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Abstract. We analyse the probabilistic features of the Choquet integral
Cµ(X) with respect to a capacity µ over {1, · · · , n}, where the n entries
X = (X1, · · · , Xn) are random variables. Few papers deal with this issue
excepted in [8]. We give two different formula for the density function of
Cµ(X) when X1, · · · , Xn are i.i.d. random variables. We also calculate
the first moment of the Choquet integral and we compare our results with
the ones obtained in [8] which mainly concern the cases where the common
distribution of Xi are either uniform or exponential.
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1 Introduction

Since almost 3 decades, the Choquet integral has become a major ”actor”
in the field of aggregation function and decision making [6, 7]. Thanks to
theoretical works, many applications have been developed in finance [3],
sustainable development [9, 1], image processing [12], recommender system
[4], clustering [10], deep-learning [2], to only cite few in recent years.
Despite the amount of studies, the question of uncertainty in the Choquet
integral remains under-considered. Such a question is of first importance
in many applications and uses. Few works deal with uncertainty consid-
ering the entries of the Choquet integral as random variables. Grabisch
and Raufaste have proposed in [5] Monte-Carlo simulations to compute in
particular cases the empirical mean and standard deviation of the Choquet
integral. They draw as conclusion that the exact distribution seems to be
hard to obtain. The Choquet integral requires a linear ordering of the en-
tries which generates difficulties when they are random variables. Note that
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ordering a family of probability distributions is usually done using the no-
tion of stochastic dominance [15]. This new notion of order has permitted to
Yager in [14] to give an approximation of the mean of the Choquet integral
based on the Shapley indices [11]. To circumvent the initial issue, Yager has
introduced in [13] a surrogate that allows to compute ”the mean-like aggre-
gated value”. In both studies, no clear relation is done between the density
function of the entries and the density function of the Choquet integral.
As far as we have investigated the literature, the only one contribution
which deals with the probability distribution of the Choquet integral has
been done by Kojadinovic and Marichal in [8]. Indeed, they have obtained
theoretical formulas concerning the moments of the Choquet integral for
any form of input distributions. Explicit expressions of the density function
of the Choquet integral has also been given but only in the case where the
entries are either exponential or uniform.
Let µ be a capacity on a finite set S := {1, · · · , n} and X = (X1, · · · , Xn) be
the stochastic entries. In our setting, X1, · · · , Xn are independent random
variables. The aim of the paper is to study the Choquet integral Cµ(X)
as a random variable. We are able to determine the density of Cµ(X) in
Proposition 3.2. The formula is rather complicated but can be simplified (cf
Proposition 3.5) if we suppose furthermore that X1, · · · , Xn have the same
density, i.e. X1, · · · , Xn are independent and identically distributed (i.i.d.).
We have shown a new form of the density of Cµ(X) given in Proposition
3.5 using auxiliary exponential random variables. We provide a general
formulation of the law of the Choquet integral which generalizes the result of
Kojadinovic and Marichal. These authors has given a non-explicit formula
for the moments of order n of the Choquet integral. In the case of the
expectation (i.e. n = 1), we obtain an explicit formulation which is in
consistence with Proposition 4 in [8] but our proof uses a different way.
Let us briefly explain the structure of the paper. In Section 2, we recall
definition of a capacity and the related Choquet integral. In order that the
reader has a synthetic overview of our results, the third and fourth sections
provides straightforwardly the results for the density function and resp. for
the first order moment. Finally, the proofs of the propositions are postponed
in Section 5.

2 Few reminders related to Choquet integral

We briefly recall the definitions of a capacity and the associated Choquet
integral over a finite set S := {1, 2, · · · , n}.

Definition 2.1 A capacity, also called a fuzzy measure, µ over S is a func-
tion defined over the family P(S) of sets included in S, valued in [0, 1] which
is non-decreasing:
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µ(A) ≤ µ(B), ∀ A,B, A ⊂ B ⊂ S (2.1)

and satisfying:
µ(∅) = 0, µ(S) = 1.

Notation 2.2 1. Sn stands for the group of permutations of S.

