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Toeplitz matrices for the study of the fractional Laplacian on an interval ]a, b[

Fractionnal Laplacian on a interval ]a, b[. In this work we solve for α ∈]0, 1 2 [ the fractional equation (-∆) 2α (ψ /]a,b[ ) /]a,b[ = f where (-∆) 2α /]a,b[ is the fractional Laplacian with order α on ]a, b[ and f a locally contracting function on ]a, b[. To do this we introduce a class of fractional operator defined with the Toeplitz matrice T N (f α ) where f α is the function θ → |1 -e iθ | 2α for all θ ∈ [0, 2π[. 1 Introduction, and statement of the main results If α ∈]0, 1 2 [ and f is a function in L p (R) (1 ≥ p ≤ 2) we define the fractional Laplacian of the function f by F (-∆ 2α )f (x) = -|x| 2α Ff (x) [18], where Ff is the Fourier transform of the function f . Let us recall that F (ϕ) (x) = +∞ -∞ e ixt ϕ(t)dt, for ϕ ∈ L 1 (R).

Another definition of the one dimensional Laplacian is also, for well chosen function u,

 for the different equivalent definitions of the fractional Laplace operator on the real line. This operator is the left inverse of the Riesz operator on the real line, often denoted by I -2α (α ∈]0, 1 2 [), and defined by I -2α (ψ)(x) =

1 2Γ(2α) cos(απ) +∞ -∞ ψ(t)
|t-x| 1-2α dt, for x ∈ R and ψ ∈ L p (R), with 1 ≤ p < 1 α (see [START_REF] Samko | Fractional Integrals and Derivatives, Theory and Applications[END_REF]). Let J =]a, b[ be an interval. We can get interested in the fractional Laplace operator in the interval J (see [START_REF] Kwaśnicki | Eigenvalues of the Fractional Laplace Operator in the interval[END_REF]), which is defined by (-∆ 2α ) /J (f ) = -∆ 2α )(f ) /J . We thus have an operator which associates to a function h defined on J a function x → (-∆ 2α ) /]a,b[ (h) (x) also defined on J. Moreover always for a function f we can define the operator defined by (-∆ 2α ) /J (f /J ) = -∆ 2α )(f /J ) /J . It is this operator and the inversion of this operator that we are interested in this article (see 2).

For this we use the Toeplitz matrices of order N + 1 with symbol f α = |1 -χ| 2α where χ is defined on [0, 2π[ by θ → e iθ for α ∈] - 1 2 , 0[∪]0, 1 2 [. We recall that a Toeplitz matrix of order N with symbol h ∈ L 1 ([0, 2π) is the (N + 1) × (N + 1) matrix T N (h) defined by (T N (h)) i+1,j+1 = f (i -j) where ĥα (s) denote the Fourier coefficient of order s of the function h. (see [START_REF] Grenander | Toeplitz forms and their applications[END_REF], [START_REF] Böttcher | Introduction to large truncated Toeplitz matrices[END_REF]). The Toeplitz matrices of order N × N are decisive here because they have the property to make the link between the discrete and the continuous when N goes to infinity, and they are usefull to obtain a good discretization of the problem. With these tools, taking the limit at infinity, we can obtain operators D α for α ∈] - 1 2 , 1 2 [ that can be interpreted as fractional derivatives. For a function f defined on [0, 1], we define these operators as the following limit (if it exists)

(D α f ) (x) = lim N →+∞ N 2α N l=0 (T N (f α )) k+1,l+1 f ( l N ) (1) 
for x ∈]0, 1[. For α ∈] -1 2 , 0[ and ψ a function in L 1 ([0, 1]), this limit exists and is equal to the quantity (D α (ψ)) (x) = 1 0

ψ(t)
|x-t| 2α+1 dt (see Theorem 1) that is, up the constants, a Riesz operator on [0, 1] ( [START_REF] Samko | Fractional Integrals and Derivatives, Theory and Applications[END_REF]). When α ∈]0, 1 2 [ and for f a locally contracting function in ]0, 1[ the limit [START_REF] Beran | Statistics for long memory process[END_REF] is, always up the constants, (-∆ 2α ) /]0,1[ (f /[0,1] ) (see Theorem 1). A function h contracting on all interval [δ 1 , δ 2 ] ⊂]a, b[ is said to be locally contracting on the interval [a, b]. Furtheremore for a function f with zero exterior condition on R\]0, 1[ we obtain the fractional Laplacian of order α on [0, 1] (the reader interested in the fractional Laplacian on an interval is referred to [START_REF] Kwaśnicki | Eigenvalues of the Fractional Laplace Operator in the interval[END_REF], [START_REF] Dyda | Eigenvalues of the Fractional Laplace Operator in the unit ball[END_REF]). In this work we obtain these operators on ]0, 1[ (for a functional class more general than that involved in the usual definition of the fractional Laplacian), then we obtain the general case of segment [a, b] through affine substitutions. It is our first result. The second is to invert the fractional Laplacian on the open interval ]0, 1[ (and therefore for any open interval ]a,b[). For α ∈]0, 1 2 [, and for f a locally contracting function on ]0, 1[ which is contained in L 1 ([a, b]) we solve the equation in φ :

(-∆ -2α ) /]0,1[ (φ) = f /]0,1[ (2) 
that is also (see [START_REF] Blumenthal | On the distibution of first hits for the symmetric stable processes[END_REF] and [START_REF] Kulczycki | Properties of green function of symmetric stable processes[END_REF])

(-∆ -2α )(φ) = f in ]0, 1[ φ = 0 in ] -∞, a] ∪ [b, +∞[. (3) 
We can observe that the local contracting hypothesis and our calculation methods allow us to solve the equation for functions f different from those considered in the classical result where the equation 2 is solved only for functions [START_REF] Bucur | Some observation on the Green function for the ball in the fractional Laplace framework[END_REF]). Here we solve this same equation for 

f ∈ C 0,2α+ (]a, b[) ∩ C ([a, b]) (see
f ∈ L 1 ([a, b]) (f is not necessarily in C ([
(x) -ψ(x )| ≤ K [c,d] |x -x | µ for all x, x in [c, d].
It is also interesting to remark that by adapting the demonstrations of the theorems 1 and 2 we can also solve the equation 2 for a second member f which is a contracting function on [0, 1] that satisfies the boundary conditions f (0) = f (1) = 0. Our results are obtained only in dimension one while those of [START_REF] Bucur | Some observation on the Green function for the ball in the fractional Laplace framework[END_REF] are obtained for any whole dimension. In fact the Theorem 2 and the corollary 1 are two generalizations of the well known case where α ∈ N and [a, b] = [0, 1] (see [START_REF] Spitzer | A class of Toeplitz forms and their applications to probability theory[END_REF][START_REF] Courant | Über die partiellen Differenzengleichungen der mathematischen Physik[END_REF][START_REF] Rambour | Formulas for the inverses of Toeplitz matrices with polynomially singular symbols[END_REF]). In this case we have a Green function

