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Abstract

We define two intersection type systems for the pure, untyped, probabilistic λ-calculus,
and prove that type derivations precisely reflect the probability of convergence of the under-
lying term. We first define a simple system of oracle intersection types in which derivations
are annotated by binary strings and the probability of termination can be computed by com-
bining all the different possible annotations. Although inevitable due to recursion theoretic
limitations, the fact that (potentially) infinitely many derivations need to be considered is
of course an issue when seeing types as a verification methodology. We thus develop a more
complex system: the monadic intersection type system. In this second system, the probabil-
ity of termination of a term is shown to be the least upper bound of the weights of its type
derivations.

1 Introduction

Interactions between computer science and probability theory are pervasive and fruitful. Prob-
ability theory offers models that enable system abstraction, but it also suggests a new model of
computation, which is central to randomised computation [32] and cryptography [17]. All this has
stimulated the study of probabili-stic computational models and programming languages: prob-
abilistic variations on automata [12, 33], Turing machines [35, 15], and the λ-calculus [34], have
indeed been introduced and studied since the early days of computer science.

Among the many ways probabilistic choice can be captured in programming, the simplest one
consists in endowing the language of programs with an operator modelling sampling from (one
or many) distributions. Fair, binary, probabilistic choice is for example perfectly sufficient to get
universality if the underlying programming language is itself universal [35, 8]. This is precisely
what happened in the realm of the λ-calculus, from the pioneering works by Saheb-Djahromi
dating back to the seventies [34] to the most recent contributions (e.g., [9, 14, 29, 21]), through
the seminal work, e.g., of Jones and Plotkin [23].

Termination is a crucial property of programs, and remains desirable in a probabilistic setting,
e.g., in probabilistic programming [18] where inference algorithms often rely on the underlying
program to terminate. However, one needs first of all to understand what it means for a prob-
abilistic computation to terminate, i.e., how termination should be defined in the first place. If
one wants to stick to a qualitative definition, almost-sure termination is a well-known answer: a
probabilistic computation is said to almost-surely terminate if divergence, although possible, has
null probability. One could even go beyond and require positive almost-sure termination, which
asks the average time to termination to be finite. This is well-known to be stronger than almost
sure termination. Recursion-theoretically, checking (positive) almost-sure termination is harder
than checking termination in deterministic computation, where termination is at least recursively
enumerable, although undecidable: in a universal probabilistic imperative programming language,
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almost sure termination is Π0
2 complete, while positive almost-sure termination is Σ0

2 complete
[25].

In the λ-calculus, termination is one of the best-studied verification problems [22, 24], and
intersection types are well-known to be able not only to guarantee but also to characterise various
notions of termination for λ-terms, including weak and strong normalisation [6, 2, 27]. Can all
this be generalised to probabilistic λ-calculi? This paper gives a first complete, positive, answer
to this question. This is however bound to be challenging: due to the aforementioned recursion-
theoretic limitations, we cannot hope to get a system of intersection types in which almost-sure
termination is witnessed by the existence of one type derivation, even if we are prepared—as in
the deterministic setting—to drop decidability of type inference. If we could find one, that would
contradict the Π0

2 completeness of the underlying verification problem, since type derivations can,
at least, be enumerated. In other words, the price of being higher in the arithmetical hierarchy
needs to be paid, somehow.

In this paper, we attack this difficult problem following two unusual routes. We design a type
system by observing that binary probabilistic choice can be seen as a form of reading operation:
a read-only, use-once, Boolean is taken in input from the memory and execution proceeds depen-
dently on the read value. This suggests a way to define a system of intersection types, which we call
oracle types. The second route we follow consists in lifting types to distributions, thus switching
to a monadic form of type. In both cases, and again due to the aforementioned recursion-theoretic
limitations, the probability of convergence cannot be read from a single derivation, but from count-
ably many of them. While for oracle types the probability of convergence is obtained as the sum
of the weights of all type derivations, monadic types allow for the weight of single type derivations
to converge to the target probability. As a consequence, they are arguably better tailored as a
verification methodology, and we will indeed define a decidable approximation of them.

After presenting the termination problem informally (Section 2) and giving the necessary pre-
liminaries about distributions and probabilistic λ-calculi (Section 3), this paper unfolds as fol-
lows:
• First, a system of oracle intersection types is introduced. The syntax of oracle intersection

types explicitly mentions the bits the typed term is supposed to read from the oracle. In
other words, choices performed along the execution are “hard-wired” into types, and each type
derivation by construction talks about one probabilistic branch. One then only has to sum
the weights of derivations representing different choice sequences. Soundness and completeness
of typability with respect to the probability of convergence are proved by reducibility, and by
subject expansion. This is the topic of Section 5.

• The second type system we present is motivated by termination as a verification problem,
and can be seen as being designed from prevision spaces [19]. Probability distributions of
types become first class objects, allowing for a new completeness theorem: the probability
of termination of a term is the least upper bound of the norms of all type derivations for it.
Moreover, with verification in mind, we refine our type system to suppress redundancies, and
we show that there is at least one interesting fragment of it for which type inference is decidable.
All this is in Section 6.

The differences between the two proposed type systems can be depicted as in Figure 1. The
evaluation of a term M can be seen as being modeled as a (possibly infinite) tree whose leaves
are values. While each oracle intersection type derivation captures one (finite) path leading M to
a value (see Figure 1(a)), a monadic intersection type derivation captures a finite portion of the
tree rooted at M obtained by pruning some (possibly infinite) subtrees (see Figure 1(b)).

2 On Types and Termination in a Probabilistic Setting

The untyped λ-calculus [3] is a minimalist formal system enjoying some remarkable properties like
confluence and standardisation, which make it an ideal candidate for a reference model of pure
functional programming. Key properties of terms, like being strongly or weakly normalisable, can
be characterised (somehow “compositionally”) by way of intersection-type disciplines [6, 2]. This
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Figure 1: Intersection Types and Probabilistic Evolution.

is possible not only because normalisation has a semantic counterpart which can be captured by
way of types but also, more fundamentally, because being normalisable is a recursively enumerable
property: otherwise, one could not hope to get a type-based characterisation of it, unless type
derivation checking (which is easier than type inference) turns out to be undecidable.