2. Let x := (x1, · · · , xn) ∈ Rn. There exists σ ∈ Sn such that:

xσ(1) ≤ · · · ≤ xσ(n). (2.2)

σ is unique if xi 6= xj for all i 6= j. Obviously σ depends on x.

3. It is convenient to adopt the notation: xσ(i) = x(i) for any i ∈ S.
Therefore (2.2) takes the form:

x(1) ≤ · · · ≤ x(n). (2.3)

4. If σ : S → S, we set:

σ(a : b) := {σ(i), a ≤ i ≤ b}, 1 ≤ a ≤ b ≤ n.

We convince that σ(a : b) = ∅ if b > a.

Definition 2.3 Let µ be a capacity over S and x ∈ Rn. The Choquet inte-
gral of x with respect to µ is the real number:

Cµ(x) :=

n∑
i=1

x(i)
[
µ
(
σ(i : n)

)
− µ

(
σ(i+ 1 : n)

)]
(2.4)

where σ is the permutation defined by (2.3).

3 The law of Cµ(X)

Let µ be a capacity over S = {1, · · · , n} and X := (X1, · · · , Xn) be a random
vector. In his Phd-thesis (Contributions aux mesures floues k-additives et à
l’intégrale de Choquet stochastique. Application aux analyses médico-économiques)
Y. Petot has considered the case where only one coordinate of X is random.
However, We suppose here that all the components X1, · · · , Xn are inde-
pendent random variables and for any i ∈ {1, · · · , n} the random variable
Xi has a density function fi.
Let µ be a given capacity over S = {1, · · · , n}. We focus in this section
on the density function of the Choquet integral Cµ(X). We calculate it in
Proposition 3.2. Unfortunately the formula is not completely explicit since
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it is the sum of multiple Lebesgue integrals which cannot be simplified in
the general case. To get a more tractable result, we suppose moreover that
X1, · · · , Xn have the same density. In that case, we obtain the simpler
formula (3.12). In this identity, it is striking (and unexpected) to see that
appear elements of Poisson distributions. Introducing additional exponential
random variables, independent of X, we can write in Proposition 3.7 the
density of Cµ(X) as a sum of functions which can be expressed as expectation
of some random variables. This is a new shape of the density function of
Cµ(X). Along the presentation, some relation with [8] are proposed to show
how both are connected. Proof of the proposition are postponed in Section
5.

Since the density function of the Choquet integral is complicated, it is
natural to wonder if its moments are easier to calculate. We have been only
able to (explicitly) calculate the expectation, see Proposition 4.1. We also
compare our results to the ones obtained in [8].

Notation 3.1 1. Let τ be a permutation of S.

(a) We set
iτ := max

{
1 ≤ j ≤ n, µ

(
τ(j : n)

)
> 0
}
.

Since i 7→ µ
(
τ(i : n)

)
is non-increasing

µ
(
τ(j : n)

)
= 0, j ≥ iτ + 1

µ
(
τ(j : n)

)
> 0, 1 ≤ j ≤ iτ .

(b) We also introduce:

aτ := µ
(
τ(iτ : n)

)
− µ

(
τ(iτ + 1 : n)

)
= µ

(
τ(iτ : n)

)
. (3.1)

Note that aτ > 0.

(c) Let θτ : R→ R be the function:

θτ (v) :=

∫
Rn−iτ

1{v≤y1≤···≤yn−iτ }
∏

1≤j≤n−iτ

fτ(j+iτ )(yj)
∏

1≤j≤n−iτ

dyj , v ∈ R.

(3.2)

2. Here, we adher to the conventions:∫
R0

= 1,

0∏
i=1

= 1,

0∑
i=1

= 0. (3.3)

Proposition 3.2 Let φC be the density function of Cµ(X). Then

φC(u) =
∑
τ∈Sn

φτ (u) (3.4)
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where

φτ (u) =
1

aτ

∫
Riτ−1

fτ(iτ )

(u− bτ
aτ

)
θτ

(u− bτ
aτ

) ∏
1≤j≤iτ−1

fτ(j)(yj)

×1{y1≤···≤yiτ−1≤u−bτaτ
}

∏
1≤j≤iτ−1

dyj
(3.5)

and bτ is the coefficient which depends on (y1, · · · , yiτ−1):

bτ :=

iτ−1∑
i=1

yi
[
µ
(
τ(i : n)

)
− µ

(
τ(i+ 1 : n)

)]
. (3.6)

For the proof of Proposition 3.2, see Section 5.1. Obviously, Proposition
3.2 is rather complicated. We can explicit the density function φC when
n = 2, see Remark CE N’EST PAS LE BON NUMERO 3.6 below. Under
additional assumptions we obtain a simplified expression, see Proposition
3.5 below.

