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Abstract. We study the termination problem for probabilistic term
rewrite systems. We prove that the interpretation method is sound and
complete for a strengthening of positive almost sure termination, when
abstract reduction systems and term rewrite systems are considered.
Two instances of the interpretation method—polynomial and matrix
interpretations—are analyzed and shown to capture interesting and non-
trivial examples when automated. We capture probabilistic computation
in a novel way by means of multidistribution reduction sequences, thus
accounting for both the nondeterminism in the choice of the redex and
the probabilism intrinsic in firing each rule.

1 Introduction

Interactions between computer science and probability theory are pervasive and
extremely useful to the first discipline. Probability theory indeed offers models
that enable abstraction, but it also suggests a new model of computation, like in
randomized computation or cryptography [16]. All this has stimulated the study
of probabilistic computational models and programming languages: probabilistic
variations on well-known models like automata [22], Turing machines [24], and
the λ-calculus [23] are known from the early days of theoretical computer science.

The simplest way probabilistic choice can be made available in programming
is endowing the language of programs with an operator modeling sampling from
(one or many) distributions. Fair, binary, probabilistic choice is for example
perfectly sufficient to get universality if the underlying programming language
is itself universal (e.g., see [9]).

Term rewriting [25] is a well-studied model of computation when no proba-
bilistic behavior is involved. It provides a faithful model of pure functional pro-
gramming which is, up to a certain extent, also adequate for modeling higher-
order parameter passing [11]. What is peculiar in term rewriting is that, in
principle, rule selection turns reduction into a potentially nondeterministic pro-
cess. The following question is then a natural one: is there a way to generalize
term rewriting to a fully-fledged probabilistic model of computation? Actually,
not much is known about probabilistic term rewriting: we are only aware of the
definitions due to Agha et al. [1] and due to Bournez and Garnier [4]. We base
our work on the latter, where probabilistic rewriting is captured as a Markov
decision process; rule selection remains nondeterministic, but each rule can have



one of many possible outcomes, each with its own probability. Rewriting thus
becomes a process in which both nondeterministic and probabilistic aspects are
present and intermingled. When firing a rule, the reduction process implicitly
samples from a distribution, much in the same way as when performing binary
probabilistic choice in one of the models mentioned above.

In this paper, we first define a new, simple framework for discrete proba-
bilistic reduction systems, which properly generalizes standard abstract reduc-
tion systems [25]. In particular, what plays the role of a reduction sequence,
usually a (possibly infinite) sequence a1 → a2 → . . . of states, is a sequence
µ1  µ2  . . . of (multi)distributions over the set of states. A multidistribution
is not merely a distribution, and this is crucial to appropriately account for both
the probabilistic behaviour of each rule and the nondeterminism in rule selec-
tion. Such correspondence does not exist in Bournez and Garnier’s framework,
as nondeterminism has to be resolved by a strategy, in order to define reduction
sequences. However, the two frameworks turn out to be equiexpressive, at least
as far as every rule has finitely many possible outcomes. We then prove that
the probabilistic ranking functions [4] are sound and complete for proving strong
almost sure termination, a strengthening of positive almost sure termination [4].
We moreover show that ranking functions provide bounds on expected runtimes.

This paper’s main contribution, then, is the definition of a simple framework
for probabilistic term rewrite systems as an example of this abstract framework.
Our main aim is studying whether any of the well-known techniques for ter-
mination of term rewrite systems can be generalized to the probabilistic set-
ting, and whether they can be automated. We give positive answers to these
two questions, by describing how polynomial and matrix interpretations can
indeed be turned into instances of probabilistic ranking functions, thus gener-
alizing them to the more general context of probabilistic term rewriting. We
moreover implement these new techniques into the termination tool NaTT [26].
The implementation and an extended version of this paper [?] are available at
http://www.trs.cm.is.nagoya-u.ac.jp/NaTT/probabilistic.

2 Related Work

Termination is a crucial property of programs, and has been widely studied
in term rewriting. Tools checking and certifying termination of term rewrite
systems are nowadays capable of implementing tens of different techniques, and
can prove termination of a wide class of term rewrite systems, although the
underlying verification problem is well known to be undecidable [25].

Termination remains an interesting and desirable property in a probabilis-
tic setting, e.g., in probabilistic programming [17] where inference algorithms
often rely on the underlying program to terminate. But what does termination
mean when systems become probabilistic? If one wants to stick to a qualitative
definition, almost-sure termination is a well-known answer: a probabilistic com-
putation is said to almost surely terminate iff non-termination occurs with null
probability. One could even require positive almost-sure termination, which asks
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the expected time to termination to be finite. Recursion-theoretically, check-
ing (positive) almost-sure termination is harder than checking termination of
non-probabilistic programs, where termination is at least recursively enumer-
able, although undecidable: in a universal probabilistic imperative programming
language, almost sure termination is Π0

2 complete, while positive almost-sure
termination is Σ0

2 complete [19].
Many sound verification methodologies for probabilistic termination have re-

cently been introduced (see, e.g., [4,5,15,13,8]). In particular, the use of ranking
martingales has turned out to be quite successful when the analyzed program is
imperative, and thus does not have an intricate recursive structure. When the
latter holds, techniques akin to sized types have been shown to be applicable [10].
Finally, as already mentioned, the current work can be seen as stemming from
the work by Bournez et al. [6,4,5]. The added value compared to their work
are first of all the notion of multidistribution as a way to give an instantaneous
description of the state of the underlying system which exhibits both nondeter-
ministic and probabilistic features. Moreover, an interpretation method inspired
by ranking functions is made more general here, this way accommodating not
only interpretations over the real numbers, but also interpretations over vec-
tors, in the sense of matrix interpretations. Finally, we provide an automation
of polynomial and matrix interpretation inference here, whereas nothing about
implementation was presented in Bournez and Garnier’s work.

