D we present local distributions that reach it,
and discuss quantum and super-quantum (non-signalling)
violations.

More generally, one may consider constructing covari-
ance Bell inequalities following the above recipe, starting
from an arbitrary linear Bell inequality with binary out-
comes. Note that instead of simply dropping the marginal
terms, one could as well keep them, or replace them with
other functions, e.g. with variances.

Generalising even further our approach for covari-
ance Bell inequalities, one can also investigate Bell in-
equalities based on Pearson correlators, which can be
thought of as normalised covariances. The Pearson
correlator for two variables Ax and By with variances
σ(Ax)2 = 〈A2

x〉 − 〈Ax〉2 and σ(By)2 = 〈B2
y〉 − 〈By〉2 is

defined as r(Ax, By) = cov(Ax,By)
σ(Ax)σ(By) (if either σ(Ax) or

σ(By) is zero, we define r(Ax, By) = 0). Following a sim-
ilar construction as above, we get, for the case of binary
inputs and now also restricting to binary outputs, the
Bell inequality

rCHSH ≡ r(A0, B0) + r(A0, B1)
+ r(A1, B0)− r(A1, B1) ≤ 5

2 , (10)

where the local bound was again obtained through numer-
ical optimization. It must be emphasized that unlike for
covariances, the local set for Pearson correlators is not the
same when considering binary outputs or more possible
outputs; for instance, with ternary outputs in {+1, 0,−1},
one can locally reach the value rCHSH = 2

√
2, which

turns out to also be the Tsirelson bound for rCHSH
(whether we restrict to binary outputs or not), as proven
already in Ref. [30] (we also give a proof of this in Ap-
pendix B). In Appendix D we present local distributions
that reach these two local bounds of 5

2 and 2
√

2, and dis-
cuss quantum and super-quantum violations of them. Of
course, similar Bell inequalities with Pearson correlators
could also be constructed, following a similar recipe as
suggested above, starting e.g. from I3322 or any other
linear Bell inequality with binary outcomes.

Shared randomness witnesses.— Let us come back
now to covCHSH. As emphasized before, the value of
covCHSH that can be obtained locally depends on the
number of deterministic strategies involved in the local

��� ����(Λ)

��� �(Λ)

16/70 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

�������

�
��
�

(�
��
)(
Λ
)

Figure 2. Minimum Shannon entropy H(Λ) (blue curve) and
max-entropy Hmax(Λ) = log2 d (orange dashed curve) of the
shared variable Λ that is required to obtain any given value
of the Bell expression covCHSH with a local model. For
instance, obtaining covCHSH = 2 requires at least one bit
of (Shannon or max-) entropy, while reaching the maximum
local value covCHSH = 16

7 ' 2.29 requires H(Λ) & 1.56 and
Hmax(Λ) ≥ log2 3 ' 1.58, i.e. d ≥ 3.

strategy being used. This readily allows one to obtain a
lower bound on the classical dimension d of the shared
variable Λ (i.e., the number of different values it can
take), or equivalently its max-entropy Hmax(Λ) ≡ log2 d:
from the discussion above, it follows that as soon as
covCHSH > 0, one requires d ≥ 2, i.e. Hmax(Λ) ≥ 1; if
covCHSH > 2, then d ≥ 3, i.e. Hmax(Λ) ≥ log2 3.

One may also quantify the amount of shared random-
ness in terms of the Shannon entropy of Λ, H(Λ) ≡
−
∑
λ qλ log2 qλ (defined here, for simplicity, for the case

of a discrete variable Λ that takes the value λ with prob-
ability P (Λ = λ) = qλ). For a given value of covCHSH
between 0 and 16

7 , one can also obtain a lower bound
on H(Λ) by minimizing it for all local strategies. As it
turns out, it suffices to optimise H(Λ) over decomposi-
tions onto deterministic strategies with binary outputs
±1—intuitively, local randomness does not help increase
covCHSH. The details of our optimization are given in Ap-
pendix E, and the results we obtained are plotted on Fig. 2.
Unsurprisingly, we find that minH(Λ) increases with the
value of covCHSH. As soon as covCHSH > 0, one requires
H(Λ) > 0; for covCHSH = 2, one must have H(Λ) ≥ 1
(recall that covCHSH = 2 can be reached by mixing two
deterministic strategies with equal weights); finally, reach-
ing the local bound of covCHSH = 16

7 requires at least as
much shared randomness as in the distribution POpt given
previously, i.e. H(Λ) ≥ − 3

7 log2
3
7 − 2× 2

7 log2
2
7 ' 1.56.

Thus covCHSH acts as a device-independent witness
for characterizing the dimension and the entropy of the
shared randomness of a local strategy in a Bell experiment.
This complements recent works on device-independent
tests of the dimension of quantum systems [31], and of
the dimension [32] and entropy [33] of classical commu-
nications.
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Discussion.— In this Letter we introduced Bell in-
equalities based on covariances, a natural measure of
correlations, rather than on linear combinations of prob-
abilities. We presented the simplest example of such a
covariance Bell inequality with binary inputs, that echoes
the well-known CHSH inequality, and investigated some
of its properties. Proving analytically the local bound
is not straightforward here, due to the nonlinearity of
the Bell expression, but we could nevertheless provide a
method to do so. Its quantum bound was also proven
analytically.

Beyond this simplest example, we proposed a general re-
cipe to construct, from any standard Bell inequality with
binary outcomes, new Bell inequalities for covariances
as well as for Pearson correlators. While our analytical
method for proving the local bound generalizes in prin-
ciple to any covariance Bell inequality obtained with our
construction, in practice it becomes intractable for larger
numbers of inputs. Nevertheless, for the examples we
presented the local bounds could reliably be obtained
numerically. It would be interesting to find a more ef-
ficient way to prove local bounds, as well as quantum
bounds, for covariance-based Bell inequalities—or even
to find other ways to characterize the local and quantum
sets of admissible covariances (note that a tighter char-
acterization of the quantum set than Eq. (7) can already
be given, see Appendix B). One possible idea would be
to look for some hierarchy of criteria—similar in spirit
to that of Navascués-Pironio-Aćın (NPA) for quantum
correlations—that covariances must satisfy; indeed, one
finds that covariances and Pearson correlators appear
naturally in the NPA hierarchy [34].

An interesting feature of our covariance Bell inequal-
ities is that they serve as a shared randomness witness.
Indeed, in contrast with standard linear Bell inequalities
where the local bound can always be attained by a single
deterministic strategy, reaching the local bound—or in
fact, any nontrivial value—for a Bell expression defined in
terms of covariances requires, for a local strategy, to make
use of shared randomness. We showed explicitly, on our
simplest example, how the value of the Bell expression
allows one to place device-independent lower bounds on
the amount of shared randomness in a local model (both
in terms of its dimension and its entropy). Such witnesses
may help addressing certain problems in quantum nonloc-
ality related to shared randomness [35–37], in particular
finding what is the minimal amount of shared randomness
necessary to simulate the correlations of entangled states
admitting a local model [38]. Our example with binary
inputs allows one to certify the use of relatively little
shared randomness (e.g. a dimension of at least 3); it
would be interesting to find (families of) covariance Bell
inequalities that can certify larger amounts of shared ran-
domness. While covariance Bell inequalities were found
to provide a natural way to provide device-independent
witnesses for shared randomness, such witnesses could

also be studied in other frameworks, with other types of
Bell inequalities that require shared randomness to be
saturated—e.g. with entropic inequalities [14–16].