We can intuitively describe an intersection type derivation as a faithful, compositional, but
“optimised” description of the evaluation of the underlying typed term. As an example, consider
the term M = (λx.xx)I, where I is the identity λy.y. It is clear that the variable x cannot be
given just one simple type in the term above, and intersections are there precisely to account for
the multiple uses the same subterm can be subject to. In the end, functions are not considered in
their entirety but only on a finite number of arguments, namely those they will be fed with. In the
example above, I needs to get both a type in the form β = α→α and the type β→β, and M would
thus have type β. The power of intersection types comes from the fact that any type derivation
built according to them can be seen as a witness to termination, and that no information is lost
this way.

In a probabilistic λ-calculus, this simple and beautiful picture is simply not there anymore.
First of all, confluence does not hold, and this is not the mere consequence of the presence of
probabilistic choice: it fails even if all probabilistic execution branches are taken into account, i.e.
if one works with distributions. Consider, as an example, the term1 (λx.x(x0)) (S ⊕ I), where
⊕ is an operator for fair, binary, probabilistic choice. When evaluated call-by-value (CBV for
short), this term reduces to 0 with probability 1

2 or to 2 with probability 1
2 . In call-by-name order

(CBN for short), however, it reduces to 0 with probability 1
4 , to 2 with probability 1

4 or to 1 with
probability 1

2 . Simply put, duplication and probabilistic sampling do not commute. One avoid
those issues by considering a fixed reduction strategy, which in this section will be, indeed, CBN.
All the results we will give in this paper, however, hold both for CBN and CBV reduction. We
will be keen to present both formulations, in order to highlight the (sometime subtle) differences.

The presence of probabilistic choice, together with the necessity of precisely capturing the
behaviour of terms—we are aiming at completeness, after all—pose other challenges. Take, as an
example, the term (λx.A ⊕ x) (B ⊕ C), where A, B and C are closed terms of types α, β and
γ respectively. This term call-by-name reduces to A with probability 1

2 , to B with probability 1
4

and to C with probability 1
4 . Thus, naively, we would like this term to somehow have the type

1
2α + 1

4β + 1
4γ. This requires types to include distributions on the left of the arrow, but this is

not enough. Since typing needs to be somehow compositional, one would like to type separately
(λx.A⊕ x) and (B⊕C), and the former has to be typed without knowing its arguments; ideally,

1where 0 is a numeral for 0, and S is the successor function.
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it would be typed without even knowing the type of its arguments, but this is known to be
incompatible with completeness [1]. Summing up, the language of types and typing rules are
bound to be quite complex.

In addition to keeping track of the probability of certain events, we also have to deal with the
multiple uses of the same variable by a term. E.g., in a term such as λx.xx that uses its argument
twice and very differently, we need to require the variable x to have two different types, say α and
β. Such an intersection α∧β thus means that the argument have to be of type α and of type β at
the same time. Somehow, this issue is orthogonal to the one discussed above, and will thus have
to be captured separately. Dealing with both of them compositionally is the main challenge we
face, technically speaking.

As a slightly more complicated example, consider the term (λx.x (x x)) (λy.y⊕Ω). The three
occurrences of x have very different roles: the rightmost one is only used as an argument, and
there is no need for it to have a functional type; the one in the middle must have a functional
type that takes a value (obtained with probability one) and returns something with probability
1
2 ; the leftmost one takes an argument that may or may not converge, which means that the way
it uses its argument matters a lot in the resulting probability. As a result, the management of the
probabilistic behaviours we were talking about is different for each of the three occurrences of x.

Finally, it is worthwhile to notice that even if one forgets the technicalities related to the under-
lying type system, termination becomes itself an intrinsically more complex verification problem:
a term (or, more generally, a probabilistic computation) does not merely converge to a normal
form, but it does so with a certain probability. Moreover, the probability of convergence of a term
is infinitary in nature. Let us consider, as an example, a term A such as λux.x (λy.(u (Sx)⊕ y)) I,
where S is a combinator computing the successor on natural numbers. Let Y be Curry’s fix-
point combinator. Then, the probabilistic evolution of the program YA1 can be described by the

following infinite tree:
Y A 1 ∗•

I

Y A 2 ∗•
•

I

Y A 3 ∗•
•
•

I

Y A 4
1

1
2

1
2

1

1
2

1
2

1
2

1
2

1
1
2

1
2

1
2

1
2 1

2

In other words,
YA1 converges with probability 1, but this is witnessed by infinitely many (finite) probabilistic
branches. Indeed, the already mentioned well-known results on the difficulty of verifying termi-
nation for probabilistic computations [25] can be rephrased as follows in any universal model of
probabilistic computation like the untyped probabilistic λ-calculus [8] (and for any computable
0 < p ≤ 1):
• the lower bound problem “Prob(M⇓) > p” is Σ0

1-complete, i.e., non decidable but recursively
enumerable,

• the upper bound problem “Prob(M⇓) < p” is Σ0
2-complete, thus not recursively enumerable,

• the exact bound problem “Prob(M⇓) = p” is Π0
2 complete, thus not recursively enumerable.

All this implies, in particular, that it is not possible to give a type system where the exact (or
even a upper) bound for the probability of termination of a term M is always proven by a finite
derivation, unless checking the correctness of a derivation becomes undecidable.

Summing up, someone looking for a complete (intersection) type system for probabilistic λ-
calculi would face two major challenges:
1. The first is, as we have seen, a severe constraint from recursion theory: almost sure termination

is not a recursively enumerable property, and thus cannot be captured by a simple, recursively
enumerable type system.

