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Introduction

Since almost 3 decades, the Choquet integral has become a major "actor" in the field of aggregation function and decision making [START_REF] Grabisch | A decade of application of the choquet and sugeno integrals in multi-criteria decision aid[END_REF][START_REF] Grabisch | A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid[END_REF]. Thanks to theoretical works, many applications have been developed in finance [START_REF] Joo | Enhancing the decision-making virtuous cycle of ethical banking practices using the choquet integral[END_REF], sustainable development [START_REF] Merad | Using a multi-criteria decision aid methodology to implement sustainable development principles within an Organization[END_REF][START_REF] Bykzkan | Selection of sustainable urban transportation alternatives using an integrated intuitionistic fuzzy choquet integral approach[END_REF], image processing [START_REF] Trabelsi | Choquet Integral based Feature Selection for Early Breast Cancer Diagnosis from MRIs[END_REF], recommender system [START_REF] Fomba | A Recommender system based on MultiCriteria Aggregation[END_REF], clustering [START_REF] Andre | Aggregation of neural classifiers using choquet integral with respect to a fuzzy measure[END_REF], deep-learning [START_REF] Dias | Using the choquet integral in the pooling layer in deep learning networks[END_REF], to only cite few in recent years. Despite the amount of studies, the question of uncertainty in the Choquet integral remains under-considered. Such a question is of first importance in many applications and uses. Few works deal with uncertainty considering the entries of the Choquet integral as random variables. Grabisch and Raufaste have proposed in [START_REF] Grabisch | An empirical study of statistical properties of the choquet and sugeno integrals[END_REF] Monte-Carlo simulations to compute in particular cases the empirical mean and standard deviation of the Choquet integral. They draw as conclusion that the exact distribution seems to be hard to obtain. The Choquet integral requires a linear ordering of the entries which generates difficulties when they are random variables. Note that 1 ordering a family of probability distributions is usually done using the notion of stochastic dominance [START_REF] Yager | Stochastic dominance for measure based uncertain decision making[END_REF]. This new notion of order has permitted to Yager in [START_REF] Yager | On using the shapley value to approximate the choquet integral in cases of uncertain arguments[END_REF] to give an approximation of the mean of the Choquet integral based on the Shapley indices [START_REF] Shapleyd | A value for n-person games[END_REF]. To circumvent the initial issue, Yager has introduced in [START_REF] Yager | Evaluating choquet integrals whose arguments are probability distributions[END_REF] a surrogate that allows to compute "the mean-like aggregated value". In both studies, no clear relation is done between the density function of the entries and the density function of the Choquet integral.

As far as we have investigated the literature, the only one contribution which deals with the probability distribution of the Choquet integral has been done by Kojadinovic and Marichal in [START_REF] Kojadinovic | On the moments and distribution of discrete choquet integrals from continuous distributions[END_REF]. Indeed, they have obtained theoretical formulas concerning the moments of the Choquet integral for any form of input distributions. Explicit expressions of the density function of the Choquet integral has also been given but only in the case where the entries are either exponential or uniform. Let µ be a capacity on a finite set S := {1, • • • , n} and X = (X 1 , • • • , X n ) be the stochastic entries. In our setting, X 1 , • • • , X n are independent random variables. The aim of the paper is to study the Choquet integral C µ (X) as a random variable. We are able to determine the density of C µ (X) in Proposition 3.2. The formula is rather complicated but can be simplified (cf Proposition 3.5) if we suppose furthermore that X 1 , • • • , X n have the same density, i.e. X 1 , • • • , X n are independent and identically distributed (i.i.d.). We have shown a new form of the density of C µ (X) given in Proposition 3.5 using auxiliary exponential random variables. We provide a general formulation of the law of the Choquet integral which generalizes the result of Kojadinovic and Marichal. These authors has given a non-explicit formula for the moments of order n of the Choquet integral. In the case of the expectation (i.e. n = 1), we obtain an explicit formulation which is in consistence with Proposition 4 in [START_REF] Kojadinovic | On the moments and distribution of discrete choquet integrals from continuous distributions[END_REF] but our proof uses a different way. Let us briefly explain the structure of the paper. In Section 2, we recall definition of a capacity and the related Choquet integral. In order that the reader has a synthetic overview of our results, the third and fourth sections provides straightforwardly the results for the density function and resp. for the first order moment. Finally, the proofs of the propositions are postponed in Section 5.