From a more practical perspective, our covariance Bell
inequality could be useful in experimental situations where
access to measurement data is limited, e.g. if only cov-
ariances can be measured, and where standard Bell in-
equalities cannot be used. This could be relevant to
certain mesoscopic electronics experimental setups. With
such applications in mind, it would also be interesting to
also investigate similar covariance inequalities to the ones
constructed here for other types of quantum nonlocality,
e.g. for entanglement [39] or quantum steering [40] (we
note that inequalities were constructed in these contexts
for covariance matrices, although following very different
approaches [41–45]).

Finally, Bell inequalities based on covariances could be
useful for the study of nonlocal correlations in networks.
When a network features several sources that are assumed
to be independent, the set of local distributions (or rather,
“N -local distributions” for a network with N independent
sources) is typically nonconvex, and nonlinear Bell in-
equalities are necessary to give an effective description of
the (N -)local set [21–25]. In fact, some recent work [46]
has already made use of covariances in the context of
quantum networks, however not constructing explicit Bell
inequalities. The ideas developed here could also find
some nice applications in providing ways to obtain new
types of Bell inequalities, and possibly shared randomness
witnesses, for networks.
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[5] A. Aćın, N. Brunner, N. Gisin, S. Massar, S. Pironio, and
V. Scarani, Phys. Rev. Lett. 98, 230501 (2007).

[6] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Phys. Rev. Lett. 23, 880 (1969).

[7] I. Pitowsky, Quantum Probability-Quantum Logic, Lec-
ture Notes in Physics, Vol. 321 (Springer-Verlag, New
York, 1989).

[8] I. Pitowsky and K. Svozil, Phys. Rev. A 64, 014102
(2001).



6
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Phys. Rev. A 90, 062109 (2014).
[24] R. Chaves, Phys. Rev. Lett. 116, 010402 (2016).
[25] D. Rosset, C. Branciard, T. J. Barnea, G. Pütz, N. Brun-
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and V. Scarani, Phys. Rev. Lett. 100, 210503 (2008).
[32] R. Gallego, N. Brunner, C. Hadley, and A. Aćın, Phys.
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Appendix A: Proofs of the covariance Bell
inequality (6)

Obtaining the local bound for a standard (linear) Bell
inequality is rather straightforward, as one can simply
focus on deterministic strategies. However, such an ap-
proach does not work for covariance Bell inequalities
because of their nonlinearity.

In this Appendix we give the details of the proof of
the inequality (6), as sketched in the main text. We then
present an alternative proof that also uses Karush-Kuhn-
Tucker (KKT) multipliers and conditions [26], although
in a different way. While the former can in principle be
adapted to any other covariance Bell inequality (but may
not actually be practical because of the very high number
of cases to consider for increased numbers of parameters),
the latter exploits specific properties of the CHSH (2-
input / 2-output) scenario and uses fewer variables in the
optimization; it is however less instructive with respect
to the shared randomness required for obtaining a given
value of covCHSH with a local model, and adapting it
to another scenario will first require finding the right
properties to exploit.

1. Optimizing over the weights of deterministic
distributions

The proof here will be divided into three parts. The first
one consists in showing that, without loss of generality,
we can focus on a situation where only binary outputs
are considered. The second part describes how standard
methods for solving (quadratic) constrained problems
can be applied. Finally, the third part shows how our
quadratic problem can be simplified to a number of linear
ones, and solved.

a. Reduction to binary outputs

Consider a local distribution P (a, b|x, y) with outputs
a, b ∈ [−1,+1].1 Let then Alice and Bob post-process
their outputs locally, in the following way: they replace
each output a (b) by a′ = +1 (b′ = +1) with probab-
ility 1+a

2 ( 1+b
2 ), or by a′ = −1 (b′ = −1) with probab-

ility 1−a
2 ( 1−b

2 ), thus defining a new local distribution
P ′(a′, b′|x, y) =

∑
ab

1+a′a
2

1+b′b
2 P (a, b|x, y) with binary

outputs a′, b′ ∈ {+1,−1}. One can easily check that the

1 Note that given the translational invariance of covariances (i.e.,
cov(Ax, By) = cov(Ax + α,By + β) for any real values α, β),
it would be equivalent to take a, b in any interval of length 2.
Similarly in the case of binary outputs, instead of ±1 one could
take any two real values with a difference of 2.

expectation values 〈A(′)
x B

(′)
y 〉, 〈A(′)

x 〉 and 〈B(′)
y 〉, and there-

fore also the covariances cov(A(′)
x , B

(′)
y ), are the same for

the two local distributions P and P ′.2
Thus, any values of the covariances cov(Ax, By) (for

the various inputs x, y) obtained by a local distribution
with inputs in [−1,+1] can also be obtained by a local
distribution with inputs in {+1,−1} (and vice-versa, ob-
viously). The local set for covariances is the same in both
cases, and to characterize it it thus suffices to restrict to
local distributions with binary outputs ±1.

b. KKT conditions

Our goal is now to find the largest possible value of
the quantity covCHSH for any local strategy with binary
inputs and outputs. Such a local distribution can be
represented by a 16-dimensional vector ~P , the components
of which are the 16 joint probabilities P (a, b|x, y)3—and
which in fact, because of the normalization and non-
signaling constraints, live in a space of dimension only
dim~P = 8.4 Moreover, ~P admits a convex decomposition
in terms of the vertices of the local polytope of the form
~P =

∑
k qk

~P det
k with qk ≥ 0 ,

∑
k qk = 1, and where the

vectors ~P det
k represent the 16 deterministic local strategies.

(Note already that due to Carathéodory’s theorem [47],
for any local distribution ~P it will in fact be sufficient to
consider at most dim~P + 1 = 9 deterministic strategies in
the decomposition.) Evaluating covCHSH, we get

covCHSH({qk}k) =
∑
k

qkCkk −
∑
i,j

qiqjCij , (A1)

where Cij = Ai0B
j
0 + Ai0B

j
1 + Ai1B

j
0 − Ai1B

j
1 = ±2 and

Aix refers to Alice’s output for the measurement x given
that strategy ~P det

i is used, and similarly for Bjy—so that
in particular, Ckk = CHSH(~P det

k ) is the CHSH value
obtained for the deterministic strategy ~P det

k .
We shall now maximize covCHSH({qk}k) with respect

to the variables qk—which, because of the second term
in Eq. (A1), is a nonlinear optimization problem. To
account for the constraints that qk ≥ 0 and

∑
k qk = 1, we

introduce KKT multipliers (i.e., Lagrange-like multipliers)

2 Note, however, that the Pearson correlators may in general be
different, with |r(A′

x, B
′
y)| ≤ |r(Ax, By)|. This is why one does not

obtain the same local bound on rCHSH when considering binary
outputs or a larger set of possible outputs; see Appendix D 2.

3 For simplicity we may identify a distribution P with its vectorial
representation ~P .

4 An alternative, more compact parametrization for ~P may for
instance be given by the 8 correlators 〈AxBy〉, 〈Ax〉 and 〈By〉;
see Appendix A 2.
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λk and µ, and define the following Lagrangian:

L = covCHSH({qk}k) +
∑
k

λk qk + µ (1−
∑
k

qk)

=
∑
k

qkCk −
∑
i,j

qiqjZij +
∑
k

λk qk + µ (1−
∑
k

qk).