2. The second comes from the intrinsic complexity of dealing with probabilistic effects in a com-
positional way, and of keeping track of the dependencies between probabilistic choices, which
themselves forces the type system to be complex, formally.

The first difficulty will be overcome by considering only the lower bound problem (which is recur-
sively enumerable): a derivation computes a lower bound to the probability of termination, and the
full probability of termination is obtained by considering all possible derivations. In other words,
we will initially consider completely independent derivations corresponding to distinct possible
executions of the term. We still have to be sure that distinct probabilistic branches correspond
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` A : α x :

〈
β 7→ 1

2
γ 7→ 1

2

〉
` x :

〈
β 7→ 1

2
γ 7→ 1

2

〉

x :

〈
β 7→ 1

2
γ 7→ 1

2

〉
` A⊕ x :

〈α 7→ 1
2

β 7→ 1
4

γ 7→ 1
4

〉

` λx.A⊕ x :

〈
β 7→ 1

2
γ 7→ 1

2

〉
→

〈α 7→ 1
2

β 7→ 1
4

γ 7→ 1
4

〉 ` B : β ` C : γ

` B ⊕C :

〈
β 7→ 1

2
γ 7→ 1

2

〉

` (λx.A⊕ x) (B ⊕C) :

〈α 7→ 1
2

β 7→ 1
4

γ 7→ 1
4

〉

(a) A CBN Type Derivation, where A : α, B : β and C : γ.

x : 1
2B→

1
4B ` x : 1

2B→
1
4B

x : B→ 1
2B ` x : B→ 1

2B x : B ` x : B

x :

{
B

B→ 1
2B

}
` x x : 1

2B

x :

 B
B→ 1

2B
1
2B→

1
4B

 ` x (x x) : 1
4B

` λx.x (x x) :

 B
B→ 1

2B
1
2B→

1
4B

→ 1
4B ∀C, ` λy.y⊕Ω : C→ 1

2C

` (λx.x (x x)) (λy.y⊕Ω) : 1
4B

(b) A CBN Type Derivation Using Intersections.

Figure 2: Two Examples of Type Derivations.

to type derivations which can somehow be themselves told apart. Moreover, the complex internal
dependencies will be flatten so that the term (λx.C⊕x) (D⊕E) will get four different derivations,
which can be distinguished by the derived typing judgements, one for each of the 22 binary strings
of length 2.

Unfortunately, the aforementioned type system is not well suited as a verification methodology.
Indeed, we would like to trade completeness for a Σ0

1 and thus approximable type-checking and
type-inference without too much loss. However, a type derivation in the aforementioned system
only gives information on one possible execution. In particular, we would like a system where the
completeness is not obtained by adding the weights of different derivations, but as the least upper
bound of those. With this goal in mind, we define a monadic intersection type system, which will
be given in Section 6 below. A judgement in this system assigns a distribution of types rather
than a type and its contexts associate to each variable a set of type distributions. This time, the
execution tree is not explored depth-first, but breadth-first. A derivation corresponds to a finite
portion of the execution tree. In this system, Figure 2(a) is a derivation for (λx.A⊕ x) (B⊕C).
Figure 2(b) is a type derivation for (λx.x (x x)) (λy.y ⊕ Ω). There, we assume a distribution of
type A such that B is the Dirac distribution for A→ 1

2A, so that the last deduction comes from
the fact that C can be either A, B, or 1

2B. Notice the different “style” of those two derivations.
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3 A Probabilistic λ-Calculus and Its Operational Semantics

3.1 Preliminaries

Let S be any countable set. We indicate the powerset of S as P(S), and its restriction to finite
sets as Pf (S). We often describe sets using braces {−}. Similarly, we indicate as M(S) the set of
multisets of S, and as Mf (S) its restriction to finite multisets. To distinguish multisets from sets,
we describe multisets using square brackets [−]. Both finite sets and finite multisets are denoted
with metavariables ranging over the lowercase alphabet letters a, b, c, . . . .

We denote D(S) the set of probabilistic (sub)distributions over S:

D(S) :=

{
M : S → R[0,1]

∣∣∣∣∣ ∑
M∈S

M(M) ≤ 1

}
.

Probabilistic distributions2 form a ωCPO when endowed with the pointwise order. We write
SUPP (M) for the support of the distribution over M, namely the set {M ∈ S | M(M) > 0}.
In particular Df (S) indicates the set of finitely supported distributions over S. Distributions are
denoted with metavariable ranging over mathcal alphabet: A,B, C, . . .

Distributions are often indicated in square bracket notation. In most cases, we use the 7→
arrow to represent the non-null coefficient, e.g.,

〈
M 7→ 1

2

N 7→ 1
2

〉
is the uniform distribution over the

2-element set {M,N}, which will also be denoted as 〈 12M, 12N〉. We sometime indicate the Dirac
distribution 〈M 7→ 1〉 as 〈M〉, while the null distribution is denoted 〈〉.

The set of functions (on the same set) whose codomain is the field of real numbers can be given
themselves the status of a vector space. As a consequence, given two distributionsM and N and
a real number p ≤ 1, we can indeed define the following:

M+N := 〈M 7→ M(M)+N (M) |
M ∈ SUPP (M) ∪ SUPP (N )〉 ,

pM := 〈M 7→ p · M(M) |M ∈ SUPP (M)〉 .

Observe, however, thatM+N is not necessarily a distribution: its sum can in general be greater
than 1.

3.2 Probabilistic Abstract Reduction Systems

A (fully) probabilistic abstract reduction system (a PARS, for short) on S is a partial function from
S to D(S). Given a PARS →, the fact that (M,M) ∈→ is, as usual, indicated with M → M,
and any V ∈ S that cannot be reduced (i.e., → is undefined on V ) is called irreducible or a
normal form. The set of normal forms is denoted as SV , while SR is S − SV . We also define the
reducible support and irreducible support of M ∈ D(S) as SUPPR(M) := SUPP (M) ∩ SR and
SUPPV (M) := SUPP (M)∩SV , respectively. Any distributionM with empty reducible support
is called itself irreducible and is indicated with metavariables like V or W. MV stands for the
restriction of M to elements in SV . Similarly for MR.

