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ABSTRACT
A method to infer the bed elevation from glaciers surface measurements (eleva-
tion, velocity) and sparse in-situ thickness values is developed and assessed. This
inversion method relies on: a statistical model (Deep Neural Network) based on the
in-situ thickness measurements, the dedicated RU-SIA flow model (RU for Reduced
Uncertainty) natively integrating the surface measurements (altimetry, InSAR) and
advanced Variational Data Assimilation processes. The RU-SIA model takes into
account basal slipperiness and non uniform vertical profiles (including thermal gra-
dients) via an unique dimensionless parameter. The inversion method is robust; it
may be applied to very poorly covered and uncovered areas during airborne cam-
paigns as soon as flows are moderately sheared. Numerical inversions are performed
for some large East Antarctica Ice Sheet areas presenting surface velocities ranging
from ∼ 5 to 80 m/y. Estimations are provided in uncovered areas during airborne
campaigns hence presenting up to now highly uncertain bed elevation values. The
estimations are valid for wave lengths greater than ∼ 10h̄ due to the considered
shallow flow assumption, with a resolution at ∼ h̄ (h̄ a characteristic thickness
value). Detailed analysis and comparisons with the bed topography BedMap2 are
presented.
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1. Introduction

Bed topography elevation is a fundamental data to set up ice-sheets flow models;
moreover if combined with the surface topography measurements (acquired by
altimetry) it straightforwardly provides the ice volume. In Antarctica and Greenland,
ice thickness measurements are available along airborne radio-echo sounding tracks
see e.g. CReSIS RDS database 1. The current databases are particularly consequent
in fast ice costal stream areas; on the contrary they are generally very sparse inland
and may be even nonexistent deep inland, see [1,2] and references therein. In other
respects, numerous satellites have provided accurate measurements of ice sheets
surfaces: altimeters provide surface elevation H at ≈ ±20 cm for 1 km2 pixels, see e.g.
[1,3], radar interferometers (InSar) provide surface velocity uH see e.g. [4]. Next the
challenge is to fill up the bed elevation values between the thickness measurements;
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this can be done by modelling and using all available data (i.e. dense and accurate
surface data plus the sparse in-situ ones).
The first model one naturally mind to is an ordinary Kriging, that is a Gaussian
process regression method providing the best linear unbiased prediction of the
intermediate values. Indeed it is the most classical method used in geo-statistics,
see e.g. [5]; it may be considered as a purely data-driven model. This statistical
interpolation method has enabled to provide bed elevation estimations e.g. deep
inland Greenland, see [6]. This technique leads to large uncertainties a dozen of km
away of the measurements, see e.g. [2].
BedMap2 [2], the current reference bed topography elevation in Antarctica, has been
built up from a compilation of consequent datasets. Inland between the measured
ice thickness values (mainly acquired during airborne campaigns), bed elevation
values are estimated by running the ArcGIS Topogrid routine (ESRI Ltd) based on
the Anudem algorithm, see [7]. It is essentially a thin plate spline technique solved
by smoothed finite differences, see [8]. Empirical uncertainties are provided, see [2]
for more details. For cells located less than 20km from a measurement, [2] suggests
that the extension error is an increasing function of the distance; beyond 20 km, the
error would be uncorrelated with distance. For cells located more than 50 km from
any measurement, the thickness estimation is based on gravity-field inversion, hence
accompanied with very large uncertainty (± ∼ 1000m according to [2]).
To reduce uncertainties on the bed topography estimations, combining physical-based
models with datasets is definitively a good direction. However more a physical model
is complex, more it requires detailed information to be solved, and more difficult it is
to invert. Thus the challenge is to employ a model sufficiently complex to be useful
but simple enough to lead to well-posed inverse problem (i.e. not leading to severe
equifinality issues) and stable (errors at input do not generate large drift of estimated
values). Indeed in inverse modelling and data assimilation, equifinality issues are
the common difficult pitfall to avoid, see e.g. [9] in different geophysical contexts.
Moreover if the datasets are a-priori meaningful and large enough, the use of Deep
Neural Networks is definitively a good direction too.
A comparison of inverse methods to estimate the ice thickness is presented in [10].
The comparison relies on numerous test cases representing a large spectrum of
ice flow regimes (but no ice-sheet is considered); one of the constraint is that no
prior thickness value is provided. The 15 inter-compared methods are classified by
resolution type and not by domain of validity (e.g. in function of the flow regime).
Numerical comparisons are presented; however no analysis on the equifinality issue(s)
is proposed (well-posed vs ill-posed inverse formulations).
In fast ice streams, the flow may be considered as plug flows (pure sliding); then
the inversion of the depth-integrated mass equation enables to fill up the gaps
downstream (and upstream) the measurements, see e.g. [11,12]. The measurements
locations (e.g. the flight tracks during airborne campaigns) have to be cross-lines
and relatively dense. Indeed it is well known that this transport mass equation is
intrinsically unstable to invert and it propagates errors, see e.g. [13] and references
therein. To locally damp this feature, artificial diffusion regularising the equation may
be introduced. The inversion of mass conservation proposed in [11,14], next combined
with surface measurements by Variational Data Assimilation (VDA) in [15,16],
has enabled to greatly improve the bed topography estimations under ice streams
along flow lines in Greenland [12,16]. [17] applies a Bayesian framework to provide
probability distributions of thickness assuming Gaussian covariance structures of
input data (the algorithm being equivalent to ordinary Kriging if no data is available).
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This Bayesian approach is particularly suitable for these inversions; however in this
case, the estimations are based on mass conservation only.
For fully sheared flows, the isothermal SIA flow model (with no slip at bottom) has
been inverted e.g. in [18,19], providing robust estimations but relevant in a restricted
flow regime only. In moderately sheared flows, slipperiness at bottom has to be
taken into account hence transforming the inverse problem to a severely ill-posed
one. Indeed in this case, the flow models present various unknown parameters
including the rate factor (internal deformation) and the basal slipperiness. [20]
inverts the 1D depth-integrated SIA equation with slipperiness and a shape factor
(modelling the 3D features of the flow) leading to an ill-posed inverse problem (the
inversions are performed by imposing empirical constant values for the few unknown
parameters). Based on the inversion of the complete hybrid SIA-SSA system PISM
[21], [22] proposes an empirical iterative method to fit with the surface elevation by
calibrating the bed elevation only. In [23] the SIA flow model with slipperiness at
bottom is inverted by distinguishing different regimes, enabling to define well-posed
inverse problems, hence providing stable and robust inversions. However the rate
factor (depending in particular on the thermal field) is supposed to be constant;
unfortunately this assumption is rarely satisfied.
Inland ice-sheets in mid-range surface velocity areas (≈ [10− 80] m/y in Antarctica),
the flows are moderately sheared; they cannot reasonably be modelled using uniform
models like plug flows or isothermal ones. In these areas, the measured surface
features (elevation and velocity) are the signature of both the slipperiness at bottom
and internal deformation; the latter depending on the constitutive ice behaviour and
thermal gradients. Therefore inverting the surface data in moderately sheared flows
is highly challenging.
The present study aims at solving this inverse problem: estimating the ice thickness
in moderately sheared flows while taking into account the complete physics of the
flow. To do so, a key ingredient is the Reduced Uncertainty SIA (RU-SIA) model
derived in [24]. This flow model is dedicated to the present data inversions by natively
integrating the surface measurements. It is a depth-integrated shallow flow model
respecting a ”well-balanced complexity” since 2D (and not 3D with mobile surface like
full Stokes) but quite complete since mass and momentum equations are considered.
Moreover the RU-SIA equation takes into account the non uniform internal properties
(in particular due to varying vertical thermal profiles) while it presents an unique
uncertain dimensionless parameter, see [23,24].
In other respects, inland moderately sheared flows have been poorly covered during
the airborne campaigns (they are difficult and expansive to overflight). Therefore the
chosen model needs to be stable and robust when inverted even in a lack of in-situ
data. This mathematical feature is as important as the model consistency; this feature
is all but trivial to obtain, see e.g. [13,23,25,26]. Moreover it would be highly valuable
that its inversion capabilities would be as insensitive as possible to the measurements
locations.
It is worth to point out that only an effective bed topography can be infered from the
surface signature. Indeed the glaciers flows act as low-band filters: the bed variations
are filtered by the flow with filtering features depending on the flow regime, see
[27–30] for detailed analysis. To a flow regime and a flow model corresponds a minimal
inferable wave length [28–30].
In the present study, a new inversion method to infer the bed elevation from surface
measurements (elevation, velocity) and sparse in-situ thickness values is developed,
assessed and applied to various inland East Antartica Ice Sheet (EAIS) areas. This
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inversion method relies on the RU-SIA equation developed in [23,24], the advanced
VDA process proposed in [24] and a Deep Neural Network (statistical learning). The
latter aims at estimating the unique dimensionless parameter of the RU-SIA equation
from the in-situ datasets (available along the flight tracks). The resulting inversion
strategy is the same as the one assessed in detail in [24] excepted the statistical
learning step which is an ordinary Kriging in [24] instead of a Neural Network
Residual Kriging (NNRK) algorithm [31,32] here. The two global inversion algorithm
versions are compared in two large EAIS areas.
It is worth mentioning that the present bed topography estimations may be applied
to any ice-sheets areas (or large ice-caps) as soon as the model assumption is
satisfied. The computed thickness estimations are valid at ≈ 10× h̄ wave length (h̄ a
characteristic thickness value). The present test areas have been selected since they
respect the domain of validity of the method; moreover estimating more accurately
the bed elevation in EAIS is not without interest. Indeed, global warming may
threaten EAIS stability, particularly around some of the present selected areas, see
e.g. [33].

