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Abstract

An edge dominating set in a graph G = (V, E) is a subset S of edges such that
each edge in £ — S is adjacent to at least one edge in S. The EDGE DOMINATING SET
problem, to find an edge dominating set of minimum size, is a basic and important
NP-hard problem that has been extensively studied in approximation algorithms and
parameterized complexity. In this paper, we present improved hardness results and
parameterized approximation algorithms for EDGE DOMINATING SET. More precisely, we
first show that it is NP-hard to approximate EDGE DOMINATING SET in polynomial time
within a factor better than 1.18. Next, we give a parameterized approximation schema
(with respect to the standard parameter) for the problem and, finally, we develop an
0*(1.8217)-time exact algorithm where 7 is the size of a minimum vertex cover of G.

1 Introduction

As one of the basic problems in Garey and Johnson’s work on NP-completeness [15], EDGE
DOMINATING SET has received high attention in history. It is NP-hard even in planar or
bipartite graphs of maximum degree 3 [24]. Due to its theoretical and practical interests,
many algorithms have been developed in order to tackle it. There is a simple 2-approximation
algorithm for EDGE DOMINATING SET in unweighted graphs. It is not hard to verify that
any maximum matching in the graph is an edge dominating set of size at most double of
the minimum size. Carr et al. 6] proved a (2 + )-approximation algorithm for WEIGHTED
EDGE DOMINATING SET (the generalization of EDGE DOMINATING SET where weights are
assigned to the edges of the input graph and the objective becomes to determine a minimum
total-weight edge dominating set), the ratio of which was later improved to 2 by Fujito
and Nagamochi [14]. Improved results have also been obtained in sparse graphs [5] and
in dense graphs [19]. However, providing an approximation algorithm with ratio (strictly)
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smaller than 2, or proving that such algorithm does not exist (under some likely complexity
hypothesis) still remains as an open problem. Chlebik and Chlebikova [8] proved that it
is NP-hard to approximate it within any factor better than %. Assuming the unique game
conjecture (UGC), [19] showed some inapproximability results on dense instances, a corollary
of which is that for every € > 0 EDGE DOMINATING SET is inapproximable within ratio 3/2—¢
(under UGC).

In terms of parameterized complexity, EDGE DOMINATING SET, with parameter k being
the size of the solution, is fixed-parameter tractable (FPT). Fernau [12] gave an O*(2.6181%)-
time algorithm that has been subsequently improved by Fomin et al. [13] downto O*(2.4181%)
and by Binkele-Raible and Fernau [1] downto O*(2.3819%). Currently, the best result is
the O*(2.3147%)-time algorithm by Xiao et al. [21]. When the graph is restricted to be
of maximum degree 3, the result can be further improved to O*(2.1479%) [22]. There is
also a long list of contributions to exact algorithms for EDGE DOMINATING SET, such as
the O*(1.4423!V1)-time algorithm by Raman et al. [18], the O*(1.4082/VI)-time algorithm by
Fomin et al. [13], the O*(1.3226/V)-time algorithm by Rooij and Bodlaender [20], and finally
the O*(1.3160!V1)-time algorithm by Xiao and Nagamochi [23].

In this paper, we study parameterized approximation for EDGE DOMINATING SET. A
parameterized approximation algorithm is a technique combining parameterization and ap-
proximation for getting approximation algorithms with fixed-parameter running time. In
this way, we may be able to achieve approximation ratios unachievable (or yet unachieved)
in polynomial time via fixed-parameter running times that are smaller than the running
times of exact algorithms. We may also be able to use this technique to handle W[1]-hard
problems which unlikely have fixed-parameter tractable algorithms. The interested reader
can be referred to [4, 10, 17| for more about this issue. Let the parameter k be the size
of the solution to our problem. In the FPT framework, we want to design algorithms with
running time f(k)[I|°(1) that decide whether there is a solution of size at most k or not,
where f is a computable function. In approximation algorithms, we are interested in de-
signing polynomial-time algorithms to find a solution of size g(k), where g is a computable
function. In parameterized approximation, we wish to design algorithms with running time
f(E)|I|°M that either find an approximate solution of size g(k) or report that there is no
solution of size k. Clearly, any fixed-parameter tractable problem allows parameterized ap-
proximation algorithms for any computable function g. However, this may not hold for
W][1]-hard problems. For example, the dominating set problem (find a set S of k vertices in
graph G = (E,V) such that each vertex in V' — S is adjacent to at least one vertex in S)
does not allow parameterized approximation algorithms for g(k) of the form k + ¢ with fixed
constant ¢ [10]. For EDGE DOMINATING SET, we are interested in designing parameterized
approximation algorithms, which produce edge dominating sets of size at most (1 4 €)k (or
assert that there is no solution of size k) in f(k,)|I|°!) time for some computable function f.
Of course, the goal is to find such an algorithm for a function f which is smaller than the
O*(2.3147%)-time (exact) FPT algorithm by Xiao et al. [21]. This issue has already been con-
sidered for other FPT problems, in particular for the MIN VERTEX COVER problem. In |2, 3|
several parameterized approximation algorithms running faster than (exact) FPT algorithms
and achieving ratios better than the ratio 2 (achievable in polynomial time) are given. Note
that [3] asks as open question if similar results can be achieved for EDGE DOMINATING SET.