Few reminders related to Choquet integral

We briefly recall the definitions of a capacity and the associated Choquet integral over a finite set S := {1, 2, • • • , n}. Definition 2.1 A capacity, also called a fuzzy measure, µ over S is a function defined over the family P(S) of sets included in S, valued in [0, 1] which is non-decreasing:

µ(A) ≤ µ(B), ∀ A, B, A ⊂ B ⊂ S (2.1)
and satisfying: µ(∅) = 0, µ(S) = 1.

Notation 2.2 1. S n stands for the group of permutations of S.

Let

x := (x 1 , • • • , x n ) ∈ R n .
There exists σ ∈ S n such that:

x σ(1) ≤ • • • ≤ x σ(n) . (2.2)
σ is unique if x i = x j for all i = j. Obviously σ depends on x.

3. It is convenient to adopt the notation: x σ(i) = x (i) for any i ∈ S. Therefore (2.2) takes the form:

x (1) ≤ • • • ≤ x (n) . (2.3)
4. If σ : S → S, we set:

σ(a : b) := {σ(i), a ≤ i ≤ b}, 1 ≤ a ≤ b ≤ n.
We convince that σ(a

: b) = ∅ if b > a.
Definition 2.3 Let µ be a capacity over S and x ∈ R n . The Choquet integral of x with respect to µ is the real number:

C µ (x) := n i=1 x (i) µ σ(i : n) -µ σ(i + 1 : n) (2.4)
where σ is the permutation defined by (2.3).

3 The law of C µ (X)

Let µ be a capacity over S = {1, • • • , n} and X := (X 1 , • • • , X n ) be a random vector. In his Phd-thesis (Contributions aux mesures floues k-additives et à l'intégrale de Choquet stochastique. Application aux analyses médico-économiques) Y. Petot has considered the case where only one coordinate of X is random. However, We suppose here that all the components X 1 , • • • , X n are independent random variables and for any i ∈ {1, • • • , n} the random variable X i has a density function f i . Let µ be a given capacity over S = {1, • • • , n}. We focus in this section on the density function of the Choquet integral C µ (X). We calculate it in Proposition 3.2. Unfortunately the formula is not completely explicit since it is the sum of multiple Lebesgue integrals which cannot be simplified in the general case. To get a more tractable result, we suppose moreover that X 1 , • • • , X n have the same density. In that case, we obtain the simpler formula (3.12). In this identity, it is striking (and unexpected) to see that appear elements of Poisson distributions. Introducing additional exponential random variables, independent of X, we can write in Proposition 3.7 the density of C µ (X) as a sum of functions which can be expressed as expectation of some random variables. This is a new shape of the density function of C µ (X). Along the presentation, some relation with [START_REF] Kojadinovic | On the moments and distribution of discrete choquet integrals from continuous distributions[END_REF] are proposed to show how both are connected. Proof of the proposition are postponed in Section 5.

Since the density function of the Choquet integral is complicated, it is natural to wonder if its moments are easier to calculate. We have been only able to (explicitly) calculate the expectation, see Proposition 4.1. We also compare our results to the ones obtained in [START_REF] Kojadinovic | On the moments and distribution of discrete choquet integrals from continuous distributions[END_REF].