The outline of the article is as follows. In Section 2, the Reduced Uncertainty (RU)
equation developed in [23,24] is recalled; its domain of validity is highlighted; uncer-
tainty range on its unique unknown dimensionless parameter is derived. Next, the
inversion method is detailed. It is developed in three steps: following [24], Step 1)
and Step 3) aim at inverting the RU-SIA equation by VDA (that is physical-based
inversions). Step 2) is a deep-learning process (ANNK algorithm), that is a purely
data-based inversion based on the in-situ data. In Section 3, the six considered EAIS
areas (named Antp, p = 1, .., 6) are presented; bases of the computations are high-
lighted; features of Bedmap2 estimations [2] are briefly recalled. Next each of the
three computational steps of the inversion method is analysed in detail. In Section
4, the robustness of the inverse method is assessed, in particular its sensitivity with
respect to the presence or not of additional flight tracks. These detailed analyses are
presented for the two most poorly covered areas. A conclusion is proposed in Section
5. The computed thickness estimations for the four other areas (all being in EAIS) are
presented in Appendix.

2. Method

In this section the method, algorithms developed to estimate the ice thickness h are
detailed. The estimations are based on both physical model inversions and statistical
learning. The physical-based inversions relies on the RU-SIA equation developed in
[24] and a VDA process. The data driven inversion is based on a Deep Neural Network
(DNN) aiming at estimating the single uncertain dimensionless multi-physics param-
eter γ of the RU-SIA equation. The global inversion algorithm is built up in three
steps; each step combining optimally data and the model. Data employed in the two
VDA processes are the surface ones (altimetry, InSAR and climatic term SMB) plus
the in-situ thickness measurements. Data employed in DNN are in-situ ones (available
along the flight tracks). The employed data are those available in BedMap2 database
[2] plus [4] for surface velocities and [34] for the climatic term. The final output of the
global inversion algorithm is the ice thickness h, hence the bed topography elevation b.
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Ice

Figure 1. Schematic vertical view of the gravitational ice flow and notations

2.1. The RU-SIA equation

The RU-SIA equation is obtained by reformulating the depth-integrated SIA model
with basal slipperiness, see e.g. [35] Chapter 5, with a non constant rate factor and
by introducing the surface terms (elevation and velocity), see [23,24]. The resulting
2D depth-integrated model, see [24], is relevant for large scale on sheared flows with
some slipperiness at bottom, with non constant vertical temperature profile and if
the surface features are measured. The various multi-physics terms (constitutive
law exponent, flow regime, temperature dependent term) can be gathered into the
single parameter γ. Therefore γ contains all the physical parametrisation uncertainty.
The RU-SIA model assumptions are the same as SIA (classical lubrication theory)
with basal slipperiness that is: the flow is necessarily (moderately) sheared (normal
stress components are negligible) and it is ”shallow” (long wave assumption). The
shallowness of the flow is estimated through the geometrical ratio ε = H∗

L∗ , where H∗

and L∗ are characteristic flow depth and length respectively. In these depth-integrated
asymptotic models, ε has to be small enough ε . 1/10 at least; making this shallow
flow models ”large scale” models (see the discussion below for quantified minimal
wave length).

The surface slope is denoted by S = |∇H|; uH is the surface velocity and ub is the
basal velocity.

The depth (ice thickness) is denoted by h, h = (H − b) with H the ice surface
elevation and b the bed elevation, see Fig. 1. θ is a potential mean slope value in the
(x, y)-plane; θ = 0 in the forthcoming test areas.

The depth-integrated flow model SIA model with slipperiness at bottom (see e.g.
[35] Chapter 5) is derived in a non isothermal version in [23] providing the so-called
xSIA (x for extended) equation. Moreover in [24] by taking advantage of the measured
surface features (elevation and velocity norm), xSIA equation is re-formulated to obtain
the RU-SIA equation (RU for Reduced Uncertainty). RU-SIA equation reads, [24]:

−div
(
|uH |
S

γh∇H
)

= ȧ (1)

where γ is the dimensionless multi-physics parameter of the model (single parameter if
not considering the thickness h). The RHS ȧ is the classical one defined by: ȧ = (∂th−a)
with a the mass balance (accumulation and ablation). The parameter γ reads:

γ =

(
1− cARs

(q + 2)

)
(2)
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with Rs the slip ratio defined by: Rs = 1− |ub|
|uH |

. The parameter cA is defined by:

cA = [(q + 2)− (q + 1)RA] (3)

with q the constitutive power-law exponent (q is classically set to 3) and RA =
Ā

A
.

Ā and A are depth-integrated quantities naturally appearing in the xSIA equation if
the rate factor A depends on (x, z). Here A depends on (x, z) since depending on the
non constant temperature vertical profile. The expressions of these parameters are,
see [23]:

Ā(x) =
(q + 2)

hq+2(x)

(∫ H

b

∫ z

b
A(x, ξ)(H(x)− ξ)qdξdz

)−1

; A(x) =
(q + 1)

hq+1(x)

∫ H

b
A(x, z)(H(x)−z)qdz

(4)
If the vertical profile of A is constant then: Ā(x) = A(x) = A(x) ∀x. Therefore

in the (unrealistic) isothermal case, A is a constant and: Ā = A = A. Moreover
RA = 1 = cA and for q = 3, γ simplifies as: γ =

(
1− 1

5Rs
)
.

Recall that Rs = 1 for no slip at bottom (fully sheared flow) and Rs ≈ 0.5 for a
moderately sheared flow.

In the flow model, |uH | and S can be provided by InSAR and altimetry measure-
ments respectively. Assuming that h (or equivalently b) is given, Eqn (1) in variable
H contains γ as the single uncertain parameter despite arising from the integration
of the full 3D Stokes free surface model with non constant constitutive law vertical
profile.
Surface values H at boundaries of the geometrical domain (measured by altimetry)
close this non linear diffusive equation in variable H.

On the RU-SIA equation domain of validity. Let us highlight the domain of validity
of Eqn (1). Since it is an asymptotic depth-integrated model (long wave assumption,
”shallow”), ε has to be . 1/10, see e.g. [36]. That means a ”large scale”, equivalently
”long wave length”, model valid for minimal wave length L∗ ≈ 20 km (resp. 30 km)
if H∗ ≈ 2 km (resp. 3 km). Moreover since the basic scalings are those of sheared
flows (with or without slipperiness at bottom), the model has a validity range in
terms of flow regime too. The flow regime can be characterised by the slip ratio
Rs. By construction, the SIA-like models (including xSIA and RU-SIA equations
above) are valid for Rs ranging from ≈ 0.5 to 1, see [37–39] for analysis. This rough
estimation in terms of Rs is numerically quantified in real world cases (including east
Antarctica) in [40]. Indeed, a detailed assessment of the (isothermal, classical) SIA
model is proposed in terms of minimal wave length vs surface velocity magnitude. (It
can be assumed that the flow regime can be interpreted in terms of surface velocity
norm too). This study [40] is based on the so-called MCL criteria (criteria proposed
in [41] and defined as the length scale over which the terms of driving stress and
drag are comparable). In particular it can be noticed in [40] that the ice-sheet areas
presenting surface velocity ranging in ≈ [5 − 100] m/y are accurately modelled by
the SIA model as soon as the minimal wave length equals ≈ 10 − 12 km in mean;
therefore showing the validity of the upper bound ε . 1/10. (On the contrary, [40]
numerically confirms that faster ice streams are wrongly modelled by these SIA-like
models since not including longitudinal stresses).
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The six test areas Antp of the present study, see Fig. 4, have been selected upon
their surface velocities; all of them ranging in ≈ [5 − 90] m/y. Since H∗ ≈ 2 − 3 km,
this makes the RU-SIA equation accurate at wave length L∗ ≈ 20− 30 km.

A link between the inversion of the mass equation and the inversion of RU-SIA
equation. As already mentioned, [11,15,16] aim at infering h by inverting the mass
equation div (hū) = ȧ with ū the depth-averaged velocity. ū is related to uH by:
ū = α̃uH with α̃ empirically set; α̃ . 1 in fast flows (where this transport equation
may be inverted in highly covered areas with cross-lines flight tracks). In the derivation

of the RU-SIA equation, see [24], it is shown that: ū = − |uH |
S γ∇H. Therefore the

empirical parameter α̃ set in [11,15] is nothing else than the dimensionless multi-
physics parameter γ: α̃ = γ defined by (2). In plug like regimes (fast ice streams),
Rs ∼ 0 and the uncertainty on the internal deformation represented here by the
parameters cA and q is negligible.