The remaining parts of this paper are organized as follows. In Section 2, we give an
improved hardness result for EDGE DOMINATING SET by showing that it is not 5v/5 — 10 +
€ < 1.18 approximable in polynomial time unless P=NP. In Sections 3 and 4 we tackle
parameterized approximation algorithms, answering positively to the open question in [3].
More precisely, in Section 3, we first give a simple algorithm to present the basic ideas, and
then improve this algorithm in Section 4. We conclude the article in Section 5 by devising a



parameterized algorithm for EDGE DOMINATING SET where the parameter is the vertex cover
number of the graph.

2 An improved polynomial-time lower bound

In this section, we give some new hardness results for EDGE DOMINATING SET, which are
based on a reduction preserving approximation from the famous MIN VERTEX COVER problem
(find a minimum subset S of vertices in a graph such that each edge has at least one endpoint
in S) to EDGE DOMINATING SET.

Before, recall some existing results between MIN VERTEX COVER and EDGE DOMINATING
SET. The first two are rather folklore: there exist two simple approximation preserving reduc-
tions between MIN VERTEX COVER and EDGE DOMINATING SET transforming a polynomial-
time p-approximation algorithm for one of them into a polynomial-time 2p-approximation
algorithm for the other one. Let G = (V, E) be a simple graph and let M* C E and C* C V
be a minimum edge dominating set and a minimum vertex cover of G, respectively. We will
use 7 = |C*| to denote the size of a minimum vertex cover of G. Since, it is well known that
M* can be supposed to be a maximal matching, we get 7 = |C*| > |M*|. Also V(M*), the
set of endpoints of M*, forms a vertex cover of G and then 2|M*| > 7. Thus:
T

T |M| > 5

(1)
Now, from any p-approximation algorithm for MIN VERTEX COVER given by V', we can
polynomially find an edge dominating set E’ by taking at most one arbitrary edge incident
to each vertex of V/. Thus, using (1) we get: |E'| < |V'| < px 7 < 2p|M*|. Conversely, from
any p-approximation algorithm for EDGE DOMINATING SET given by M’, we can construct a
vertex cover V' = V(M) of G by taking the endpoints of M’. Hence, using (1) we deduce:
V| =2|M'| < 2p|M*| < 2p x T

In Theorem 1 just below, we improve the expansion 2p of the reduction to 2p— 1. Dealing
with weighted versions of these two problems, it is proved in [6] that weighted MIN VERTEX
COVER can be approximated as well as weighted EDGE DOMINATING SET.

Theorem 1. For any p > 1, if there is a polynomial-time p-approximation algorithm for
EDGE DOMINATING SET, then there exists a polynomial-time (2p—1)-approzimation algorithm
for MIN VERTEX COVER.

Proof. We will show that for each instance G = (V,E) of MIN VERTEX COVER, we can
construct at most |V instances G; = (V;, E;) (where |V;| < 3|V|) of EDGE DOMINATING SET
such that a (2p — 1)-approximation solution to G can be found in polynomial time based on
a p-approximation solution to each G;. For each positive integer 1 < i < |V, the graph G; =
(Vi, E;) is a graph constructed from G in the following way: V; = V U{q;, a} cjed{l,...,i}}
and E; = EU F; U H;, where F; = {(a;,d}) : j € {1,...,i}} and H; = {(v,a;) :v € V,j €
{1,...,i}}. Informally, G; contains a copy of G, an induced matching F; and a complete
bipartite graph between the vertices of G and the left part of the induced matching F;. In
Figure 1 an illustration of the construction of G; for ¢ = 2 is given.

We first show that a p-approximation solution to G, implies a (2p — 1)-approximation
solution to G, where 7 is the size of a minimum vertex cover of G.