3 Probabilistic Abstract Reduction Systems

An abstract reduction system (ARS) on a set A is a binary relation → ⊆ A ×
A. Having a → b means that a reduces to b in one step, or b is a one-step
reduct of a. Bournez and Garnier [4] extended the ARS formalism to probabilistic
computations, which we will present here using slightly different notations.

We write R≥0 for the set of non-negative reals. A (probability) distribution
on a countable set A is a function d : A → R≥0 such that

∑
a∈A d(a) = 1. We

say a distribution d is finite if its support Supp(d) := {a ∈ A | d(a) > 0} is
finite, and write {d(a1) :a1, . . . , d(an) :an} for d if Supp(d) = {a1, . . . , an} (with
pairwise distinct ais). We write FDist(A) for the set of finite distributions on A.

Definition 1 (PARS, [4]). A probabilistic reduction over a set A is a pair
of a ∈ A and d ∈ FDist(A), written a → d. A probabilistic ARS (PARS) A
over A is a (typically infinite) set of probabilistic reductions. An object a ∈ A is
called terminal (or a normal form) in A, if there is no d with a→ d ∈ A. With
TRM(A) we denote the set of terminals in A.

The intended meaning of a→ d ∈ A is that “there is a reduction step a→A b
with probability d(b)”.

Example 2 (Random walk). A random walk over N with bias probability p is
modeled by the PARS Wp consisting of the probabilistic reduction

n+ 1→ {p : n, 1− p : n+ 2} for all n ∈ N.



A PARS describes both nondeterministic and probabilistic choice; we say a
PARS A is nondeterministic if a → d1, a → d2 ∈ A with d1 6= d2. In this case,
the distribution of one-step reducts of a is nondeterministically chosen from d1
and d2. Bournez and Garnier [4] describe reduction sequences via stochastic se-
quences, which demand nondeterminism to be resolved by fixing a strategy (also
called policies). In contrast, we capture nondeterminism by defining a reduction
relation  A on distributions, and emulate ARSs by {1 : a}  A {1 : b} when
a → {1 : b} ∈ A. For the probabilistic case, taking Example 2 we would like to
have

{1 : 1} W 1
2

{ 12 : 0, 1
2 : 2} ,

meaning that the distribution of one-step reducts of 1 is { 12 :0, 1
2 :2}. Continuing

the reduction, what should the distribution of two-step reducts of 1 be? Actually,
it cannot be a distribution (on A): by probability 1

2 we have no two-step reduct
of 1. One solution, taken by [4], is to introduce ⊥ /∈ A representing the case
where no reduct exists. We take another solution: we consider subdistributions,
i.e. generalizations of distributions where probabilities may sum up to less than
one, allowing

{1 : 1} W 1
2

{ 12 : 0, 1
2 : 2} W 1

2

{ 14 : 1, 1
4 : 3} .

Further continuing the reduction, one would expect { 18 : 0, 1
4 : 2, 1

8 : 4} as the
next step, but note that a half of the probability 1

4 of 2 is the probability of
reduction sequence 2→W 1

2

1→W 1
2

2, and the other half is of 2→W 1
2

3→W 1
2

2.

Example 3. Consider the PARS N consisting of the following rules:

a→ { 12 : b1,
1
2 : b2} b1 → {1 : c} c→ {1 : d1}

b2 → {1 : c} c→ {1 : d2} .

Reducing a twice always yields c, so the distribution of the two-step reduct of
a is {1 : c}. More precisely, there are two paths to reach c: a →N b1 →N c

and a →N b2 →N c. Each of them can be nondeterministically continued to
d1 and d2, so the distribution of three-step reducts of a is the nondeterministic
choice among {1 : d1}, { 12 : d1,

1
2 : d2}, {1 : d2}. On the other hand, whereas it

is obvious that the two-step reduct {1 : c} of a should further reduce to {1 : d1}
or {1 : d2}, respectively, obtaining the third choice { 12 : d1,

1
2 : d2} would require

that the reduction relation  N is defined in a non-local manner.

To overcome this problem, we refine distributions to multidistributions.

Definition 4 (Multidistributions). A multidistribution on A is a finite mul-
tiset µ of pairs of a ∈ A and 0 ≤ p ≤ 1, written p : a, such that

|µ| :=
∑
p:a∈µ

p ≤ 1 .

We denote the set of multidistributions on A by FMDist(A).