2.2. Typical uncertainty on the multi-physics parameter γ

The a-priori estimations on the uncertain parameter γ, see (2), presented in [24] are
recalled. Let us recall that the definition of γ contains multi-physics parameters: the
constitutive law uncertainty (the exponent q), the vertical temperature profile (through
the rate factor A(z)) and the flow regime (the slip ratio Rs). For a sake of simplicity,
q is set to the widely employed value for glaciers flows, that is q = 3.
In the (unrealistic) isothermal case, γ = (1−0.2Rs). Moreover since Rs ∈ [≈ 0.5, 1] in
the targeted areas, then the uncertainty on γ (fully due to the flow regime uncertainty
in this case) would be relatively small, ≈ 10% only.
In the real world, following the Arrhenius law and values, see e.g. [35, p.54], by con-
sidering typical ice-sheet vertical temperature profiles, [42,43], see also e.g. [44,45], the
following vertical profile of A(z) is considered, see Fig. 2 (Left):

A(z) =

{
Aa for z ∈ [B,H]
Aa

B−b ((1− k)z + kB − b) for z ∈ [b, B]
(5)

with Aa and k given constants. Let us define: B = (mh + b) with m ∈ [0, 1]. This
particular vertical profile of A presents a boundary layer at bottom of thickness
(B − b) = mh varying linearly, Fig. 2 (Left). This schematic profile represents
realistic ones present in east Antarctica, see e.g. [42,43]. The value of cA vs m for
different values of k is presented in Fig. 2 (Right). The case m = 0 corresponds to
the isothermal case, cA = 1. For relatively thin thermal boundary layer, cA increases
with mh; then cA decreases again up to its minimal value CminA < 1 (minimal value
obtained for the purely linear vertical profile, m = 1).

Let us consider typical temperature values in east Antartica: the bed at 0C◦ and
the surface at −40C◦. These values correspond to Aa ≈ 10−26 hence k ≈ 1000,
see Fig. 2 (right). (In Fig. 2, the value k ≈ 10 would correspond to typical inland
Greenland cases, see [24]). Moreover, assuming that the thickness boundary layer
is: m ∈ [0.1, 0.5]; then: cA ∈ (3.11, 4.64), see Fig. 2. It follows from (2) that:
γ ≈ [1− (0.78± 0.15)Rs].
The present basic uncertainty analysis based on typical values in the targeted areas
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Figure 2. (Left) Typical vertical profile of rate factor A(z), see (5). (Right) The parameter cA vs m, see (3),

with k = 10, 100 and 1000.

shows that the uncertainty on γ come similarly from the vertical thermal profile
uncertainty (represented by the term (cA/(q + 2))) and the slip ratio Rs. Moreover
it shows that the present vertical profiles, see (5) and Fig. 2 (Right), in the targeted
regimes, would make vary γ within the interval ≈]0, 0.7].
By relaxing the assumption of the imposed vertical profile (5), it seems reasonable
to estimate the upper bound of γ by setting cA = 1 and Rs = 0.5 which gives:
γ ∈]0,≈ 0.9].
This multi-physics parameter γ is numerically infered following the inversion algo-
rithm presented in next section. As it will be shown, if not imposing any bound on the
infered values, the infered values will be obtained within the present a-priori estimated
interval, excepted at very local locations where some pick values are reached, see next
section.

2.3. The inversion method

The ice thickness h is inferred by a method developed in three steps. Step 1) and
Step 3) are physical-based inversions: the RU-SIA equation (1) is inverted by VDA.
(These inversions are the ones proposed and assessed in [24]). Step 2) is based on ANN
algorithm; it is a purely data-driven inversion.

2.3.1. Sketch of the global inversion algorithm

The three steps of the inversion method are as follows.

Step 1) Estimation of the effective diffusivity η = (γh) in RU-SIA equation (1) by VDA.
Given the surface measurements H and |UH |, the effective diffusivity η = (γh)
in (1) is infered by solving the following optimal control problem:

min
k

g(k) with g(k) = gobs(k) + αgreg(k) (6)

With: k ≡ η = (γh),

gobs(·) =
1

2

∫
Ω
|H(·)(x)−Hobs(x)|2χtr(x)dx, (7)
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χtr the restriction operator to the flight tracks, greg(·) a Tykhonov’s regulariza-
tion term, see e.g. [46]. In this step, it is defined as: greg(η) = 1

2

∫
Ω |∇η(x)|2dx.

The weigh coefficient α is empirically set ”at best”. The surface elevation Hk

satisfies the RU-SIA equation (1) (with Dirichlet boundary conditions). The
gradient of the cost functional is computed by introducing the adjoint equation.
The minimisation algorithm is a quasi-Newton method (L-BFGS algorithm
from Python routine scipy.optimize.minimize). We refer to [24] for more details.
The iterative minimization process is performed until convergence. Numerous
numerical experiments demonstrate the convergence is very robust; see [24] for
a thoroughly assessment of the method. In particular the optimal solution does
not significantly depend on the smoothing length scale of the surface data (done
here at ≈ 24 km , see next Section), nor on the first guess (being here hb the
BedMap2 value).
Past this computational VDA step (providing the optimal value η∗), the value of
γ along the flights tracks (where depth measurements hb are available) denoted
by γ∗tr are straightforwardly deduced: γ∗tr = η∗

hb
χtr(x). These values are inputs of

the next algorithm, Step 2).
Recall that all these values are valid (and accurate, see [24]) at the flow model
scale, that means at ≈ 25 km minimal wave length; with values computed on
≈ 2 km grids.

Step 2) Extension of γ in the whole area by NNRK.
Given γ∗tr (result of Step 1)), a NNRK algorithm, see e.g. [31,32], is developed
to extend values of γ along the flights tracks to the whole area. The NNRK
algorithm is a purely statistical learning algorithm; it is decomposed in few
steps: an ANN estimator (deep learning) and an ordinary Kriging of the
residuals. Details are presented in next paragraph.

Step 3) Estimation of the pair (h, ȧ) in RU-SIA equation (1) by VDA.
Given γ all over the domain (result of Step 2)), the thickness h is infered si-
multaneously with the RHS ȧ in (1) by an advanced formulation of VDA. The
equations and the complete VDA algorithm are presented (and assessed) in de-
tail in [24]. Let us recall them briefly.
Similarly to Step 1), the pair (h, ȧ) in (1) is infered by solving the optimal control
problem (6) with gobs defined by (7) but minimizing with respect to k = (h, ȧ)
(and not w.r.t. η = γh like in Step 1)). In (7) the surface elevation Hk satisfies
(1) (plus Dirichlet boundary conditions).
In the present VDA formulation, the regularization term reads:

greg(h, ȧ) =
1

2
‖(h− hb)‖C−1

h
+

1

2
‖ȧ− ȧb‖C−1

a
(8)

with C−1
h and C−1

a covariance operators defining metrics. The latter are classi-
cally defined as the second order auto-regressive correlation matrices with length
scale respecting a balance between the regularisation and the preconditioning
effects of the VDA algorithm, see [24] for details (and [47] for a method analysis
in another physical context). Next a change of the control variable is made,
see [24,47]. The numerous numerical experiments have demonstrated that this
choice of covariance operators (combined with the change of variable) improves
greatly the robustness and the convergence speed of the VDA algorithm, see
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[24].
In (6) the weight coefficient α is defined as a decreasing sequence following
an iterative regularisation strategy, see [24] for details and [46] for a method
analysis. This iterative regularisation strategy has demonstrated to improve the
robustness and the convergence speed of the VDA algorithm too, [24,46].

The robustness of the present inversion algorithm is thoroughly assessed in [24], in
particular the sensitivity of the present inversions with respect to: i) the uncertainties
on γ; ii) the density of flights tracks (by removing some of them); iii) the smoothing
length scale of the surface data (altimetry, InSar) from ≈ 24 to 48 km; iv) the first
guess (chosen here as the BedMap 2 value hb).

Remark 1. It is shown in [24] that the explicit expression (2) of the multi-physics
parameter γ enables to compute a-posteriori estimations of the (spatially distributed)
slip ratio value Rs. This is a very interesting feature by making possible to confirm
or not the good RU-SIA model consistency. In the test area considered in [24] (area
included in the present Ant6, see Fig. 4), the a-posteriori analysis made in [24] re-
markably confirms the good consistency of RU-SIA model.
Moreover based on some a-priori vertical thermal profile(s) e.g. the one defined by (5),
RU-SIA equation (1) provides a-posteriori estimations of the effective thermal bound-
ary layer thickness (B − b), see Fig. 2 (Left). To our best knowledge such a-posteriori
estimation of the vertical profiles is original; it may be interesting for various analyses.
Moreover the considered a-priori vertical profiles could be adjust by constraining them
with (the very few) in-situ measurements.

2.3.2. The Neural Network Residual Kriging (NNRK) algorithm (Step 2))

The NNRK algorithm is decomposed into the few following steps.