(A2)

Given the regularity of the problem, with the constraints
being affine functions of the variables, the (local) maxima
must then necessarily fulfill the KKT conditions [26]:

∂L

∂qk
= Ckk −

∑
i

qi(Cik + Cki) + λk − µ = 0 ∀k,

∂L

∂µ
= 1−

∑
k

qk = 0,

λkqk = 0, λk ≥ 0, qk ≥ 0. (A3)

c. Reduction to linear systems of equations and resolution

Because of the constraint λkqk = 0, the above system
of equations is nonlinear. One can however reduce it
to a number of different linear systems of equations by
imposing that a given subset of weigths qk take nonzero
values, and by considering separately the case of each
possible subset. For those qk in the given subset under
consideration, the last line of Eq. (A3) simply becomes
λk = 0, qk > 0, while for the other qk’s, it becomes qk =
0, λk ≥ 0—with in both cases, λk = −Ckk +

∑
i qi(Cik +

Cki) + µ according to the first line of Eq. (A3). For a
given number d of nonzero weights, the system (A3) then
reduces to d+ 1 linear equality constraints and 16 (also
linear) inequality constraints (with d strict and 16 − d
nonstrict inequalities) for the remaining d+ 1 nontrivial
variables qk and µ.

Note that if only d = 1 weight qk is nonzero (and
therefore equal to 1), then the distribution P (a, b|x, y)
is deterministic, which implies that all covariances—and
hence covCHSH—are zero. Furthermore, as already men-
tioned previously, due to Carathéodory’s theorem it is
sufficient to only consider subsets with at most d = 9 (out
of 16) nonzero qk’s—indeed, if a maximum is reached by
some decomposition involving more than 9 deterministic
distributions, then it is also reached by another decompos-
ition giving the same distribution, but involving no more
than 9 deterministic distributions. We used Mathematica
to solve, for each value of d between 2 and 9, the

(16
d

)
different linear systems of equations corresponding to all
the different subsets containing d nonzero weights (which
makes a total of

∑9
d=2

(16
d

)
= 50 626 linear systems to con-

sider). More specifically, we first found the solutions that
satisfy all equality constraints and then checked which
ones also satisfy the inequality constraints. To obtain the
local bound of our covariance Bell inequality (6), there
then remains to check what is the largest possible value
of covCHSH for all these feasible solutions.

P = 3
7 P

det
k1 + 2

7 P
det
k2 + 2

7 P
det
k3{ 3

7 (+ + /+ +) + 2
7 (−+ /−−) + 2

7 (−− /−+)
3
7 (−− /−−) + 2

7 (+− /+ +) + 2
7 (+ + /+−){ 3

7 (+− /−+) + 2
7 (+ + /+−) + 2

7 (−+ /−−)
3
7 (−+ /+−) + 2

7 (−− /−+) + 2
7 (+− /+ +){ 3

7 (+ + /+−) + 2
7 (+− /−+) + 2

7 (−− /−−)
3
7 (−− /−+) + 2

7 (−+ /+−) + 2
7 (+ + /+ +){ 3

7 (+− /+ +) + 2
7 (−+ /+−) + 2

7 (−− /−−)
3
7 (−+ /−−) + 2

7 (+− /−+) + 2
7 (+ + /+ +)

Table I. Optimal decompositions of the form P = 3
7P

det
k1 +

2
7P

det
k2 + 2

7P
det
k3 obtained as solutions of the KKT conditions of

Eq. (A3), giving covCHSH = 16
7 . The first 4 distributions give

covCHSH′ = 16
49 and thus project onto the point POpt on Fig. 1

(while the last 4 give covCHSH′ = − 16
49 ; note also that there

exist 8 other similar decompositions that give covCHSH = − 16
7

and covCHSH′ = ± 16
49 ). The distributions in the table are

grouped by pairs (brackets on the left), in which the two
decompositions are obtained from one another by flipping all
outputs.

For d = 2, all
(16

2
)

= 120 systems of equations have solu-
tions that satisfy all equality constraints (out of which, 56
have unique solutions and 64 are still underdetermined),
but only 4 out of them have (unique) solutions that also
satisfy the inequality constraints. Those 4 solutions all
give covCHSH = 2, which is the maximal value that one
can reach by mixing only 2 local deterministic distribu-
tions.

With d = 3 nonzero weights qk, again all
(16

3
)

= 560
systems of equations have solutions that satisfy all equal-
ity constraints (432 with unique solutions and 128 still
underdetermined), but only 8 of them have (unique) solu-
tions that also satisfy the inequality constraints. Those
solutions are listed in Table I; they all have the similar
form P = 3

7P
det
k1

+ 2
7P

det
k2

+ 2
7P

det
k3

, and all give the value
covCHSH = 16

7 .
As it turns out, this value of 16

7 obtained by suitably
mixing 3 deterministic local distributions cannot be in-
creased by mixing more distributions. For d = 4 for
instance, we find that out of the

(16
4
)

= 1 820 systems
of equations, only 1 516 have solutions that satisfy all
equality constraints, out of which only 14 have solutions
that also satisfy the inequality constraints. 6 of these
(still underdetermined) solutions give a local maximum
of covCHSH = 2, while the other 8 (unique) solutions—
all of the form P = 3

8P
det
k1

+ 3
8P

det
k2

+ 1
8P

det
k3

+ 1
8P

det
k4

(one solution being obtained for instance by taking
P det
k1

= (++/++), P det
k2

= (−+/−−), P det
k3

= (+−/−+)
and P det

k4
= (−− /−+))—give covCHSH = 9

4 . The res-
ults for all values of d from 2 to 9 are summarized in
Table II. For d = 6 and 8, we also get local maxima of
covCHSH = 2, while for d = 5, 7 and 9, no solutions are
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d
(16
d

) # consistent
systems of
equalities

# consistent
systems incl.
inequalities

local max
covCHSH

2 120 120 4 2
3 560 560 8 16

7

4 1 820 1 516 14 2 / 9
4

5 4 368 3 376 0 –
6 8 008 1 896 4 2
7 11 440 688 0 –
8 12 870 154 1 2
9 11 440 16 0 –

Table II. For any number d between 2 and 9 (1st column),
the 2nd column of the table gives the number of subsets
of deterministic distributions Pk with nonzero weigths qk,
which defines the number of linear systems—obtained from the
KKT conditions (A3)—to consider in the proof. The numbers
of systems which have solutions when only considering the
equality constraints, or when also including the inequality
constraints, are given in the next two columns. The last
column gives the local maxima of covCHSH obtained from
these feasible solutions of the KKT conditions.

found for any of the corresponding systems of KKT con-
ditions. As one can see, the maximal value of covCHSH
obtained for all cases is thus 16

7 ; this concludes the proof
that this is indeed the value of the local bound in our
covariance Bell inequality (6).