G α (x, y) = x α y α Γ 2 (α) 1 max(x,y) (t-x) α-1 (t-y) α-1 t 2α
dt for 0 < max(x, y) ≤ 1 and G(0, 0) = 0 such that for all function f ∈ L 1 [0, 1] the function g defined on [0, 1] by g(x) = 1 0 G α (x, y)f (y)dy is the solution of the equation ( 2) with the bound condition g(0

) = • • • = g α-1 (0) = 0 and g(1) = • • • = g α-1 (1) = 0.
It is important to remark that the expression of the Green function is finally the same in the case of α ∈ N and in the case of α ∈]0, 1 2 [. The theorem 2 also gives us that the inverse found for the fractional Laplacian of order α defined on an interval is not the Riesz operator of order -α on the same interval, there is a perturbation, unlike the result on the real line. Our calculation methods can also invert the Riesz operator over a bounded interval. It is an alternative to the results given for example in [START_REF] Samko | Fractional Integrals and Derivatives, Theory and Applications[END_REF] that we will give in a future paper.

If we define the constant C α by -Γ(2α+1) sin(πα) π = 2 -2α C 1 (α) we can write the following statement :

Theorem 1 Let a < b and u ∈]a, b[. We have : 1. if -1 2 < α < 0 and h ∈ L 1 [a, b] then (D α,a,b h) (u) = (b -a) 2α C α b a h(t) |t -u| 2α+1 dt, 2. For 0 < α < 1
2 and h a locally contracting function in C 0,µ (]a, b[) with 2α < µ < 1 we have for a < u < b

(D α,a,b h) (u) = (b -a) 2α C α b a h(t) -h(u) |t -u| 2α+1 dt -(u -a) -2α + (b -u) -2α h(u) 2α .
3. For a = 0, b = 1 and h as previous

D α,0,1 (h) = 2 α (-∆ 2α )(h /]0,1[ /]0,1[ . Remark 1 For u ∈]a, b[ we have (D α,a,b h) (u) = (b -a) 2α C α b a h /[a,b] (t) -h /[a,b] (u) |t -u| 2α+1 dt -(u -a) -2α + (b -u) -2α h /[a,b] (u) 2α = (b -a) 2α C α b a h /[a,b] (t) -h /[a,b] (u) |t -u| 2α+1 dt.
In [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1-cos θ) α f 1 , -1 2 < α ≤ 1[END_REF] and [START_REF] Rambour | Valeur propre minimale d'une matrice de Toeplitz et d'un produit de matrices de Toeplitz[END_REF] we have obtained two integral kernels that provide an asymptotic expansion when N goes to the infinity of the quantities

T N (|1 -χ| 2α ) -1
k+1,l+1 for k N → x, l N → y, and x, y ∈]0, 1[. We find these integral kernels in the statement of Theorem 2 and of the corollary 1 (see also 4 and ??). To get the solution to the equation 2 we use the fine knowledge of the matrices T N (|1 -χ| 2α ) -1 for α ∈]0, 1 2 [ that we acquired in these two articles. More precisely in [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1-cos θ) α f 1 , -1 2 < α ≤ 1[END_REF] we have obtained an exact expression of T N (|1 -χ| 2α ) -1 k+1,1 for k N → x and for all integers k, l ∈ [0, N ]. This expression is a fundamental tool in the proof of the following result.

Theorem 2 Let 0 < α < 1 2 and h ∈ L 1 ([0, 1]) be a locally contracting real function on ]0, 1[, such that h(t) = O (t -s ) when t → 0 + and h(t) = O ((1 -t) -s ) when t → 1 -, with s < 1 -2α. Then the differential equation

(-∆ 2α (g) /]0,1[ = h
has only one solution locally contracting g in C 0,1-s (]0, 1[) such that g(x) = 0 for x ∈ R\]0, 1[. This solution is

1. for z ∈]0, 1[, g(z) = C α (D -α,0,1 (f )) (z) - b a K α (z, y)f (y)dy ,
where Remark 3 This result can be compared with the one given in another framework in [START_REF] Bucur | Some observation on the Green function for the ball in the fractional Laplace framework[END_REF] theorem 3.1.

K α (u, y) = 1 Γ 2 (α) u α y α +∞ 1 (t -u) α-1 (t -y) α-1 t 2α dt + +∞ 0 (t + u) α-1 (t + y) α-1 t 2α dt . 2. g(z) = 0 pour z ≤ 0 et z ≥ 1.
Remark 4 One of the authors showed in [START_REF] Rambour | Valeur propre minimale d'une matrice de Toeplitz et d'un produit de matrices de Toeplitz[END_REF] that

(T N (f α )) -1 [N x]+1,[N y]+1 = f-α ([N x] -[N y]) -N 2α-1 K α,0,1 (x, y) + o(N 2α-1 ), uniformly in x, y in [δ 1 , δ 2 ] ⊂]0, 1[.

Remark 5

The consistency of the statement of the theorem 2 ( i.e. if for Using the results of [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1-cos θ) α f 1 , -1 2 < α ≤ 1[END_REF] we can also write the following equivalent statement.

α ∈]0, 1 2 [ the function (D -α (f )) (z) -(K α (f )) is locally on [a, b]) is specified in the theorem demonstration).
Corollary 1 Let 0 < α < 1 2 and h ∈ L 1 ([0, 1]) be a real function locally contracting on ]0, 1[ which satisfies the hypothesis of Theorem 2. Then the differential equation

-∆ 2α (g) /]0,1[ = h
has only one solution in C 0,1-s (]0, 1[) with g(0) = g(1) = 0. This solution is defined by

1. g(x) = C α 1 0 G α (x, y)h(y)dy with G α (x, y) = 1 Γ 2 (α) (x) α (y) α 1 max(x,y) (t -x) α-1 (t -y) α-1 (t) 2α dt, for (x, y) = (0, 0)
and G α (0, 0) = 0.

2. g(z) = 0 for z ≤ a or z ≥ 1.

Remark 7

The expression of the Green kernel G α makes it easy to verify that the solution proposed in the theorem 2 is extendable by zero on R\]0, 1[.

Remark 8

We have obtained in [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1-cos θ) α f 1 , -1 2 < α ≤ 1[END_REF] that

(T N (f α )) -1 [N x]+1,[N y]+1 = N 2α-1 G α (x, y) + o(N 2α-1 ), uniformly in x = y in [δ 1 , δ 2 ] ⊂]0, 1[.