Notation 3.1 1. Let τ be a permutation of S. (a) We set i τ := max 1 ≤ j ≤ n, µ τ (j : n) > 0 . Since i → µ τ (i : n) is non-increasing µ τ (j : n) = 0, j ≥ i τ + 1 µ τ (j : n) > 0, 1 ≤ j ≤ i τ .
(b) We also introduce:

a τ := µ τ (i τ : n) -µ τ (i τ + 1 : n) = µ τ (i τ : n) . (3.1)
Note that a τ > 0.

(c) Let θ τ : R → R be the function:

θ τ (v) := R n-iτ 1 {v≤y 1 ≤•••≤y n-iτ } 1≤j≤n-iτ f τ (j+iτ ) (y j ) 1≤j≤n-iτ dy j , v ∈ R. (3.2)
2. Here, we adher to the conventions:

R 0 = 1, 0 i=1 = 1, 0 i=1 = 0. (3.3) Proposition 3.2 Let φ C be the density function of C µ (X). Then φ C (u) = τ ∈Sn φ τ (u) (3.4)
where

φ τ (u) = 1 a τ R iτ -1 f τ (iτ ) u -b τ a τ θ τ u -b τ a τ 1≤j≤iτ -1 f τ (j) (y j ) ×1 {y 1 ≤•••≤y iτ -1 ≤ u-bτ aτ } 1≤j≤iτ -1 dy j (3.5)
and b τ is the coefficient which depends on (y

1 , • • • , y iτ -1 ): b τ := iτ -1 i=1 y i µ τ (i : n) -µ τ (i + 1 : n) . (3.6)
For the proof of Proposition 3. is the sum of φ (1) and φ [START_REF] Dias | Using the choquet integral in the pooling layer in deep learning networks[END_REF] . Let Φ i be the cumulative distribution function of

X i . Case 1. If µ(2) = 0, then i τ = 1, a τ = 1, b τ = 0 and φ (1) (u) = f 1 (u) +∞ u f 2 (y 1 )dy 1 = f 1 (u) 1 -Φ 2 (u) . If µ({2}) > 0, then i τ = 2, a τ = µ(2), b τ = y 1 1 -µ(2) and φ (1) (u) = 1 µ(2) u -∞ f 2 u -y 1 1 -µ(2) µ(2) f 1 (y 1 )dy 1 . Case 2. If µ(1) = 0, then i τ = 1, a τ = 1, b τ = 0 and φ (2) (u) = f 2 (u) +∞ u f 1 (y 1 )dy 1 = f 2 (u) 1 -Φ 1 (u) . If µ(1) > 0, then i τ = 2, a τ = µ(1), b τ = y 1 1 -µ(1) and 
φ (1) (u) = 1 µ(1) u -∞ f 1 u -y 1 1 -µ(1) µ(1) f 2 (y 1 )dy 1 .
We can go further than Proposition 3.2, in the i.i.d. case. Let f (resp. F ) be the common probability density function (resp. cumulative distributive function) of the r.v.'s X i . Before stating our result we fix few notations.

Notation 3.4 Let τ be a fixed element in S n .

1. We set:

α i := µ τ (i : n) -µ τ (i + 1 : n) , 1 ≤ i ≤ n. (3.7)
2. Let l be number of elements of {0 ≤ j ≤ n, α j = 0}. Note that α iτ = 0 and therefore l ≥ 1. We set:

{1 ≤ j ≤ n, α j = 0} = {j 1 , • • • , j l } (3.8)
where

1 ≤ j 1 < • • • < j l ≤ n and δ i := j i -j i-1 -1 2 ≤ i ≤ l, δ 1 = j 1 -1. (3.9)
Note that

i τ = j l , a τ = α j l .
(3.10)

3. Let C τ be the constant:

C τ := 1 a τ 1 δ 1 ! × • • • × δ l !(n -j l )! . (3.11) Proposition 3.5 We suppose that the rv's X 1 , • • • , X n are i.i.d.
Then the density function φ C of C µ (X) is given by (3.4), where