It should be clarified that although Table II gives local
maxima of 2 or 9

4 for d ≥ 4, this does not mean that
those are the maximum values of covCHSH when mixing
d ≥ 4 deterministic local distributions. Indeed, the table
gives local maxima obtained in a set delimited by strict
inequalities qk > 0, while the suprema over these sets
may be obtained for some qk → 0. In fact, covCHSH
can get arbitrarily close to 16

7 with a mixture of d ≥ 4
deterministic local distributions by mixing an optimal
decomposition with 3 distributions from Table I, with a
tiny amount of d− 3 other distributions.

Another observation of interest is that all solutions of
the KKT conditions that give a local maximum value of
covCHSH = 2 (for d = 2, 4, 6, 8, as listed in the table) are
of the general form P = q′1

[
(+ + /+ +) + (−− /−−)

]
+

q′2
[
(+ +/+−) + (−−/−+)

]
+ q′3

[
(+−/+ +) + (−+/−

−)
]

+ q′4
[
(+− /−+) + (−+ /+−)

]
with q′1, q′2, q′3, q′4 ≥ 0

and 2(q′1 + q′2 + q′3 + q′4) = 1: for d = 2, three of the coef-
ficients q′k are zero (which, for each remaining nonzero
q′k, gives a unique solution to the corresponding system
of equations); for d = 4, two of the coefficients q′k are
zero; for d = 6, one of the coefficients q′k is zero; and for
d = 8, all coefficients q′k are nonzero (which indeed makes
the solutions in these last 3 cases underdetermined). As
one can see, in this general decomposition each determin-
istic distribution comes with its “opposite”, in which all
outputs are flipped, with the same weight. This implies

in particular that all marginal expectation values 〈Ax〉
and 〈By〉 are zero, that the covariances cov(Ax, By) are
equal to the expectation values 〈AxBy〉, and therefore
that the expression of covCHSH simply reduces to that of
CHSH (i.e., the nonlinear part vanishes)—which is indeed
bounded by 2 for local distributions. This highlights the
crucial role played by the nonlinear terms 〈Ax〉〈By〉 in
covCHSH: these are precisely the terms that allow the
local bound of covCHSH to be greater than that of CHSH;
and in order to reach a value of covCHSH larger than 2
with a local distribution, one needs at least one pair of
settings x, y for which 〈Ax〉〈By〉 6= 0.

2. Optimizing over the expectation values 〈AxBy〉,
〈Ax〉 and 〈By〉

We now present a second possible approach for the proof
of Eq. (6), which builds on the observation that the local
bound 16

7 on covCHSH follows from just imposing the
local bound 2 on CHSH (which must be respected by any
local distribution), and that probabilities are nonnegative.
More precisely, as previously we note that one can restrict
to binary outputs a, b = ±1; as it turns out, it will
then suffice to impose, together with CHSH ≤ 2, that
P (a, b|x, y) ≥ 0 for all x, y, a, b satisfying ab = (−1)xy+1.

Instead of writing covCHSH as a function of the weights
of deterministic distributions in a local decomposition,
here we will view it directly as a function of the ex-
pectation values 〈AxBy〉, 〈Ax〉 and 〈By〉. Our goal is
thus to maximize the value of covCHSH under the above
constraints—which can also all be expressed in terms
of those expectation values, by writing in particular
P (a, b|x, y) = 1

4 (1 + a〈Ax〉+ b〈By〉+ ab〈AxBy〉).
As previously, let us introduce KKT multipliers λ and

λxyab (for the 8 combinations of x, y, a, b such that ab =
(−1)xy+1), and define the Lagrangian

L({〈AxBy〉, 〈Ax〉, 〈By〉}xy, λ, {λxyab}xyab)

= covCHSH + λ (2− CHSH)
+

∑
x,y,a,b: ab=(−1)xy+1

λxyab P (a, b|x, y). (A4)

The KKT necessary conditions for optimality are
∂L

∂〈AxBy〉
= (−1)xy(1− λ) + 1

4

∑
a,b

λxyab ab = 0 ∀x, y,

∂L

∂〈Ax〉
= −

∑
y

(−1)xy〈By〉+ 1
4

∑
y,a,b

λxyab a = 0 ∀x,

∂L

∂〈By〉
= −

∑
x

(−1)xy〈Ax〉+ 1
4

∑
x,a,b

λxyab b = 0 ∀y,

λ (2− CHSH) = 0, λ ≥ 0, 2− CHSH ≥ 0,

λxyab P (a, b|x, y) = 0, λxyab ≥ 0, P (a, b|x, y) ≥ 0,
∀x, y, a, b : ab = (−1)xy+1. (A5)



10

〈A0B0〉 〈A0B1〉 〈A1B0〉 〈A1B1〉 〈A0〉 〈A1〉 〈B0〉 〈B1〉{
1 3

7
3
7 - 1

7 - 1
7

3
7 - 1

7
3
7

1 3
7

3
7 - 1

7
1
7 - 3

7
1
7 - 3

7{ 1
7

3
7

3
7 -1 3

7
1
7 - 3

7 - 1
7

1
7

3
7

3
7 -1 - 3

7 - 1
7

3
7

1
7{ 3

7
1
7 1 - 3

7
3
7 - 1

7 - 1
7 - 3

7
3
7

1
7 1 - 3

7 - 3
7

1
7

1
7

3
7{ 3

7 1 1
7 - 3

7 - 1
7 - 3

7
3
7 - 1

7
3
7 1 1

7 - 3
7

1
7

3
7 - 3

7
1
7

Table III. Optimal solutions of the KKT conditions of Eq. (A5)
(together with λ = 5

7 in all cases and λxyab as given in
Eq. (A6)), giving covCHSH = 16

7 and defining the same dis-
tributions as in Table I.

The first 3 lines define 8 linear equality constraints for
the 8 multipliers λxyab, which can be solved and give

λxyab = 2
[
1− λ− a(−1)y〈Ax̄〉 − b(−1)x〈Bȳ〉

]
, (A6)

with x̄ = 1 − x and ȳ = 1 − y. We are then left with
just the last couple of lines of Eq. (A5), so that either
λ = 0 or CHSH = 2, and for each x, y, a, b such that
ab = (−1)xy+1, either λxyab = 0 or P (a, b|x, y) = 0. We
can then consider the 21+8 = 512 corresponding cases
separately, and solve for each case the resulting linear
system of 9 equations for the 9 variables 〈AxBy〉, 〈Ax〉,
〈By〉 and λ.

Using Mathematica we found feasible solutions for those
equations in 320 of the 512 cases. However, one still needs
to check if these solutions satisfy the remaining inequality
constraints in Eq. (A5); only in 207 of those cases could
we find solutions that indeed satisfy all KKT conditions.
Among all these solutions, we found that the maximal
value of covCHSH was 16

7 , which again proves that this
is the local bound of our covariance Bell inequality (6).
This value of 16

7 was obtained for the 8 solutions listed in
Table III, which indeed define the same 8 distributions as
those listed (in the same order) in Table I.

3. Generalizing our proofs to other covariance Bell
inequalities

The two versions of the proof of inequality (6) presented
above could in principle be generalized to calculate the
local bound of any covariance Bell inequality constructed
from a linear Bell inequality with binary outcomes, fol-
lowing the recipe we suggest in the main text. However,
as the number of inputs, and therefore the dimension of
the relevant probability space, increase, the number of
different cases to consider in the proof may become too
large to be tractable in a reasonable time.