The function → can be generalised into a binary relation on D(S) by taking it as the smallest
such relation closed under the following rule:

∀M∈SUPPR(M), M → NM ∀V ∈SUPPV (M), NM :=〈V 〉
(r-∈)M→

∑
M

M(M)·NM

Proposition 3.1 If M→N then MV ≤ NV .

2In the following “distribution” always stands for “subdistribution”.
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Actually, → as we have just defined it is a (total) function. For n ∈ N, we also define the n-step
reduction →n as the n-th iteration of →: →0 is the identity on D(T ), while →n+1:=→n ◦ → for
every n ∈ N. The reflexive transitive closure

⋃
n →n of → is, as usual, indicated as →∗. Please

observe that →n is again a total function for every n ∈ N. For any term M and for every n ∈ N,
we can thus defineMn to be the unique distribution such that M →nMn. Due to the increasing
character of (Mn)V , and to the fact that distributions form an ωCPO, we can define:

JMK := supn(Mn)V .

The distribution JMK is thus the distribution to which M converges at the limit. As such, it can
be seen as the result of evaluating M .

3.3 Terms and Their Operational Semantics

The calculus we are interested in here, called Λ⊕, can be seen as being obtained by endowing the
pure, untyped, λ-calculus with an operator for binary probabilistic choice. This makes it a PARS,
which will be the subject of this section. To be precise, this will be done in two different ways,
corresponding to two notions of evaluation for λ-terms: call-by-name reduction and call-by-value
reduction.

The set of terms is defined as follows:

Λ⊕ : L,M,N ::= x | λx.M | M N | M ⊕N.
Terms are taken modulo α-equivalence, which allows the definition ofM [N/x], the capture avoiding
substitution of the term N for all free occurrences of x in M . The set of closed terms (i.e., terms
in which no variable occurs free) is denoted as ΛC⊕. A term distribution (a closed term distribution,
respectively) is a probabilistic subdistribution over terms (over closed terms, respectively), i.e. an
element of ΛD⊕ = D(Λ⊕) (of ΛDC⊕ = D(ΛC⊕), respectively), which is ranged over by metavariables
like L and N . Whenever this does not cause ambiguity, we generalise syntactic operators to
operators on (closed) term distributions, e.g. MN stands for the distribution assigning probability
N (L) to ML.

As already mentioned, the operational semantics takes the form of a probabilistic abstract
reduction system over terms.

Definition 3.2 Rules for call-by-name (a.k.a. weak-head) and call-by-value reduction are given
in Figures 3(a) and 3(b), respectively. This defines two PARSs →N and →V on ΛC⊕.

A quick inspection at the rules of Figure 3(a) and Figure3(b) reveals that (closed) normal forms
of →N and →V are closed values, i.e. closed abstractions. Moreover, →N and →V are indeed
partial functions as required by the definition of a PARS: all the rules are syntax-directed.

Following the development from Section 3.2 above, we can define the semantics (or evaluation)
JMKN and JMKV as distributions over closed, irreducible terms. The call-by-name probability
of convergence of any term M , then, is

∑
JMKN :=

∑
V JMKN (V ). Similarly for

∑
JMKV :=∑

V JMKV (V ), the call-by-value probability of convergence. These notions of evaluation satisfy
some interesting properties, such as the following continuity lemma:

Lemma 3.3 For any pair of terms M,N , the following hold:

JJMKN NK = JM NKN , JJMKV JNKV K = JM NKV .

4 Intersection Types: A Näıve Attempt

Let us start with two remarks. First, our type system should subsume an existing intersection
type system on terms not containing the binary choice operator ⊕. Secondly, handling duplication
requires some care, since duplicating an ⊕ operator before or after its evaluation can be drastically

7



(rN -β)

(λx.M) N →N

〈
M [N/x]

〉
M →N M

(rN -@)

M N →N M N

(rN -⊕)

M ⊕N →N

〈
M 7→ 1

2
N 7→ 1

2

〉

(a) Call-by-Name Operational Semantics

(rV -β)

(λx.M) V →V

〈
M [V/x]

〉
M →V M

(rV -@L)

M V →V M V

N →V N
(rV -@R)

M N →V M N

(rV -⊕)

M ⊕N →V

〈
M 7→ 1

2
N 7→ 1

2

〉

(b) Call-by-Value Operational Semantics

Figure 3: Operational Semantics.

different (see the discussion on Section 2). It is thus natural to try to extend De Carvalho’s non-
idempotent intersection type system [11], which is known for being resource aware. In doing so,
let us consider CBN evaluation.

We present a näıve intersection type system which is simply a decoration of De Carvalho’s
system with real numbers. A judgment Γ ` M : p·α should be read as “there is an execution
of the term M converging into a normal form of type α and this execution has probability p to
occur”.

The näıve intersection types for the probabilistic lambda calculus are either a base type (or
type variable) ?, or the arrow type a→p·α, where α is itself an intersection type, p ∈ [0, 1] is the
weight of the function and a is a finite multiset of intersection types:

(Weights) p ∈ [0, 1]
(Types) TE α, β... := ? | a→p·α

(Intersections) Mf (TE) a, b... := [α1, . . . , αn]

An environment Γ : V → Mf (TE) is a function from variables to finite multisets of types. We
define a (commutative) sum of contexts as the pointwise sum Γ + ∆ := (x 7→ Γ(x) ] ∆(x)).
Moreover we use the following syntactic sugar: (x : a) is the context that associates a to x and []
to every other variable, while (Γ;x : a) := Γ + (x : a) is defined only when Γ(x) = []. A judgment
is of the form Γ `M : p·α for p ∈ R[0,1], Γ a context, M a term and α a type. The real number p
is called the weight of the judgment. Typing rules are given in Figure 4.