φ τ (u) = C τ R l-1 f (x 1 ) × • • • × f (x l-1 )f u -b l-1 a τ 1 -F u -b l-1 a τ n-j l F (x 1 ) δ 1 l-1 r=2 F (x r ) -F (x r-1 ) δr × F u -b l-1 a τ -F (x l-1 ) δ l 1 {x 1 <•••<x l-1 < u-b l-1 aτ } dx 1 ⊗ • • • ⊗ dx l-1 .
(3.12)

and b l-1 := l-1 r=1 α jr x r . Remark 3.6 1. Let ρ 1 , • • • , ρ k+1 in [0, +∞[. Using the fact that the mul- tiple integral R k f (x 1 )ו • •×f (x k )F (x 1 ) ρ 1 k r=2 F (x r )-F (x r-1 ) ρr × 1 -F (x k ) ρ k+1 dx 1 ⊗ • • • ⊗ dx k equals ρ 1 ! × • • • × ρ k+1 ! (k + ρ 1 + • • • + ρ k+1 )! then we can prove that R φ τ (u)du = 1 n! .
2. In the uniform case (i.e. when the distribution of all the random variables is uniform over [0, 1]), the authors in [START_REF] Kojadinovic | On the moments and distribution of discrete choquet integrals from continuous distributions[END_REF] have shown that

φ C (u) = τ ∈Sn φ * τ (u)
, where φ * τ (u) can be expressed either as an operator iterated (n -1) times or an integral over [0, 1] n-1 . Since the function φ τ defined by (3.12) is an integral over [0, 1] l , then φ * τ (u) and φ τ (u) are a priori different. In the case:

µ(A) < µ(B), ∀ A B ⊂ S (3.13)
Kojodinovic and Marichal proved:

φ C (u) = 1 n! τ ∈Sn n i=0 (µ τ i -u) n-1 + j =i (µ τ i -µ τ j ) (3.14)
where a + stands for the positive part of a and µ τ i := µ τ (1, i) . It is actually possible to recover (3.14) using (3.12) since (3.13

) implies l = n, j 1 =, • • • = j n = 1, δ 1 = • • • = δ n = 0.
3. In the exponential case, a nice formula has been given in [START_REF] Kojadinovic | On the moments and distribution of discrete choquet integrals from continuous distributions[END_REF]:

φ C (u) = 1 n! τ ∈Sn n i=1 (µ τ i /i) n-2 j =i (µ τ i /i -µ τ j /j) exp - u (µ τ i /i) (3.15) 
under the additional assumption

µ(A) |A| = µ(B) |B| , ∀ A = B (3.16)
where |C| is the number of elements in C.

Proposition 3.5 is a consequence of Proposition 3.2 and its proof is postponed in Section 5.2. Recall that if Z is a random variable which is Poisson distributed with parameter λ, then

P(Z = k) = λ k k! e -λ , k ∈ N.
It is striking to observe that in the right hand-side of (3.12), appears a product of such quantities. Using a Poisson process, we can write (3.12) as the expectation of a random variable. Let (ξ k ) k≥1 a sequence of i.i.d. random variables exponentially distributed with parameter 1, independent of X 1 , • • • , X n and

T 0 := 0, T n := ξ 1 + • • • + ξ n ∀ n ≥ 1. (3.17)
We keep the assumptions given in Proposition 3.5.

Proposition 3.7 Let τ ∈ S n and u ∈ R. Then,

φ τ (u) = e a τ E f u -B * a τ 1 A 1 A 2 (u) (3.18)
where

A 1 := {T n-l ≤ 1 < T n-l+1 } l-1 r=1 T jr-r ≤ F (X r ) < T jr-r+1 A 2 (u) := X 1 < • • • < X l-1 < u -B * a τ T j l -l ≤ F u -B * a τ < T j l -l+1
and B * =:

l-1 r=1 α jr X r .
The proof of Proposition 3.7 is given in Section 5.3.