For the case of cov3322 with ternary inputs for in-
stance, after reducing to binary outputs and taking into

account normalization and non-signalling constraints, the
relevant probability space is of dimension dim~P = 15.
Following the first approach for the proof above, local
distributions can be decomposed onto the 26 determ-
inistic local distributions, and the number of different
cases to consider (corresponding to the number of sub-
sets of d nonzero weights qk, with 2 ≤ d ≤ dim~P + 1) is∑16
d=2

(26

d

)
≥ 7× 1014, a number far too large for all cases

to be considered separately.
One may hope that following our second approach for

the proof, instead, may reduce the number of cases to be
considered down to a tractable one. The first thing to
check here would be which constraints (locality constraints
in terms of CHSH or I3322 inequalities, together with non-
negativity of the probabilities constraints) are sufficient
to impose in order to obtain the local bound on cov3322.
We did not follow this approach any further, and leave as
an open question, whether this would be tractable enough
to provide an analytical proof of inequality (9).

Instead, to obtain the local bound of inequality (9),
we resorted to numerical optimization, by optimizing
over the 26 = 64 weights qk in a local decomposition of
P =

∑
k qkP

det
k . Although the optimization problem is

nonconvex and involves quite a few free parameters, we
found that the result of the numerical optimization was
stable enough when starting from different starting points,
which makes us confident that the local bound of 9

2 in
inequality (9) is indeed correct.

We note, finally, that the same proof techniques as
above do not work for Bell inequalities with Pearson cor-
relators like inequality (10). The first point to be noticed
is that, as emphasized before, the local sets for binary out-
puts a, b ∈ {+1,−1} and for more outputs a, b ∈ [−1,+1]
are not the same—indeed we found different local bounds
for binary and ternary outputs. Even restricting to a
fixed number of inputs and trying to follow our approach
with KKT multipliers, the Lagrangians we would write in
either of the two proof versions would not be nicely quad-
ratic functions of the weights qk in a local decomposition
of the form P =

∑
qkP

det
k (as in Eq. (A2)), or of the ex-

pectation values 〈AxBy〉, 〈Ax〉 and 〈By〉 (as in Eq. (A4)),
so that the KKT necessary conditions for linearity would
not simplify to linear systems of equations. Instead of
pursuing such an approach, we again resorted here to
numerical optimizations. As before, the numerical results
we obtained were stable enough to make us confident that
the local bounds we give are correct.

Appendix B: Tsirelson bounds and quantum
violations for covCHSH and rCHSH

In this Appendix we give the proofs that the Tsirelson
bounds for both covCHSH and rCHSH are the same as
for CHSH, namely 2

√
2. The proofs presented here are
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inspired by that of Landau (for rCHSH) in Ref. [30].

1. Tsirelson bound for covCHSH

First note that by Neumark’s dilation theorem, any
quantum correlation can be obtained by projective meas-
urements on pure states in Hilbert spaces of large enough
dimensions.

Consider a bipartite state |ψ〉 ∈ HAB = HA ⊗HB and
projective measurement operators Âx for Alice and B̂y
for Bob (with the random variables Ax, By corresponding
to the results of those measurements). Let us then define
the ket vectors |αx〉 = (Âx ⊗ 1B − 〈Âx〉ψ1AB) |ψ〉 and
|βy〉 = (1A ⊗ B̂y − 〈B̂y〉ψ1AB) |ψ〉, where 1X denotes the
identity operator acting on the Hilbert space HX and
where 〈Âx〉ψ = 〈ψ| Âx ⊗ 1B |ψ〉 and 〈B̂y〉ψ = 〈ψ|1A ⊗
B̂y |ψ〉. With these definitions, we have

〈αx|βy〉
= 〈ψ| (Âx⊗1B−〈Âx〉ψ1AB)(1A⊗B̂y−〈B̂y〉ψ1AB) |ψ〉
= 〈ψ| Âx ⊗ B̂y |ψ〉 − 〈Âx〉ψ〈B̂y〉ψ
= 〈AxBy〉 − 〈Ax〉〈By〉 = cov(Ax, By) (B1)

and similarly,

〈αx|αx〉 = 〈A2
x〉 − 〈Ax〉2 = σ(Ax)2,

〈βy|βy〉 = 〈B2
y〉 − 〈By〉2 = σ(By)2. (B2)

Restricting to measurement operators with eigenvalues in
[−1,+1],5 this implies in particular that∣∣∣∣ 〈αx| ∣∣∣∣ =

√
〈αx|αx〉 = σ(Ax) ≤ 1,∣∣∣∣ 〈βy| ∣∣∣∣ =

√
〈βy|βy〉 = σ(By) ≤ 1. (B3)

We thus obtain

covCHSH
= 〈α0|β0〉+ 〈α0|β1〉+ 〈α1|β0〉 − 〈α1|β1〉
≤
∣∣∣∣ 〈α0|

∣∣∣∣ ∣∣∣∣ |β0〉+ |β1〉
∣∣∣∣+

∣∣∣∣ 〈α1|
∣∣∣∣ ∣∣∣∣ |β0〉 − |β1〉

∣∣∣∣
≤
∣∣∣∣ |β0〉+ |β1〉

∣∣∣∣+
∣∣∣∣ |β0〉 − |β1〉

∣∣∣∣
≤
√

2
( ∣∣∣∣ |β0〉+ |β1〉

∣∣∣∣2 +
∣∣∣∣ |β0〉 − |β1〉

∣∣∣∣2 )
= 2
√∣∣∣∣ |β0〉

∣∣∣∣2 +
∣∣∣∣ |β1〉

∣∣∣∣2 ≤ 2
√

2, (B4)

which is necessarily satisfied by any quantum correlation.
This bound can be reached by adequate measurements
on a maximally entangled state, see Appendix B 3 below.

5 We note that the restriction to bounded operators with eigenvalues
in [−1,+1] is in fact not necessary in the proof, as it is sufficient to
just impose σ(Ax), σ(By) ≤ 1 (for any state |ψ〉) for the Tsirelson
bound on covCHSH to follow.

Let us mention here that following further the proof
of Ref. [30], one can actually also refine the charac-
terization of the quantum set in terms of covariances.
Indeed, defining the ket vectors |γ0〉 = |α0〉 , |γ1〉 =
|α1〉 , |γ2〉 = |β0〉 , |γ3〉 = |β1〉 and the matrix Γ with coef-
ficients Γij = 〈γi|γj〉 (for 0 ≤ i, j,≤ 3), one necessarily
has that Γ is positive semidefinite (as Γ = M†M with
M =

∑
i |γi〉〈i|, where {|i〉} is the computational basis).

That is, taking Eqs. (B1)–(B2) into account, one must
have

Γ =
σ(A0)2 Γ01 cov(A0,B0) cov(A0,B1)

Γ∗01 σ(A1)2 cov(A1,B0) cov(A1,B1)
cov(A0,B0) cov(A1,B0) σ(B0)2 Γ23

cov(A0,B1) cov(A1,B1) Γ∗23 σ(B1)2

 ≥ 0.