Step 2a) Considering all surface data (H, S, |uH |, ȧb) along the flights tracks (in all areas
Antp) plus γ∗tr computed at Step 1) (that is the ”true” value), an estimator of γ
is computed by an Artificial Neural Network (ANN) algorithm (deep learning),
see e.g. [31,32]. This estimator is denoted by γ̄.
The complete data sets along the flight tracks constitute the training data
set; it is denoted by D. D contains examples (Ii, Oi), i = 1, · · · , Nft, where
Ii = (H,S, |uH |, ȧb) (xi) is the i-th input and Oi = γ∗(xi) is the i-th expected
output; Nft is the number of examples in the training data set. The space coor-
dinates xi, i = 1, · · · , Nft, are along the flight tracks.
The estimator γ̄ is computed as the minimizer of the mean square misfit

1
Nft

∑Nft
i=1 (Oi − γ̄(Ii))

2. This misfit (error function also called empirical risk)

reads:

j(D; ·) =
1

Nft

Nft∑
i=1

[γ∗tr(xi)− γ̄(H,S, |uH |, ȧb)(xi)]2 for xi ∈ Γtr (9)

To solve this large dimensional optimisation problem (purely data-based),
the very likely most efficient methods are ANNs with a few hidden layers (deep
learning processes). Here, each of the 4 hidden layers contains 50 neurones, see
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Figure 3. Artificial Neural Network (ANN) with four hidden layers: the first step of NNRK algorithm (Step
2a) of the global inversion algorithm)

Fig. 3. The most efficient activation function is chosen: the rectified linear unit
(ReLU) function, see e.g. [48,49].The ANN is completely determined by the
weight parameters (W1, · · · ,W5), Fig. 3.
The training step consists to identify the optimal values of these parameters
Wj , j = 1, .., 5. Wj are matrix of dimension nout×nin. Here, W1 has 5×50 = 250
parameters, Wj for j = 2, 3, 4 have 50 × 50 = 2500 parameters each, W5 has
50× 1 = 50 parameters. The ANN training step is programmed using PyTorch,
a deep learning framework in Python.
To minimize j(D; (W1, · · · ,W5)) with respect to {Wj}j , the classical Adam
method [50], a first-order gradient-based stochastic optimization, is employed.
The learning rate (the gradient descent step size) is classically adjusted during
the optimization procedure. Also to avoid overfitting, the dropout method [51]
is adopted. As usual, the hyper-parameters of the algorithm (learning rate,
decay rate, dropout probability) are experimentally chosen; the selected values
are those providing the minimal value of j. The reader may refer e.g. to [32] for
more details and know-hows on these ANN and NNRK methods.

Let us point out that this NNRK algorithm has been trained by including hb
as an input parameter or not. The estimator taking hb as an input parameter
turned out to be very similar to the one without; it diminishes the cost value j
very slightly only. This test strengthens our strategy to predict the dimensionless
parameter γ of the flow model from the surface features only.

Step 2b) The K-fold cross-validation, see e.g. [52], is applied to assess the ANN model
and analyse if the ANN can be generalized to independent data sets or not. Let
us recall that K-fold cross-validation proceeds as follows, see e.g. [52]:
◦ Divide randomly the original training data set D into K ∈ N+ roughly

equal parts;
◦ For each subset Dk, k = 1 · · ·K, ANN trains from the other (K−1) subsets
Di, i 6= k. For i = 1, · · · ,K, denote Ditest = Di and Ditrain = ∪j 6=iDj ;
◦ Compute the error over each test set j(Ditest), and choose the ANN pro-

viding the smallest total (training plus test) error, i.e. j(Ditest)+j(Ditrain).

Step 2c) The residual value along the flights tracks is defined by: εγ = (γ∗tr − γ̄) with γ̄
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computed by ANN. An ordinary Kriging (with a spherical semi-variogram model)
is performed to extend εγ all over the area; the obtained estimator is denoted
by ε̂γ . By construction this residual satisfies: E(εγ) ≈ 0; also the correlation
between two points depends on the distance between them and not on their
location. Performing an ordinary Kriging on the residual after ANN is known to
be particularly efficient, see e.g. [32] Chapter 3.
The final estimation in the whole area is denoted by γ̂; it is obtained as the sum
of the ANN estimation and the ordinary Kriging estimation of residuals :

γ̂(x) = γ̄(x) + ε̂γ(x) for x ∈ Ωp (10)

ANNs enable to find nonlinear trends between the data. Here the resulting
estimator provides the dimensionless parameter γ (2) of RU-SIA flow model (1) in
function of the surface data (altimetry, InSAR and ȧ) for each x in Ωp. The inversion
algorithm thoroughly analysed in [24] is the same as the present one excepted Step 2)
which is an ordinary Kriging instead of NNRK. The difference between the resulting
two estimators is analysed in next section. ANNs are very CPU-time and memory
consuming, then the code has been written using the Python lib Mpi4py [53].

2.3.3. On the linked uncertainty between γ and h

In the global inversion algorithm described above, once the product η = (γh) accu-
rately infered at Step 1) it remains to separate the effects, the surface signatures, of the
two unknown fields γ and h. The parameter γ models the vertical profile by integrat-
ing the temperature vertical profile, the basal slipperiness and the constitutive law.
Its computed value along the flight tracks at Step 1) is extended all over the domain
by a data-driven model (statistical learning based on the airborne data sets). Next the
thickness h is accurately computed / infered but based on the previous estimation of
γ, see Eqn (1).
Let us denote by the superscript t the true (effective) value of the fields. If assuming
that each computational inverse algorithm is accurate and robust (this can be assumed
to be correct, see [24]) then it can be assumed that: γtht ≈ γ∗h∗, where the ∗ fields
are the optimal values computed by the successive algorithms of Step 2) and Step 3).
By defining δh = (h∗−ht) and eh = δh/h (and the equivalent quantities in γ if γ does
not vanish), it follows that (at order 1):

eh ≈ −eγ (where γ does not tend to 0) (11)

In other words, Step 2) and Step 3) of the global inversion algorithm may propagate
the error made on γ to h in the same order of magnitudes in % (but reversely). The
computed fields at each step are analysed in next section.

In summary, the product (γh) is identified all over the domain; VDA techniques well
controlled can provide accurate results. Next, the challenge is to separate the depth h
from γ, γ the unique dimensionless (multi-physics) parameter of RU-SIA flow model.
Then the following bet is made: given all surface features of the flow (H,S, |uH |, ȧ), an
ANN enables to provide an accurate estimation of γ all over the area. Deep learning
algorithms such as the present one have surprisingly demonstrated to be extremely
accurate in numerous applications including in physics; this is the case here: the assess-
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ment made on the various Ditest sets demonstrate the high accuracy of the builded
estimator. Finally given the estimation of γ, the advanced VDA process enables to
provide reliable values of the ice thickness h.
Observe that it would be straightforward to use the same NNRK algorithm to directly
estimate the thickness h all over the domain. However it seems definitively more con-
sistent to estimate an unique dimensionless parameter of flow model from the surface
features represented by this same model instead of an input data partially dependent
only. Following this idea of purely data-driven estimations, [54] had proposed an ANN
trained and assessed on synthetic data generated by an ice flow model and geomorphic
premises to estimate the bedrock elevation of four mountain glaciers.

3. Algorithm steps analysis

The inversion algorithm to estimate the bed elevation previously presented can be
applied to any ice-sheets areas as soon as the RU-SIA model assumptions are satisfied.
These assumptions are: a) a moderately sheared flow (in Antarctica this corresponds
to surface velocities ranging approximatively in [5, 100] m/y); b) if estimating the
thickness at ≈ 10 × h̄ wave length (h̄ a characteristic thickness value). For a sake of
detailed method analysis, here a few areas only are considered, see Fig. 4; all of them
are in East Antarctica. The 6 considered test areas are denoted by Antp, p = 1, .., 6,
see Fig. 4. All of them are large upstream areas of major ice-sheds in East Antarctica;
they have been selected since they respect the method domain of validity. They are
relatively large (ranging from 250268 to 439045 km2) and thick (the mean thickness
value of hb ranging from 1822 to 2745 m), see tables 2-A4 for more details. The exact
coordinates characteristic points defining each area (≈ 100− 150 points per area), see
Fig. 4, are available on the open source computational software webpage2

It is worth to recall that estimating more accurately the bed elevation in these Antp
areas is not without interest since global warming may threaten East Antarctica ice
sheet stability as mentioned e.g. in [33].

3.1. Data and minimal wave length

In this paragraph, we describe the pre-treatment done on the surface data, in link
with the long wave assumption of RU-SIA equation (1) (shallow flow model), and the
numerical grids. Moreover we briefly recall how the BedMap2 ice thickness value hb
is obtained in [2] and how its uncertainty (as estimated in [2]) is generated.

3.1.0.1. Surface data smoothing & numerical grids.. The mean value of
the ice thickness provided by BedMap2 [2] in the 6 Antp areas equals ≈ 2.7 km.
As previously discussed, the RU-SIA equation is sufficiently accurate as soon as

ε = [H]
[L] . 0.1. Therefore surface data |uH | and H provided in databases need to

be smoothed at the minimal wave length L∗ ≈ 27 km. To do so, a Gaussian with
standard deviation σ = 4 km is applied to smooth the surface data (both to the

2J. Zhu. Open-source computational software DassFlow: Data Assimilation for Free Surface Flows. Python
version for 2D shallow generalised Newtonian fluids. INSA, University of Toulouse, CNES. www.math.univ-

toulouse.fr/DassFlow.
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Figure 4. Location of the 6 test areas Antp (east Antarctica) with InSAR-based surface velocity values in
m/y (from [4]).

elevation and the velocity norm). Therefore the smoothing effects are sensitive in
disks of ≈ 2× 3σ = 24 km of diameter.
Next the mesh is built up using Gmsh software [55] with a grid size δx ≈ 3 km.
Indeed δx = 3 km provides ≈ 10 points per minimal wave length L∗, therefore
respecting the minimal number of points to properly approximate all fields. The
lineic flight tracks are meshed with cells of δx ≈ 2 km size. Along these flight tracks
the imposed thickness measurements are interpolated values of the BedMap2 values [2].