Let MY and C; be a minimum edge dominating set and a minimum vertex cover of G
respectively. Since G, contains 7 independent edges F,, we know that |[M*| > 7. On the
other hand, a perfect matching between C* and {a1,---,a.} is an edge dominating set of
size T of G,. We so have:

Mz = 7. 2)



Figure 1: An illustration of the construction of G; for i = 2

Let M, be a p-approximation edge dominating set of G, and U, = V(M,) N V(G). We can
see that U, is a vertex cover of G. Since M, is an edge dominating set of G, and F; is a
set of 7 independent edges in G, we know that V(M) contains at least 7 vertices in V' (F}).
Therefore, we have:

\U;| < 2|M,|— . (3)
By combining the fact that |M;| < p| M| together with (2) and (3), we get:
U] < 21M,| = 7 < 20 MF| — 7 = (20— . @)

Therefore, U is a vertex cover of size at most (2p — 1)7 of G.
However, we cannot construct G, in polynomial time directly, since it is NP-hard to
compute the size of the minimum vertex cover 7. To handle this problem, we compute M;

and U; for each G; with ¢ € {1,--- ||[V(G)|}, and return U« such that |U| < minL‘;(lG)\{]Ui]}
and i* € {1,--- ,|V(G)|}. Hence, by (4), U;« is a vertex cover of G with size |U;+| < |U;| <
2p—1)r. 1

It is NP-hard to approximate MIN VERTEX COVER within any factor smaller than 10/5 —
21 by a result of Dinur and Safra [9]. By this result and Theorem 1, we get the following
corollary.

Corollary 1. For any € > 0, EDGE DOMINATING SET is not (5v/5 — 10 4 ¢)-approzimable in
polynomial time unless P = NP.

Note that under UGC, since MIN VERTEX COVER cannot be approximated to within 2—e¢
for any ¢ > 0 [16], we get that for any € > 0, EDGE DOMINATING SET is not (3/2 — ¢)-
approximable in polynomial time, which is the same lower bound recently achieved in [19].

3 A simple parameterized approximation schema

In this section, we design a simple parameterized approximation schema for EDGE DOMINAT-
ING SET. As mentioned in Introduction, this algorithm contains the basic idea upon which
the improved algorithms in Section 4 is built.



3.1 CONSTRAINED EDGE DOMINATING SET

First of all, we introduce a CONSTRAINED EDGE DOMINATING SET problem and present some
properties for it. Given a graph G = (V, E) and a prescribed subset V3 C V' of non-isolated
vertices, an edge dominating set M is called a constrained edge dominating set of G, if
Vi C V(M). In the CONSTRAINED EDGE DOMINATING SET problem, we are asked to find a
constrained edge dominating set of minimum size. CONSTRAINED EDGE DOMINATING SET
is a natural generalization of EDGE DOMINATING SET where Vi = (). We show a simple
approximation algorithm for CONSTRAINED EDGE DOMINATING SET.

Lemma 1. For an instance (G,V}) of CONSTRAINED EDGE DOMINATING SET, let M; be a
mazximum matching in the induced graph G[Vi], Ms be a mazimum matching in the induced
graph GIV — V1], and M3 be a set of |Vi —V (My)| edges such that each edge in Ms is incident
on a different vertex in Vi — V(My). Edge set M' = M; U My U Ms is a constrained edge
dominating set with size |M'| < (2 — p1)v, where v is the size of a minimum constrained edge
dominating set M* and p1v is the number of edges in M™* with both endpoints in V7.

Proof. Let aq,as and ag be, respectively, the numbers of edges of M* with both endpoints
in V1, one endpoint in V; and the other one in V' — Vj, and both endpoints in V' — Vj. Since
Vi C V(M*), we have 2a; + oo = |V1| = 2| M| + |M3|. Since M; is a maximum matching
in G[Vi], |[Mi| > a;. Note finally that for each edge in My at least one of its endpoints has
to be in V(M*), and then ag + 2ag > |Ma].

From these inequalities, we obtain 2| M|+ |Ma|+|Ms| < 2|M*|, and then |[M'| < (2—p1)v
since [My| > a1 = p1v. B

Note that Lemma 1 is a special case of Lemma 3 in the next section (but we prefer to
give a proof of both lemmas for readability).

Lemma 1 implies a 2-approximation algorithm for CONSTRAINED EDGE DOMINATING SET
and a possible way to design parameterized approximation algorithm for EDGE DOMINATING
SET. Note that we can first find a vertex set V; such that V; C V(M*) for some minimum
edge dominating set M* of G and then use the algorithm in Lemma 1 to get an approximation
algorithm for EDGE DOMINATING SET. The approximation ratio is related to the size of Vi:
the larger the set Vi, the better the ratio.

3.2 A parameterized approximation schema for EDGE DOMINATING SET

As already mentioned in introduction, deciding whether a graph contains an edge dominating
set of size k can be done in O*(2.3147%) time by the parameterized algorithm presented in [21].
Here we design a parameterized approximation algorithm for it. It is based on the following
fact:

Suppose that there are a set Vi and an edge dominating set M such that Vi C
V(M), |M| < k and |Vi| = k+ p'k. Then the number of edges in M that have
both endpoints in Vi is at least p'k.

Indeed, if there were o < p'k edges in M with both endpoints in V;, then the number of
vertices in V7 would be at most 2a + (|[M| — ) < |M|+ a < k+ p'k = |V4], a contradiction.
Together with Lemma 1, this means (taking M = M*) that the computed edge set M’ is of
size at most (2 — p')k.