(B5)

Given that the variances are upper-bounded by 1, one
also has Γ̃ ≥ 0, with the matrix Γ̃ obtained from Γ above
by replacing all diagonal terms by 1. Now, it can be
shown (following the same arguments as in Ref. [30], see
also Ref. [34]) that the condition that there exists (real or
complex) coefficients Γ01 and Γ23 such that Γ̃ ≥ 0 requires

arcsin cov(A0, B0) + arcsin cov(A0, B1)
+ arcsin cov(A1, B0)− arcsin cov(A1, B1) ≤ π (B6)

(as well as the symmetrical inequalities obtained by per-
muting the measurement inputs and/or flipping the sign
of the measurement outcomes), which must therefore
necessarily be satisfied by quantum correlations, and
strengthens the condition that covCHSH ≤ 2

√
2.

2. Tsirelson bound for rCHSH

To obtain the Tsirelson bound for rCHSH, we follow a
very similar approach to the one above, considering now
normalized ket vectors |α̃x〉 = |αx〉/|||αx〉|| and

∣∣β̃y〉 =
|βy〉/|||βy〉|| (if |αx〉 or |βy〉 are null vectors, we define |α̃x〉
or
∣∣β̃y〉 to be any unit vector orthogonal to all other ones).

With these, we now have〈
α̃x
∣∣β̃y〉 = r(Ax, By). (B7)

Because of the normalization of |α̃x〉 ,
∣∣β̃y〉 and r(Ax, By)

(via the division by the variances σ(Ax), σ(By)), we do
not need to restrict here to measurement operators with
eigenvalues in [−1,+1] (or such that σ(Ax), σ(By) ≤ 1).
With the same calculations as in Eq. (B4), we obtain, for
any choice of (bounded) measurement operators Âx, B̂y,

rCHSH =
〈
α̃0
∣∣β̃0
〉

+
〈
α̃0
∣∣β̃1
〉

+
〈
α̃1
∣∣β̃0
〉
−
〈
α̃1
∣∣β̃1
〉

≤ · · · ≤ 2
√

2. (B8)

This bound can again be reached quantum mechanically,
see below.
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As just mentioned, here no restriction is imposed
on the measurement outcomes (provided only that
σ(Ax), σ(By) < ∞). The bound above also holds for
local distributions (which can always be realized quantum
mechanically) when measurement outcomes are not ne-
cessarily restricted to be binary; as we show explicitly
in Appendix D 2 b, it can also be reached locally with
ternary outcomes. It is quite remarkable that the local
and the Tsirelson bounds coincide in this case.

Let us finally mention again that, as it was done in
Ref. [30] (see also Ref. [34]), a tighter characterization of
the quantum set in terms of Pearson correlators can also
be given: any quantum correlation satisfies

arcsin r(A0, B0) + arcsin r(A0, B1)
+ arcsin r(A1, B0)− arcsin r(A1, B1) ≤ π (B9)

(as well as the symmetrical inequalities).

3. Explicit quantum violations of inequalities (6)
and (10)

The Tsirelson bounds for covCHSH and rCHSH can
be reached by the same quantum mechanical correla-
tions as those that reach the maximal quantum value
of CHSH = 2

√
2. For instance, consider that Alice

and Bob share a two-qubit maximally entangled state
|φ+〉 = 1√

2 (|0, 0〉+ |1, 1〉) and perform the local measure-
ments Â0 = σ̂z, Â1 = σ̂x, B̂0 = σ̂z+σ̂x√

2 and B̂1 = σ̂z−σ̂x√
2 ,

where σ̂z and σ̂x denote the Pauli matrices. In that case
the marginal expectation values 〈Ax〉 and 〈By〉 vanish, so
that covCHSH and rCHSH simply reduce to CHSH, and
we indeed obtain covCHSH = rCHSH = CHSH = 2

√
2.

By then rotating for instance Bob’s measurement set-
tings together around the y axis of the Bloch sphere, one
obtains the full circle drawn on Fig. 1.

Appendix C: Higher quantum violations of Ineq. (6)
with mixed states: a consequence of nonlinearity

In this Appendix we discuss an example illustrating
the fact that the nonlinearity of the Bell inequality (6)
has nontrivial consequences also in the quantum case.
Specifically, consider two pure entangled states of the
form

|φθ〉 = cos θ2 |0, 0〉+ sin θ
2 |1, 1〉 , (C1)

|ψθ〉 = sin θ
2 |0, 0〉+ cos θ2 |1, 1〉 , (C2)

with θ ∈ ]0, π/2], and let us then define the equal mixture
of these states:

ρθ = 1
2(|φθ〉〈φθ|+ |φθ〉〈φθ|) . (C3)

ρθ

ϕθ� ψθ

π

2
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Figure 3. Maximal value of the Bell expression covCHSH for
the pure entangled states |φθ〉 and |ψθ〉 (dashed orange curve),
and for the mixture ρθ (solid blue curve). The horizontal
dotted red line represents the local bound of the Bell inequal-
ity (6). In the interval θ ∈ ]' 0.59,' 0.94], none of the two
pure states violates the inequality, while the mixture does.

We numerically estimated the largest value of the Bell
expression (5), optimizing over all local qubit measure-
ments (including positive-operator valued measures) by
Alice and Bob, for various values of the parameter θ. The
result is presented in Fig. 3. We found, up to numerical
precision, that for the states |φθ〉 and |ψθ〉 the value of
covCHSH was maximal when using the Pauli measure-
ments Â0 = σ̂x, Â1 = σ̂y, B̂0 = σ̂x−σ̂y√

2 and B̂1 = σ̂x+σ̂y√
2 ,

giving covCHSH = 2
√

2 sin θ (orange dashed curve on
Fig. 3), while the optimal measurements on the state
ρθ were found to be Â0 = σ̂z, Â1 = σ̂x, B̂0 = σ̂z+sin θ σ̂x√

1+sin2 θ

and B̂1 = σ̂z−sin θ σ̂x√
1+sin2 θ

, giving covCHSH = 2
√

1 + sin2 θ

(blue curve on Fig. 3). This gives violations of inequal-
ity (6) for θ > arcsin 16/7

2
√

2 ' 0.94 in the first case, and for

θ > arcsin
√

( 16/7
2 )2 − 1 ' 0.59 in the second case. We

thus find that in the range of parameters 0.59 . θ . 0.94,
none of the two pure states can individually violate the
covariance Bell inequality (6), whereas the mixture (C3)
does violate it. This effect is possible only via the nonlin-
earity of the covariance Bell inequality.

Note that the pure states |φθ〉 and |ψθ〉 and the mixture
ρ give in fact the same correlation functions 〈AxBy〉 for
any (projective) Pauli measurements Âx = σ̂Ax

and B̂y =
σ̂By

for Alice and Bob. The difference resides in the
marginals 〈Ax〉 and 〈By〉, which are opposite for |φθ〉 and
|ψθ〉 and are therefore unbiased for the equal mixture ρθ.

Let us finally mention that we also investigated
quantum violations of inequality (6) using mixed en-
tangled states of rank 3 and higher (up to dimension
6× 6). We always found that the optimal violations were
obtained with pure or rank-2 states. It thus seems that
mixing more than 2 pure entangled states does not help
increase the violations.
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Appendix D: Optimal local strategies and violations
for our covariance Bell inequalities (9)–(10)

In this Appendix we present some local strategies that
reach the local bounds of our Bell inequalities (9) and (10),
and show how these can be violated quantum mechanic-
ally and by non-signalling correlations. Recall that the
local bounds were obtained numerically; however, we are
confident that the numerics are trustworthy enough, and
therefore that the local strategies we present below are
indeed optimal.