Abusing notation, we identify {p1 :a1, . . . , pn :an} ∈ FDist(A) with multidistribu-
tion {{p1 : a1, . . . , pn : an}} as no confusion can arise. For a function f : A→ B,
we often generalize the domain and range to multidistributions as follows:

f
(
{{p1 : a1, . . . , pn : an}}

)
:= {{p1 : f(a1), . . . , pn : f(an)}} .

The scalar multiplication of a multidistribution is p · {{q1 : a1, . . . , qn : an}} :=
{{p · q1 : a1, . . . , p · qn : an}}, which is also a multidistribution if 0 ≤ p ≤ 1. More
generally, multidistributions are closed under convex multiset unions, defined as⊎n
i=1 pi · µi with p1, . . . , pn ≥ 0 and p1 + · · ·+ pn ≤ 1.

Now we introduce the reduction relation  A over multidistributions.

Definition 5 (Probabilistic Reduction). Given a PARS A, we define the
probabilistic reduction relation  A ⊆ FMDist(A)× FMDist(A) as follows:

a ∈ TRM(A)

{{1 : a}} A ∅
a→ d ∈ A
{{1 : a}} A d

µ1  A ρ1 . . . µn  A ρn⊎n
i=1 pi · µi  A

⊎n
i=1 pi · ρi

In the last rule, we assume p1, . . . , pn ≥ 0 and p1 + · · ·+ pn ≤ 1. We denote by
A(µ) the set of all possible reduction sequences from µ, i.e., {µi}i∈N ∈ A(µ) iff
µ0 = µ and µi  A µi+1 for any i ∈ N.

Thus µ  A ν if ν is obtained from µ by replacing every nonterminal a in µ
with all possible reducts with respect to some a → d ∈ A, suitably weighted
by probabilities, and by removing terminals. The latter implies that |µ| is not
preserved during reduction: it decreases by the probabilities of terminals.

To continue Example 2, we have the following reduction sequence:

{{1 : 1}} W 1
2

{{ 12 : 0, 1
2 : 2}} W 1

2

∅ ] {{ 14 : 1, 1
4 : 3}}

 W 1
2

{{ 18 : 0, 1
8 : 2}} ] {{ 18 : 2, 1

8 : 4}} W 1
2

. . .

The use of multidistributions resolves the issues indicated in Example 3 when
dealing with nondeterministic systems. We have, besides others, the reduction

{{1 : a}} N {{ 12 : b1,
1
2 : b2}} N {{ 12 : c, 12 : c}} N {{ 12 : d1,

1
2 : d2}} .

The final step is possible because {{ 12 : c, 12 : c}} is not collapsed to {{1 : c}}.
When every probabilistic reduction in A is of form a→ {1:b} for some b, then

 A simulates the non-probabilistic ARS via the relation {{1 : ·}}  A {{1 : ·}}.
Only a little care is needed as normal forms are followed by ∅.

Proposition 6. Let ↪→ be an ARS and define A by a→ {1 : b} ∈ A iff a ↪→ b.
Then {{1 : a}} A µ iff either a ↪→ b and µ = {{1 : b}} for some b, or µ = ∅ and
a is a normal form in ↪→.



3.1 Notions of Probabilistic Termination

A binary relation → is called terminating if it does not give rise to an infi-
nite sequence a1 → a2 → . . . . In a probabilistic setting, infinite sequences are
problematic only if they occur with non-null probability.

Definition 7 (AST). A PARS A is almost surely terminating ( AST) if for
any reduction sequence {µi}i∈N ∈ A(µ), it holds that limn→∞ |µn| = 0.

Intuitively, |µn| is the probability of having n-step reducts, so its tendency to-
wards zero indicates that infinite reductions occur with zero probability.

Example 8 (Example 2 Revisited). The system Wp is AST for p ≤ 1
2 , whereas

it is not for p > 1
2 . Note that although W 1

2
is AST, the expected number of

reductions needed to reach a terminal is infinite.

The notion of positive almost sure termination (PAST), due to Bournez and
Garnier [4], constitutes a refinement of AST demanding that in addition, the
expected length of reduction is finite for every initial state a, independent of
the employed strategy. In particular, W 1

2
is not PAST. The expected length of

a derivation can be concisely expressed in our setting as follows.

Definition 9 (Expected Derivation Length). Let A be a PARS and µ =
{µi}i∈N ∈ A(µ). We define the expected derivation length edl(µ) ∈ R ∪ {∞} of
µ by

edl(µ) :=
∑
i≥1

|µi| .

A PARS A is called PAST if for every reduction µ starting from a, edl(µ) is
bounded. Without fixing a strategy, however, this condition does not ensure
bounds on the derivation length.

Example 10. Consider the (non-probabilistic) ARS on N ∪ {ω} with reductions
ω → n and n + 1 → n for every n ∈ N. It is easy to see that every reduction
sequence is of finite length, and thus, this ARS is PAST. There is, however, no
global bound on the length of reduction sequences starting from ω.

Hence we introduce a stronger notion, which actually plays a more essential
role than PAST. It is based on a natural extension of derivation height from
complexity analysis of term rewriting.