Then, our goal is to find such a large set V1. As in several articles devising FPT algorithms
for EDGE DOMINATING SET, we can use the fact that V(M™*) for a minimum edge dominating
set M™* is a vertex cover of G. For each edge in the graph, at least one endpoint of it is
in V(M*). Then, we can use a branching algorithm to construct a set Vj of size up to



k+ p'k such that V; is part of the vertex set of a minimum edge dominating set V(M*) in G.
We iteratively select an edge (a,b) in the current graph and branch into two branches by
including either a or b into V; and delete it from the graph until the size of V; is k + p'k or
the remaining graph has no edge. This process produces at most 25+7'F vertex sets V; of size
at most k + p'k in O*(25+#'%) time and at least one of them is contained in V (M*). For each
of the vertex sets V7, we use the algorithm in Lemma 1 to compute M’ and return a smallest
one. The returned edge set is an edge dominating set of size at most (2 — p/)k if |[M*| < k
(note that if in a leaf of the search tree we have a set Vi C V(M*) with |V4| < k + p'k,
this means that the remaining graph is empty and the output solution is then optimal by
Lemma 1). By taking p’ =1 — p, we deduce the following result.

Lemma 2. For any p > 0, there exists a (1 + p)-approzimation algorithm to k-EDGE DOMI-
NATING SET running in O*(22=P)k) time for 0 < p < 1.

When p = 0, Lemma 2 implies that k-EDGE DOMINATING SET can be solved in O*(4%)
time, which is far away from the current best parameterized algorithm of running time
0*(2.3147%). To reduce the gap, we will improve the running time bound of our param-
eterized approximation schema in the next section.

4 Improved parameterized approximation schemata

In the algorithm presented in Section 3.2, in order to search V; we may need to branch on
each edge. One way to reduce the running time is to reduce the number of branchings in
the algorithm. This approach has been used for (exact) FPT algorithms to obtain improved
running times. We will use some of these improved branchings, but we need to combine them
with approximability. We first deal with these approximation properties in Section 4.1 and
then present the improved parameterized approximation algorithm in Section 4.2.

4.1 More approximation algorithms for CONSTRAINED EDGE DOMINATING
SET

Given a graph G = (V, E). We consider a partition (V1, Vo, V3) of the vertex set V' such that:
e Each connected component of the induced graph G[V3] is a clique; and
e There is no edge between a vertex in V5 and a vertex in V3.

Once the set Vi is given, we can find in linear time the set of connected components of
G[V — V1] which are cliques and which constitute V5. Let us now give more properties of our
problems based on this partition.

We consider an instance (G = (V,E),V;) of CONSTRAINED EDGE DOMINATING SET.
Let M* be a minimum constrained edge dominating set of (G = (V, E), V1) and v = |M*|.

We denote by oy (resp., ag, ag) the number of edges in M* with both endpoints in VUV,
(resp., with one endpoint in V; and one in V3, both endpoints in V3). This partitions the
edge set E into three sets, hence, v = a1 + as + as.

Moreover, since the connected components of G[V2] are cliques and V(M™) is a vertex
cover of G, we know that V(M*) contains at least |C;| — 1 vertices in each clique C; of G[V3].
Assume that there are p cliques Cy, -+ ,C, in G[V2] among which ¢ cliques Q1,--- ,Q, are
such that V(Q;) C V(M*). Then V(M*) NV, = |Va| — p+ ¢. In other words, we have:

200 + g = [V(MT) N (Vin V)| = [Vi| + [Va| = p+q. (5)



Input: A graph G = (V = V3 UV, U V3, E) with the above partition of V.
Output: An edge dominating set M such that V; C V(M).

1. Add a vertex ¢ to each clique C; in G[V3], to create a clique of size |C;| + 1.
Let V3 = {c|,--- ,¢,} be the set of added vertices.

2. Compute a maximum matching M; in G[V; U Vo U V).

3. While there is an edge e = (u,c}) in M; with ¢, € V5 and there exists a
neighbor w of u not saturated by Mj, replace e with (u,w) in M.

4. Let Mj be the set of edges in M; with an endpoint in V;.
5. Compute a maximum matching My in G[V3].

6. For each unsaturated vertex in Vi, select an arbitrary edge incident on it.
Let Ms be the set of such edges.

7. Output M = My U My U M3 — M{

Figure 2: Algorithm ApproxPoly1l

We are ready now to specify an approximation algorithm for CONSTRAINED EDGE DOMINAT-
ING SET (Algorithm ApproxPoly1 in Figure 2), which is a generalization of the algorithm in
Lemma 1.