Expectation

Since the density function of the Choquet integral is complicated, it is natural to wonder if its moments are easier to calculate. We have been only able to (explicitly) calculate the expectation, see Proposition 4.1. We also compare our results to the ones obtained in [START_REF] Kojadinovic | On the moments and distribution of discrete choquet integrals from continuous distributions[END_REF]. We are interested in the calculation of the expectation and the variance of C µ (X) where X is a random vector and µ is a given capacity. We set:

µ(k) := A⊂S,|A|=k µ(A), 0 ≤ k ≤ n. (4.1)
where |A| is the number of elements of A.

Proposition 4.1 The first moment of C µ (X) is E C µ (X) = n i=1 µ(i)E F (X 1 ) n-i-1 1 -F (X 1 ) i-1 X 1 nF (X 1 ) + i -n . (4.2)
The proof of Proposition 4.1 is given in Subsection 5.4.

Remark 4.2 1. In (Proposition 4, [START_REF] Kojadinovic | On the moments and distribution of discrete choquet integrals from continuous distributions[END_REF]), for any integer r, an expression of the moment of order r of C µ (X) has been given but it involves expectations of random variables. In the case r = 1, the formula coincides with (4.2) The calculation of the second moment of C µ (X) is possible but is very complicated and do not lead to a simple formula.

In the particular case of uniform distribution, Kojadinovic and Marichal

have given an explicit formula for E C µ (X) which takes the form

E C µ (X) = 1 (n + 1)! n i=1 i! (n -i)! µ(i) when r = 1.
It is easy to recover the previous identity from (4.2).

Proofs

Proof of Proposition 3.2

Let g : R → R be a test function. Note that if τ ∈ S n , then

{σ = τ } = {X τ (1) < • • • X τ (n) }. Therefore, E g C µ (X) = τ ∈Sn E g C µ (X) 1 {X τ (1) ≤•••≤X τ (n) } .
Since the random variables X 1 , • • • , X n are independent and X i admits a density function f i , we can write the above expectation as:

E g C µ (X) = τ ∈Sn R n g C µ (x) 1 {x τ (1) ≤•••≤x τ (n) } f 1 (x 1 )ו • • f n (x n ) dx 1 ⊗• • •⊗dx n . (5.1)
Using the definition of i τ , we have

C µ (x) = n i=1 x τ (i) µ τ (i : n) -µ τ (i + 1 : n) = iτ -1 i=1 x τ (i) µ τ (i : n) -µ τ (i + 1 : n) + x τ (iτ ) µ τ (i τ : n) .
In each integral of (5.1), we change the variable x τ (iτ ) , setting

u = iτ -1 i=1 x τ (i) µ τ (i : n) -µ τ (i + 1 : n) + x τ (iτ ) µ τ (i τ : n) = b τ + a τ x τ (iτ )
where

a τ = µ τ (i τ : n) b τ = iτ -1 i=1 x τ (i) µ τ (i : n) -µ τ (i + 1 : n) .
Then,

E g C µ (X) = τ ∈Sn R g(u)   1 a τ R n-1 f τ (iτ ) u -b τ a τ j =iτ f τ (j) (x τ (j) ) ×1 {x τ (1) ≤•••≤x τ (iτ -1) ≤ u-bτ aτ ≤x τ (iτ +1) ≤•••≤x τ (n) } j =iτ dx τ (j)   du
We can integrate with respect to

dx τ (iτ +1) ⊗ • • • ⊗ dx τ (n) E g C µ (X) = τ ∈Sn R g(u) 1 a τ R iτ -1 f τ (iτ ) u -b τ a τ θ τ u -b τ a τ ×1 {x τ (1) ≤•••≤x τ (iτ -1) ≤ u-bτ aτ } 1≤j≤iτ -1 f τ (j) (x τ (j) ) × 1≤j≤iτ -1 dx τ (j)   du with θ τ (v) := R n-iτ 1 {v≤x τ (iτ +1) ≤•••≤x τ (n) } iτ +1≤j≤n f τ (j) (x τ (j) ) iτ +1≤j≤n dx τ (j) .
This proves (3.5).