Remark 3.3 Let’s consider S = {1, 2} and S2 = {(1), (2)} where (1) equals
the identity and (2) the transposition: 1 7→ 2, 2 7→ 1. Thus, the function φC

is the sum of φ(1) and φ(2). Let Φi be the cumulative distribution function
of Xi.
Case 1.
If µ(2) = 0, then iτ = 1, aτ = 1, bτ = 0 and

φ(1)(u) = f1(u)
(∫ +∞

u
f2(y1)dy1

)
= f1(u)

(
1− Φ2(u)

)
.

If µ({2}) > 0, then iτ = 2, aτ = µ(2), bτ = y1
(
1− µ(2)

)
and

φ(1)(u) =
1

µ(2)

(∫ u

−∞
f2

(u− y1(1− µ(2)
)

µ(2)

)
f1(y1)dy1

)
.

Case 2.
If µ(1) = 0, then iτ = 1, aτ = 1, bτ = 0 and

φ(2)(u) = f2(u)
(∫ +∞

u
f1(y1)dy1

)
= f2(u)

(
1− Φ1(u)

)
.

If µ(1) > 0, then iτ = 2, aτ = µ(1), bτ = y1
(
1− µ(1)

)
and

φ(1)(u) =
1

µ(1)

(∫ u

−∞
f1

(u− y1(1− µ(1)
)

µ(1)

)
f2(y1)dy1

)
.

We can go further than Proposition 3.2, in the i.i.d. case. Let f (resp. F )
be the common probability density function (resp. cumulative distributive
function) of the r.v.’s Xi. Before stating our result we fix few notations.
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Notation 3.4 Let τ be a fixed element in Sn.

1. We set:

αi := µ
(
τ(i : n)

)
− µ

(
τ(i+ 1 : n)

)
, 1 ≤ i ≤ n. (3.7)

2. Let l be number of elements of {0 ≤ j ≤ n, αj 6= 0}. Note that αiτ 6= 0
and therefore l ≥ 1. We set:

{1 ≤ j ≤ n, αj 6= 0} = {j1, · · · , jl} (3.8)

where 1 ≤ j1 < · · · < jl ≤ n and

δi := ji − ji−1 − 1 2 ≤ i ≤ l, δ1 = j1 − 1. (3.9)

Note that

iτ = jl, aτ = αjl . (3.10)

3. Let Cτ be the constant:

Cτ :=
1

aτ

1

δ1!× · · · × δl!(n− jl)!
. (3.11)

Proposition 3.5 We suppose that the rv’s X1, · · · , Xn are i.i.d. Then the
density function φC of Cµ(X) is given by (3.4), where

φτ (u) = Cτ

∫
Rl−1

f(x1)× · · · × f(xl−1)f
(u− b̂l−1

aτ

)(
1− F

(u− b̂l−1
aτ

))n−jl
F (x1)

δ1

l−1∏
r=2

(
F (xr)− F (xr−1)

)δr × (F(u− b̂l−1
aτ

)
− F (xl−1)

)δl
1
{x1<···<xl−1<

u−b̂l−1
aτ

}
dx1 ⊗ · · · ⊗ dxl−1.

(3.12)

and b̂l−1 :=
l−1∑
r=1

αjrxr.

Remark 3.6 1. Let ρ1, · · · , ρk+1 in [0,+∞[. Using the fact that the mul-
tiple integral∫
Rk
f(x1)×· · ·×f(xk)F (x1)

ρ1

k∏
r=2

(
F (xr)−F (xr−1)

)ρr
×
(
1− F (xk)

)ρk+1dx1 ⊗ · · · ⊗ dxk

equals
ρ1!× · · · × ρk+1!