Lemma 3. Edge set M =ApprozPolyl(G) is a constrained edge dominating set of (G, V1)
with size |M| < (2 — p1)v, where p1v = aq is the number of edges in M* with both endpoints
mn ViU Vs,

Proof. We first show that M is a constrained edge dominating set. It is easy to see that
M' = My U My U Mj is an edge dominating set and each vertex in V; will appear in at least
one edge in M; U M3. When we remove an edge e = (u, ;) € M] with ¢, € V3 from M’, we
know by Step 3 of the algorithm that every other neighbor w of u is saturated by M;. Hence,
the edge (u,w) incident to w is still dominated and then M is still an edge dominating set.
Furthermore vertex w is not in V7 and we know that M is a constrained edge dominating set.

Now we prove the claim on the size of M. By the construction, we know that the size of
the maximum matching in G[V3 UV, U V4] is at least a; + p — ¢ (take the a; edges of M* in
V1 U V,, and add the p — ¢ edges between an unsaturated vertex in a clique of G[V3] and the
corresponding vertex ¢}). Then, we get |M;| > oy +p —gq.

Since each edge in M; — M/ contains two vertices in V3 UV, each edge in M3U M/ contains
one vertex in V7 U V5, and all of these vertices are different, it holds that that

2| My |+ [Ms| — [Mi| = 2(|My| — [Mi]) + (|Ms| + [Mi]) < [V + [Vl
Therefore:
[My|+ | Ms| = M| < Vil + Vol —p+g—a1 <20+ oz —ar =ar+a2. (by (5)) (6)
Note that there are at most as + 2«3 different vertices in V(M*) N V3. Then:
|Ma| < ag + 2a3. (7)

Summing (6) and (7), we get |M| = | My |+ |Ms|+|Ms|—|M]| < a14+2a2+2a3 = (2—p1)v. A



Input: A graph G = (V = V3 U Vo U V3, E), where each component in G[V3] is a
path of length 2.
Output: An edge dominating set M such that V4 C V(M).

1. Add a vertex ¢} to each clique C; in G[V3], to create a clique of size |C;| + 1.
Let V3 = {c},--- ,c,} be the set of added vertices.

2. Compute a maximum matching M; in G[V; U Vo U Vg U V5], where V3 is the
set of central vertices of paths in G[V3].

3. While there is an edge e = (u,c};) in M; such that ¢; € V and there exists
a neighbor w of u not saturated by My, then replace e with (u,w) in Mj.
4. Let M{ be the set of edges in M; with an endpoint in V5.

5. For each path where the central vertex is not saturated by M, take one edge
in this path.
Let My be this set of edges.

6. For each unsaturated vertex in Vi, select an arbitrary edge. Let M3 be the
set of such edges.

7. Output M = My U My U M3 — M{

Figure 3: Algorithm ApproxPoly2

Note that Lemma 1 is a special case of Lemma 3 where the vertex set V5 is an empty set.
Lemma 3 shows that we do not need to branch on each clique component in G[V — Vi] in
order to search the vertex set of a constrained edge dominating set.

To improve the running time of our parameterized approximation schema, we also need
to consider a particular case of the graph where in the partition (V1, Vs, V3) each connected
component of G[V3] is a path of length 2.

Let N be the number of these paths in G[V3]. Considering a minimum constrained edge
dominating set M*, we denote by:

e N; the set of paths in G[V3] such that there is an edge in M* between a vertex in Vj
and the central vertex of the path; set ny = |Ny|;

e N, the set of paths in G[V3] such that there is an edge of the path in M*; set ng = |Na;
and

e Nj the set of remaining paths in G[V3], i.e., the set of paths of length 2 whose at least
one endpoint belongs to V/(M*); set ng = |N3]|.

Observe that some paths of G[V3] may be counted twice (one with N; and one with N2); so,
N < ni+ no+ n3. Note that for each of the ng remaining paths, M™* has to take two edges
(between V; and the endpoints of the path) to cover the edges of the path. In other words,
a9 = 2n3 + nq. Moreover, by definition, no = ag.

Consider Algorithm ApproxPoly2 (Figure 3) on an instance (G, V) of CONSTRAINED
EDGE DOMINATING SET.

Lemma 4. Edge set M =ApprozPoly2(G) is a constrained edge dominating set of (G, V1)
with size |M| < v+ ns.



Proof. The fact that M is a constrained edge dominating set can be obtained similarly as in
the proof of Lemma 3. We only need to prove the claim on the size of M.

Let us denote by ;1 (resp., 72) the number of edges of M; that have both endpoints in
V1 U V4 (resp., one endpoint in Vj, the other one being a central vertex of a path in V3).
Then, [Mi| = 7+ + [M]].