Proof of Proposition 3.5

Recall that θ τ (v) has been defined by (3.2). This quantity can be calculated explicitly.

Lemma 5.1 For any v:

θ τ (v) = 1 (n -i τ )! (1 -F (v) n-iτ . (5.2) 
Proof.

Since the r.v.'s X 1 , • • • , X n are i.i.d., they have the same probability density f . Therefore θ τ (v) takes the simpler form:

θ τ (v) = R m f (y 1 ) × • • • × f (y m )1 {v<y 1 <•••<ym} dy 1 ⊗ • • • ⊗ dy m where m := n -i τ . Let g be a symmetric function of m variables, i.e. g(y 1 , • • • , y m ) = g(y ρ(1) , • • • , y ρ(m) ) for any permutation ρ of {1, • • • , m} and (y 1 , • • • , y m ) ∈ R m . Then R m g(y 1 , • • • , y m )dy 1 ⊗• • •⊗dy m = m! R m g(y 1 , • • • , y m )1 {y 1 <•••<ym} dy 1 ⊗• • •⊗dy m . (5.3) Applying this identity with g(y 1 , • • • , y m ) = f (y 1 )1 {v<y 1 } ו • •×f (y m )1 {v<ym} we get: θ τ (v) = 1 m! R m f (y 1 )1 {v<y 1 } × • • • × f (y m )1 {v<ym} dy 1 ⊗ • • • ⊗ dy m = 1 m! R f (y)1 {v<y} m .
The result follows since

F (v) = v -∞ f (y)dy. 
We are now able to prove Proposition 3.5. By Proposition 3.2, Lemma 5.1 and (3.10), we have:

φ τ (u) = 1 a τ (n -j l )! R j l -1 f u -b τ a τ 1 -F u -b τ a τ n-j l ×f (y 1 ) × • • • × f (y j l -1 )1 {y 1 ≤•••≤y j l -1 ≤ u-bτ aτ } dy 1 ⊗ • • • ⊗ dy j l - 1 . By (3.7), (3.8) and (3.10) 
, the coefficient b τ defined by (3.6) equals

b τ = j l -1 i=1 α i y i = l-1 i=1 α j i y j i
and therefore only depends on the variables y j 1 • • • y j l-1 . Our strategy is to fix y j 1 • • • y j l-1 and to integrate with respect to the other variables. We integrate first with respect to

dy j l-1 +1 ⊗• • •⊗dy j l -1 the function f (y j l-1 +1 )× • • • × f (y j l -1 ) over y j l-1 , u -b τ a τ with the constrain y j l-1 +1 < • • • < y j l -1 .
Using (5.3), we get :

1 δ l ! F u -b τ a τ -F (y j l-1 ) δ l
which is fixed since y j 1 , • • • , y j l-1 are supposed to be given. We continue, integrating with respect to

dy j l-2 +1 ⊗• • •⊗dy j l-1 -1 the function f (y j l-2 +1 )× • • • f (y j l-1 -1 ) over [y j l-2 , y j l-1 ] with the constrain y j l-2 +1 < • • • < y j l-1 -1 leads to 1 δ l-1 ! F (y j l-1 ) -F (y j l-2 ) δ l-1
.

And so on. The last integration is related to dy 1 ⊗ • • • ⊗ dy j 1 -1 and gives

1 (j 1 -1)! F (y j 1 ) j 1 -1 = 1 δ 1 ! F (y j 1 ) δ 1 .
Finally, setting x 1 = y j 1 , • • • , x l-1 = j l-1 , we get :

φ τ (u) = C τ R l-1 f (x 1 ) × • • • × f (x l-1 )f u -b l-1 a τ 1 -F u -b l-1 a τ n-j l ×F (x 1 ) δ 1 l-1 r=2 F (x r ) -F (x r-1 ) δr F u -b l-1 a τ -F (x l-1 ) δ l ×1 {x 1 ≤•••≤x l-1 ≤ u-b l-1 aτ } dx 1 ⊗ • • • ⊗ dx l-1
where:

C τ = 1 a τ (n -j l )! 1 δ 1 ! × • • • × δ l ! and b l-1 := α j 1 x 1 + • • • + α j l-1 x l-1 .

