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Abstract
Gabor noise ingredients — points distribution, weights, kernel — can be changed. We show that minor implemen-
tation changes allow for huge 17 − 24× speed-up with same or better quality.
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1. Introduction

Procedural noise texturing is an important element of the CG
toolbox. Gabor noise [LLDD09] and its numerous follow-
ups [BLV∗10,LLD11,GLLD12,GSV∗14,GLM17] proposed
away to procedurally generate stochastic noise instanceswith
controlled spectral properties. It belongs to sparse convolu-
tion methods [Lew89, vW91], and as such, it combines 3
ingredients: one or several splat kernels, a large set of ran-
dom splat positions, and a random weighting of splats. The
result is an instance of a Gaussian texture (i.e. having ran-
dom uncorrelated Fourier phases), which process reproduces
the Power Spectrum Distribution (PSD) of the kernel and is
normalized to unitary variance.

This procedural method is especially powerful: the
look can be controlled by interactive GUI-based PSD de-
sign [LLDD09] or example-based automatic PSD reproduc-
tion [GLLD12]; it applies to curved surfaces [LLDD09] as
well as to solid texturing [LLD11]; and, as a procedural noise,
is able to generate infinite spans of zoomable textures.

However, this approach is too costly for being used in in-
teractive applications, as it requires 30 to 100 splats per pixel
depending on the target quality. Another problem arises con-
cerning resulting texture properties. If these are known and
controlled for the process itself, the quality and normalization
of the resulting instances are not ensured. Indeed even subtle
statistic variations may lead to drastic changes in the final
appearance, as noises are usually non-linearly post-treated in
real-world shaders.

In this paper, we revisit each ingredient of the Gabor noise
method – kernel, point distribution, weighting. For each, we
envision the alternatives and discuss their impact on perfor-
mances and quality based on objective criteria.

2. Gabor noise ingredients

Gabor noise is defined as the convolution of a Poisson
point distribution with the real part of a Gabor kernel mul-

tiplied by uniform random weights. The seminal Gabor
noise [LLDD09] is defined in practice as follows for one
base kernel g(x) at location x:

n(x) =
∑
{xi }

wi g(x − xi)

g(x) = Ke−
π

r2 | |x | |2 cos(2πF0x · ω0) if | |x | | ≤ r,

where {xi} are Poisson point process impulses, and wi are
random weights (i.i.d. W ∼ U(−1, 1)). The user parame-
ters control the magnitude K ∈ R+, the spatial frequency
F0 ∈ R+, the main orientation ω0 ∈ R2, the kernel ra-
dius r ∈ R+, and the splat density (i.e. splats per pixel, or
impulses per splat) λ. In practice, complex textures are ob-
tained by combining several nj (x) functions (with their own
set of parameters). For efficiency, implementations rely on
virtual cells of size r and impulses are generated cell-wise,
so that only cells that may contribute to the current pixel are
evaluated. In the following we thus consider the number N
of impulses per cell rather than λ (λ = πN).

The minimal N to be used in order to get a given target
quality is let to user trial-and-error, and the alternatives for
the different components (weights, kernels, and point distri-
bution) that could decrease the cost for a given target quality
have not been studied. In this paper we propose a study of
alternate Gabor noise ingredients tested with statistical mea-
sures on process and instances. Our test set is defined bellow.

Point distribution: The Gabor noise method is costly firstly
because it requires many splats: a pixel must receive enough
contributions for expected statistical properties to arise. The
problem with a Poisson point distribution is that it tends to
produce clusters and voids, which wastes samples. How-
ever there is no reason to stick to Poisson. Many alternative
point distributions could be used instead, with better coverage
uniformity over the texture space. In particular, blue noises
and low discrepancy distributions provide more regular cov-
erage. Among all possible point distributions we therefore
study and compare the original Poisson process to a stratified
Poisson process, a jittered grid process (for both rectangular
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(a) Poisson (b) Strat. Poisson (c) Rect. jittered (d) Hex. jittered (e) Sobol (f) Scramb. Sobol

Figure 1: Alternative point distributions studied in this work, shown for N = 16. (a): Seminal Poisson point process. (b):
Stratified Poisson – i.e. constant number of impulses per cell. (c),(d): Jittered grid distribution, from N sub-cells along a square
(respectively, hexagonal) regular grid. (e),(f): Sobol and scrambled Sobol sequences generating point coordinates in each cell.

and hexagonal grids), and point distributions sampled using
low-discrepancy Sobol sequences (see fig. 1).

Weights: Splats are modulated by uniform random weights
on [−1, 1] inherited from the shot noise model in electrical
engineering1. But the weighting role, effect and usefulness
have not been studied. Splats with a low weight count for
little in the sum, which seems like a waste of computation.
We therefore compare the original uniform weighting on
[−1, 1] to the minimalist Bernoulli distribution on {−1, 1}.

Kernel: The true Gabor kernel [Gab46] is a Gaussian times
exp(iωx). The practical version used in Gabor noise sem-
inal paper is the real part of it, i.e. a cosine multiplied by
a Gaussian truncated to ≈ 5% value. The choice of cosine
rather than a sine has never been discussed, while the later
would enforce a strict zero mean. We thus compare these
two kernels for all our test cases.