(k + ρ1 + · · ·+ ρk+1)!
then we can prove that

∫
R
φτ (u)du =

1

n!
.
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2. In the uniform case (i.e. when the distribution of all the random
variables is uniform over [0, 1]), the authors in [8] have shown that

φC(u) =
∑
τ∈Sn

φ∗τ (u), where φ∗τ (u) can be expressed either as an op-

erator iterated (n − 1) times or an integral over [0, 1]n−1. Since the
function φτ defined by (3.12) is an integral over [0, 1]l, then φ∗τ (u) and
φτ (u) are a priori different. In the case:

µ(A) < µ(B), ∀ A ( B ⊂ S (3.13)

Kojodinovic and Marichal proved:

φC(u) =
1

n!

∑
τ∈Sn

n∑
i=0

(µτi − u)n−1+∏
j 6=i(µ

τ
i − µτj )

(3.14)

where a+ stands for the positive part of a and µτi := µ
(
τ(1, i)

)
. It

is actually possible to recover (3.14) using (3.12) since (3.13) implies
l = n, j1 =, · · · = jn = 1, δ1 = · · · = δn = 0.

3. In the exponential case, a nice formula has been given in [8]:

φC(u) =
1

n!

∑
τ∈Sn

n∑
i=1

(µτi /i)
n−2∏

j 6=i(µ
τ
i /i− µτj /j)

exp
{
− u

(µτi /i)

}
(3.15)

under the additional assumption

µ(A)

|A|
6= µ(B)

|B|
, ∀ A 6= B (3.16)

where |C| is the number of elements in C.

Proposition 3.5 is a consequence of Proposition 3.2 and its proof is post-
poned in Section 5.2. Recall that if Z is a random variable which is Poisson
distributed with parameter λ, then

P(Z = k) =
λk

k!
e−λ, k ∈ N.

It is striking to observe that in the right hand-side of (3.12), appears a
product of such quantities. Using a Poisson process, we can write (3.12) as
the expectation of a random variable.
Let (ξk)k≥1 a sequence of i.i.d. random variables exponentially distributed
with parameter 1, independent of X1, · · · , Xn and

T0 := 0, Tn := ξ1 + · · ·+ ξn ∀ n ≥ 1. (3.17)

We keep the assumptions given in Proposition 3.5.
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Proposition 3.7 Let τ ∈ Sn and u ∈ R. Then,

φτ (u) =
e

aτ
E
[
f
(u−B∗

aτ

)
1A1

⋂
A2(u)

]
(3.18)

where

A1 := {Tn−l ≤ 1 < Tn−l+1}
l−1⋂
r=1

{
Tjr−r ≤ F (Xr) < Tjr−r+1

}
A2(u) :=

{
X1 < · · · < Xl−1 <

u−B∗

aτ

}⋂{
Tjl−l ≤ F

(u−B∗
aτ

)
< Tjl−l+1

}
and B∗ =:

l−1∑
r=1

αjrXr.

The proof of Proposition 3.7 is given in Section 5.3.

4 Expectation

Since the density function of the Choquet integral is complicated, it is nat-
ural to wonder if its moments are easier to calculate. We have been only
able to (explicitly) calculate the expectation, see Proposition 4.1. We also
compare our results to the ones obtained in [8].

We are interested in the calculation of the expectation and the variance
of Cµ(X) where X is a random vector and µ is a given capacity.
We set:

µ(k) :=
∑

A⊂S,|A|=k

µ(A), 0 ≤ k ≤ n. (4.1)

where |A| is the number of elements of A.

Proposition 4.1 The first moment of Cµ(X) is

E
(
Cµ(X)

)
=

n∑
i=1

µ(i)E
[
F (X1)

n−i−1(1−F (X1)
)i−1

X1

(
nF (X1)+ i−n

)]
.

(4.2)

The proof of Proposition 4.1 is given in Subsection 5.4.