If a → -∞ and b → +∞ we easily obtain

Property 1 With the assumption below, if φ is a function defined on R, and J = [δ 1 , δ 2 ] a fixed interval we have, uniformly in J,

1. for α ∈] -1 2 , 0[ lim a→-∞,b→+∞ (D α,a,b φ)(x) |b -a| 2α = C α +∞ -∞ φ(t) |x -t| 2α+1 dt. 2. for α ∈]0, 1 2 [ lim a→-∞,b→+∞ (D α,a,b φ)(x) |b -a| 2α = C α +∞ -∞ φ(t) -φ(x) |x -t| 2α+1 dt.
The references [START_REF] Samko | Fractional Integrals and Derivatives, Theory and Applications[END_REF], [START_REF] Gorenflo | Fractional Calculus : Integral and Differential Equations of Fractional Order[END_REF], [START_REF] Bucur | Nonlocal diffusion and applications[END_REF] are good introductions to fractional integrals and derivatives, fractional Laplacian, and fractional differential equations.

The discretization methods used here can be extended to the study of other fractional differential operators. Thus in an other work [START_REF] Rambour | Opérateurs différentielles fractionnaires et matrices de Toeplitz[END_REF] we found known results concerning other fractional derivatives by the same discretization process using an

N + 1 × N + 1 Toeplitz matrix of symbol ϕ α = lim R→1 -ϕ α,R whith 1 > α > 0 and where ϕ α,R is the function set to ] -π, π[ by θ → (1 -Re iθ ) α (1 + Re -iθ ) α , for R ∈]0, 1[.
For f a function defined on [0, 1] and 0 ≤ x ≤ 1 we then study the limit lim

N →+∞ N α N l=0 T N (ϕ α ) k+1,l+1 (X N ) l = Dα (f ) (x), with k = [N x].
We show in [START_REF] Rambour | Opérateurs différentielles fractionnaires et matrices de Toeplitz[END_REF] that for f a locally locally contracting on ]0, 1[ this limit is

2 α Γ(-α) x 0 f (t) -f (x) |x -t| -α-1 dt -f (x) (x) -α α
which is nothing more than the inferior fractional Marchaud derivative of order α on [0, 1]. We can also verify that if we choose as a symbol the function φα = lim R→1 -φα,R where φα,R is defined on ] -π, π[ by θ → (1 + Re iθ ) α (1 -Re -iθ ) α this same limit gives us the superior fractional Marchaud derivative of order α on [0, 1]. Still in [START_REF] Rambour | Opérateurs différentielles fractionnaires et matrices de Toeplitz[END_REF] we find, by methods similar to those used here, the inverse of these fractional derivatives.

To conclude, we can thus notice that the study of some integrated operators can be translated in terms of Toeplitz matrices, this correspondence being able to prove interesting results. Another approach to fractional differential equations different from the classical approach can be found in [START_REF] Gérard | The cubic Szegö equation and Hankel operators[END_REF] where the authors use Hankel's operators to solve on S 1 , the torus of dimension 1, the equation i∂ t u = π(|u| 2 u) where π is the usual orthogonal projection from L 2 (S 1 ) on the subspace H 2 (S 1 ) defined by h ∈ H 2 (S 1 ) ⇐⇒ ĥ(s) = 0∀s < 0. Integrals and fractional derivatives are currently the focus of much mathematical works. For example, one could consult [START_REF] Breiten | Fast iterative solvers for fractional differential equations[END_REF][START_REF] Breiten | Low-rank solvers for fractional differential equations[END_REF][START_REF] Dimitrov | Numerical approximations for fractional differential equations[END_REF][START_REF] Podlubny | Geometric and Physical Interpretation of Fractional Integration and Fractional Diffrentiation[END_REF][START_REF] Bucur | Nonlocal diffusion and applications[END_REF][START_REF] Elia | The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator[END_REF].

Proof of Theorem 1

Remark : In all the following we consider function f defined on ]0, 1[ but not necessary on [0, 1]. If the quantities f (0) and f (1) are not defined for a function f we put f (0) = f (1) = 0. This allows us to write all our sums for index ranging from zero to N .

Without loss of generality we can assume a = 0, b = 1. Hence we have to prove the following Theorem which implies clearly Theorem 1.

Theorem 3

1. Let f be a function such that the function ψ defined by t

→ f (t) |x-t| 2α+1 is in L 1 ([0, 1]). Then we have for x in ]0, 1[ and α ∈] -1 2 , 0[ (D α f ) (x) = C α 1 0 f (t) |x -t| 2α+1 dt. 2. For α ∈]0, 1 2 [ and let f be a function in C 0,µ (]a, b[) with µ ∈]2α, 1[. Then we have we have for x in ]0, 1[ and α ∈]0, 1 2 [ (D α f ) (x) = C α 1 0 f (t) -f (x) |x -t| 2α+1 dt -(x -2α + (1 -x) -2α ) f (x) 2α .
It's clear for α ∈] -1 2 , 0[. Now we have to obtain the result for α ∈]0, 1 2 [. Assume that x belongs to an interval [δ 1 , δ 2 ] include in [0, 1]. In the following we denote by K the constant such that for x, y

∈ [δ 1 , δ 2 ] |f (x) -f (y)| ≤ K|x -y|. (4) 
We will also use that for u an integer with absolute value sufficiently large

fα (u) = C α |u| -2α-1 (1 + o(1)) .
In a first time N is fixed et we assume that k = [N x]. We can write

N l=0 (T N f α ) k+1,l+1 f ( l N ) = k-[N δ]-1 l=0 (T N f α ) k+1,l+1 f ( l N ) + k+[N δ] l=k-[N δ] (T N f α ) k+1,l+1 f ( l N ) + N l+[N δ]+1 (T N f α ) k+1,l+1 f ( l N ).
We can now observe that

k+[N δ] l=k-[N δ] (T N f α ) k+1,l+1 f ( l N ) = k+[N δ] l=k-[N δ] (T N f α ) k+1,l+1 f ( l N ) -f ( k N ) + f ( k N ) .
Using (4) we have

k+[N δ] l=k-[N δ] (T N f α ) k+1,l+1 f ( l N ) -f ( k N ) ≤ |K| k+[N δ] l=k-[N δ] (T N f α ) k+1,l+1 ( l N - k N ) µ that implies k+[N δ] l=k-[N δ] (T N f α ) k+1,l+1 f ( l N ) -f ( k N ) = O(δ µ ).
Lastly for δ = N -β with 2α µ < β < 1 we obtain

N 2α   k+[N δ] l=k-[N δ] (T N f α ) k+1,l+1 f ( l N ) -f ( k N )   = o(1).
On the other hand we have clearly, since n∈Z fα (n) = 0, we have

k+[N δ] l=k-[N δ] (T N f α ) k+1,l+1 f ( k N ) = - l<k-[N δ] fα (k -l)f ( k N ) - l>k+[N δ] fα (k -l)f ( k N ) with N 2α l<k-[N δ] fα (k -l)f ( k N ) = 1 N k-[N δ]-1 l=0 ( |k -l| N ) -2α-1 f ( k N ) - x 2α 2α f (x) + o(1),
and

N 2α l>k+[N δ] fα (k -l)f ( k N ) = 1 N N l=k+[N δ]+1 ( |k -l| N ) -2α-1 f ( k N ) - (1 -x) 2α 2α f (x) + o(1).
Since the function f is locally µ contracting on ]0, 1[ we can write, lim

N →+∞ 1 N   k-[N δ]-1 l=0 ( |k -l| N ) -2α-1 f ( l N ) -f ( k N ) + N l=k+[N δ]+1 ( |k -l| N ) -2α-1 f ( l N ) -f ( k N )   = 1 0 f (t) -f (x) |t -x| 2α+1 dt
that ends the proof.