3.1.0.2. On the reference bed topograghy Bedmap2.. Let us recall that for
each VDA process of the present inversion algorithm, that is Step 1) and Step 3) (see
paragraph 2.3.2), the first guesses are the Bedmap2 ice thickness value hb. hb and its
a-priori uncertainty as derived in [2] are plotted in each test area Antp, see figures 6,
9, A1, A2, A3 and A4 (Middle). The present thickness estimations h∗ are compared
to hb, see the same figures but (Down)(R).
In BedMap2 database [2], the interpolation - extrapolation of airborne measurements
are performed throughout the domain by the ArcGIS Topogrid routine (ESRI Ltd,
ArcGIS 9); the latter is based on the ANUDEM algorithm [7]. This algorithm uses
an iterative finite difference interpolation technique which is essentially a thin plate
spline technique [8]. Next, empirical uncertainty values are stated as follows, see [2].
The thickness measurements are split into two datasets (D1) and (D2). Dataset (D1)
is used to build up an interpolation including at Dataset (D2) location points; values
of (D2) being not used at this stage. Next, Dataset (D2) is used to quantify the
misfit with the ”predicted” - interpolated values; and basic statistics on the results
with dependence on the distance to data are deduced. For cells located between 5
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and 20 km from any data, [2] suggests that the interpolation error is an increasing
function of distance from the closest data; beyond it would be not correlated. (Observe
that this distance corresponds approximatively to the minimal wave length of the
RU-SIA model). For cells that are more than 50 km from airborne measurements, the
thickness estimation is based on gravity-field inversion (gravity-derived thickness);
the proposed related uncertainty equals ±1000m. This is how the uncertainty values
on Bedmap2 values hb plotted in figures 6-A4 (Middle) (Right) are established.

3.2. Step 1: Estimation of η by VDA

The effective diffusivity η defined in (1), η = (γh), is estimated in each area Antp by
VDA following Step 1), see paragraph 2.3.1. The convergence of this iterative VDA
process is very slow (a few hundreds of iterations) but very robust in particular with
respect to the first guess value; it has been thoroughly assessed in [24]. The stopping
criteria is the stationarity of ‖η‖. Here the RHS ȧ provided by [34] is supposed to be
exact. After convergence of the VDA process, given the ice thickness along the flights
tracks, the optimal value γ∗ is saved for Step 2), that is:

γ∗tr(x) =
η∗

hb
(x) for x ∈ Γtr

3.3. Step 2: Estimation of γ by NNRK

The ANN algorithm input values, see Fig. 3, are datasets along all flight tracks in all
test areas Antp, p = 1, .., 6 plus the values of γ∗tr computed at Step 1). This dataset is
denoted by D. Following Step 2b) (see paragraph 2.3.2), the K-fold cross-validations
are performed with K = 6. The results are presented in Fig. 5. (The value K = 6 is of
course completely independent of the test cases number). Here, the training setsDitrain
contains 16774 examples and a test set Ditest contains 3354 examples; 1 example being
constituted by 1 (input, output) pair of ANN.
It can be read on Fig. 5 (Left) that all ANN models trained from different training data
sets Ditrain have very close cost values j(Ditrain) defined by (9). Moreover, the cost
values of each test sets j(Ditest) are almost equal showing that all ANN models have
very close prediction capability, all being excellent: after optimisation, j(Ditest) ≈
5 10−3 (Fig. 5 (Right)); this corresponding to ≈ 1% of the mean value of γ̄. The
ANN trained from D2train is selected since having a very slightly smaller misfit value
(j(Ditrain) + j(Ditest)). The tests of prediction capabilities above demonstrate the
robustness and accuracy of the trained ANN.
By performing the selected ANN (D2train since being slightly more accurate), values
of γ̄ are computed in the whole domains. Next by performing the Kriging step (Step
2c) of NNRK algorithm, see paragraph 2.3.2), γ̂ defined by (10) is obtained. Moreover
following the a-priori estimation derived in Section 2.2, the upper bound 0.9 is imposed
to the estimation.
For each test area, γ̂ is plotted, see figures 6, 9, A1, A2, A3 and A4 (Up) (R). It is
worth to notice that the imposed upper bound on γ̂ (here 0.9) is active at very few
locations only; moreover it is in great majority where the uncertainty on hb is low, see
figures 6, 9, A1, A2, A3 and A4 (Middle) (R).
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Figure 5. Misfit functional j(D) defined by (9), vs minimization iterations for: (Left) different train sets

Ditrain; (Right) different test sets Ditests. The learning rate (gradient descent step size) is decayed by 0.2

every 30 epochs (1 epoch = 1 forward pass and 1 backward pass of all the training examples), see e.g. [32] for
details on this classical method.

Table 1. Difference between values of H the re-

sponses of RU-SIA equation (1) if changing the

RHS value: ȧb the Racmo2 value vs ȧ∗ the infered
value at Step 3). Domain Ωp=Ant1.

Difference of H Median Mean Max

|H(ȧb)−H(ȧ∗)| 3.3m 6.0m 26.3m

3.4. Step 3: Estimation of h (and adjustment of ȧ) by VDA

Once Step 2) is done, the dimensionless multi-physics parameter γ in RU-SIA equation
(1) is given. Next the thickness h is infered by VDA following the method presented
in paragraph 2.3.1. The optimisation algorithm converges in ∼ 20− 50 iterations de-
pending on the test case. Its convergence is robust: it has been thoroughly analysed
in [24].
At this step, h is simultaneously infered with ȧ. Indeed this strategy enables to adjust
the value of ȧ within its uncertainty range, see [34]. Recall that this uncertainty is
relatively low: ∼ ±20%. It can be noticed in tables 2, 5, A1, A2, A3 and A4 that the
corrections made by the VDA stay in great majority within this a-priori uncertainty
range. Indeed the infered values reach the authorised maximal variation at few loca-
tions only. In other words, this adjustment based on the physical-based model RU-SIA
is consistent with the estimations proposed in [34] which is totally independent.
Of course, given the surface data, any change of ȧ in RU-SIA equation (1) has an
effect on the infered value of h. As an example let us compute the response H of RU-
SIA equation (1) in Ant1 area with: i) the RACMO2 value ȧb in the RHS (providing
H(ȧb)); ii) the infered value ȧ∗ by VDA in the RHS (providing H(ȧ∗)). The obtained
difference are the ones indicated in Tab. 1. Therefore the correction made on the RHS
ȧ = (∂th− a) implies a correction on the ice thickness h negligible (∼ 1%) compared
to the one obtained from Bedmap2 value hb, see Tab. 2 in next section. This remark
holds for all domains.

As already mentioned, the RU-SIA equation (1), the two VDA processes (i.e. Step
1) and Step 3)) and the present global inversion algorithm but with an ordinary
Kriging at Step 2) have been assessed in detail in [24] on a test area included in Ant6.
This thorough analysis focuses in particular on the robustness and the sensitivity of
the algorithm(s) with respect to: i) the uncertainty on γ; ii) the proximity or not of
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flight tracks; iii) the smoothing length scale of the surface data; iv) the first guess
value (chosen here as BedMap 2 hb).

3.5. On the RU-SIA model accuracy

For each test area Antp, domain information and basic statistics on the results
are presented, see tables 2, A1, 5, A2, A3, A4. Statistics on the computed surface
elevation H as the output of RU-SIA model (1) are indicated. It can be noticed that
the RU-SIA equation solved from Bedmap2 value hb and the data-driven estimation
γ̂ (result of Step 2)) already fits with the measured surface elevation Hobs, see ”Direct
model validation” lines in the tables. This excellent accuracy based on the Bedmap2
bed elevation hb (without any additional calibration of h) demonstrates the relevance
and the validity of the physical-based RU-SIA model. Past Step 3) of the inversion
algorithm (i.e. after the identification of h and ȧ by VDA), of course the RU-SIA
model fits even better with Hobs, see ”|H(h∗)−Hobs| (after h-inversion)” in the tables.

4. Results and sensitivity tests (Ant1 and Ant3 areas)

In this section, the bed elevation b (equivalently the ice thickness h) is infered by the
inverse method described in Section 2.3 for the two areas Ant1 and Ant3, see Fig. 4.
Different estimations of h are compared, depending if:

a) some isolated (hence highly constraining) flight tracks are considered or not;
b) the statistical - machine learning method of Step 2) is the NNRK algorithm

described in paragraph 2.3.2, or an ordinary Kriging.