Remark 4.2 1. In (Proposition 4, [8]), for any integer r, an expression
of the moment of order r of Cµ(X) has been given but it involves expec-
tations of random variables. In the case r = 1, the formula coincides
with (4.2) The calculation of the second moment of Cµ(X) is possible
but is very complicated and do not lead to a simple formula.
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2. In the particular case of uniform distribution, Kojadinovic and Marichal
have given an explicit formula for E

[
Cµ(X)

]
which takes the form

E
(
Cµ(X)

)
=

1

(n+ 1)!

n∑
i=1

i! (n− i)! µ(i)

when r = 1. It is easy to recover the previous identity from (4.2).

5 Proofs

5.1 Proof of Proposition 3.2

Let g : R → R be a test function. Note that if τ ∈ Sn, then {σ = τ} =
{Xτ(1) < · · ·Xτ(n)}. Therefore,

E
[
g
(
Cµ(X)

)]
=
∑
τ∈Sn

E
[
g
(
Cµ(X)

)
1{Xτ(1)≤···≤Xτ(n)}

]
.

Since the random variables X1, · · · , Xn are independent and Xi admits a
density function fi, we can write the above expectation as:

E
[
g
(
Cµ(X)

)]
=
∑
τ∈Sn

∫
Rn
g
(
Cµ(x)

)
1{xτ(1)≤···≤xτ(n)}f1(x1)×· · · fn(xn) dx1⊗· · ·⊗dxn.

(5.1)

Using the definition of iτ , we have

Cµ(x) =

n∑
i=1

xτ(i)
[
µ
(
τ(i : n)

)
− µ

(
τ(i+ 1 : n)

)]
=

iτ−1∑
i=1

xτ(i)
[
µ
(
τ(i : n)

)
− µ

(
τ(i+ 1 : n)

)]
+ xτ(iτ )µ

(
τ(iτ : n)

)
.

In each integral of (5.1), we change the variable xτ(iτ ), setting

u =

iτ−1∑
i=1

xτ(i)
[
µ
(
τ(i : n)

)
− µ

(
τ(i+ 1 : n)

)]
+ xτ(iτ )µ

(
τ(iτ : n)

)
= bτ + aτxτ(iτ )

where
aτ = µ

(
τ(iτ : n)

)
bτ =

iτ−1∑
i=1

xτ(i)
[
µ
(
τ(i : n)

)
− µ

(
τ(i+ 1 : n)

)]
.
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Then,

E
[
g
(
Cµ(X)

)]
=

∑
τ∈Sn

∫
R
g(u)

 1

aτ

∫
Rn−1

fτ(iτ )

(u− bτ
aτ

) ∏
j 6=iτ

fτ(j)(xτ(j))

×1{xτ(1)≤···≤xτ(iτ−1)≤u−bτaτ
≤xτ(iτ+1)≤···≤xτ(n)}

∏
j 6=iτ

dxτ(j)

 du

We can integrate with respect to dxτ(iτ+1) ⊗ · · · ⊗ dxτ(n)

E
[
g
(
Cµ(X)

)]
=

∑
τ∈Sn

∫
R
g(u)

(
1

aτ

∫
Riτ−1

fτ(iτ )

(u− bτ
aτ

)
θτ

(u− bτ
aτ

)
×1{xτ(1)≤···≤xτ(iτ−1)≤u−bτaτ

}

∏
1≤j≤iτ−1

fτ(j)(xτ(j))

×
∏

1≤j≤iτ−1
dxτ(j)

 du

with

θτ (v) :=

∫
Rn−iτ

1{v≤xτ(iτ+1)≤···≤xτ(n)}
∏

iτ+1≤j≤n
fτ(j)(xτ(j))

∏
iτ+1≤j≤n

dxτ(j).

This proves (3.5).

5.2 Proof of Proposition 3.5

Recall that θτ (v) has been defined by (3.2). This quantity can be calculated
explicitly.