3 Demonstration of Theoreme 2

In the following we denote by g α the function defined for θ in [0, 2π[ by θ → (1 -e iθ ) α , 0 < α < 1 2 and β u will be the Fourier coefficient g -1 α (u) for u ∈ N . In the demonstration we use the predictor polynomial of the functions f α , α ∈]0, 1 2 [ and an expression of their coefficients which has been obtained in a previous work. In the following section the reader will find some reminders about these results.

Predictor polynomials of f α

First we have to recall the definition of a predictor polynomial of the function f . Définition 1 If h is an integrable positive function with have only a finite number of zeros on [0, 2π[ the predictor polynomial of degree M of h is try trigonometric polynomial defined by

P M = 1 (T N (h)) -1 (1,1) M u=0 (T N (h)) -1 (u+1,1) χ u .
These predictor polynomials are closely related to the orthogonal polynomials Φ M , M ∈ N with respect to the weight h by the relation Φ M (z) = χ M P M (z), for |z| = 1. This relation and the classic results on the orthogonal polynomial imply that P M (e iθ ) = 0 for all real θ. In the proof we will also need to use the fundamental property:

Theorem 4 If P M is the predictor polynomial of a function h then

1 |P M | 2 (s) = ĥ(s) ∀s -M ≤ s ≤ M.

That provides

T M 1 |P M | 2 = T M (h).
[19] is a good reference about the predictor polynomials. In the proof of this theorem and also in the proof of the lemma 2 we use the coefficients of the predictor polynomials of the functions f α . We will use two expressions of these coefficients as needed. The first is an asymptotic expansion obtained in [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1-cos θ) α f 1 , -1 2 < α ≤ 1[END_REF] which is provided by the expression of the coefficients of the orthogonal polynomial of f α (voir [START_REF] Beran | Statistics for long memory process[END_REF]). This asymptotic is, for sufficiently large u and N ,

(T N (f α )) u+1,1 = 1 Γ(α) u α-1 1 - u N α + o(N α-1 ). ( 5 
)
The second expression is an exact expression and has been obtained in [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1-cos θ) α f 1 , -1 2 < α ≤ 1[END_REF]. Thank of the results of this paper we can write,

∀k, l ∈ [0, N ] (T N f α ) -1 k+1,1 = β k - 1 N k u=0 β k-u F α,N ( u N ). (6) 
Moreover for all z ∈ [0, 1] F α,N (z) is

F α,N = +∞ m=0 F m,N,α (z) sin πα π 2m+2 (7) 
where

F m,N,α (z) = +∞ w 0 =0 1 1 + w 0 + 1+α N -z +∞ w 1 =0 1 w 0 + w 1 + N + 1 + α × • • • • • • +∞ w 2m -1=0 1 w 2m-2 + w 2m-1 + N + 1 + α +∞ w 2m =0 1 w 2m-1 + w 2m + N + 1 + α 1 1 + w 2m N + 1+α N -z .
Using integrals we can bounded these sums by

Fm,N,α (z, z ) = +∞ 0 1 1 + t 0 + 1+α N -z +∞ 0 1 1 + t 0 + t 1 × • • • +∞ 0 1 1 + t 2m-2 + t 2m-1 +∞ 0 1 1 + t 2m-1 + t 2m 1 1 + t 2m + z dt 0 dt 1 • • • dt 2m-1 dt 2m .
Lastly we obtain the following upper bound, that we use the demonstration

∀z ∈ [0, 1] |F N,α (z)| ≤ K 0 1 + ln 1 -z + 1 + α N . ( 8 
)

Statement and proof of a matrix lemma

Lemma 1 Let (A N ) N ∈N be a sequence of N × N real inversible matrices. For a locally contracting function

f in L 1 ([0, 1]) we have lim N →+∞ N N l=0 (A N ) k+1,l+1 1 
0 (A N ) -1 l+1,[N t]+1 f (t)dt = f (x)
with lim

N →+∞ k N = x, for 0 < x < 1. N l=0 (A N ) k+1,l+1 m 0 m=0 (A -1 N ) l+1,m+1 m+1 m f (t)dt = N m 0 m=0 N l=0 (A N ) k+1,l+1 (A -1 N ) l+1,m+1 m+1 m f (t)dt = N m 0 m=0 δ m k m+1 m f (t)dt = 0
On the other hand

N N l=0 (A N ) k+1,l+1
1-

(A N ) -1 l+1,[N t]+1 f (t)dt = N N l=0 (A N ) k+1,l+1 N -m 0 m-m 0 m+1 m (A N ) -1 l+1,[N t]+1 f (t) -f ( m N ) + f ( m N ) dt = N l=0 (A N ) k+1,l+1 N -m 0 m=m 0 (A N ) -1 l+1,m+1 f ( m N ) + N N l=0 (A N ) k+1,l+1 N -m 0 m=m 0 m+1 m (A N ) -1 l+1,m+1 f (t) -f ( m N ) dt
We observe that

N N l=0 (A N ) k+1,l+1 N -m 0 m-m 0 m+1 m (A N ) -1 l+1,m+1 f (t) -f ( m N ) dt = N N -m 0 m-m 0 N l=0 (A N ) k+1,l+1 (A N ) -1 l+1,m+1 m+1 m f (t) -f ( m N ) dt.
and

N N l=0 (A N ) k+1,l+1 N -1 m=0 m+1 m (A N ) -1 l+1,m+1 f (t) -f ( m N ) dt ≤ K N N m=0 δ k m = K N .
lastly we have

N l=0 (A N ) k+1,l+1 N -m 0 m-m 0 (A N ) -1 l+1,m+1 f ( m N ) = N m=0 δ k,m f ( m N ) = f ( k m ),
which leads to the conclusion. 2

Existence of the solution

Let us recall the following formula which is an adaptation of the Gohberg-Semencul formula.