3. Evaluation

Whatever the variant Gabor noise algorithm, the seminal
properties must be respected: producing an instance of a
Gaussian texture process (i.e. random uncorrelated phases)
reproducing the target PSD with a normalized variance. We
therefore measure and compare the quality of the process for
each alternative and function of the number of impulses per
cell N . As measuring the randomness of Fourier phases is
particularly difficult (see a survey in [Lec15]), we evaluate
an equivalent property that is the Gaussianity of the process.

However, the statistics of the process are not enough for a
Computer Graphics application where the user wants to pro-
duce one image instance out of the process while still hoping
for “nice” textural properties. Indeed not only the overall
statistics or PSD are important but also the appearance of
the generated textures. More specifically, the stationarity of
textures properties has to be ensured. This includes process
stationarity (i.e. no spatial bias) and windowed texture prop-
erties in instances: a texture is about spatial variations of
values, but above a given scale the statistics should not vary.

This leads to three statistical tests: the Gaussianity of the
process, its spatial stationarity along the texture space, and
the large-scale stationarity inside an image instance. We de-
fine precisely these tests and apply them to the alternative
ingredients in the following sections.

1 https://en.wikipedia.org/wiki/Shot_noise

Moreover, the average and contrast of an image texture
instance could differ to the one of the process, biasing the a
priori normalization. We should thus ensure that this bias is
kept low. But the measure of windowed large-scale station-
arity already provides a stronger criterion so no extra test is
required.

3.1. Global process Gaussianity

High-intensity shot noise, the underlying model of Gabor
noise, converges as a process to a Gaussian distribution. To
choose the number N of splats sufficient for an acceptable
“convergence” to a Gaussian texture, previous work only
estimated visually the quality of obtained instances. Here,
convergence is not in terms of asymptotic values: an instance
will never converge while addingmore splats, the pattern will
keep evolving (just more and more slowly). Convergence is
in terms of probability law, so we evaluate it as the Gaus-
sianity of the noise process as N grows. We measure this as
the Cramer von Mises criterion2 (CvM) of the noise process
compared to the Gaussian probability distribution using 7
2 https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%
93von_Mises_criterion
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Figure 2: Compared Gaussianity-wise convergence. Cramer
von Mises criterion value for the alternative point distribu-
tions for increasing N . The inset images show instances of
seminal Gabor noise for CvM values of 50 , 5 and 0.5. Alter-
native point distributions converge faster; for example, the
rectangular jittered grid reaches the same CvM value for
N = 4 as the Poisson process for N = 25 (mixed, black).
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million samples. Zero means perfect Gaussianity. As a cali-
bration of thismetric in terms of corresponding visual quality,
we use the seminal Gabor noise process as a reference. We
can see that the CvM should be less than 0.5 for a reasonable
visual quality, coherently corresponding to the estimation of
N = 30 in [LLDD09] for the seminal Gabor noise.

Result. The seminal process based on the Poisson point dis-
tribution converges to a Gaussian distribution as N increases,
albeit very slowly. As fig. 2 shows, alternative point distri-
butions (stratified Poisson and jittered grids) greatly speed
up the process convergence, achieving the same Gaussianity
criterion as the seminal high quality Gabor noise with up to
6 times fewer splats and as few as N = 4.

In addition, fig. 3 shows that the use of Bernoulli weights
(solid curves) results in even faster convergence of the noise
process for Poisson and Stratified Poisson. This makes the
stratified Poisson point distribution using Bernoulli weight-
ing the best alternative, reaching a constant 15× convergence
speed-up compared to the seminal Gabor noise process.

Our experiments also revealed that changing the kernel
from cosine to sine does not change the process convergence.
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Figure 3: Convergence gain. Same as fig. 2, but plotting the
seminal Gabor impulse count N∗ required to get the same
CvMquality as each tested alternative using an impulse count
of N . In addition to the uniform weights (dashed), we also
plot the gains using Bernoulli weights (solid curves).

3.2. Process at a given location

The seminal Gabor noise process is stationary by con-
struction since it draws on Poisson distribution, which is
translation-invariant and thus has no location bias, but the
alternatives point distributions we bench are not. We must
then ensure that such bias does not show up in the final tex-
ture. The global process statistics presented above are blind
to these local effects, so we must also explicitly study sta-
tionarity. For this, we measure the variation of the mean and
variance of the process at a given location within a cell. In
the absence of bias, these statistics should be the same as the
global process and be constant over the considered texture
space. Our experiments show that this is the case for the pro-
posed alternatives with a relative interdecile range under 5%
of the considered statistics, showing that these methods pre-
serve the translation invariance of the original Gabor noise
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Figure 4: Measure of image stationarity as variations in win-
dowed contrast.Windowed contrast is the spatial variance in
a given image window. We measure its stationarity along the
image as the median (solid, left axis) and the interdecile nor-
malized by the median (dashed, right axis) of its variations
for each alternate point distribution, relative to N (more ro-
bust than mean and variance since these variance samples
are not normally distributed). Here we show only the case
of Bernoulli weights. The uniform case is quite similar, only
with worse interdecile ranges for small N values. Note that
the expected median of contrast is 0.25, since we scale and
offset the noise so as the [0,1] value range includes 95% of
the histogram.

process despite all the alternate point processes themselves
being more or less spatially biased.