Lemma 5.1 For any v:

θτ (v) =
1

(n− iτ )!
(1− F (v)

)n−iτ . (5.2)

Proof. Since the r.v.’s X1, · · · , Xn are i.i.d., they have the same proba-
bility density f . Therefore θτ (v) takes the simpler form:

θτ (v) =

∫
Rm

f(y1)× · · · × f(ym)1{v<y1<···<ym}dy1 ⊗ · · · ⊗ dym

where m := n− iτ .
Let g be a symmetric function ofm variables, i.e. g(y1, · · · , ym) = g(yρ(1), · · · , yρ(m))
for any permutation ρ of {1, · · · ,m} and (y1, · · · , ym) ∈ Rm. Then∫
Rm

g(y1, · · · , ym)dy1⊗· · ·⊗dym = m!

∫
Rm

g(y1, · · · , ym)1{y1<···<ym}dy1⊗· · ·⊗dym.
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(5.3)

Applying this identity with g(y1, · · · , ym) = f(y1)1{v<y1}×· · ·×f(ym)1{v<ym}
we get:

θτ (v) =
1

m!

∫
Rm

f(y1)1{v<y1} × · · · × f(ym)1{v<ym}dy1 ⊗ · · · ⊗ dym

=
1

m!

(∫
R
f(y)1{v<y}

)m
.

The result follows since F (v) =

∫ v

−∞
f(y)dy.

We are now able to prove Proposition 3.5. By Proposition 3.2, Lemma 5.1
and (3.10), we have:

φτ (u) =
1

aτ (n− jl)!

∫
Rjl−1

f
(u− bτ

aτ

)(
1− F

(u− bτ
aτ

))n−jl
×f(y1)× · · · × f(yjl−1)1{y1≤···≤yjl−1≤u−bτaτ

}dy1 ⊗ · · · ⊗ dyjl−1.

By (3.7), (3.8) and (3.10), the coefficient bτ defined by (3.6) equals

bτ =

jl−1∑
i=1

αiyi =
l−1∑
i=1

αjiyji

and therefore only depends on the variables yj1 · · · yjl−1
. Our strategy is

to fix yj1 · · · yjl−1
and to integrate with respect to the other variables. We

integrate first with respect to dyjl−1+1⊗· · ·⊗dyjl−1 the function f(yjl−1+1)×

· · · × f(yjl−1) over
[
yjl−1

,
u− bτ
aτ

]
with the constrain yjl−1+1 < · · · < yjl−1.

Using (5.3), we get :

1

δl!

(
F
(u− bτ

aτ

)
− F (yjl−1

)
)δl

which is fixed since yj1 , · · · , yjl−1
are supposed to be given. We continue,

integrating with respect to dyjl−2+1⊗· · ·⊗dyjl−1−1 the function f(yjl−2+1)×
· · · f(yjl−1−1) over [yjl−2

, yjl−1
] with the constrain yjl−2+1 < · · · < yjl−1−1

leads to
1

δl−1!

(
F (yjl−1

)− F (yjl−2
)
)δl−1

.

And so on. The last integration is related to dy1 ⊗ · · · ⊗ dyj1−1 and gives

1

(j1 − 1)!
F (yj1)j1−1 =

1

δ1!
F (yj1)δ1 .
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Finally, setting x1 = yj1 , · · · , xl−1 = jl−1, we get :

φτ (u) = Cτ

∫
Rl−1

f(x1)× · · · × f(xl−1)f
(u− b̂l−1

aτ

)(
1− F

(u− b̂l−1
aτ

))n−jl
×F (x1)

δ1
( l−1∏
r=2

(
F (xr)− F (xr−1)

)δr)(F(u− b̂l−1
aτ

)
− F (xl−1)

)δl
×1
{x1≤···≤xl−1≤

u−b̂l−1
aτ

}
dx1 ⊗ · · · ⊗ dxl−1

where:

Cτ =
1

aτ (n− jl)!
1

δ1!× · · · × δl!

and b̂l−1 := αj1x1 + · · ·+ αjl−1
xl−1.

5.3 Proof of Proposition 3.7

According to Proposition 3.5,

φτ (u) =
1

aτ

∫
Rl−1

f(x1)×· · ·×f(xl−1)ψ1(x1, · · · , xl−1)dx1⊗· · ·⊗dxl−1 (5.4)

where

ψ1(x1, · · · , xl−1) := f
(u− b̂l−1

aτ

)
ψ2(x1, · · ·xl−1)1

{x1<···<xl−1<
u−b̂l−1
aτ

}

and

ψ2(x1, · · ·xl−1) =
F (x1)

δ1

δ1!

l−1∏
r=2

(
F (xr)− F (xr−1)

)δr
δr!