Property 2 Let K N = N u=0
ω u χ u be a trigonometric polynomial of degree N such that P (e iθ ) = 0 for all θ ∈ R we have, for

0 ≤ k ≤ l ≤ N T N 1 |K N | 2 -1 k+1,l+1 = k u=0 ω k-u ωl-u - k u=0 ω u+N -l ωu+N-k .
We will apply the lemma (1) to the matrices sequence (T N (f α )). For this particular frame this lemma can be enunciate, for

x ∈]0, 1[, lim N →+∞ N N l=0 (T N (f α )) k+1,l+1 1 0 (T N (f α )) -1 l+1,[N t]+1 f (t)dt = f (x)
with lim

N →+∞ k N = x.
For 0 ≤ u ≤ N we denote by γ u the coefficients of order u of P N,α the predictor polynomial of degree N of the function f α . Theorem 4 and the property 2 allows us to express the coefficients of the inverse matrix (T N (f α )) -1 as a function of the predictor polynomial coefficient. Then using (5) and the asymptotic β u = u α-1 Γ(α) + o(u α-1 ) we can write the last equality in the form of

N N l=0 (T N f α ) k+1,l+1 1 0 (T N f α ) -1 l+1,[N t]+1 f (t)dt = N N l=0 (T N f α ) k+1,l+1 1 
0 (Φ(l, [N t]))f (t)dt with Φ(l, m) = 3 j=0 Φ j (l, m). and Φ 0 (l, m) = min(l,m) u=0 β u β max(l,m)-min(l,m)+u . Φ 1 (l, m) = min(l,m) u=0 β u β max(l,m)-min(l,m)+u -γ max(l,m)-min(l,m)+u , Φ 2 (l, m) = min(l,m) u=0 (γ u -β u ) γ max(l,m)-min(l,m)+u , Φ 3 (l, m) = min(l,m) u=0 γ u+N -l γ u+N -m ,
As for the proof of the lemma 1 we can write

N N l=0 (T N f α ) k+1,l+1 1 
0 (Φ(l, [N t]))f (t)dt = = N N l=0 (T N f α ) k+1,l+1 N -1 m=0 m+1 N m N Φ(l, m) f (t) -f ( m N ) + f ( m N ) dt.
If is a positive real we easily obtain, since f is locally contracting

N N l=0 (T N f α ) k+1,l+1 N -[N ] m=[N ] m+1 N m N Φ(l, m) f (t) -f ( m N ) dt ≤ K N N l=0 (T N f α ) k+1,l+1 N -[N ] m=[N ] |Φ(l, m)| = O( 1 N ).
With the additional remark that Φ(l, m) = (T N f α ) -1 l+1,m+1 we have, as in the lemma 1:

N N l=0 (T N f α ) k+1,l+1 [N ]-1 m=0 m+1 N m N Φ(l, m) f (t) -f ( m N ) dt = 0 and N N l=0 (T N f α ) k+1,l+1 N m=N -[n ]+1 m+1 N m N Φ(l, m) f (t) -f ( m N ) dt = 0.
Let us now to study the sum

S N = N l=0 (T N f α ) k+1,l+1 N -1 m=0 Φ(l, m)f ( m N ).
First we consider the term

N l=0 (T N f α ) k+1,l+1 N -1 m=0 Φ 0 (l, m)f ( m N ) which can be denoted as S 1,N + S 2,N with S 1,N == N N l=0 fα (k -l) l m=0 1 N m u=0 β u β l-m+u f ( m N )
and

S 2,N = N N l=0 fα (k -l) N -1 m=l+1 1 N l u=0 β u β m-l+u f ( m N ) .
Since f-α (u) = f-α (-u) these sums may also be written in the form of

S 1,N = N l=0 fα (k -l) l m=0 f-α (l -m) - +∞ u=m+1 β u β l-m+u f ( m N )
and

S 2,N = N l=0 fα (k -l) N m=l+1 f-α (l -m) - +∞ u=l β u β m-l+u f ( m N ) .
With these same notations we have now to compute the sum

S N = N l=0 fα (k -l) N m=0 f-α (l -m)f ( m N ) - N l=0 fα (k -l) l m=0 +∞ u=m β u β l-m+u f ( m N ) - N l=0 fα (k -l) N m=l+1 +∞ u=l β u β m-l+u f ( m N ) + N l=0 fα (k -l) N m=0 Φ 1,N (l, m)f ( m N ) + N l=0 fα (k -l) N m=0 Φ 2,N (l, m)f ( m N ) + N l=0 fα (k -l) N m=0 Φ 3,N (l, m)f ( m N ) + o(1).
with the sums Φ 1,N (l), Φ 2,N (l) et Φ 3,N (l) as previously For l ∈ [0, N ] we put 

ψ N (l) = N m=0 f-α (l -m)f ( m N ), Φ0,N (l) =
M such that l N , l N ∈ [δ 1 , δ 2 ] we have 1. |ψ N (l) -ψ N (l )| ≤ M | l N -l N | 1-s N 2α . 2. | Φj,N (l) -Φj,N (l )| ≤ M | l N -l N | 1-s N 2α for j = 0, 1, 2, 3 uniformly in l, l in [δ 1 , δ 2 ]
This lemma is shown in the appendix of this article. as in in the proof of the theorem 1 we get, for

δ ∈] 2α 1-s , 1[, N l=0 fα (k -l) N m=0 f-α (l -m)f ( m N ) = C α k-N δ-1 l=0 |k -l| -2α-1 ((ψ N (l) -ψ N (k))) + C α N k+N δ+1 |k -l| -2α-1 (ψ N (l) -ψ N (k)) -C α ψ N (k) l<0 |k -l| -2α-1 + l>N |k -l| -2α-1 + o(1)
and also, for j = 0, 1, 2, 3

N l=0 fα (k -l) Φj,N (i) = C α k-N δ-1 l=0 |k -l| -2α-1 ( Φj,N (l) -Φj,N (k) ) + C α N k+N δ+1 |k -l| -2α-1 Φj,N (l) -Φj,N (k) -C α Φj,N (k) l<0 |k -l| -2α-1 + l>N |k -l| -2α-1 + o(1).
It is easily verified that a consequence of lemma 5 is that the function

D -α (f ) is in C 0,1-s (]0, 1[).
Hence we can write, with the Euler and Mac-Laurin formula and the lemma 5 (see the appendix),

N l=0 fα (k -l) N m=0 f-α (l -m)f ( m N ) = C α 1 0 (D -α (f )) (t) -(D -α (f )) (x) |x -t| 2α+1 dt -x -2{α + (1 -x) -2α (D -α (f )) (x) 2α + o(1)
.

for x = lim N →+∞ k N , x = 0, 1 Since the function D -α (f ) is locally contracting on ]0, 1[ we obtain that f α (k -l) N m=0 f-α (l -m)f ( m N ) = D α (D -α (f )) (x) + o(1).
Still thanks to the lemma 2 we obtain that the function H α (f ) defined by the relation t →

1 0 (K α (f )) (t, y)f (y)dy is in C 0,1-s (]0, 1[).
Hence with the theorem 2 in [START_REF] Rambour | Valeur propre minimale d'une matrice de Toeplitz et d'un produit de matrices de Toeplitz[END_REF] and the lemmas 5 and 7, we can write :

N l=0 fα (k -l) 3 j=0 Φj,N (i) = C α 1 0 1 0 (K α (f )) (t, y)f (y)dy - 1 0 (K α (f )) (x, y)f (y)dy |x -t| 2α+1 dt- x -2{α + (1 -x) -2α 1 0 (K α (f )) (x, y)f (y)dy 2α + o(1).
Then as above we can enunciate

N l=0 fα (k -l) 3 j=0 Φj,N (i) = (D α (H α (f ))) (x) + o(1).
Finally we conclude lim

N →+∞ S N = D α ((D -α (f ) + H α (f )) (x)
that ends the demonstration.