The rules (N -x) and (N -λ) are similar to De Carvalho’s system, with a trivial weight 1. Notice
that, since we are considering a weak notion of reduction, a λ-abstraction is irreducible, thus
having maximal probability of normalisation. We need, however, to keep track of the probability
of convergence of the content of those λ-abstractions once applied to an argument : this is the
purpose of the weight p in the arrow type a→p·α. The rules (N -⊕L) and (N -⊕R) are very
natural probabilistic adaptations of the classical rules used for the non-deterministic operators.

8



(N-x)

x : [α] ` x : 1·α
(N-?)

Γ ` λx.M : ?
Γ `M : p·α (N-⊕L)

Γ `M ⊕N : p
2
·α

Γ;x : a `M : p·α
(N-λ)

Γ ` λx.M : 1·(a→p·α)
Γ ` N : p·α

(N-⊕R)
Γ `M ⊕N : p

2
·α

Γ `M : p·([α1, ..., αn]→q·β) [∆i ` N : ri·αi]1≤i≤n
(N-@)

Γ +
∑

i ∆i `M N : p·q·(
∏

i ri)·β

Figure 4: The Näıve Intersection Type System.

The rule (N -@) seems complex, but it corresponds to the rule of De Carvalho’s system with the
intuitive probabilistic annotations.

Our hope, at this point, is to prove that derivability of `M : p·α and
∑

JMK = p are equivalent.
Unfortunately, this is not the case, and for very good reasons which have to do with the recursion-
theoretic difficulty of proving a probabilistic computation to be, e.g., almost surely terminating.
Indeed, the set of type derivations proving the judgement above is recursively enumerable, so the
“existence of a type derivation of some ` M : p·α” is a Σ0

1 property, which is incompatible with
the Π0

2-completeness of the set of almost-surely terminating terms [25].
In fact, a derivation of `M : p·α means that there is one possible normalising execution of M

which happens with probability p. If we want to fully characterise the probability of normalisation,
we need to consider derivations for each of the potential normalising executions of M . The
probability of convergence becomes the sum of the weights of each derivation. This is not as easy
as one could imagine, as the following example shows.

Take the term (λx.x (x I)) (I ⊕ I) where I is the identity λy.y. This term evaluates to
〈I〉. However, there are four possible normalising executions—each copy of I ⊕ I results in a
probabilistic choice. This means that we are expecting four type derivations, each with a weight
of 1

4 . But, two of them cannot be really distinguished. In order to describe them, let us introduce
the following shortcuts:

α := [?]→ 1·? , β := [α]→ 1·α , τ := [β, β]→ 1·α ,

and define a type derivation π as follows

x : [β] ` x : 1·β
x : [β] ` x : 1·β

y : [?] ` y : 1·?
` I : 1·α

x : [β] ` x I : 1·α
(N-@)

x : [β] ` x (x I) : 1·α
(N-λ)

` λx.x (x I) : 1·τ
and another type derivation ρ as follows:

(N-x)
x : [α] ` x : 1·α

(N-λ)
` I : 1·β

.

The different derivations are the following ones, differing only by the uses of rules (N -⊕L) and
(N -⊕R):

π

` λx.x (x I) : τ

ρ

` I : 1·β
(N-⊕L)

` I ⊕ I : 1
2
·β

ρ

` I : 1·β
(N-⊕L)

` I ⊕ I : 1
2
·β

(N-@)
` (λx.x (x I)) (I ⊕ I) : 1

4
·α

9



π

` λx.x (x I) : τ

ρ

` I : 1·β
(N-⊕R)

` I ⊕ I : 1
2
·β

ρ

` I : 1·β
(N-⊕R)

` I ⊕ I : 1
2
·β

(N-@)
` (λx.x (x I)) (I ⊕ I) : 1

4
·α

π

` λx.x (x I) : τ

ρ

` I : 1·β
(N-⊕L)

` I ⊕ I : 1
2
·β

ρ

` I : 1·β
(N-⊕R)

` I ⊕ I : 1
2
·β

(N-@)
` (λx.x (x I)) (I ⊕ I) : 1

4
·α

Essentially, we would like to get the following fourth derivation

π

` λx.x (x I) : τ

ρ

` I : 1·β
(N-⊕R)

` I ⊕ I : 1
2
·β

ρ

` I : 1·β
(N-⊕L)

` I ⊕ I : 1
2
·β

(N-@)
` (λx.x (x I)) (I ⊕ I) : 1

4
·α

but this derivation is in fact the same as the former one (the order between the two rightmost
assumptions of the applicative rule does not matter and cannot matter). The issue comes from τ
having twice the same type, so that we cannot distinguish the two different uses.

The näıve approach would be to use ordered sequences in place of multisets, leading to non-
commutative intersection types. In fact, intersection types are not able to distinguish any non-
commutative effect. This is because they do not track sequentiality of the execution. That is why
we rather opt for a solution preserving subject reduction where the effect of flipping a fair coin is
kept track in the judgment, and thus in the type, as we will detail in the following section.

There is only one example of a probabilistic intersection type system in the literature [10, 14].
There, Ehrhard, Pagani and Tasson derive an intersection type system from probabilistic coherent
spaces. This system was a source of inspiration for us, but is fundamentally different from what
we propose in this paper, for two important reasons:
• They consider head reduction rather than weak head reduction. As a result, probabilities

associated with higher-order terms hardly make any sense. Since they consider PCF, they
bypass this issue by using first order observations, but in the untyped λ-calculus this is not
possible.

• The issue of distinguishing between identical derivations is resolved in a rather crude way: each
subderivation is annotated with its interpretation in coherent spaces, this way differentiating
fundamentally different ones. We are looking for more resonable solutions to this issue.