Definition 11 (Strong AST). A PARS A is strongly almost surely terminat-
ing ( SAST) if the expected derivation height edhA(a) of every a ∈ A is finite,
where edhA(a) ∈ R ∪ {∞} of a is defined by

edhA(a) := sup
µ∈A({{1:a}})

edl(µ) .



3.2 Probabilistic Ranking Functions

Bournez and Garnier [4] generalized ranking functions, a popular and classical
method for proving termination of non-probabilistic systems, to PARS. We give
here a simpler but equivalent definition of probabilistic ranking function, taking
advantage of the notion of multidistribution.

For a (multi)distribution µ over real numbers, the expected value of µ is
denoted by E(µ) :=

∑
p:x∈µ p · x. A function f : A→ R is naturally generalized

to f : FMDist(A)→ FMDist(R), so for µ ∈ FMDist(A), E(f(µ)) =
∑
p:x∈µ p·f(x).

For ε > 0 we define the order >ε on R by x >ε y iff x ≥ ε+ y.

Definition 12. Given a PARS A on A, we say that a function f : A→ R≥0 is
a (probabilistic) ranking function (sometimes referred to as Lyapunov ranking
function), if there exists ε > 0 such that a→ d ∈ A implies f(a) >ε E(f(d)).

The above definition slightly differs from the formulation in [4]: the latter
demands the drift E(f(d)) − f(a) to be at least −ε, which is equivalent to
f(a) >ε E(f(d)); and allows any lower bound infa∈A f(a) > −∞, which can be
easily turned into 0 by adding the lower bound to the ranking function.

We prove that a ranking function ensures SAST and gives a bound on ex-
pected derivation length. Essentially the same result can be found in [8], but we
use only elementary mathematics not requiring notions from probability theory.
We moreover show that this method is complete for proving SAST.

Lemma 13. Let f be a ranking function for a PARS A. Then there exists ε > 0
such that E(f(µ)) ≥ E(f(ν)) + ε · |ν| whenever µ A ν.

Proof. As f is a ranking function for A, we have ε > 0 such that a → d ∈ A
implies f(a) >ε E(f(d)). Consider µ A ν. We prove the claim by induction on
the derivation of µ A ν.

– Suppose µ = {{1 : a}} and a ∈ TRM(A). Then ν = ∅ and E(f(µ)) ≥ 0 =
E(f(ν)) + ε · |ν| since E(f(∅)) = |∅| = 0.

– Suppose µ = {{1 : a}} and a → ν ∈ A. From the assumption E(f(µ)) =
f(a) >ε E(f(ν)), and as |ν| = 1 we conclude E(f(µ)) ≥ E(f(ν)) + ε · |ν|.

– Suppose µ =
⊎n
i=1 pi · µi, ν =

⊎n
i=1 pi · νi, and µi  A νi for all 1 ≤ i ≤ n.

Induction hypothesis gives E(f(µi)) ≥ E(f(νi)) + ε · |νi|. Thus,

E(f(µ)) =

n∑
i=1

pi · E(f(µi)) ≥
n∑
i=1

pi · (E(f(νi)) + ε · |νi|)

=

n∑
i=1

pi · E(f(νi)) + ε ·
n∑
i=1

pi · |νi| = E(f(ν)) + ε · |ν| . ut

Lemma 14. Let f be a ranking function for PARS A. Then there is ε > 0 such
that E(f(µ0)) ≥ ε · edl(µ) for every µ = {µi}i∈N ∈ A(µ0).



Proof. We first show E(f(µm)) ≥
∑n
i=m+1 |µi| for every n ≥ m, by induction on

m− n. Let ε be given by Lemma 13. The base case is trivial, so let us consider
the inductive step. By Lemma 13 and induction hypothesis we get

E(f(µm)) ≥ E(f(µm+1)) + ε · |µm+1|

≥ ε ·
n∑

i=m+2

|µi|+ ε · |µm+1| = ε ·
n∑

i=m+1

|µi| .

By fixing m = 0, we conclude that the sequence
{
ε ·
∑n
i=1 |µi|

}
n≥1 is bounded

by E(f(µ0)), and so is its limit ε ·
∑
i≥1 |µi| = ε · edl(µ). ut

Theorem 15. Ranking functions are sound and complete for proving SAST.

Proof. For soundness, let f be a ranking function for a PARS A. For every

derivation µ starting from {{1 : a}}, we have edl(µ) ≤ f(a)
ε by Lemma 14. Hence,

edhA(a) ≤ f(a)
ε , concluding that A is SAST.

For completeness, suppose that A is SAST, and let a → d ∈ A. Then we
have edhA(a) ∈ R, and

edhA(a) = sup
µ∈A({{1:a}})

edl(µ) ≥ sup
µ∈A(d)

(1 + edl(µ))

= 1 + sup
µ∈A(d)

edl(µ) = 1 + E(edhA(d)) ,

concluding edhA(a) >1 E(edhA(d)). Thus, taking ε = 1, edhA is a ranking func-
tion according to Definition 12.