Unicity of the solution

Let f and φ be two functions defined on [0, 1], φ ∈ C 0,µ ([0, 1]), with µ > 2α. Moreover we assume than f is a locally contracting function on [0, 1]. We make the hypothese D α (φ) = f . The aim of this part is to prove that the function φ checks the theorem assumptions on ]0, 1[. For fixed N we define the vector X N (reps.

Y N ) of length N + 1 by (X N ) k = φ( k N ) (resp. (Y N ) k = f ( k N )), 0 ≤ k ≤ N . For a sufficiently large N we can write N 2α (T N (f α )(X N )) k = (Y N ) k + (R N ) k , that gives us, for 0 ≤ m ≤ N (X N ) m = N -2α T N (f α ) -1 (Y N ) m + T N (f α ) -1 (R N ) m .
First we have to compute N 2α (T N (f α )(X N )) k to evaluate precisely the order of |R N (k)|.

To do this we have to recall that for all positive real we have an integer M 0 such that for [START_REF] Zygmund | Trigonometric series[END_REF]). In the following of the proof we denote by M an integer M = N δ with δ = N -β , 2α µ < β < 1, these conditions being set to be consistent with the demonstration of the therem 3. Now let

|u| ≥ M 0 fα (u) = C α u -2α-1 + C α u -2α-2 (1 + r u ) with |r u | ≤ ([
k such that k N ∈ [δ 1 , δ 2 ], with 0 < δ 1 < δ 2 < 1.
According to the proof of the theorem 3 we have to consider the five following quantities.

The sum

N 2α k+M k-M (T N f α ) k+1,l+1 φ( l N ) -φ( k N ) which is O(N -βµ-1-β ) = o(1).

The difference

N 2α k-M -1 l=0 (T N f α ) k+1,l+1 φ( l N ) -φ( k N ) -N 2α C α k-M -1 l=0 |k-l| -2α-1 φ( l N ) -φ( k N )
which is bounded by

N 2α k-M -1 l=0 O(|k -l| -2α-2 ) k -l N µ = O(N (-µ+2α+s)β-1+β ) = o(1).

Analogousy

N 2α N l=k+M (T N f α ) k+1,l+1 φ( l N ) -φ( k N ) -N 2α C α N l=k+M |k -l| -2α-1 φ( l N ) -φ( k N ) = O(N (-µ+2α+s)β-1+β ) = o(1).
4. The difference between the quantity

N 2α C α 0≤l≤k-M,N ≥l≥k+M |k -l| -2α-1 φ( l N ) -φ( k N )
and the quantity

N 2α k-M 0 |k -l| -2α-1 φ( l N ) -φ( k N ) dl + N k+M |k -l| -2α-1 φ( l N ) -φ( k N ) dl
is in o(1) (residual term of the Euler and Mac-Laurin formula).

5. Finally the difference between the integrals of the previous point and

1 0 φ(t)-φ(x) |x-t| 2α+1 dt is O N β(2α-µ) = o(1).
Thanks to these results we can affirm that we have a positive real τ such that for all integer

k, M ≤ k ≤ N -M R N (k) = O (N -τ ). On the other hand if 0 ≤ k ≤ N δ 1 or N -N δ 2 ≤ k ≤ N R N (k) = f ( k N ) - N l=0 (T N (f α )) k+1,l+1 φ( l N )
which is bounded by a constant K 0 no depending from N . Now we have to study

S m = N -2α N k=0 T -1 N (f α ) -1 m+1,k+1 (R N ) k for m ∈ N such that lim N → m N =
x and x ∈]0, 1[. To evaluate S m we will use the two following lemmas that we have demonstrated in [START_REF] Rambour | Valeur propre minimale d'une matrice de Toeplitz et d'un produit de matrices de Toeplitz[END_REF].

Lemma 3 Let δ 0 be a positive real.Then we have a constant C 1,α depending only from α such that, for a sufficiently large

N T -1 N (f α ) k+1,l+1 ≤ C 1,α |l -k| α-1 N α δ α/2
for all (k, l) ∈ N 2 with 0 ≤ min(k, l) < N δ and 2N δ 0 < max(k, l) < N -2N δ 0 .

Lemma 4 For 0 < δ 1 < δ 2 < 1 we have

T -1 N (f α ) [N x]+1,[N y]+1 = f-α ([N x] -[N y]) -N 2α-1 K α,0,1 (x, y) + o(N 2α-1 ) uniformly in x, y in [δ 1 , δ 2 ].
This last lemma is cited in the introduction. It is the remark 8. Then we split the sum S as follows

S = N -2α N δ 1 -1 k=0 (T N (f α )) -1 m+1,k+1 R N (k) + N -N δ 2 k=N δ 1 (T N (f α )) -1 m+1,k+1 R N (k) + N k=N -N δ 2 +1 (T N (f α )) -1 m+1,k+1 R N (k)  
With the lemma 4 and R N (k) = O(N -τ ) we get

N -2α N -N δ 2 k=N δ 1 (T N (f α )) -1 m+1,k+1 R N (k) = O(N -τ ) = o(1).
Then the lemma 3 provides us that the sums N -2α

N δ 1 -1 k=0 (T N (f α )) -1 m+1,k+1 R N (k), and 
N -2α N k=N δ 2 +1 (T N (f α )) -1 m+1,k+1 R N (k)
, are respectively of same order that the quantities

N 2α N δ 1 -1 k=0 |m -k| α-1 N α δ α/2 1 = O(δ α/ 2 
1 ) and N -2α

N k=N δ 2 +1 |m -k| α-1 N α δ α/2 2 O(δ α/ 2 
2 ).

Hence for δ 1 et 1 -δ 2 sufficiently close to zero we can bound S m by → 0. That means that, for considered m such that lim N →∞

m N = x, x ∈]0, 1[ we have φ(x) = lim N →+∞ N -2α (T N (f α )) -1 Y N m = lim N →∞ N -2α N k=0 (T N (f α )) -1 m+1,k+1 f ( k N ).
And, by repeating a calculation already done :

lim N →+∞ N -2α N k=0 (T N (f α )) -1 m+1,k+1 f ( k N ) = (D -α (ϕ) + H α (ϕ)) (x)
That gives us the announced unicity.