3.3. Instance stationarity and normalization

Satisfactory global statistics can be obtained with well spread
local artifacts, while users expect spatial stationarity of the
local texture properties above some macroscopic “pattern”
scale. For instance the Poisson distribution tends to have
clustered and void areas despite the process being homo-
geneous. More generally, unbiased processes can still cause
macro-fluctuations along the instances.

For Gabor noise the natural texture scale on which con-
sidering instance large-scale stationarity is the diameter of a
kernel, since pixels are decorrelated by construction above
this size. We thus consider instance image statistics win-
dowed at this scale. Thanks to the ergodicity yielded by
this decorrelation, we can characterize statistical fluctuations
from non-overlapping instance sub-images within a large im-
age instance by studying statistical fluctuations of small in-
stances spanning 3×3 cells (the minimum cell span required
to observe one full kernel).

Variations in image statistics are expected in stochastic
procedural texture instances, but if we can ensure that image
statistics are close to process statistics, then we can obtain an
acceptable texture normalization a priori, without requiring
a second pass (which would be costly, complicated or im-
practical in many real-world use cases of procedural noise).

Result. Our experiments show (see fig. 4) that for all distri-
butions themedian of contrast variations conforms to the pro-
cess variance (i.e. the instance normalization is not biased),
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and that the benched alternative point distributions result
in significantly lower contrast variations over instances than
the seminal Gabor noise, especially when using Bernoulli
weighting. It also unintuitively shows that the contrast rel-
ative interdecile range doesn’t tend to zero: some contrast
variations are unavoidable. It stabilizes around 1.15 pretty
early, which means that it’s no use increasing N in the hope
of getting better stationarity.

Oppositely, we measured that exotic processes with strong
location bias yield instanceswhich can sometimes appear sta-
tionary but significantly deviate from the process statistics,
depending in complex ways on N, F0 and ω0 (or even partic-
ular instance seeds). This then makes a priori normalization
impossible.

We also studied the variation of the mean of instance im-
ages (of 3 × 3 cells). Although its variation is low (less than
0.5% of the noise value range around the analytical expected
value 0), using sine for the harmonic part for the kernel
instead of cosine actually ensures that the image mean is
perfectly 0 over all instances.

4. Conclusion and future work

Our study results in the following recommendation: replac-
ing the Poisson point distribution with stratified Poisson (i.e.
fixed number of splats per cells), and replacing uniform
weighting with Bernoulli {−1, 1}. The recommended CvM
quality of 0.5 corresponding to N = 30 with the seminal
method is now obtain with N = 2 (corresponding to 6.3
splats per pixel). In addition to the accelerated convergence,
implementation performance is also improved by the fact that
seminal Poisson point process requires the costly generation
of Poisson random numbers to determine the varying N for
each different cell. All this provides a total performance gain
of 17 folds (or up to 24 for higher N , see fig. 5) with mini-
mal modifications to the seminal algorithm. This is achieved
without introducing spatial bias in instances, and indeed im-
proving the usability by lowering the variability of instance
image statistics. Once applied to a real case combining sev-
eral kernels (see fig. 6), this gain is confirmed.

In addition, using a sine-based kernel ensures ex-
act zero-mean texture, and using a continuous enve-
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Figure 5: Runtime performance ratio of stratified Poisson
with Bernoulli weighting tS(N) relative to the seminal Gabor
noise t∗(N∗) providing the same quality (red curve). Note that
for the same splat count we already gain 20% (blue curve)
by avoiding the costly random evaluation of N per cell.

lope instead of truncated Gaussian (e.g. the C0 alterna-
tive

(
1 + exp(−π)

) (
exp(−π | |x | |2) − exp(−π)

)
, or C1Kaiser-

Bessel window functions) would avoid slight artifacts at splat
borders for very low N or if the noise is meant to be differ-
entiated (e.g. for bump maps).

For future work, we could also study totally remove
weights while using the sine-based kernel, since their main
purpose is to ensure the zero-mean which is already guaran-
teed with this kernel. We could also replace point-location
randomness by phase-randomness on regular grids (i.e. a
scalar random value instead of a random vector). Provided
quality is not impeded, these could bring even more perfor-
mance.

More generally, our approach to optimizing the Gabor
noise process mostly relies on properties of sparse convo-
lution noises, and thus could also apply to other derived
methods that work on richer power spectra.

(a) Seminal Gabor, N = 45 (b) Bernoulli+strat.+sin, N = 3

Figure 6: Real case with complex power spectrum (3 kernels,
cf. inset) and non-linear post-treatment. Our optimized set of
ingredients achieves the same visual quality in 1/17th of the
time required by the seminal method. Note that due to the
similarities in the 3 kernels, here we can use only N = 3
(resp. 45) instead of 3 × 2 (resp. 3 × 30).
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