Bournez and Garnier claimed that ranking functions are complete for proving
PAST, if the system is finitely branching [4, Theorem 3]. The claim does not
hold,4 as the following example illustrates that PAST and SAST do not coincide
even for finitely branching systems.5

Example 16. Consider PARS A over N ∪ {an | n ∈ N}, consisting of

an → { 12 : an+1,
1
2 : 0} an → {1 : 2n · n} n+ 1→ {1 : n} .

Then P is finitely branching and PAST, because every reduction sequence
from {{1 : an}} with n ∈ N is one of the following forms:

– µn,0 = {{1 : an}} {{1 : 2n · n}} 2n·n {{1 : 0}};
– µn,m = {{1 : an}} m {{ 1

2m : an+m,
1
2m : 0}} {{ 1

2m : 2n+m · (n+m)}}
 2n+m·(n+m) {{ 1

2m : 0}} with m = 1, 2, . . . ;
– µn,∞ = {{1 : an}} {{ 12 : an+1,

1
2 : 0}} {{ 14 : an+2,

1
4 : 0}} · · · ,

and edl(µn,α) is finite for each n ∈ N and α ∈ N∪{∞}. However, e.g., edhA(a0)
is not bounded, since edl(µ0,m) = 1

20 + · · ·+ 1
2m−1 + 1

2m + 1
2m · (2

m ·m) ≥ m for
every m ∈ N.
4 The completeness claim of [4] has already been refuted in [13], but [13] also contra-

dicts our completeness result. The counterexample there is invalid since a part of
reduction steps are not counted. We thank Luis Maŕıa Ferrer Fioriti for this analysis.

5 We are grateful to the anonymous reviewer who pointed us to this example.



3.3 Relation to Formulation by Bournez and Garnier

As done by Bournez and Garnier [4], the dynamics of probabilistic systems are
commonly defined as stochastic sequences, i.e., infinite sequences of random
variables whose n-th variable represents the n-th reduct. A disadvantage of this
approach is that nondeterministic choices have to be a priori resolved by means
of strategies. In this section, we establish a precise correspondence between our
formulation and the one of Bournez and Garnier. In particular, we show that
the corresponding notions of AST and PAST coincide.

We shortly recap central definitions from [4]. We assume basic familiarity
with stochastic processes, see e.g. [?]. Here we fix a PARS A on A. A history
(of length n + 1) is a finite sequence a = a0, a1, . . . , an of objects from A, and
such a sequence is called terminal if an is. A strategy φ is a function from
nonterminal histories to distributions such that an → φ(a0, a1, . . . , an) ∈ A. A
history a0, a1, . . . , an is called realizable under φ iff for every 0 ≤ i < n, it holds
that φ(a0, a1, . . . , ai)(ai+1) > 0.

Definition 17 (Stochastic Reduction, [4]). Let A be a PARS on A and
⊥ /∈ A a special symbol. A sequence of random variables X = {Xn}n∈N over
A ∪ {⊥} is a (stochastic) reduction in A (under strategy φ) if

P(Xn+1 = ⊥ | Xn = ⊥) = 1;

P(Xn+1 = ⊥ | Xn = a) = 1 if a is terminal;

P(Xn+1 = ⊥ | Xn = a) = 0 if a is nonterminal;

P(Xn+1 = a | Xn = an, . . . , X0 = a0) = d(a) if φ(a0, . . . , an) = d,

where a0, . . . , an is a realizable nonterminal history under φ.

Thus, X is set up so that trajectories correspond to reductions a0 →A a1 →A
· · · , and ⊥ signals termination. In correspondence, the derivation length is given
by the first hitting time to ⊥:

Definition 18 ((P)AST of [4]). For X = {Xn}n∈N define the random vari-
able TX := min{n ∈ N | Xn = ⊥}, where min∅ = ∞ by convention. A PARS
A is stochastically AST (resp. PAST) if for every stochastic reduction X in A,
P(TX =∞) = 0 (resp. E(TX) <∞).

A proof of the following correspondence is available in the extened version [?].

Lemma 19. For each stochastic reduction {Xn}n∈N in a PARS A there exists
a corresponding reduction sequence µ0  A µ1  A · · · where µ0 is a distribution
and P(Xn = a) =

∑
p:a∈µn

p for all n ∈ N and a ∈ A, and vice versa.

As the above lemma relates TX with the n-th reduction µn of the corre-
sponding reduction so that P(TX ≥ n) = P(Xn 6= ⊥) = |µn|, using that
E(TX) =

∑
n∈N∪{∞} P(TX ≥ n) [7], it is not difficult to derive the central

result of this section:

Theorem 20. A PARS A is (P)AST if and only if it is stochastically (P)AST.



4 Probabilistic Term Rewrite Systems

Now we formulate probabilistic term rewriting following [4], and then lift the
interpretation method for term rewriting to the probabilistic case.