These comparisons aim at analysing the robustness and accuracy of the method.
Ant1 is a 370809 km2 area north-east upstream of Bailey, Slessor and Recovery ice-
streams; Ant3 is a 250268 km2 area in Wilhelm and Queen Mary lands, upstream of
Shackleton ice shelf and Davis sea.
Among the considered areas, Ant1 and Ant3 are those presenting the largest uncovered
parts during airborne campaigns; they contain large areas where Bedmap2 estimation
hb is based on gravity field inversions, therefore presenting very large uncertainties.
For each test area, the domain information and basic statistics on the numerical results
are presented in tables 2 and 5. The most relevant fields are plotted in figures 6 and 9:
the surface velocity module |uH | and the flight tracks locations at (Up)(L), the NNRK
estimation γ̂ defined by (10) at (Up) (R), the Bedmap2 value hb at (Middle)(L), the
uncertainty on hb as presented in [2] at (Middle)(R), the present thickness estimation
h∗ at (Down)(L) and its difference with hb at (Down)(R).

4.1. Results for Ant1 area

This domain presents large unexplored areas during the airborne campaigns therefore
huge uncertainty on hb values, Fig. 6(Middle).
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Table 2. Domain Ωp=Ant1, information and results.

Domain Ωp & mesh information
Surface |Ωp| 370809 km2

Mean ice thickness of hb (Bedmap2) 2696.2m
# mesh vertices: in Ωp / on flight tracks 57661 / 2152

RU-SIA model output (with γ̂) Median Mean Max
|H(hb)−Hobs| (before h-inversion) 7.0m 10.3m 53.0m
|H(h∗)−Hobs| (after h-inversion) 2.6m 3.7m 44.6m

Infered RHS ȧ
|ȧ∗ − ȧb| 0.7 cm/y 0.7 cm/y 3.6 cm/y

|ȧ∗ − ȧb|/|ȧb| 19.2 % 17.0 % 20.0 %

Infered thickness h
|h∗ − hb| 275.2m 356.8m 1953.5m

|h∗ − hb|/|hb| 10.4% 13.3% 65.7%

Ice volume change in km3 / in % 1.6 104 km3 / 1.6%

4.1.1. Ant1: the ice thickness estimation h∗

Let us recall that γ̂ is the NNRK estimated value of the multi-physics parameter γ
defined by (2).No correlation is observed between h and γ; the only clearly observed
correlation is : γ is small where |uH | is small, Fig. 6 (Up). This observation is fully
consistent with the a-priori analysis done in Section 2.2, see (2) and Fig. 2.
The estimated ice thickness h∗ is much less smooth than the Bedmap2 estimation hb,
see Fig. 6. Recall that hb values are thin plate spline based estimations (see [2] and
paragraph 3.1), hence intrinsically smooth. The present estimation h∗ is the optimal
solution of a data-driven model combined with a physical-based model. It is remarkable
that the difference between h∗ and hb is uncorrelated to the distance to the nearest
flight tracks, on contrary to the empirically stated uncertainty in [2]. Indeed large
corrections of hb (up to 1500 m) are found close to flight tracks; close meaning at 1−2
minimal wave lengths of RU-SIA model (∼ 20− 40 km): see e.g. in Fig. 6 (Down)(R)
the areas around coordinates (2750,1950)(2900,1550)(3050,2050). At the opposite, h∗

may remain very close to hb in areas relatively far from any flight tracks.
Recall that the flight tracks are meshed (as 1d lines) and along these segments (2 km
long), the infered depth value is authorised to vary of ±150m around the measured
values (inequality constraints imposed in the VDA processes). Therefore in the adja-
cent triangles (which are nearly equilateral with 2km sides), the plotted mean depth
values may be already much different than the measured ones; hence the potential
great differences between the two estimations even close to the flight tracks.
The basic statistics presented in Tab. 2 show that after the VDA processes, the RU-
SIA equation fits extremely well with the surface data elevation. The correction made
on ȧ is relatively consequent, 17% in mean (it is the highest correction made among
the 6 test cases Antp). However it remains lower than the maximal authorised correc-
tion: ±20%.
Finally the correction made on hb is noticeable: 13.3% (356.8 m) in mean, with a 1.6%
(1.6 104 km3) of volume change only (for 370809 km2).

4.1.2. Ant1: if removing some flight tracks

In this paragraph, a new ice thickness estimation is computed; it differs from h∗ since
the flight tracks indicated in Fig.6 (Up)(L) are not considered anymore. The original
complete set of flight tracks is denoted by Γall; the partial one is denoted by Γless.
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Figure 6. Domain Ωp=Ant1: (Up)(L) Surface velocity module |uH | and flight tracks (R) γ̂ computed by
NNRK, see (10). (Middle)(L) Thickness hb from Bedmap2 [2] (R) Empirical uncertainty on hb from [2].
(Down)(L) Infered thickness with γ̂: h∗(γ̂) (R) Difference (h∗(γ̂)− hb).
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Table 3. Domain Ωp=Ant1. Comparison of the estimations if consid-

ering or not the flights tracks indicated in Fig.6 (Up)(L).

Infered thickness difference Median Mean Max
|h∗(Γall

tr )− h∗(Γless
tr )| 151.3m 196.9m 1524.5m

|h∗(Γall
tr )− h∗(Γless

tr )|/|h∗(Γless
tr )| 5.6% 6.6% 80.0%

In Γless case, the mesh of the entire area has to be re-builded since flight tracks are
meshed. The inverse problem is less constrained. This is particularly true for the two
VDA processes (steps 1 and 3) since the removed flight tracks are isolated, see Fig.
6(Up)(L), and no constraint is imposed anymore in the vicinity of these removed flight
tracks.
The statistical learning at Step 2) is unchanged, therefore values of γ̄ are unchanged
too. However the estimation γ̂ defined by (10) is not the same since the Kriging
step is changed; indeed the latter is based on less flight tracks data. The difference
between the two estimations (γ̄(Γall) − γ̂(Γless)) is plotted in Fig. 3 (Up)(R). It can
be noticed that γ̂ is changed all over the domain and not particularly in the vicinity
of the missing flight track. Indeed, the Kriging method (Step 2c) in paragraph 2.3.2)
aims at computing the minimal variance in norm 2 (least square) and not point-wise
discrepancies; hence the global change of γ̂.
Next the infered thickness h∗ is different for two reasons: 1) values of γ are different;
2) the VDA process of Step 3) is not locally constrained at the missing flight tracks
locations. The difference between the two thickness estimations is plotted in Fig. 3
(Down)(R). For sake of readability, the legend in Fig. 7(Down)(R) has been bounded
at ±400m (very few locations were greater than this bound). Basic statistics on the
difference are presented in Tab. 3. Note that differences of 300 m correspond to ≈
10−15% of change. As expected, see e.g. (11), the variations of h are correlated to the
variations of γ: compare Fig. 7 (Up)(R) to (Down)(R). And for the reason mentioned
above (discussion on the change of γ values), the change of h is not particularly high
around the missing flight tracks.
Finally, it is worth to mention that the present inversion method is relatively global
with local constraints (the flight tracks); it not purely local inversions. In the present
experiment, the obtained variations of h∗ are roughly half than the ones obtained from
hb, see tables 2 and 3: difference of 6.6% in mean vs 13.3%, and 5.6% vs 10.4% for
median values.

4.1.3. Ant1: with different statistical learning methods at Step 2)

It has been shown in Paragraph 2.3.3 that uncertainties on γ computed by the statisti-
cal learning method at Step 2) of the algorithm generates uncertainties on h potentially
of same order of magnitude, see (11). Below the influence of the statistical estimator
chosen at Step 2) is investigated. To do so, firstly we compare:

a) γ̄ obtained by ANN algorithm at Step 2a) to γ̂ obtained by the complete NNRK
algorithm, see (10);

b) γkrig obtained by an ordinary Kriging of the thickness measurements along the
flights tracks to γ̂ obtained by NNRK (see 10).

Secondly, we compare the infered thickness h∗ obtained from γ̂ (that is the original
estimation plotted in Fig. 6 (Down)(L)) to the one obtained from γkrig.

As expected, the difference between γ̄ and γ̂ (i.e. before and after the Kriging Step
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Figure 7. Domain Ωp=Ant1: comparison if not considering the flights tracks indicated in Fig.6 (Up)(L).
(Up)(L) Field γ̂(Γless

tr ) (i.e. without the flights tracks indicated in Fig.6 (Up)(L)). (R) Difference (γ̂(Γall
tr ) −

γ̂(Γless
tr )). (Down)(L) Infered thickness h∗(Γless

tr ) (R) Difference between the two estimations: (h∗(Γall
tr ) −

h∗(Γless
tr )).
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Table 4. Domain Ωp=Ant1. Comparison the original thickness

estimation (obtained using NNRK) to the one obtained using

ordinary Kriging at Step2)

Infered thickness difference Median Mean Max
|h∗(γ̂)− h∗(γkrig)| 145.5m 183.5m 1264.2m

|h∗(γ̂)− h∗(γkrig)|/|h∗(γ̂)| 5.3% 7.2% 117.2%

2c), see paragraph 2.3.2) are localised in the vicinity of the flight tracks. In Ant1 case,
these differences may be up to ∼ ±20%, see Fig. 8(Up)(R). More interestingly and
as expected too, the differences between γ̂ and γkrig are not clearly correlated to the
distance from the nearest flight track. The observed difference in Ant1 case may be
consequent: ∼ ±40%, see Fig. 8(Middle)(R).
Next, like in the previous sensitivity test (and for the same reasons), the variations of h
are correlated to the variations of γ: compare Fig. 8 (Middle)(R) to (Down)(R). Some
statistics on the differences are presented in Tab. 4. Again the obtained variations in
h are roughly half than the ones obtained from hb, see tables 2 and 4: difference of
7.2% in mean vs 13.3%, and 5.3% vs 10.4% for median values.