×

(
F

(
u−b̂l−1
aτ

)
−F (xl−1)

)δl
δl!

(
1−F

(
u−b̂l−1
aτ

))n−jl
(n−jl)!

It is very convenient to introduce:

y0 := 0, yi := F (xi) ∀ 1 ≤ i ≤ l − 1, yl := F
(u− b̂l−1

aτ

)
, yl+1 := 1.

Since x1 < · · · < xl−1 <
u− b̂l−1
aτ

, then y0 ≤ · · · < yl+1 and

ψ2(x1, · · · , xl−1) = e
l+1∏
r=1

(yr − yr−1)δr
δr!

e−(yr−yr−1).

where δl+1 := n− jl.
Let (Nt)t≥0 be a Poisson process with parameter 1 and independent of
X1, · · · , Xn. Then
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1. The random variables Ny1 , Ny2−Ny1 , · · · , Nyl+1
−Nyl are independent,

2. for any r ∈ {1, · · · , l+ 1}, the random variable Nyr −Nyr−1 is Poisson
distributed with parameter yr − yr−1.

We are now able to interpret ψ2(x1, · · ·xl−1):

ψ2(x1, · · · , xl−1) = e
l+1∏
r=1

P
(
Nyr −Nyr−1 = δr

)
= eP

( l+1⋂
r=1

{Nyr −Nyr−1 = δr}
)

= eP
( l+1⋂
r=1

{Nyr = δ1 + · · ·+ δr}
)

Let (Tn)n≥1 be the increasing sequence of the jump times of (Nt)t≥0:

Nt =
∑
n≥1

1{Tn≤t}, t ≥ 0.

Consequently:

{Nt = k} = {Tk ≤ t < Tk+1}, t ≥ 0, k ∈ N

and therefore

ψ2(x1, · · · , xl−1) = eP
( l+1⋂
r=1

{Tjr−r ≤ yr < Tjr−r+1}
)

because relation (3.9) implies:

δ1 + · · ·+ δr = jr − r, 1 ≤ r ≤ l + 1

with the convention jl+1 = n+ 1.
It is well-know that (Tn)n≥1 is distributed as (ξ1 + · · · + ξn)n≥1 where
(ξk)k≥1 is a sequence of i.i.d. random variables exponentially distributed
with parameter 1. Finally relation (5.4) and the independency of (ξk)k≥1
and (X1, · · · , Xn) implies (3.18).

5.4 Proof of Proposition 4.1

Recall that the quantity µ(k) has been defined by (4.1).

Lemma 5.2 Let 1 ≤ i ≤ n. Then∑
τ∈Sn

µ
(
τ(i : n)

)
= (i− 1)! (n− i+ 1)! µ(n− i+ 1). (5.5)
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Proof. We have:∑
τ∈Sn

µ
(
τ(i : n)

)
=

∑
A⊂S,|A|=n−i+1

( ∑
τ∈Sn,A=τ(i:n)

µ
(
τ(i : n)

))
=

∑
A⊂S,|A|=n−i+1

µ(A)
( ∑
τ∈S,A=τ(i:n)

1
)

= (i− 1)!(n− i+ 1)!
∑

A⊂S,|A|=n−i+1

µ(A)

since if A ⊂ S is given and A = τ(i : n) then the image of {1, · · · , i − 1}
(resp. {i, · · · , n}) is Ac (resp. A) and the number of possibilities is (i−1)!×
(n− i+ 1)!. Then (5.5) is a direct consequence of (4.1).

Lemma 5.3 For any 1 ≤ i ≤ n,

E
(
Xi1{X1<···<Xn}

)
=

1

(i− 1)!(n− i)!
E
(
F (X1)

i−1(1−F (X1)
)n−i

X1

)
. (5.6)

Proof. Let 1 ≤ i ≤ n, then

E
(
Xi1{X1<···<Xn}

)
= E

(
1{X1<···<Xi−1<Xi}Xi1{Xi<Xi+1···<Xn}

)
.