We briefly recap notions from rewriting; see [3] for an introduction to rewrit-
ing. A signature F is a set of function symbols f associated with their arity
ar(f) ∈ N. The set T (F, V ) of terms over a signature F and a set V of vari-
ables (disjoint with F ) is the least set such that x ∈ T (F, V ) if x ∈ V and
f(t1, . . . , tar(f)) ∈ T (F, V ) whenever f ∈ F and ti ∈ T (F, V ) for all 1 ≤ i ≤ ar(f).
A substitution is a mapping σ : V → T (F, V ), which is extended homomorphi-
cally to terms. We write tσ instead of σ(t). A context is a term C ∈ T (F, V ∪{2})
containing exactly one occurrence of a special variable 2. With C[t] we de-
note the term obtained by replacing 2 in C with t. We extend substitutions
and contexts to multidistributions: µσ := {{p1 : t1σ, . . . , pn : tnσ}} and C[µ] :=
{{p1 : C[t1], . . . , pn : C[tn]}} for µ = {{p1 : t1, . . . , pn : tn}}. Given a multidistribu-
tion µ over A, we define a mapping µ : A → R≥0 by µ(a) :=

∑
p:a∈µ p, which

forms a distribution if |µ| = 1.

Definition 21 (Probabilistic Term Rewriting). A probabilistic rewrite rule
is a pair of l ∈ T (F, V ) and d ∈ FDist(T (F, V )), written l → d. A probabilistic
term rewrite system (PTRS) is a (typically finite) set of probabilistic rewrite

rules. We write R̂ for the PARS consisting of a probabilistic reduction C[lσ]→
C[dσ] for every probabilistic rewrite rule l→ d ∈ R, context C, and substitution

σ. We say a PTRS R is AST/SAST if R̂ is.

Note that, for a distribution d over terms, dσ is in general a multidistribution;
e.g., consider { 12 :x, 1

2 :y}σ with xσ = yσ. This explains why we use C[dσ], which
is a distribution, to obtain a probabilistic reduction above.

Example 22. The random walk of Example 2 can be modeled by a PTRS con-
sisting of a single rule s(x) → {p : x, 1 − p : s(s(x))}. To rewrite a term, there
are typically multiple choices of a subterm to reduce (i.e., redexes). For instance,
s(f(s(0))) has two redexes and consequently two possible reducts:

{{p : f(s(0)), 1− p : s(s(f(s(0))))}} and {{p : s(f(0)), 1− p : s(f(s(s(0))))}} .

4.1 Interpretation Methods for Proving SAST

We now generalise the interpretation method for term rewrite systems to the
probabilistic setting. The following notion is standard.

Definition 23 (F -Algebra). An F -algebra X on a non-empty carrier set X
specifies the interpretation fX : Xar(f) → X of each function symbol f ∈ F .
We say X is monotone with respect to a binary relation � ⊆ X × X if x � y
implies fX (. . . , x, . . . ) � fX (. . . , y, . . . ) for every f ∈ F . Given an assignment
α : V → X, the interpretation of a term is defined as follows:

JtKαX :=

{
α(t) if t ∈ V ,

fX (Jt1K
α
X , . . . , JtnK

α
X ) if t = f(t1, . . . , tn).



We write s �X t iff JsKαX � JtKαX for every assignment α.

Theorem 24 (cf. [25]). A TRS R is terminating iff there exists an F -algebra X
which is monotone with respect to a well-founded order � and satisfies R ⊆ �X .

In a proof of the completeness of the above theorem, the term algebra T , an
F -algebra on T (F, V ) such that fT (t1, . . . , tn) := f(t1, . . . , tn), plays a crucial
role. In this term algebra, assignments are substitutions, and JtKσT = tσ. We will
also use the term algebra when proving the completeness of the probabilistic
version of interpertation method for proving SAST.

The following definition gives our probabilistic version of the interpretation
method. It is sound and complete for proving SAST. To achieve completeness,
we first keep the technique as general as possible. For an F -algebra X , we lift
the interpretation of terms to multidistributions as before, i.e.,

J{{p1 : t1, . . . , pn : tn}}KαX := {{p1 : Jt1K
α
X , . . . , p : JtnK

α
X }} .

Definition 25 (Probabilistic F -Algebra). A probabilistic monotone F -
algebra (X ,A) is an F -algebra X equipped with a relation A ⊆ X × FDist(X),
such that for every f ∈ F , fX is monotone with respect to A, i.e., x A d im-
plies fX (. . . , x, . . . ) A fX (. . . , d, . . . ) where fX (. . . , ·, . . . ) is extended to (multi-)
distributions. We say it is collapsible (cf. [18]) if there exist a function G : X →
R≥0 and ε > 0 such that x A d implies G(x) >ε E(G(d)).

For a relation A ⊆ X × FDist(X), we define the relation AX ⊆ T (F, V ) ×
FDist(T (F, V )) by t AX d iff JtKαX A JdKαX for every assignment α : V → X. The
following property is easily proven by induction.

Lemma 26. Let (X ,A) be a probabilistic monotone F -algebra. If s AX d then

JsσKαX A JdσKαX and JC[s]KαX A JC[d]KαX for arbitrary α, σ, and C.

Theorem 27 (Soundness and Completeness). A PTRS R is SAST iff there
exists a collapsible monotone F -algebra (X ,A) such that R ⊆ AX .