1. Covariance Bell inequality (9)

a. Optimal local strategies

To obtain the local bound for cov3322 we ran a nu-
merical optimization several times and conclude from the
stability of the result that it must be 9

2 , as in inequal-
ity (9).

There are 4 different local distributions that give the
value cov3322 = 9

2 , and that decompose onto three de-
terministic correlations with weights 3

8 , 3
8 and 1

4 : namely,
P = 3

8 (+++/+++)+ 3
8 (−−+/−−+)+ 1

4 (−+−/−+−),
P = 3

8 (+++/++−)+ 3
8 (−−+/−−−)+ 1

4 (+−−/−++)
(using here the notation (A0A1A2/B0B1B2)), and the
other 2 “opposite decompositions”, where all outputs are
flipped.

b. Violations of inequality (9)

Inequality (9) can be violated by quantum correlations.
For example, taking a two-qubit maximally entangled
state |φ+〉 = 1√

2 (|0, 0〉+ |1, 1〉) and suitable measurements
(see below), one can obtain cov3322= 5, which is also the
highest value for I3322 (Eq. (8)) obtainable with qubits
and projective measurements [9, 10, 29] (note that in that
case, all marginal terms vanish and cov3322 effectively
reduces to I3322). We have performed an extensive nu-
merical search, considering entangled states of dimension
up to 5× 5, and could not find any larger quantum viola-
tion than cov3322=5. It thus remains an open question,
whether higher dimensional entangled states could lead
to larger violations, as it is the case for the standard I3322
inequality [48].

Considering again the families of states |φθ〉, |ψθ〉
and ρθ of Eqs. (C1)–(C3), the largest values of cov3322
we found (numerically, up to machine precision) are
cov3322 = 5 sin θ for |φθ〉 or |ψθ〉 (obtained e.g. for
Â0 = B̂1 = σ̂x, Â1 = B̂2 = cos π3 σ̂x + sin π

3 σ̂y, Â2 =
−B̂0 = cos 2π

3 σ̂x + sin 2π
3 σ̂y) and cov3322 = 4 + sin2 θ for

ρθ (obtained e.g. for Â0 = B̂0 =
√

1− sin2 θ
4 σ̂z + sin θ

2 σ̂x,

Â1 = B̂1 =
√

1− sin2 θ
4 σ̂z − sin θ

2 σ̂x, Â2 = B̂2 = σ̂x).
These violate inequality (9) for θ > arcsin 9/2

5 ' 1.12 and
θ > arcsin

√
9
2 − 4 = π

4 , respectively. As it was the case
with covCHSH, we thus find a range of parameters (for
π
4 < θ . 1.12) for which neither |φθ〉 nor |ψθ〉 violates
inequality (9), but their equal mixture does—which is a
consequence of the nonlinearity of cov3322. Similarly to
covCHSH this property does not seem to extend to mix-
tures of more than two pure states, that is, the violation of
rank-3 states (or higher) does not appear to be larger than
when mixing only two pure states. It is also interesting to
note that within the families under consideration, cov3322
is violated by a smaller range of states than covCHSH.
This is in contrast to the relationship between the stand-
ard CHSH and I3322 linear Bell inequalities, where all
entangled (possibly mixed) quantum states violating (a
symmetry of) the former also violate the latter [10].6

Note, finally, that the algebraic maximum value of
cov3322 = 8 can be attained by the non-signalling dis-
tributions such that 〈A0B0〉 = 〈A0B1〉 = 〈A0B2〉 =
〈A1B0〉 = 〈A1B1〉 = −〈A0B2〉 = 〈A2B0〉 = −〈A2B1〉 = 1
(with 〈A2B2〉 remaining a free parameter) and with all
marginals 〈Ax〉 = 〈By〉 = 0. Such distributions also reach
the maximal non-signalling value of I3322 = 8.

2. Bell inequality (10) for Pearson correlators

a. Optimal local strategies with binary outputs a, b = ±1

For the case of binary outputs (taking e.g. a, b = ±1) we
find, again numerically, that the local bound for rCHSH
is 5

2 , as in inequality (10). This bound can be reached
by the 8 distributions that decompose as mixtures of the
same triplets of deterministic distributions P det

k1
, P det

k2
,

P det
k3

as those in Table I of Appendix A (i.e., those that
allow one to reach the local bound of the covariance
inequality (6)), but taking here uniform mixtures, P =
1
3P

det
k1

+ 1
3P

det
k2

+ 1
3P

det
k3

. E.g., for the first one: P =
1
3 (+ + /+ +) + 1

3 (−+ /−−) + 1
3 (−− /−+).

6 This can indeed be seen as follows: taking Â2 = B̂0 = −11,
the expression of cov3322 in Eq. (8) simplifies to I3322 =
〈A0B1〉 + 〈A0B2〉 + 〈A1B1〉 − 〈A1B2〉 + 2 = CHSH01/12 + 2,
where CHSH01/12 is a symmetry of CHSH, Eq. (3). Clearly if
there exist measurement operators giving CHSH01/12 > 2, one
then also gets a value I3322 > 4. Note that the same argument
does not extend to covCHSH and cov3322: for the choice of
Â2 = B̂0 = −11, we just get cov3322 = covCHSH01/12 ≤ 4, so
that no violation of inequality (9) is possible with those measure-
ment settings.
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b. Optimal local strategies with ternary outputs
a, b = +1, 0,−1

As emphasized before, in the case of Pearson correlat-
ors, considering binary outputs or a larger alphabet of
possible outputs does make a difference. As shown in Ap-
pendix B 2, the value of rCHSH, for any choice of possible
outputs, that can be reached locally is upper-bounded by
2
√

2. As it turns out, this bound can be reached with
ternary outputs a, b = +1, 0,−1, for instance by the local
distribution P = 4

9 (+ +/+ 0) + 4
9 (+−/0+) + 1

9 (00/−−).
Note that if any output variable Ax or By is determ-

inistic, its variance is zero and by convention we took
r(Ax, By) = 0. This implies that rCHSH defined in
Eq. (10) contains at most 2 nonzero Pearson correl-
ators, which implies that rCHSH ≤ 2. Furthermore,
if the two output variables of any party are both de-
terministic, then rCHSH = 0. Nevertheless, one can
also locally reach a value of rCHSH arbitrarily close
to the bound 2

√
2 by certain distributions that get ar-

bitrarily close to some deterministic ones: e.g., P =
(1− ε)(+ + /+ 0) + ε

2 (+− /−+) + ε
2 (−+ /−−) with

0 < ε < 1 gives rCHSH = 2(1 +
√

1− ε)/
√

2− ε → 2
√

2
as ε → 0 (note that Alice still has a binary output ±1
here; only Bob has a ternary output +1, 0,−1, for one of
his inputs only). Hence, in this case the value of rCHSH
cannot be used as a shared randomness witness.

c. Violations of inequality (10)

As proven in Appendix B, the Tsirelson bound for
rCHSH is 2

√
2, which can be reached by adequate (bin-

ary) projective measurements on a maximally 2-qubit en-
tangled states. The quantum correlations thus obtained
thus violate the inequality (10) (with the local bound
5
2 , for the case where one restricts to binary outputs),
but do not violate the analogous inequality for arbitrary
outcomes, when the local bound also becomes 2

√
2 (see

above).
We note that for rCHSH, the nonlinearity of the Bell

expression does not seem to exhibit the same interest-
ing features as covCHSH and cov3322 presented in the
previous appendices: the maximal value of a mixture of
pure states appears, from our numerical investigations,
to always be attained by one of the pure states.