By the construction, we know that the size of the maximum matching in G[V; UVoUVyUVZ]
is at least a1 +n1 +p—¢q. Then we get: | M| =y +v2+|M{| > a1 +n1+p—q. We also have
291+ | M{ |+ | My| < |Vi|+|Val, which is equivalent to y1-+|Ma| < [V|+|Va|—71—72— | M]].
Therefore:

1+ |Ms| < |Vi|+|Vo|—=p+g—a1—n1 <201 +as—a;—ny =a;+as—ng  (by (5)) (8)
Note that y3 + |[Ma| = N, N < ny +n2 +ng =n1 + ag + ng and v = a1 + ay + az. We get:
| M| |Mi| + [ Ma| + |Ms] — [M{| = 71 + 72 + |[Ma| 4 [M3] = v + [M3| + N

o +oag —ny+ N (by (8))

VvV + ns.

<
<
that concludes the proof of the lemma. Hl

4.2 An improved parameterized approximation schema

Now we are able to give the improved parameterized approximation schema ApproxFPT for
k-EDGE DOMINATING SET as well as k-CONSTRAINED EDGE DOMINATING SET. As explained
earlier, the principle is to search the vertex set V; by using some ‘good’ branchings. Then, in
each leaf of our search tree, we will use the approximation algorithms devised in Section 4.1
(either directly, or after some other steps).

We consider a k-constrained edge dominating set (G, V1) with partition I = (V1, Va, V3)
of the vertex set. Let t = |Vi| + |Va| — p (where p is the number of cliques in G[V3]). When
t > (2—p)k (0 < p<1), there are at least (1 — p)k edges in any optimal solution M* with
both endpoints in V; UV,. Therefore, Lemma 3 implies that a (14 p)-approximation solution
to k-CONSTRAINED EDGE DOMINATING SET can be found in polynomial time, if ¢t > (2 —p)k.
We will use a branch-and-search method to move vertices from V3 to V3 U V4 and therefore to
increase the parameter ¢. Note that for each vertex v € Vs, it is either in V' (M™*) or not. For
the second case, all neighbors of v should be in V/(M*) since V(M™*) is a vertex cover of the
graph. Then, we can branch on v by either moving v into Vj (this means v € V/(M*)) or by
moving the neighbor set N(v) of v in G[V3] into V; (this means v & V(M™*)) and moving all
newly created clique components in G[V3] into V5. When v is a vertex of degree > 3 in G[V3],
we can branch with recurrence:

Ct)<C@t+1)+C(t+3), (9)

where C(t) is the worst size of the search tree in the algorithm when the current value of
|[Vi| 4+ |Va| — p is t. When the maximum degree of G[V3] is at most 2, we may only get:

Ct) <C(t+1)+C(t+2),

by branching on a maximum degree vertex. In fact, there are some techniques to branch
on a component H in G[V3] with a recurrence not worse than (9), if H is not a path of
length 2 |20, 23, 21].

For a path pipopsps ... of length at least 3, we can branch on p3 by including it into V}
or including its neighbors py and p4 into Vi. For the first branch, we will also move a clique
component p;ps into Vo. Then we can get:

Ct) < C(t+2)+C(t+2), (10)



Input: A graph G = (V =V U Vo U V3, E), an integer k > 0 and a real number
0<p< L

Output: A (1 + p)-approximation solution M to k-CONSTRAINED EDGE DOMI-
NATING SET such that V; C V(M).

1. While ¢ < (2 — p)k and there is a connected component of V5 which is not
a 2-path, do a good branching.

2. If t > (2 — p)k, compute ApproxPolyl(G).

3. Elseif p > 1/2, compute ApproxPoly2(G).

4. Elseif t > (1 — p)k, do
(a) While t < 2(1 — p)k and V3 # ), do branch on a 2-path in G[V3] by

including either its central vertex or its two endpoints into V7;

(b) Compute ApproxPoly2(G).

5. Elseif N > (1 — p)k, then compute ApproxPoly2(G).

6. Elseif N < 2(1 — p)k/3, branch into 2 branches by considering the 2V
subsets of paths. For each subset S, include the central vertex of paths in S

into V1, include the two endpoints of the paths not in S into V1, and compute
an optimal solution (now Vi = ().

7. Else consider any subset S of the set of the N paths in G[V3] with size |S)|
at most (1 — p)k — N. For each such subset S, include the two extremities
of the paths in S in Vj, and compute ApproxPoly2(G).

8. If an optimal solution among all the leaves in the search tree is of size at
most (1+ p)k, then return it. Else report that there is no solution of size at
most k.

Figure 4: Algorithm ApproxFPT

which is better than (9).

For a cycle of length at least 5, we branch on an arbitrary vertex in the cycle and then
branch on the generated paths in each branch and finally we can get a recurrence not worse
than (9). For a cycle cjcacsgey of length 4, we can also branch with (10) by including either
{c1,c3} or {co,cqa} into V3. For the details about the proof of this fact, reader is referred
to [20, 23, 21].