5 Achieving Completeness: Oracle Intersection Types

How should we alter the näıve intersection type system we introduce in the last section, so as to
make it capable of capturing distinct probabilistic evolutions of a term by distinct type derivations?
Ultimately, what made our type system not capable of distinguishing two essentially different
sequences of probabilistic choices is that only their probability is taken into account, while the
outcome of the choice is simply discarded. In other words, there is nothing in the type of M ⊕N
telling us that M and all its reducts will be reached only if the outcome of the first probabilistic
choice we perform is, say, 0 rather than 1: the only thing we remember is that this path(s) have
a (combined) probability of at most 1

2 .
The basic idea behind oracle intersection types consists in substituting real numbers in näıve

intersection types with strings, this way allowing to switch to a simple type system in which
intersection becomes idempotent. This works both when call-by-name and call-by-value evaluation
is considered, although the type systems needs to be tuned. This is what we are going to do in
this section.

It is worth noticing that our approach, in the spirit, follows the ideas underlying Goubault-
Larrecq and Varacca’s ”Continuous Random Variables” [20]. However, further study is needed to
make this link formal.
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s·α ∈ a
(IN -x)

Γ, x : a ` x : s·α
Γ;x : a `M : s·α

(IN -λ)
Γ ` λx.M : ε·(a→s·α)

(IN -?)
Γ ` λx.M : ε·?

Γ `M : s·α
(IN -⊕L)

Γ `M ⊕N : (0s)·α

Γ `M : r·({sk·αk}k∈K→(t·β))
{

Γ ` N : sk·αk
}
k∈K

(IN -@)
Γ `M N : (rt)·β

Γ ` N : s·α
(IN -⊕R)

Γ `M ⊕N : (1s)·α

Figure 5: The Intersection Type System IN .

5.1 System IN

Let us first describe a system of oracle intersection types fitted for the PARS →N . Since, in
call-by-name, arguments are passed to functions unevaluated, we are bound to work with types
in which intersections appear in negative positions, i.e., to the left of the arrow. But how about
a function’s result? Actually, an oracle intersection type is either the base type or an arrow type
a→(s·α), where (s·α) is a weighted intersection type, i.e., a pair of a string s ∈ {0, 1}∗ and an
intersection type α, and a is a set of weighted intersection types. Formally:

(Weights) B s ∈ {0, 1}∗
(Types) ON α, β... := ? | a→(s·α)

(Intersections) O(B)
N a, b... := {(s1·α1), . . . , (sn·αn)}

For example, a term like λx.x⊕Ω can be given the type {1·?} → 01·?, meaning that on an input
which evaluates to a value after following the right branch of a probabilistic choice (and thus
having the type 1·?), the function results in a term which evaluates to a value after performing
two probabilistic choices, the first one taking the left branch, and the second one taking the right
branch (and thus having the type 01·?).

An environment Γ : V → O(B)
N is a function from variables to intersections. We define a

commutative sum of environments as Γ∪∆ := (x 7→ Γ(x)∪∆(x)). Moreover we use the following
syntactic sugar: (x : a) is the environment associating a to x and ∅ to every other variable, and
(Γ;x : a) := Γ ∪ (x : a) is defined only whenever Γ(x) = ∅. A sequent is of the form Γ ` M : s·α,
for s ∈ {0, 1}∗, Γ an environment, M a term and α a type. The binary string s is called the weight
of the sequent.

The intersection type system IN is given in Figure 5. First of all, please observe how values can
be typed in two different ways, namely by an arrow type and by ?. In both cases, the underlying
binary string is ε, since values are irreducible and thus cannot be fired. Consider now rule (IN -@):
the string rt in the conclusion is the concatenation of two strings in the function M , while the
strings sk in the arguments are simply not taken into account. This corresponds to the fact that
arguments are passed to functions unevaluated.

The following is the analogue of the classic Subject Reduction Theorem:

Proposition 5.1 (Subject Reduction)
If `M : s·α and M →N 〈Ni 7→ pi〉1≤i≤n then:
• Either n = 1 and ` N1 : s·α;
• Or n = 2, s = br, p1 = p2 = 1/2 and there is i ∈ {1, 2} such that ` Ni : r·α.

Given a string s ∈ {0, 1}∗, the probability of s is naturally defined as 2−|s|. Given a set of
binary strings S ⊆ {0, 1}∗, the expression 2−|S| stands for the sum

∑
s∈S 2−|s|, also called the

probability of S. Given a term M , the set EN (M) ⊆ {0, 1} of binary strings for M is defined as
follows:

EN (M) := {s ∈ {0, 1}∗ | ∃α. `M : s·α}.
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(IV -x)
x : a ` x : ε·a

{
Γk;x : ak `M : sk·bk

}
k∈K

(IV -λ)
∪k∈KΓk ` λx.M : ε·{ak→sk·bk}k∈K

Γ `M : r·[a→t·b] ∆ ` N : s·a
(IV -@)

Γ ∪∆ `M N : (rst)·b
Γ `M : s·a

(IV -⊕L)
Γ `M ⊕N : (0s)·a

Γ ` N : s·a
(IV -⊕R)

Γ `M ⊕N : (1s)·a

Figure 6: The Intersection Type System IV . In rule (IV -λ), a proof has to be given for each
sequent of the set.

We are now in a position to state completeness of IN as a verification methodology for almost-
sure termination, and more generally as an inference methodology for the probability of termina-
tion:

Theorem 5.2 Let M be any closed term. The probability of convergence of M is the sum of the
probabilities of the binary strings for M :∑

JMK = 2−|EN (M)|.

Proof. We consider a λ-calculus with a linear read-only binary stream as a state, defined with
a read operator � such that (0s,M � N) → (s,M) and (1s,M � N) → (s,N). We consider a
weak-head convergence to a term with an empty stream, so that (01, λx.x) is a diverging term. A
reducibility argument, together with Subject Expansion, guarantees that (s,M) converges iff `M :
s.α for some α. What remains to be done, then, is to prove the following two implications:
• If M →∗N M then there is a set X of binary strings such that

∑
s∈X 2−|s| ≥

∑
M and for

every s ∈ X it holds that (s,M⊕2�) converges.
• Let X be any set of binary strings such that for every s ∈ X it holds that (s,M) converges.