Finally, note that algebraic maximum of rCHSH=4
can be obtained by a PR box (just as for CHSH and
covCHSH).

Appendix E: Minimal amount of shared randomness
required to reach a given value of covCHSH

In this appendix we provide the details on how one
can find the minimal amount of shared randomness—

quantified here in terms of the Shannon entropy H(Λ)—
required to locally reach a given value of covCHSH.

A general local model provides a decomposition for the
probabilities P (a, b|x, y) as in Eq. (1). Our aim is thus to
estimate the function

minHgen
Λ (c) ≡ min

local distributions (1)
giving covCHSH=c

H(Λ), (E1)

for any value of c between 0 and 16
7 .

Rather than considering general local decompositions
directly, it is in fact useful to first concentrate on the case
of binary outputs a, b = ±1, and consider decompositions
onto deterministic local response functions—that is, with
PA(a|x, λ), PB(b|y, λ) equal to 0 or 1. We shall thus first
estimate the function

minHdet
Λ (c) ≡ min

local distributions (1)
with a,b=±1 and PA,PB=0,1

giving covCHSH=c

H(Λ), (E2)

which clearly satisfies minHdet
Λ (c) ≥ minHgen

Λ (c). We
will then prove that these two functions in fact coincide:
to reach the minimal amount of shared randomness for
a given value of covCHSH, it is indeed enough to just
consider binary outputs ±1, and decompositions onto
deterministic local response functions.

1. Local decompositions onto deterministic
response functions with binary outputs ±1

Let us first note that for binary inputs and binary
outputs, there is only a finite number (16) of local de-
terministic strategies for Alice and Bob together. Even
though the local decomposition (1) with deterministic
response functions may involve more than 16 different val-
ues for λ (and even continuous values, in an appropriate
limit), clearly the entropy H(Λ) is minimized when the
different values of λ that define the same deterministic
strategies are grouped together. This implies that it is
sufficient to consider here local decompositions of the
form P =

∑
k qkP

det
k onto the 16 different deterministic

distributions P det
k . The optimization problem in Eq. (E2)

then reduces to optimize the 16 weights qk under the
constraints qk ≥ 0,

∑
k qk = 1 and covCHSH({qk}k) = c.

We performed this optimization numerically, for various
values of c = covCHSH. Our results are shown on Fig. 2
(the function minHdet

Λ coincides with minH(Λ) shown
there). We repeated the numerical optimization several
times, starting with different random starting points; the
consistency of the results we obtained make us confident
that we indeed reached the global minima in Eq. (E2).

What we found (up to numerical precision) is that
for c = covCHSH ≤ 2, the minimum in (E2) is reached
by mixing only 2 deterministic local distributions with
nonzero weights: for instance, taking P = q(+ + /+ +) +
(1−q)(− − / − −) gives covCHSH = 8q(1−q), H(Λ) =
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H({q, 1−q}) = −q log2 q − (1−q) log2(1−q), and leads
(for 0 ≤ c ≤ 2) to minHdet

Λ (c) = h2(
√

1− c/2), with
the binary entropy function h2(x) = − 1+x

2 log2
1+x

2 −
1−x

2 log2
1−x

2 .
For 2 < c = covCHSH ≤ 16

7 ' 2.29, we found that the
minimum in (E2) is reached by mixing now 3 deterministic
local distributions with nonzero weights: for instance,
with distributions of the form P = q1(+ + / + +) +
q2(−+ /−−) + q3(−− /−+). That gives covCHSH =
(1− q1)(1 + 7q1)− (q2− q3)2, H(Λ) = H({q1, q2, q3}). For
a given value of covCHSH = c, that reduces to optimizing
over just one parameter, say q1, as q2 and q3 are then
given by q2,3 = 1−q1±

√
(1−q1)(1+7q1)−c

2 (which requires
3−
√

16−7c
7 ≤ q1 ≤ 3+

√
16−7c
7 , so that all qk are between 0

and 1). For c & 2.27 we find that the optimal is obtained
for q1 = 3+

√
16−7c
7 (and q2 = q3 = 1−q1

2 ); for c . 2.27
we cannot give an analytical solution (however, a good
approximation seems to be q1 ' 1

2 − 0.01(c− 2)).
We note that as can clearly be seen on Fig. 2, minHdet

Λ
is a (strictly) increasing function of c = covCHSH.

2. General local decompositions

For a general local decomposition of the form (1), one
gets

covCHSH

=
∫
ρ(λ)

[
〈A0〉λ (〈B0〉λ−〈B0〉+〈B1〉λ−〈B1〉)
+〈A1〉λ (〈B0〉λ−〈B0〉−〈B1〉λ+〈B1〉)

]
dλ (E3)

with 〈Ax〉λ =
∑
a aP (a|x, λ) and 〈By〉λ =

∑
b b P (b|y, λ)

(so that 〈Ax〉 =
∫
ρ(λ)〈Ax〉λdλ and similarly for 〈By〉).

Looking at this expression, it is clear that for a given
distribution ρ(λ) (and therefore a given value of H(Λ))
and some given response functions of Bob, the maximal
value of covCHSH is obtained when |〈A0〉λ| = 1, i.e.,
when Alice uses deterministic response functions with
output ±1 (specifically, Alice’s optimal response function
is Ax(λ) = sign[〈B0〉λ−〈B0〉+(−1)x(〈B1〉λ−〈B1〉)]).

A similar reasoning can be followed for Bob. We then
conclude that for a given value of H(Λ), the maximal
value of covCHSH is obtained when Alice and Bob use
deterministic response functions with outputs a, b = ±1:
essentially, local randomness (or considering other possible
outputs in [−1,+1]) does not help increase the value of
covCHSH.

Note, however, that the optimization problem in
Eq. (E1) is subtly different: rather than maximizing
covCHSH for a given value of H(Λ), we want to mimimize
H(Λ) for a given value of covCHSH. To conclude here we
will use the previous observation, that minHdet

Λ (c) is an
increasing function of c = covCHSH.

Consider indeed a (general) local decomposition of a
distribution P with a given amount of shared randomness

H(Λ) = h, and which gives some value covCHSH = c.
From the above reasoning, it follows that there exists an-
other distribution P ′ using the same shared random vari-
able Λ (hence, with the same value H(Λ) = h) but now de-
composed onto deterministic local response functions with
binary outputs ±1, that gives a value covCHSH = c′ ≥ c.
This then implies that minHdet

Λ (c′) ≤ h and, because
minHdet

Λ is an increasing function, minHdet
Λ (c) ≤ h

as well. Hence, any general local decomposition that
gives some value covCHSH = c necessarily satisfies
H(Λ) ≥ minHdet

Λ (c). This implies that minHgen
Λ (c) ≥

minHdet
Λ (c)—and therefore, minHgen

Λ (c) = minHdet
Λ (c)—

with minHdet
Λ (c) estimated above.
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