Proof. For the “if” direction, we show that the PARS R̂ is SAST using Theo-
rem 15. Let α : V → X be an arbitrary assignment, which exists as X is non-
empty. Consider s → d ∈ R̂. Then we have s = C[lσ] and d = C[d′σ] for some

σ, C, and l → d′ ∈ R. By assumption we have l AX d′, and thus JsKαX A JdKαX
by Lemma 26. The collapsibility of A gives a function G : X → R≥0 and ε > 0

such that G(JsKαX ) >ε E(G(JdKαX )), and by extending definitions we easily see

E(G(JdKαX )) = E(G(JdKαX )). Thus G(J·KαX ) is a ranking function.

For the “only if” direction, suppose that R is SAST. We show (T , R̂) forms
a collapsible probabilistic monotone F -algebra orienting R.

– Since R is SAST, Theorem 15 gives a ranking function f : T (F, V )→ R≥0
and ε > 0 for the underlying PARS R̂. Taking G = f , R̂ is collapsible.



– Suppose s R̂ d. Then we have s = C[lσ] and d = C[ d′σ ] for some C, σ, and

l→ d′ ∈ R. As f(. . . , C, . . . ) is also a context, f(. . . , s, . . . ) R̂ f(. . . , d, . . . ),
concluding monotonicity.

– For every probabilistic rewrite rule l → d ∈ R and every assignment (i.e.,

substitution) σ : V → T (F, V ), we have JlKσT = lσ R̂ dσ = JdKσT , and hence

l R̂T d. This concludes R ⊆ R̂T . ut

4.2 Barycentric Algebras

As probabilistic F -algebras are defined so generally, it is not yet clear how to
search them for ones that prove the termination of a given PTRS. Now we make
one step towards finding probabilistic algebras, by imposing some conditions
to (non-probabilistic) F -algebras, so that the relation A can be defined from
orderings which we are more familiar with.

Definition 28 (Barycentric Domain). A barycentric domain is a set X
equipped with the barycentric operation EX : FDist(X)→ X.

Of particular interest in this work will be the barycentric domains R≥0 and
Rm≥0 with barycentric operations E({p1 : a1, . . . , pn : an}) =

∑n
i=1 pi · ai.

We naturally generalize the following notions from standard mathematics.

Definition 29 (Concavity, Affinity). Let f : X → Y be a function from and
to barycentric domains. We say f is concave with respect to an order � on Y if
f(EX(d)) < EY (f(d)) where < is the reflexive closure of �. We say f is affine
if it satisfies f(EX(d)) = EY (f(d)).

Clearly, every affine function is concave.
Now we arrive at the main definition and theorem of this section.

Definition 30 (Barycentric F -Algebra). A barycentric F -algebra is a pair
(X ,�) of an F -algebra X on a barycentric domain X and an order � on X,
such that for every f ∈ F , fX is monotone and concave with respect to �. We
say it is collapsible if there exist a concave function G : X → R≥0 (with respect
to >) and ε > 0 such that G(x) >ε G(y) whenever x � y.

We define the relation �E ⊆ X × FDist(X) by x �E d iff x � EX(d).

Note that the following theorem claims soundness but not completeness, in
contrast to Theorem 27.

Theorem 31. A PTRS R is SAST if R ⊆ �E
X for a collapsible barycentric

F -algebra (X ,�).

Proof. Due to Theorem 27, it suffices to show that (X ,�E) is a collapsible prob-
abilistic monotone F -algebra. Concerning monotonicity, suppose x �E d, i.e.,
x � EX(d), and let f ∈ F . Since fX is monotone and concave with respect to �
in every argument, we have

fX (. . . , x, . . . ) � fX (. . . ,EX(d), . . . ) < EX(fX (. . . , d, . . . )) .



Concerning collapsibility, whenever x � EX(d) we have

G(x) >ε G(EX(d)) by assumption on G,

≥ E(G(d)) as G : X → R is concave with respect to >,

= E(G(d)) by the definition of E on multidistributions. ut

The rest of the section recasts two popular interpretation methods, polyno-
mial and matrix interpretations (over the reals), as barycentric F -algebras.

Polynomial interpretations were introduced (on natural numbers [20] and real
numbers [21]) for the termination analysis of non-probabilistic rewrite systems.
Various techniques for synthesizing polynomial interpretations (e.g., [14]) exist,
and these techniques are easily applicable in our setting.

Definition 32 (Polynomial Interpretation). A polynomial interpretation is
an F -algebra X on R≥0 such that fX is a polynomial for every f ∈ F . We say
X is multilinear if every fX is of the following form with cV ∈ R≥0:

fX (x1, . . . , xn) =
∑

V⊆{x1,...,xn}

cV ·
∏
xi∈V

xi .

In order to use polynomial interpretations for probabilistic termination, mul-
tilinearity is necessary for satisfying the concavity condition.

Proposition 33. Let X be a monotone multilinear polynomial interpretation
and ε > 0. If JlKαX >ε E(JdKαX ) for every l → d ∈ R and α, then the PTRS R is
SAST.