Proof of Proposition 3.7

According to Proposition 3.5,

φ τ (u) = 1 a τ R l-1 f (x 1 )ו • •×f (x l-1 )ψ 1 (x 1 , • • • , x l-1 )dx 1 ⊗• • •⊗dx l-1 (5.4)
where

ψ 1 (x 1 , • • • , x l-1 ) := f u -b l-1 a τ ψ 2 (x 1 , • • • x l-1 )1 {x 1 <•••<x l-1 < u-b l-1 aτ } and ψ 2 (x 1 , • • • x l-1 ) = F (x 1 ) δ 1 δ 1 ! l-1 r=2 F (x r ) -F (x r-1 ) δr δ r ! × F u-b l-1 aτ -F (x l-1 ) δ l δ l ! 1-F u-b l-1 aτ n-j l (n-j l )!
It is very convenient to introduce:

y 0 := 0, y i := F (x i ) ∀ 1 ≤ i ≤ l -1, y l := F u -b l-1 a τ , y l+1 := 1. Since x 1 < • • • < x l-1 < u -b l-1 a τ , then y 0 ≤ • • • < y l+1 and ψ 2 (x 1 , • • • , x l-1 ) = e l+1 r=1
(y r -y r-1 ) δr δ r ! e -(yr-y r-1 ) .

where δ l+1 := n -j l . Let (N t ) t≥0 be a Poisson process with parameter 1 and independent of

X 1 , • • • , X n . Then 1. The random variables N y 1 , N y 2 -N y 1 , • • • , N y l+1 -N y l are independent,
2. for any r ∈ {1, • • • , l + 1}, the random variable N yr -N y r-1 is Poisson distributed with parameter y r -y r-1 .

We are now able to interpret ψ 2 (x 1 , • • • x l-1 ):

ψ 2 (x 1 , • • • , x l-1 ) = e l+1 r=1 P N yr -N y r-1 = δ r = eP l+1 r=1 {N yr -N y r-1 = δ r } = eP l+1 r=1 {N yr = δ 1 + • • • + δ r }
Let (T n ) n≥1 be the increasing sequence of the jump times of (N t ) t≥0 :

N t = n≥1 1 {Tn≤t} , t ≥ 0.
Consequently:

{N t = k} = {T k ≤ t < T k+1 }, t ≥ 0, k ∈ N
and therefore

ψ 2 (x 1 , • • • , x l-1 ) = eP l+1 r=1
{T jr-r ≤ y r < T jr-r+1 } because relation (3.9) implies:

δ 1 + • • • + δ r = j r -r, 1 ≤ r ≤ l + 1 with the convention j l+1 = n + 1. It is well-know that (T n ) n≥1 is distributed as (ξ 1 + • • • + ξ n ) n≥1
where (ξ k ) k≥1 is a sequence of i.i.d. random variables exponentially distributed with parameter 1. Finally relation (5.4) and the independency of (ξ k ) k≥1 and (X 1 , • • • , X n ) implies (3.18).

Proof of Proposition 4.1

Recall that the quantity µ(k) has been defined by (4.1).

Lemma 5.2 Let 1 ≤ i ≤ n. Then τ ∈Sn µ τ (i : n) = (i -1)! (n -i + 1)! µ(n -i + 1). ( 5.5) 
Proof. We have:

τ ∈Sn µ τ (i : n) = A⊂S,|A|=n-i+1 τ ∈Sn,A=τ (i:n) µ τ (i : n) = A⊂S,|A|=n-i+1 µ(A) τ ∈S,A=τ (i:n) 1 = (i -1)!(n -i + 1)! A⊂S,|A|=n-i+1 µ(A) since if A ⊂ S is given and A = τ (i : n) then the image of {1, • • • , i -1} (resp. {i, • • • , n}) is A c (resp. A
) and the number of possibilities is (i -1)! × (n -i + 1)!. Then (5.5) is a direct consequence of (4.1).