Then there is a distribution such that (M)�2⊕ →∗N M and
∑
M≥

∑
s∈X 2−|s|.

where (·)⊕2� and (·)�2⊕ are simple translations that switches between the operators ⊕ and �. �

5.2 System IV

Is there a way to fit IN to call-by-value evaluation? That is a very relevant question, given
that most effectful languages indeed adopt eager evaluation—otherwise there would be no way
of re-using the outcome of probabilistic sampling. The system IV can be seen as designed from
Girard’s “boring” translation [16, 30] in the same way IN is designed from the standard encoding
of intuitionistic logic. Apart from that, there is no other essential difference between the two
systems, with the exception of string annotations, which are placed only at the right of the arrow
in IV , following the lifting of monads in CBV.

Intersection types take here the form a→s·b, where s∈{0, 1}∗ is the weight of the function and
where both a and b are sets of intersection types. Formally:

(Weights) s ∈ {0, 1}∗
(Types) OV α, β... := a→s·b

(Intersections) O(B)
V a, b... := {α1, . . . , αn}

Environments are defined in the natural way, judgments are of the form Γ `M : s·a for s ∈ {0, 1}∗,
Γ a context, M a term and a an intersection type.

The intersection type system IV is given in Figure 6. Please observe how (closed) values
continue to be annotated with the empty string. On the other hand, there is a striking difference
in the way applications are treated: in CBN the probabilistic choices an application MN performs
are those produced by M , followed by those produced by the λ-abstraction to which M evaluates

12



when applied to N . In CBV, terms are passed to functions evaluated, and this must be taken into
account.

Given a term M , the set EV (M) ⊆ {0, 1} of binary strings for M is defined as follows:

EV (M) := {s ∈ {0, 1}∗ | ∃a. `M : s·a}.

This results in a theorem analogous to Theorem 5.2:

Theorem 5.3 Let M be any closed term. The probability of convergence of M is the sum of the
probabilities of the binary strings for M :∑

JMK = 2−|EV (M)|.

The proof of Theorem 5.3 is very similar, almost identical in structure, to the one of Theorem 5.2.

5.3 On Recursion Theory

Despite their simplicity, the type systems IV and IN are optimal, recursion theoretically. Indeed,
consider the following formula

F (M) = ∀n ∈ N.∃X ⊆f {0, 1}∗.∃Y ⊆f {0, 1}∗.P (M,n,X, Y )

where P (M,n,X, Y ) encodes the fact that for any x ∈ X there (an encoding of) a type derivation
y ∈ Y whose conclusion is `M : x ·α and

∑
x∈X 2−|x| ≥ 1− 2−n. Observe that the truth value of

P (M,n,X, Y ) can be computed in elementary time. The fact that F (M) exactly captures almost
surely termination of M is a consequence of soundness and completeness. Finally, notice that F
is a Π0

2-formula.

6 Trading Elegance for Tractability: Monadic Intersection
Types

Until now, we have seen that usual intersection type systems can indeed been refined to a de-
gree of resource awareness allowing to track all the probabilistic choices performed along a com-
putation, by embedding string annotations into types. The completeness of oracle intersection
types is certainly of theoretical importance: it tells us that there is a way to adapt intersection
type disciplines to probabilistic λ-calculi which is optimal recursion-theoretically. However, ora-
cle intersection types are lacking as a practical verification methodology. And this is for several
reasons:
• Having to look for several “independent” derivations before obtaining a sufficiently precise

result is a computationally heavy process.
• There is no easy way to turn the type system into a methodology for inferring lower bounds

on the probability of termination of a given term.
This section is devoted to introducing two type systems which go beyond oracle intersection
types and towards a more tractable type system. However, the resulting system is bound to be
complicated.

From a monadic point of view, being capable of computing type distributions means that
we want to switch to a proper probabilistic monad D. However, D is infamous for not being
distributive with respect to the powerset comonad B. Much ongoing work has been devoted to
trying to reconcile probabilistic distributions and powersets (e.g., [37]).

Fortunately, we will not have to deal with this issue directly. Indeed, in our systems, we do not
need any distributive rule. The reason for that is that CBV and CBN are somehow symmetric: in
CBV, we can use Girard “boring translation” [16] which does not fully use the comonadic part,
while in CBN, we use a monadic version of this translation [31] as a degenerate way to treat
monads in CBN.
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A ∈ a
(MIN -x)

Γ;x : a ` x : A
Γ `M : A Γ ` N : B

(MIN -⊕)
Γ `M ⊕N : 1

2A+ 1
2B

(MIN -〈〉)
Γ `M : 〈〉

Γ;x : a `M : A
(MIN -λ)

Γ ` λx.M : 〈a→A〉
Γ `M : A

{
Γ ` N : B

∣∣∣ ∀(a→C) ∈ SUPP (A) , ∀B ∈ a
}

(MIN -@)

Γ `M N :
∑
a→C
A(a→C).C

Figure 7: The Monadic Intersection Type System MIN .

6.1 A New Paradigm: Monadic Intersection Types

Morally, what we have to do is to systematically superpose different oracle type derivations. This
transformation alone, however, would not lead to a correct and complete type system. In fact, one
more modification is needed: adopting sets of distributions over types rather that sets of types as
intersections.

The monadic intersection types for the probabilistic lambda calculus are all arrow types a→A,
where A is a distribution over intersection types with a finite support3 and a is a set of distributions
over intersection types. This means that we are using the informal identity:

MN ' Pf (Df (MN ))→Df (MN ) .