Proof. The order >ε is trivially collapsible with G(x) = x. Further, every multi-
linear polynomial is affine and thus concave in all variables. Hence (X , >ε) forms
a barycentric F -algebra, and thus Theorem 31 shows that R is SAST. ut

An observation by Lucas [21] also holds in probabilistic case: To prove a finite
PTRS R SAST with polynomial interpretations, we do not have to find ε, but it
is sufficient to check l >E

X d for all rules l→ d ∈ R. Define εl→d := E(JdKαX )−JlKαX
for such α that α(x) = 0. Then for any other α, we can show E(JdKαX )− JlKαX ≥
εl→d > 0. As R is finite, we can take ε := min{εl→d | l→ d ∈ R} > 0.

Example 34 (Example 22 Continued). Consider again the PTRS consisting of the
single rule s(x) → {p : x, 1− p : s(s(x))}. Define the polynomial interpretation
X by 0X := 0 and sX (x) := x+ 1. Then whenever p > 1

2 we have

Js(x)KαX = x + 1 > p · x + (1 − p) · (x + 2) = E(J{p : x, 1− p : s(s(x))}KαX ) .

Thus, when p > 1
2 the PTRS is SAST by Proposition 33.

We remark that polynomial interpretations are not covered by [4, Theorem 5],
since context decrease [4, Definition 8] demands Jf(t)KαX−Jf(t′)KαX ≤ JtKαX−Jt′KαX ,
which excludes interpretations such as fX (x) = 2x.



Matrix interpretations are introduced for the termination analysis of term rewrit-
ing [12]. Now we extend them for probabilistic term rewriting.

Definition 35 (Matrix Interpretation). A (real) matrix interpretation is an
F -algebra X on Rm≥0 such that for every f ∈ F , fX is of the form

fX (x1, . . . ,xn) =

n∑
i=1

Ci · xi + c , (1)

where c ∈ Rm≥0, and Ci ∈ Rm×m≥0 . The order �ε ⊆ Rm≥0 × Rm≥0 is defined by

(x1, . . . , xm)T �ε (y1, . . . , ym)T :⇐⇒ x1 >ε y1 and xi ≥ yi for all i = 2, . . . ,m.

It is easy to derive the following from Theorem 31:

Proposition 36. Let X be a monotone matrix interpretation and ε > 0. If
JlKαX �ε E(JdKαX ) for every l→ d ∈ R and α, then the PTRS R is SAST.

As in polynomial interpretations, for finite systems we do not have to find ε.
Monotonicity can be ensured if (1) satisfies (Ci)1,1 ≥ 1 for all i, cf. [12].

Example 37. Consider the PTRS consisting of the single probabilistic rule

a(a(x))→ {p : a(a(a(x))), 1− p : a(b(a(x)))} .

Consider the two-dimensional matrix interpretation

JaK(x) =

[
1 1
0 0

]
· x+

[
0
1

]
, JbK(x) =

[
1 0
0 0

]
· x .

Then we have

Ja(a(x))Kα =

[
x1 + x2 + 1

1

]
�1−2p

[
x1 + x2 + 2p

1

]
= p · Ja(a(a(x)))Kα + (1− p) · Ja(b(a(x)))Kα

where α(x) = (x1, x2)T . Hence this PARS is SAST if p < 1
2 , by Proposition 36.

It is worthy of note that the above example cannot be handled with polynomial
interpretations, intuitively because monotonicity enforces the interpretation of
the probable reducts a(a(a(x))) and a(b(a(x))) to be greater than that of the
left-hand side a(a(x)). Generally, polynomial and matrix interpretations are in-
comparable in strength.

5 Conclusion

This is a study on how much of the classic interpretation-based techniques well
known in term rewriting can be extended to probabilistic term rewriting, and to



what extent they remain automatable. The obtained results are quite encour-
aging, although finding ways to combine techniques is crucial if one wants to
capture a reasonably large class of systems, similarly to what happens in or-
dinary term rewriting [2]. Another hopeful future work includes extending our
result for proving AST, not only SAST.

We extended the termination prover NaTT [26] with a syntax for probabilis-
tic rules, and implemented the probabilistic versions of polynomial and matrix
interpretations. For usage and implementation details, we refer to the extended
version of this paper. Here we only report that we tested the implementation on
the examples presented in the paper and successfully found termination proofs.

The following example would deserve some attention.

Example 38. Consider the following encoding of [13, Figure 1]:

?(x)→ { 12 : ?(s(x)), 1
2 : $(g(x))} $(0)→ {1 : 0}

?(x)→ {1 : $(f(x))} $(s(x))→ {1 : $(x)}

describing a game where the player (strategy) can choose either to quit the game
and ensure prize $(f(x)), or to try a coin-toss which on success increments the
score and on failure ends the game with consolation prize $(g(x)).

When f and g can be bounded by linear polynomials, it is possible to auto-
matically prove that the system is SAST. For instance, with rules for f(x) = 2x
and g(x) = bx2 c, NaTT (combined with the SMT solver z3 version 4.4.1) found
the following polynomial interpretation proving SAST:

?X (x) = 7x+ 11 sX (x) = x+ 1 0X = 1

fX (x) = 3x+ 1 gX (x) = 2x+ 1 $X (x) = 2x+ 1 .
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