4.2. Results for Ant3 area

Similarly to Ant1, Ant3 presents large uncovered areas during the airborne campaigns,
corresponding to huge uncertainty on hb, Fig. 9.

4.2.1. Ant3: the ice thickness estimation h∗

Like in Ant1 case and as already noticed in [24] too, the only clearly observed
correlation is: γ is small if uH is small, Fig. 9 (Up). Again the difference between h∗

and hb is uncorrelated to the distance to the nearest flight track (on contrary to the
empirically established uncertainty in [2]). Large corrections of hb (up to 700 m) are
found close to flight tracks see e.g. the area around coordinates (5550,2800) in Fig.
6 (Down)(R); at the opposite, h∗ may remain very close to hb in areas relatively far
from any flight tracks, see e.g. the area around coordinates (5250,2800).
The few statistics presented in Tab. 5 show that again after the VDA processes,
the RU-SIA equation fits extremely well with the surface elevation. The correction
made on ȧ is noticeably lower than the authorised maximal variation: 11.2% in mean.
In Ant3, the global correction made on hb is relatively low: 6.6% in mean (3.5%
median) with a 0.5% of volume change only. However in the most uncertain areas, the
corrections made can be both low, see e.g. the areas around coordinates (5000,2650)
(5200,3250), and important (± ∼ 700m), see e.g. the area around coordinates
(5000,2650).

4.2.2. Ant3: if removing some flight tracks

The ice thickness obtained if not considering the flight tracks indicated in Fig.9 (Up)(L)
is compared to the original estimation h∗ (the one plotted in Fig.9 (Down)(L)). For
the same reason as in Ant1 case, γ̂ next h are changed all over the domain and not
particularly in the vicinity of the missing flight track. One of the largest changes are
obtained in areas far form the missing tracks and close to considered ones, see e.g. the
area around coordinates (5100,3200). The difference between the two estimations are
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Figure 8. Domain Ωp=Ant1: comparison between different statistical learning methods at Step 2). (Up)(L) γ̄

computed by ANN only. (R) Difference (γ̂−γ̄). (Middle)(L) γkrig computed by ordinary Kriging. (R) Difference

(γ̂ − γkrig). (Down)(L) Infered thickness h∗(γkrig). (R) Difference (h∗(γ̂)− h∗(γkrig)).
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Figure 9. Domain Ωp=Ant3: (Up)(L) Surface velocity module |uH | and flight tracks (R) γ̂ computed by
NNRK, see (10). (Middle)(L) Thickness hb from Bedmap2 [2] (R) Empirical uncertainty on hb from [2].
(Down)(L) Infered thickness with γ̂: h∗(γ̂) (R) Difference (h∗(γ̂)− hb).
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Table 5. Domain Ωp=Ant3, information and results.

Domain Ωp & mesh information
Surface |Ωp| 250268 km2

Mean ice thickness of hb (Bedmap2) 1822.8m
# mesh vertices: in Ωp / on flight tracks 42881/2443

RU-SIA model output (with γ̂) Median Mean Max
|H(hb)−Hobs| (before h-inversion) 7.8m 12.7m 274.0m
|H(h∗)−Hobs| (after h-inversion) 2.8m 4.0m 110.6m

Infered RHS ȧ
|ȧ∗ − ȧb| 2.2 cm/y 2.5 cm/y 22.1 cm/y

|ȧ∗ − ȧb|/|ȧb| 11.2 % 11.4 % 20 %

Infered thickness h
|h∗ − hb| 70.0m 124.5m 862.2m

|h∗ − hb|/|hb| 3.5% 6.6% 63.5%

Ice volume change in km3 / in % 3.0 103 km3 / 0.5%

Table 6. Domain Ωp=Ant3. Comparison if considering or not the

flights tracks indicated in Fig.9 (Up)(L).

Infered thickness difference Median Mean Max
|h∗(Γall

tr )− h∗(Γless
tr )| 42.7m 56.3m 904.6m

|h∗(Γall
tr )− h∗(Γless

tr )|/|h∗(Γless
tr )| 2.2% 2.8% 78.7%

plotted in Fig. 6 (Up)(R) and (Down)(R). (Again for sake of readability, the legend
in Fig. 10(Down)(R) has been bounded at ±400m; very few values were greater than
this bound). Basic statistics on the difference are presented in Tab. 6. (Note that e.g. a
difference of 200m corresponds to ∼ 10% of change). Again, the obtained variations on
h are roughly half than the ones those obtained from hb, see tables 5 and 6: difference
of 2.8% in mean vs 6.6%, and 2.2% vs 3.5% for median values.

4.2.3. Ant3: with different statistical learning methods at Step 2)

Similarly to Ant1 case, the difference between γ̄ and γ̂ (i.e. before and after the Kriging
Step 2c)) are essentially localised in the vicinity of the flight tracks with amplitudes
up to ∼ ±0.20, Fig. 11 (Up)(R). Again too, the differences between γ̂ and γkrig are
obviously not along the tracks but may be anywhere else; the observed difference may
be up to ∼ ±0.45, Fig. 11(Middle)(R). Statistics on the differences on the correspond-
ing estimated thicknesses are presented in Tab. 7. The obtained variations in h are
about one third lower than the ones obtained from hb, see tables 2 and 7: difference
of 4.3% in mean vs 6.6%, and 2.9% vs 3.5% for median values.

In conclusion, these comparisons based on one hand if removing some flight tracks,
on the other hand if changing the statistical learning method, highlight the relative
robustness and reliability of the proposed thickness estimations. If not considering a
localised group of flight tracks, see figures 6 and 9 (Up)(L), the obtained variations
on h are roughly half than the ones obtained from hb. If considering a simple Kriging

Table 7. Domain Ωp=Ant3. Comparison of the original thick-

ness estimation (obtained using NNRK) to the one obtained
using ordinary Kriging at Step2).

Infered thickness difference Median Mean Max
|h∗(γ̂)− h∗(γkrig)| 58.3m 84.9m 1418.7m

|h∗(γ̂)− h∗(γkrig)|/|h∗(γ̂)| 2.9% 4.3% 124.5%
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Figure 10. Domain Ωp=Ant3: comparison if not considering the flights tracks indicated in Fig.9 (Up)(L).
(Up)(L) Field γ̂(Γless

tr ) (i.e. without the flights tracks indicated in Fig.9 (Up)(L)). (R) Difference (γ̂(Γall
tr ) −

γ̂(Γless
tr )). (Down)(L) Infered thickness h∗(Γless

tr ). (R) Difference between the two estimations: (h∗(Γall
tr ) −

h∗(Γless
tr )).
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Figure 11. Domain Ωp=Ant3: comparison between different statistical learning methods at Step 2). (Up)(L)

γ̄ computed by ANN only. (R) Difference (γ̂ − γ̄). (Middle)(L) γkrig computed by ordinary Kriging. (R)

Difference (γ̂ − γkrig). (Down)(L) Infered thickness h∗(γkrig). (R) Difference (h∗(γ̂)− h∗(γkrig)).
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method to estimate γ vs the NNRK algorithm, the obtained variations on h are roughly
the half (lower than the ones obtained from hb) in Ant1 case and two thirds in Ant3
case. Therefore in all cases the obtained variations are lower than the ones obtained
from hb. Moreover it may be guessed that the statistical learning method based on
the measured data (the NNRK algorithm) should be more reliable than the ”blind”
Kriging extrapolation (which is not related to the datasets).