4 Proof of the corollary 1 

T -1 N (f α ) [N x],[N y] = f -α ([N x] -[N y]) -N 2α-1 K α,0,1 (x, y) + o(N 2α-1 ).
And also in [START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1-cos θ) α f 1 , -1 2 < α ≤ 1[END_REF] we have x, y

∈ [δ 1 , δ 2 ] ⊂]0, 1[, x = y, T -1 N (f α ) [N x],[N y] = N 2α-1 G α (x, y) + o(N 2α-1 ), with G α (x, y) = 1 Γ 2 (α) x α y α 1 max(x,y) (x-t) α-1 (y-t) α-1 t 2α
dt. The asymptotic of f -α (u) for |u| → +∞ provides the equality

N 2α-1 G α (x, y)f (y) + o(N 2α-1 ) = N 2α-1 |x -y| 2α-1 f (y) -N 2α-1 K α (x, y)f (y) for x, y ∈ [δ 1 , δ 2 ] ⊂]0, 1[, x = y. That means G α (x, y)f (y) + o(1) = |x -y| 2α-1 f (y) -K α (x, y)f (y). Since G, K ∈ L 1 ([0, 1]) we can write, for x, y ∈ [δ 1 , δ 2 ] ⊂]0, 1[, x = y, 1 0 G α (x, y)f (y)dy = 1 0 f (y) |x -y| 1-2α dy - 1 0 K α (x, y)f (y).
That is also

1 0 G α (x, y)f (y)dy = (D α (f )) (x) - 1 0 K α (x, y)f (y)
That ends the proof of the corollary.

5 Appendix : proof of the lemmas 2 and 5 5.1 Proof of the lemma 2

1. First we have to prove the first point of the lemma. According to the definition of ψ N given in the statement we have to obtain the inequality

|ψ N (l) -ψ N (l )| ≤ M | l N - l N |.
To do this we must first of all note that ψ N (l) =

l u=l-N f-α (u)f l -u N .
With the assumption l > l we have

ψ N (l) -ψ N (l ) = l-N u=l -N f-α (u)f l -u N + l u=l-N f-α (u) f l -u N -f l -u N + l u=l f-α (u)f l -u N .
Clearly, for x = lim

N →+∞ l N , x = lim N →+∞ l N , and x, x ∈ [δ 1 , δ 2 ] ⊂]0, 1[ we have l-N u=l -N f-α (u)f l -u N = l u=l f -α (v -N )f ( l -v + N N ) = N 2α x x (1 -t) 2α-1 f (x -t + 1)dt,
and also

x x (1 -t) 2α-1 f (x -t + 1)dt ≤ (1 -δ 2 ) 2α-1 O x x 1 -(t -x ) -s dt .
The mean value theorem gives us

x x (1 -(t -x )) -s dt = (x -x )c -s with 1 -(δ 2 -δ 1 ) ≤ 1 -(x -x ) < c < 1. Since 0 < x -x < (x -x ) 1-s we have obtained the expected result that is l-N u=l -N f-α (u)f l -u N ≤ C δ 1 ,δ 2 (x -x ) 1-s
with C δ 1 ,δ 2 > 0 and no depending from N . The same methods provide the same inequality for

l u=l f-α (u)f l -u N .
Now we have to focus our attention on the term

S = l u=l-N f-α (u) f l -u N -f l -u N .
To do that we consider a real > 0 such that on the intervals [0

, 2 ] (resp. [1 -2 , 1]) f (x) ∼ x -s (resp. f (x). ∼ (1 -x) -s ). Now we assume also | l-l N | ≤ 2 . Put S = S 1 + S 2 + S 3 with S 1 = l-N +[N ] u=l-N f-α (u) f l -u N -f l -u N S 2 = l -[N ]-1 u=l-N +[N ]+1 f-α (u) f l -u N -f l -u N S 3 = l -[N ]-1 u=l-N +[N ]+1 f-α (u) f l -u N -f l -u N .
We have

S 1 = [N ] 0 f-α (v + l -N ) f ( N -v N ) -f ( -l + l + N -v N ) = O(N s N 2α-1 ) v -s+1 -(v + l -l ) -s+1 [N ] 0 = O(N s N 2α-1 ) [N ] -s+1 -([N ] + l -l ) -s+1 + (l -l ) -s+1 = O N 2α ( l -l N + ( l -l N ) -s+1 )
that finally implies

S 1 = O ( l -l N ) -s+1 .
Identical calculations provide the result for S 3 . Finally, since f is locally contracting, we easily have, with J 1 a constant no depending from N :

|S 2 | ≤ J 1 N 2α | l N - l N | ≤ J 1 N 2α | l N - l N | 1-s
that ends the proof of this first point.

This calculation has been already seen in the point 1. Hence we can claim |S 2 | = O (N 2α ( l-l N ) -s+1 . Next using the hypothesis f is locally contracting we obtain easily that

|S 1 | ≤ |l -l | N l -[N ]-1 m=0 l-m u=l -m β u β m+u .
Always using the formula of Euler and Mac-Laurin we obtain that

l -[N ]-1 m=0 l-m u=l -m β u β m+u is in the same order that N 2α x - 0 x-y x -y t α-1 (y+t) α-1 dtdy with x = lim N →+∞ l N , x = lim N →+∞ l N . Since x - 0 x-y x -y t α-1 (y + t) α-1 dy = |x -x | x - 0 c α-1 (y + c) α-1 dtdy , x -y < c < x -y we get x 0 c α-1 (y + c) α-1 dtdy ≤ x 0 (x -y) α-1 dy(x ) α-1 , that implies x - 0 x-y x -y t α-1 (y + t) α-1 dtdy ≤ (x -) 2α-1 α ≤ δ 2α-1 1 α , and l -[N ]-1 m=0 l-m u=l -m β u β m+u = O(N 2α ). Lastly l m=l ∞ l-m β u β m+u f ( l -m N ) can be split as the sum of l-[N ] m=l ∞ l-m β u β m+u f ( l -m N ) and l m=l-[N ]+1 ∞ l-m β u β m+u f ( l -m N ) . Then we have l-[N ] m=l ∞ l-m β u β m+u f ( l -m N ) = O N 2α x x +∞ x-y u α-1 (y + u) α-1 duf (x -y)dy and l m=l-[N ]+1 ∞ l-m β u β m+u f ( l -m N ) = o(N 2α ).
Finally we can remark that N 2α x x +∞

x-y u α-1 (y + u) α-1 duf (x -y)dy is upper bounded by N 2α (x -x ) 2α-s+1 ≤ N 2α (x -x ) 1-s , which ,with the definition of x and x finishes the proof of this point of the lemma. Identically we obtain also (t + 1 -y) α-1 (y -t) α (t + 1 -z) α-1 (z -t) α dtf (z)dz.