Recall that X1, · · · , Xn are i.i.d. then

E
(
Xi1{X1<···<Xn}

)
= E

(
θi−1(Xi)Xi θ

n−i(Xi)
)

where

θk(x) :=

∫
Rk
f(x1)× · · · × f(xk)1{x1<···<xk<x}dx1 ⊗ · · · ⊗ dxk

θk(x) :=

∫
Rk
f(x1)× · · · × f(xk)1{x<x1<···<xk}dx1 ⊗ · · · ⊗ dxk.

Using (5.3), θk(x) can be simplified:

θk(x) =
1

k!

∫
Rk
f(x1)× · · · × f(xk)1{x1<x,··· ,<xk<x}dx1 ⊗ · · · ⊗ dxk

=
F (x)k

k!
.

Similarly,

θk(x) =

(
1− F (x)

)k
k!

.

The proof of (5.6) is now complete since Xi and X1 have the same distribu-
tion.
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We are now able to prove Proposition 4.1.
By definition,

Cµ(X) =
n∑
i=1

Xσ(i)

[
µ
(
σ(i : n)

)
− µ

(
σ(i+ 1 : n)

)]
where σ is the random permutation such that Xσ(1) < · · · < Xσ(n). We
modify the previous sum:

Cµ(X) =
n∑
i=1

Xσ(i)µ
(
σ(i : n)

)
−

n∑
i=1

Xσ(i)µ
(
σ(i+ 1 : n)

)
=

n∑
i=1

µ
(
σ(i : n)

)
(Xσ(i) −Xσ(i−1))

with the conventions: σ(0) = 0, X0 = 0 and µ
(
σ(n+ 1 : n)

)
= 0. Therefore

Cµ(X) =
∑
τ∈Sn

( n∑
i=1

µ
(
σ(i : n)

)
(Xσ(i) −Xσ(i−1))

)
1{σ=τ}

=
∑
τ∈Sn

( n∑
i=1

µ
(
τ(i : n)

)
(Xτ(i) −Xτ(i−1))

)
1{Xτ(1)<···<Xτ(n)}.(5.7)

We take the expectation and we use the crucial fact that (Xτ(1), · · · , Xτ(n))
is distributed as (X1, · · · , Xn):

E
(
Cµ(X)

)
=

∑
τ∈Sn

( n∑
i=1

µ
(
τ(i : n)

)
E
[
(Xτ(i) −Xτ(i−1))1{Xτ(1)<···<Xτ(n)}

])
=

∑
τ∈Sn

( n∑
i=1

µ
(
τ(i : n)

)
E
[
(Xi −Xi−1)1{X1<···<Xn}

])
=

n∑
i=1

( ∑
τ∈Sn

µ
(
τ(i : n)

))
E
[
(Xi −Xi−1)1{X1<···<Xn}

]
.

Using Lemma 5.3, we gat for i ≥ 2:

E
[
(Xi −Xi−1)1{X1<···<Xn}

]
= E

[
Xi1{X1<···<Xn}

]
− E

[
Xi−11{X1<···<Xn}

]
=

1

(i− 1)!(n− i)!
E
(
F (X1)

i−1(1− F (X1)
)n−i

X1

)
− 1

(i− 2)!(n− i+ 1)!
E
(
F (X1)

i−2(1− F (X1)
)n−i+1

×X1

)
.

Consequently

E
[
(Xi−Xi−1)1{X1<···<Xn}

]
=

1

(i− 1)!(n− i+ 1)!
E
(
F (X1)

i−2(1−F (X1)
)n−i

X1 Y
)
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where
Y := (n− i+ 1)F (X1)− (i− 1)(1− F (X1)

= nF (X1)− i+ 1.

We use finally Lemma 5.2:

E
(
Cµ(X)

)
=

n∑
i=1

µ(n−i+1)E
(
F (X1)

i−2(1−F (X1)
)n−i

X1(nF (X1)−i+1)
)
.
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Botelho, Graçaliz Pereira Dimuro, Giancarlo Lucca, Javier Fernandéz,
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