Lemma 5.3 For any 1 ≤ i ≤ n,

E X i 1 {X 1 <•••<Xn} = 1 (i -1)!(n -i)! E F (X 1 ) i-1 1-F (X 1 ) n-i X 1 . (5.6) Proof. Let 1 ≤ i ≤ n, then E X i 1 {X 1 <•••<Xn} = E 1 {X 1 <•••<X i-1 <X i } X i 1 {X i <X i+1 •••<Xn} .
Recall that X 1 , • • • , X n are i.i.d. then

E X i 1 {X 1 <•••<Xn} = E θ i-1 (X i )X i θ n-i (X i )
where

θ k (x) := R k f (x 1 ) × • • • × f (x k )1 {x 1 <•••<x k <x} dx 1 ⊗ • • • ⊗ dx k θ k (x) := R k f (x 1 ) × • • • × f (x k )1 {x<x 1 <•••<x k } dx 1 ⊗ • • • ⊗ dx k .
Using (5.3), θ k (x) can be simplified:

θ k (x) = 1 k! R k f (x 1 ) × • • • × f (x k )1 {x 1 <x,••• ,<x k <x} dx 1 ⊗ • • • ⊗ dx k = F (x) k k! .
Similarly,

θ k (x) = 1 -F (x) k k! .
The proof of (5.6) is now complete since X i and X 1 have the same distribution.

We are now able to prove Proposition 4.1. By definition,

C µ (X) = n i=1
X σ(i) µ σ(i : n) -µ σ(i + 1 : n)

where σ is the random permutation such that X σ(1) < • • • < X σ(n) . We modify the previous sum:

C µ (X) = n i=1 X σ(i) µ σ(i : n) - n i=1 X σ(i) µ σ(i + 1 : n) = n i=1 µ σ(i : n) (X σ(i) -X σ(i-1) )
with the conventions: σ(0) = 0, X 0 = 0 and µ σ(n + 1 : n) = 0. Therefore

C µ (X) = τ ∈Sn n i=1 µ σ(i : n) (X σ(i) -X σ(i-1) ) 1 {σ=τ } = τ ∈Sn n i=1 µ τ (i : n) (X τ (i) -X τ (i-1) ) 1 {X τ (1) <•••<X τ (n) } . (5.7) 
We take the expectation and we use the crucial fact that (X τ (1) , • • • , X τ (n) ) is distributed as (X 1 , • • • , X n ):

E C µ (X) = τ ∈Sn n i=1 µ τ (i : n) E (X τ (i) -X τ (i-1) )1 {X τ (1) <•••<X τ (n) } = τ ∈Sn n i=1 µ τ (i : n) E (X i -X i-1 )1 {X 1 <•••<Xn} = n i=1 τ ∈Sn µ τ (i : n) E (X i -X i-1 )1 {X 1 <•••<Xn} .
Using Lemma 5.3, we gat for i ≥ 2:

E (X i -X i-1 )1 {X 1 <•••<Xn} = E X i 1 {X 1 <•••<Xn} -E X i-1 1 {X 1 <•••<Xn} = 1 (i -1)!(n -i)! E F (X 1 ) i-1 1 -F (X 1 ) n-i X 1 - 1 (i -2)!(n -i + 1)! E F (X 1 ) i-2 1 -F (X 1 ) n-i+1 ×X 1 . Consequently E (X i -X i-1 )1 {X 1 <•••<Xn} = 1 (i -1)!(n -i + 1)! E F (X 1 ) i-2 1-F (X 1 ) n-i X 1 Y

where

We use finally Lemma 5.2:
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