Lastly we put φ(y) = To conclude we have obtained that the two quantities t α-1 (max(y, z)-min(y, z)+t) α-1 dtdzdy +o(1). with s < 2α -1. This last remark ends the proof of the lemma. 2

J 1 = k-[N δ]

  a, b]), and not necessarily defined in a et b), and our solution is a function in C 0,µ (]a, b[) for a good value or µ. We recall that for µ > 0 C 0,2µ ]a, b[) is defined as the set of the functions ψ such that for all interval [c, d] ⊂]a, b[ with d -c sufficiently small there a real K [c,d] > 0 with |ψ

Remark 2 , 1 2 [

 22 This result can easily be extended for functions set to ]a, b[. The operator definition D α is then transported over any interval [a, b] as follows. If a < b are two reals and h is a function defined on ]a, b[, one defines for x in [0, 1] h a,b (x) = h(a + (b -a)x). Then for α ∈] -1 2 and u ∈]a, b[, we have D α,a,b (h)(u) = (D α h a,b ) u-a b-a .

Remark 6

 6 In[START_REF] Kwaśnicki | Eigenvalues of the Fractional Laplace Operator in the interval[END_REF] the restiction of the fractional Laplacian to an interval[a, b] is denoted by A /[a,b] . For f ∈ C ∞ [a,b] A [a,b] (f ) is defined to be the restriction of A(f ) to [a, b]where A is the fractional Laplace operator on the line. Again A /[a,b] extends to an unbounded selfadjoint operator on L 2 ([a, b]). M. Kwaśnicky deduces the eigenvalues and the eigenvectors of this of the restriction from the eigenvalues and the eigenvectors of the fractional Laplacian on the real line.

βΦ

  u β max(l,m)-min(l,m)+u f ( j,N (l, m)f ( m N), for j = 1, 2, 3. We can now state the lemma Lemma 2 Let δ 1 , δ 2 be two reals in ]0, 1[, and f a locally contracting function on ]0, 1[. Then there is a positive constant

First, without loss

  of generality we can assume [a, b] = [0, 1]. For x, y ∈ [δ 1 , δ 2 ] ⊂]0, 1[ we have obtained in[START_REF] Rambour | Inverse asymptotique des matrices de Toeplitz de symbole (1-cos θ) α f 1 , -1 2 < α ≤ 1[END_REF] 

Φ0, 2 , 1 (( 1 - 1 ( 1 -

 21111 N (l) -Φ0,2,λN (l ) ≤ O(N 2α )| l N -1 (max(y, z) -min(y, z) + t) α-(max(y, z) -min(y, z) + t)) α -1) dtf (z)dz, 1 ((1 -t) α -1) (max(y, z) -min(y, z) + t) α-(max(y, z) -min(y, z) + t)) α t α-1 ((1 -t) α -1) dtf (z

1 0S 1 = O N -1+s x 2 0

 112 |y -z| 2α-1 f (z)dz. Then we can writeLemma 5 Let x ∈]0, 1[ and lim N →+∞ k N = x. If δ = N -β with 1 > β > 2α 1-s , s as in the theorem 2-l) (ψ N (l) -ψ N (k)) = C α Γ 2 (α) x-δ 0 |x -y| -2α-1 φ(y) -φ(x) dy + o(1)andN k+N δ+1 fα (k -l) (ψ N (l) -ψ N (k)) = C α Γ 2 (α) 1 x+δ |x -y| -2α-1 φ(y) -φ(x) dy + o(1).2. for j = 0, 1, 2, 3k-N δ-1 l=0 fα (k-l) Φj,N (l) -Φj,N (k) = C α Γ 2 (α) x-δ 0 |x-y| -2α-1 φj (y) -φj (x) dy+o(1)andN k+N δ+1 fα (k-l) Φj,N (l) -Φj,N (k) = C α Γ 2 (α) 1 x+δ |x-y| -2α-1 φj (y) -φj (x) dy+o(1).Proof : It is clear that all these statements can be demonstrated in the same way. Hence we prove the second point of the lemma 5 for j = 0. First all we have to state the following lemmaLemma 6 If = N -γ is a real sufficiently close of zero we havek-[N δ]-1 l=0 fα (k -l) Φ0,N (l) -Φ0,N (l) = k-[N δ]-1 l=N fα (k -l) Φ0,N(l) -Φ0,N (k) + o(1).(x -t) -2α-1 t 2α-1 dt = o(1) and S 2 = O(k 2α-1 N s ) = o(1).

- 1 l=0β

 1 fα (k -l) Φ0,N (l) -Φ0,N (k) and u β k-m+u differ by o(1). Then the Euler and Mac-Laurin formula provides 1 (max(y, z) -min(y, z) + t) α-1 dt -+∞ min(y,z) t α-1 (max(y, z) -min(y, z) + t) α-1 dt dzdy + o(1),

2 5. 3 Statement and proof of the lemma 5 Lemma 7

 2357 For x ∈]0, 1[ and δ as in the lemma 5 we have x+δ x-δ |x -y| -2α-1 φ(x) -φ(y) dy = o(1), and for j = 0, 1, 2, 3 x+δ x-δ |x -y| -2α-1 φj (x) -φj (y) dy = o(1), Proof : We state the result for the function φ. As for the lemma 2 we can prove that this function is in C 0,1-s (]0, 1[). Then x+δ x-δ |x -y| -2α-1 φj (x) -φj (y) dy ≤ x+δ x-δ |x -y| -2α-s dy , that implies x+δ x-δ |x -y| -2α-1 φj (x) -φj (y) dy = O(δ -2α+1-s ) = o(1)

Proof : Let be an integer k such that lim N →+∞ k N = x, and a real > 0 with x ∈ [ , 1 -]. In the following of the proof K is the constant such that ∀x, y ∈ [ , 1 -] |f (x) -f (y)| ≤ K|x -y|.

We write

1-

Assume that [N ] = m 0 . We have

Let's now show point 2 of the lemma for j = 0. According with the lemma statement we must now get that

) and assume again that l > l . Then we have

Assume now |l-l | N ≤ for a real as in the point 1. We write :

Remark 9 Th hypothesis l N ≥ δ 1 allows to assume that l > [N ] without loss of generality.

This time again we get

Using the Euler and Mac-Laurin formula we obtain

3. Let's now show point 2 of the lemma with j =1. The cases j = 2 and j = 3 will also be demonstrated. For l et l as previously (and always l < l ), and according to the equation ( 6) we have to study the difference

that is also

We have three differences consider. First:

using 8 we can bounded this term by l-l

). Then we have to study

which is in the same order that

Always with [START_REF] Chanzy | Inverse du laplacien discret dans le problème de Poisson-Dirichlet à deux dimensions sur un rectangle[END_REF] we can bound this quantity by

Lastly we have to consider

It is easily seen that Q 1,N = O(I 2,N ) with

We have, for

|F N,α (τ )|dudt.

With the main value theorem we obtain

where x < c < x and ρ(z)

N , where the real K is a constant no depending from N . To ends the proof of the point we use the same methods to obtain

For the rest of the lemma we prove the same type of inequality for the difference

by the same methods.

Statement and proof of the lemma 5

To write this lemma we use the following notations, for y, z ∈ [0, 1] : with

Now let M < N an integer sufficiently large such that for u ≥ M we have β u ∼ 1 Γ(α) u α-1 . We can write With the remark that for h sufficiently large