It turns out that only for a component of path of length 2 in G[V3] we cannot branch
with a recurrence as good as (9). We will call a branching with recurrence at least as (9) a
good branching.

The main steps of the improved parameterized approximation schema ApproxFPT are
listed in Figure 4.

Theorem 2. Let p* ~ 0.21 be such that 1.466 = 1.6190—") Then, for any p with 0 < p < 1,
ApproxFPT is a (1 + p)-approzimation algorithm running in time O*(2.3740=PF) if p < p*
and in time O*(1.466C=PF) if p > p*.

Proof. In order to prove the running time claimed, we will prove more generally that in an
instance I the algorithm works in time:

o O*(1.4662Pk=tD)Y if p > p*;

10



O0*(1.466(1=Pk=t1) 1 619(1=P)k) if p < p*.

Then, the result follows since ¢(I) > 0 and 1.466 x 1.619 < 2.374.
Note also that the positive root of 1 = 27! + 273 is 1.4655... < 1.466 and that of

1=g"1

+ 272495 1.6180... < 1.619.

Consider so the different steps of the Algorithm ApproxFPT:

Step 1: when branching, in one branch (1 — p)k — ¢(I) reduces by at least 1, and in the
other branch (1 — p)k — ¢(I) reduces by at least 3, so the recurrence is verified.

Steps 2 and 3: the running time is polynomial, which verifies the claim since when we
branch we have t(I) < (2 — p)k (the validity for p < p* follows from the fact that in
this case 1.466 < 1.619=7 hence a polynomial is indeed O*(1.4667%1.619(1=P)F)).

Step 4: we directly compute the running time in this node. We build a tree where at
each branching t¢(I) increases by 1 in one branch and by two in the other branch. We
stop when ¢(I) reaches 2(1 — p)k (or before if V3 becomes empty). Then, the number of
leaves in this tree is (at most) 1.6192(1=P)%=t) For p > p*, 1.619'~° < 1.466; so, the
bound on the running time is valid. For p < p*, since t(I) > (1—p)k, 1.61920—P)k—HI) <
1.619(=,)F1 466(1=P)k—tI) Then, the running time in this node verifies the claim.

Step 5: the running time is polynomial and verifies the claim.

Step 6: the running time is O*(220-Pk/3) = O*(1.6(1=P)*) which verifies the claim
since in this step t(I) < (1 — p)k.

Step 7: letz—Z(l 2 N(z) The running time is O*(z). Let P = (1— )k: N. Then
=0 (WP P). But P = (1 —p)k — N < (1 — p)k/3. Then z < 1.619(-0Fk [21].

=0

This verifies the claim since ¢(I) < (1 — p)k.

Let us now prove the approximation ratio claimed. Since Algorithms ApproxPoly1(G) and
ApproxPoly2((G) will return a constrained edge dominating set, ApproxFPT(G, k, p) will also
return a constrained edge dominating set.

In order to prove the ratio claimed, we assume that the size v of the optimal solution is
not greater than k and consider all the possible cases.

Ift = |Vi|+|Val|—p = (2—p)k, then we have 2a1 + g >t > a3 +as+as+(1—p)k and,
consequently, a; > (1 — p)k. Using Lemma 3, we get |ApproxPolyl(G)| < (14 p)k.

Assume p > 1/2. If ap > k, then the size of the optimal solution is greater than k.
Else, we have that |ApproxPoly2(G)| < k +n3 < k+ az/2 < 3k/2 < (1 + p)k.

In Step 4, we consider the two stop conditions V3 = ) and ¢ > 2(1 — p)k in Step 4(b).
For the former, we know from Lemma 4 that ApproxPoly2(G) returns an optimal
solution. For the latter, in the current graph we have k + a1 > t > 2(1 — p)k, and
20k >k —oa1 > ay (by k > v > a3 +az). Then ng < az/2 < pk and Lemma 4 gives
|ApproxPoly2(G)| < k+n3 < (1 + p)k.

In Step 5, we have N > (1 — p)k. But n; + na + 2n3 < v < k, meaning that nz <
k— N < pk. Again, Lemma 4 gives |ApproxPoly2(G)| < k —|— n3 < (14 p)k.

In Step 6, for each branch V3 = () and ApproxPoly2(G) returns the optimal solution
under the current condition.

11



Input: A graph G = (V, E).
Output: A minimum edge dominate set.

1. Compute a minimum vertex cover V* of G by using the algorithm in [7],

and let S* =V \ V*.

2. For k =1 to (1 — a)7 determine whether there exists an edge dominating set
of size at most k by using the algorithm in [21]. If any, output the minimum
edge dominating set and quit.

3. Otherwise, for each subset V7 of V* of size at most a7:
(a) Let Vo =V*\ V1, S1 = N(Vi)NS*, and Sy = S*\ Sy;
(b) Compute a maximum matching M (V7) in G[Va U S];

(c) For each vertex in VU S unsaturated by M (V}), take one edge incident
to this vertex. Together with M (V3), this gives a set M’(V}) of edges.