5. Conclusion

In this study, a method to infer the bedrock topography beneath glaciers at regional
scale, at wave length ∼ 10h̄ (with a resolution at ∼ h̄, h̄ a characteristic thickness
value) is developed. The key ingredients of this inversion method are the following: a
Reduced-Uncertainty flow model (RU-SIA) taking into account a complete physics
(including depth-varying internal deformation) while presenting an unique dimen-
sionless parameter γ; two advanced VDA processes; an Artificial Neural Network
(ANN) estimating γ from the surface data and in-situ measurements (acquired during
airborne campaigns). A guiding idea in the method development was to consider
well-posed inverse problems (or at least not trivially ill-posed ones). All steps of the
algorithm have been thoroughly assessed: the two VDA processes which have been
proved to be robust, accurate and sufficiently insensitive to prior information (the
first guess chosen here is BedMap2); the ANN prediction capabilities which turned
out to be excellent on the considered datasets. It would be straightforward to apply
the same ANN to directly estimate the ice thickness. However it is definitively more
consistent to estimate an unique dimensionless parameter of the flow model from
the surface features correctly represented by this same model, instead of a partially
dependent parameter.
Numerous sensitivity analyses have been investigated, first in [24] and here in two
large EAIS areas. In particular the estimation sensitivity with respect to: the presence
or not of local in-situ measurements (flight tracks), different statistical learning
methods (Kriging vs ANN), different grid resolutions and different scales of surface
data smoothing.
The method enables to estimate the bed elevation between in-situ measurements, in
poorly covered areas and even in large uncovered areas e.g. in EAIS where the current
estimations are gravimetry-based (hence highly uncertain). The estimations in such
uncovered areas may be as accurate as elsewhere since they are based on the surface
signature (measured by altimetry and InSAR); it is shown that the inversion method
is relatively global with local constraints (the flight tracks) and not purely local. In
the considered six large EAIS areas, the corrections made to BedMap2 may be large
(up to 1000 m) even close to flight tracks (e.g. at 2 wave lengths that is ∼ 50km).
Away from in-situ measurements (flight tracks), the correction of BedMap2 may be
significant or not, depending on the surface signature. These corrections led to a total
ice volume change by 0.5− 5.6%, depending on the area.
This bed estimation method may be applied to many other ice-sheets areas or
ice-caps, as soon as respecting the method domain of validity, that is highly to
moderately sheared flows (i.e. not slipping flows). The method may be extended to
unsteady flows if the surface observations (elevation and velocity) are given in time
and assuming that the initial condition is either not important (at the considered
time scale) or approximatively known.
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Appendix A. Results for the four other EAIS areas

In this section, the estimation of ice thickness is performed in the four other areas
indicated in Fig. 4: Ant2, Ant4, Ant5 and Ant6. Ant2 is located upstream of Fisher
and Merllor ice-streams (upstream Amery ice shelf); Ant4 is located upstream Totten
ice-streams (Wilkes land and Terre Adlie); Ant5 is located upstream Ninnis and
Mertz ice-streams in Terre Adlie and George V land; Ant6 is located upstream Byrd
ice-streams (east of Ross Ice shelf), see Fig. 4. These areas have been relatively well
covered during the airborne campaigns excepted the north-east part of Ant2, see
Fig. A1. Distances between flight tracks are relatively low, therefore the empirical
uncertainty assigned to Bedmap2 estimations hb is low too: ≈ ±[100 − 250]m, see
figures A1, A2, A3, A4 (Middle).
For each area, domain information and statistics on the numerical results are
presented, see tables A1, A2, A3, A4.
As already noticed, RU-SIA model already fits well with the surface topography after
the data-driven model Step 2) only; that is with γ̂ and hb as parameters in (1): see
lines ”(|H(hb) − Hobs| (before h-inversion)” in the tables. Next RU-SIA model fits
accurately with the surface topography after the re-calibration / estimation of h.
Indeed, misfit values range within ≈ [4 − 5]m in mean; see lines ”(|H(hb) − Hobs|
(after h-inversion)” in tables.
The corrections made on ȧ are ∼ [10 − 17]% in mean, that is within the a-priori

31



Table A1. Domain Ωp=Ant2, information and results.

Domain Ωp & mesh information
Surface |Ωp| 431860 km2

Mean ice thickness of hb (Bedmap2) 2144.4m
# mesh vertices: in Ωp / on flight tracks 65123/5194

RU-SIA model output (with γ̂) Median Mean Max
|H(hb)−Hobs| (before h-inversion) 8.7m 17.3m 149.9m
|H(h∗)−Hobs| (after h-inversion) 3.9m 5.1m 49.2m

Infered RHS ȧ
|ȧ∗ − ȧb| 0.6 cm/y 0.8 cm/y 4.0 cm/y

|ȧ∗ − ȧb|/|ȧb| 14.8 % 13.2 % 20 %

Infered thickness h
|h∗ − hb| 171.1m 302.4m 2025.6m

|h∗ − hb|/|hb| 8.3% 14.2% 80.0%

Ice volume change in km3 / in % 5.2 104 km3 / 5.6%

Table A2. Domain Ωp=Ant4, information and results.

Domain Ωp & mesh information
Surface |Ωp| 439045 km2

Mean ice thickness of hb (Bedmap2) 2745.4m
# mesh vertices: in Ωp / on flight tracks 61219/4977

RU-SIA model output (with γ̂) Median Mean Max
|H(hb)−Hobs| (before h-inversion) 6.3m 8.4m 66.9m
|H(h∗)−Hobs| (after h-inversion) 3.0m 4.1m 45.3m

Infered RHS ȧ
|ȧ∗ − ȧb| 2.0 cm/y 2.7 cm/y 15.0 cm/y

|ȧ∗ − ȧb|/|ȧb| 8.7 % 10.1 % 20 %

Infered thickness h
|h∗ − hb| 147.6m 185.0m 1241.6m

|h∗ − hb|/|hb| 5.7% 7.0% 50.4%

Ice volume change in km3 / in % 1.5 104 km3 / 1.5%

uncertainty range indicated in [34].
The estimated thickness h∗ is plotted in each case, see figures A1, A2, A3, A4
(Down)(L); its difference with hb is plotted (Down)(R). The corrections made to hb
are non negligible: they are ranging within [7.0 − 15.9]% in mean (corresponding
to [185 − 373] m, see the lines ”|h∗ − hb|” in tables). These corrections lead to
changes of total ice volume by [1.5, 5.6]%. Again, the obtained difference with hb is
independent of the distance to the closest flight track. Maximum values of correction
to hb can be locally high. In the uncovered north-east area in Ant2, these maximum
values corrections reach ≈ 2000 m. At ≈ 50km from the nearest flight track (that is
∼ 2 minimal wave lengths of the model) correction may reach 1000m (even in area
surrounded by well covered areas), see e.g. figures A3 and A4 (Down)(R). Beyond
≈ 100km from the nearest data, the correction of hb may be significant or not,
depending on the surface signature, see e.g. figures A3 and A4 (Down)(R).
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Table A3. Ant 5, information and results.

Domain Ωp & mesh information
Surface |Ωp| 362019 km2

Mean ice thickness of hb (Bedmap2) 2415.3m
# mesh vertices: in Ωp / on flight tracks 41597/2351

RU-SIA model output (with γ̂) Median Mean Max
|H(hb)−Hobs| (before h-inversion) 18.3m 23.9m 173.3m
|H(h∗)−Hobs| (after h-inversion) 3.9m 5.1m 43.1m

Infered RHS ȧ
|ȧ∗ − ȧb| 3.9 cm/y 4.4 cm/y 14.5 cm/y

|ȧ∗ − ȧb|/|ȧb| 18.8 % 15.4 % 20 %

Infered thickness h
|h∗ − hb| 275.1m 373.1m 1989.2m

|h∗ − hb|/|hb| 12.1% 15.9% 68.8%

Ice volume change in km3 / in % 3.8 104 km3 / 5.6%

Table A4. Domain Ωp=Ant6, information and results.

Domain Ωp & mesh information
Surface |Ωp| 406388 km2

Mean ice thickness of hb (Bedmap2) 2672.9m
# mesh vertices: in Ωp / on flight tracks 63981/3012

RU-SIA model output (with γ̂) Median Mean Max
|H(hb)−Hobs| (before h-inversion) 8.3m 11.0m 46.8m
|H(h∗)−Hobs| (after h-inversion) 2.7m 3.4m 21.3m

Infered RHS ȧ
|ȧ∗ − ȧb| 0.4 cm/y 0.5 cm/y 1.8 cm/y

|ȧ∗ − ȧb|/|ȧb| 15.8 % 14.2 % 20 %

Infered thickness h
|h∗ − hb| 218.6m 313.9m 1777.3m

|h∗ − hb|/|hb| 8.1% 11.6% 63.8%

Ice volume change in km3 / in % 2.6 103 km3 / 1.7%
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Figure A1. Domain Ωp=Ant2: (Up)(L) Surface velocity module |uH | and flight tracks. (R) γ̂ computed
by NNRK, see (10). (Middle)(L) Thickness hb from Bedmap2 [2]. (R) Empirical uncertainty on hb from [2].
(Down)(L) Infered thickness with γ̂: h∗(γ̂). (R) Difference (h∗(γ̂)− hb).
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Figure A2. Domain Ωp=Ant4: (Up)(L) Surface velocity module |uH | and flight tracks. (R) γ̂ computed
by NNRK, see (10). (Middle)(L) Thickness hb from Bedmap2 [2]. (R) Empirical uncertainty on hb from [2].
(Down)(L) Infered thickness with γ̂: h∗(γ̂). (R) Difference (h∗(γ̂)− hb).
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Figure A3. Ant 5: (Up)(L) Surface velocity module |uH | and flight tracks. (R) γ̂ computed by NNRK, see
(10). (Middle)(L) Thickness hb from Bedmap2 [2]. (R) Empirical uncertainty on hb from [2]. (Down)(L) Infered
thickness with γ̂: h∗(γ̂). (R) Difference (h∗(γ̂)− hb).
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Figure A4. Domain Ωp=Ant6: (Up)(L) Surface velocity module |uH | and flight tracks. (R) γ̂ computed
by NNRK, see (10). (Middle)(L) Thickness hb from Bedmap2 [2]. (R) Empirical uncertainty on hb from [2].
(Down)(L) Infered thickness with γ̂: h∗(γ̂). (R) Difference (h∗(γ̂)− hb).
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