4. Output a minimum edge dominating set computed in Step 3 (note that some
of the edge sets M'(V7) are not edge dominating sets).

Figure 5: Algorithm FPT,

e For the last step, let G be the graph before executing any operations in Step 7 and ns
be the size of N3 in G. Let S; be N3 if [N3| < (1 — p)k — N, and S; be a subset
of N3 of size (1 — p)k — N otherwise. Then, S; is a subset of size at most (1 — p)k — N
that will be considered in Step 7. We only need to show that in the branch where S
is considered, we can get a feasible solution within the approximation ratio. Let G’
be the graph after removing Sy out of V3 (before running ApproxPoly2(G)) in Step 7
and n/ be the size of N3 in G’. By definition, we have that ng + N < v < k, and
then ng < k — N. Note that ny < max(0,n3 — ((1 — p)k — N) < pk. Therefore,
|ApproxPoly2(G')| < k+n4y < (1+ p)k.

The proof of the lemma is now completed. Il

5 Parametrization by the vertex cover number

Since the size of any vertex cover in a graph is at least the size of any matching in this
graph, any parameterized algorithm for EDGE DOMINATING SET working in O(f(k)[I|M)
time also works in O(f(7)|1|°M) time, where 7 is the size of the minimum vertex cover of
the graph. Hence, it is possible to solve EDGE DOMINATING SET within time O*(2.31477) by
using the algorithm in [21]. In this section we show that this result can be improved down
to O* (1.8217).

To this aim, let us consider the algorithm FPT, presented in Figure 5, which outputs
a minimum edge dominating set in graph G. Let o ~ 0.2864 be such that 2.3147% =

-1
(aa(l_a)lfa > .
Theorem 3. FPT.(G) computes a minimum edge dominate set in O*(1.8217) time.

Proof. We first show that the algorithm returns a minimum edge dominating set. If there
exists an edge dominating set of size at most (1 — a)7(G), it will be found in Step 2 of
the algorithm. Suppose now that this is not the case, and let M’ be an arbitrary maximal
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matching. Note that each edge of M’ has at least one of its endpoint in V*. In other words,
[V*NV(M')| = |M'|, meaning that

VAVM) < V] = M < o

Therefore, the set V*\ V(M’) is of size at most ar and will be considered in Step 3. We
look at the case that Vi = V*\ V(M'). Now Vo = V* NV (M'). Moreover, we have the two
following properties:

1. V5 U 57 is a vertex cover of G
2. Vo U S, is included in V(M').

To see the first property, remark that Sy is an independent set. Moreover, V] is also an
independent set (if there were an edge in V; then, one of its endpoints should be in V(M’),
a contradiction with the considered case). Finally, there is no edge between a vertex of V;
and a vertex of Sy by definition of 5.

We already know that Vo C V(M’). Each vertex v € S; is adjacent to a vertex w € ;.
Since w ¢ V(M'), we know that necessarily v € V(M’). The second property follows.

From the first property we deduce that the set M’(V7) is an edge dominating set. Let
my1 = |M(Vy)|. We have |M'(V1)| = mq1 + (|V2| + |S1] — 2ma). But M’ has m) < mq edges
with both endpoints in V5, U S;. By the second property, |M'| > m/| + (|Va| + |S1]| — 2m)) >
mi+(|Va|+]S1|—2mq) = |M'(V1)|, which implies that M’(V7) is a minimum edge dominating
set.

We now analyze the running time of Algorithm FPT,. Step 1 can be done in O* (1.27387)
time [7]. If an edge dominating set has been found in Step 2, then the running time is:

o* <2.3147(1—a)7> = 0" (1.8217).

Otherwise, by Stirling’s Formula, we know that the number of subsets of V* of size at most ar

is O ((W)T) — 0*(1.8217). W

6 Conclusion

We provide in this article new insights on the approximability of EDGE DOMINATING SET. Our
parameterized approximation algorithm first apply some steps of a branching algorithm, and
then exploit the specificity of obtained instances to get an approximate solution on them. This
is rather different from the notions of fidelity preserving transformation recently introduced
in [11] where informally the instance is first reduced in an approximate way (and then an
(exact) FPT algorithm is applied). In particular, our approximation algorithm relies on the
branching steps; this is not the case in the approach of [11] and applying this latter approach
for EDGE DOMINATING SET is an interesting open question mentioned in [11]. Moreover,
our algorithm has complexity O*(%l,f) for a ratio p where 7, = 2.374 (exact algorithm) and
Y9 = 1.466. Since achieving a ratio 2 is polynomial, one could hope to find approximation
algorithms where v, — 1 when p — 2, which we leave as open question.
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