More formally, we are using the following grammar:

(Types) MN α, β, γ... := a→A
(Distributions) Df (MN ) A,B, C... := 〈αi 7→ pi〉i≤n
(Intersections) Pf (Df (MN )) a, b, c... := {A1, · · · ,An}

Notice that ? := ∅→〈〉 can be defined as syntactic sugar.
The environments Γ : V → Pf (Df (MN )) are similar to those of the previously introduced

intersection type systems. A judgment is of the form Γ `M : A for Γ an environment, M a term
and A a distribution over types.

The monadic intersection type system MIN is given in Figure 7. Notice how the rule (MIN -⊕)
explores both probabilistic branches, while in oracle intersection types only one was considered
in any type derivation. This allows us to get more refined derivations, but requires another rule,
namely (MIN -〈〉), to cut off infinite branches in the execution. This rule is very similar to the ω
rule in usual intersection types, since the empty type plays the role of ω.

Theorem 6.1 (Subject Reduction/Expansion) If M → N then ` M : A iff ` N : A where
` N : A means that (` N : AN )N for some decomposition A =

∑
N N (N)AN .

The weight of a derivation π of Γ ` M : A is the norm
∑
A of the type distribution. With

such a definition, we get a correctness and completeness theorem that we claim more satisfactory
than Theorem 5.2, as far as verification is concerned:

Theorem 6.2 Let M be any closed term. The probability of CBN-convergence of M is the sup of
the weights of its derivations: ∑

JMK =
∨
`M :A

∑
A

3Infinite distribution would make sense if one adds some special derivation for fixedpoint. But this would first
require to formalise the inductive creation of types.
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Proof. Soundness is proved by the usual reducibility argument. Reducibility candidates are not
defined as sets but by the following relations

V �V a→A iff ∀M �S a, (V M) �T A
M �S a iff ∀A ∈ a, M �T A

V �D A iff V �̃V A
M �T A iff JMK �D A
M �T A iff JMK �D A

where �̃V is the right-lax coupling relation over �V (see [4]), i.e., V �̃V A if there is σ ∈ D(�V )
such that V(V ) =

∑
α σ(V, α) and A(α) ≤

∑
V σ(V,A). The proof that `M :A implies M�TA

follows the usual induction over the derivation of `M :A, using a saturation theorem; we only need
to be careful while manipulating distributions. Completeness is proved by subject expansion as
usual. �

Remark that the rule (MIN -〈〉) can be replaced by a more expressive one allowing to combine
different sub-derivations: {

Γ `M : Au
∣∣∣ u ∈ U} U ∈D(U)

(MIN -D)
Γ `M :

∑
u U(u)Au

This rule is correct, but is not necessary to get completeness of MIN . However, it will turn out
to be necessary for the completeness of the call-by-value version.

6.2 On Call-by-Value Evaluation

The same ideas we used to build IV from IN can be used to turn monadic intersection types into
their call-by-value counterparts. However, monadic intersection types are notationally less elegant
in CBV.

Our first compromise concerns the target calculus: for the sake of simplicity we will not consider
the full calculus Λ⊕, but the sub-calculus containing only let-normal-forms:

Definition 6.3 A let-normal form is a term of the form:

M,N := V | V M V,W := x | λx.M.

Any term can be turned into a let-normal form by eta-expending any subterm (M N) into
(λx.(λy.y x)M)N .

Another source of complexity comes from the type system itself: contrary to CBN, we have
to add the convexity rule (MI V -D) to get completeness. Since we only need it when typing
abstractions, we merge this rule into (MI V -λ). In addition, the rule for applications is more
complex in order to preserve this convexity.

The call by value monadic intersection types are arrow types a→A, where a is a set of inter-
section type and B is a distribution over sets of intersection types. This means that we are using
the informal identity:

MV ' Pf (MV )→Df (Pf (MV )) .

More formally, we are using the following grammar:

(Types) MV α, β, γ... := a→A
(Distributions) Df (Pf (MV )) A,B, C... := 〈ai 7→ pi〉i≤n

(Intersections) Pf (MV ) a, b, c... := {α1, · · · , αn}

In addition, we define a stability condition on intersections that is not to be always respected but
is only necessary in the left arguments of applications:
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a ⊇ b
(MIV -x)

Γ;x : a ` x : 〈b〉
Γ `M : A Γ ` N : B

(MIV -⊕)
Γ `M ⊕N : 1

2A+ 1
2B

Γ ` V : 〈a〉 Γ ` N :
∑
c∈↓sa

Bc
(MIV -@)

Γ ` V N :
∑
b,c

Bc(b)ĉ(b){
Γ;x : ai `M : Bi,u

∣∣∣ i ≤ n, u ∈ Ui} ∀i,Ui ∈D(Ui)
(MIV -λ)

Γ ` λx.M :

〈{
ai→

∑
u

Ui(u)Bi,u

∣∣∣∣∣ i ≤ n
}〉

Figure 8: The Monadic Intersection Type System MIV .

Definition 6.4 A set b ∈ Pf (MV ) is stable if any two different arrows (a1→A1), (a2→A2) ∈ b,
can be subsumed by a third one ((a1 ∪ a2)→B) ∈ b such that B ≥ A1,A2 with the pointwise
order. The interest of stable sets is that any stable a can be lifted into a function â : Pf (MV ) 7→
Df (Pf (MV )) by:

â(b) :=
∨
{A | ∃c ⊆ b, (c→A) ∈ a} .

We also define, for all set a, the powerset of its stable subsets

↓sa := {c ⊆ a | c is stable}

The environments Γ : V → Pf (MV ) are defined similarly to the ones for MIN . Notice that
types of values and variables are necessarily Diracs. A judgment is of the form Γ ` M : A for Γ
an environment, M a term and A distribution over types. The call-by-value monadic intersection
type system MIV is given in Figure 8.

Lemma 6.5 (Subject Reduction) For any term M in let-normal form, if M → N then `
M : A implies ` N : A where ` N : A means that (` N : AN )N for some decomposition
A =

∑
N N (N)AN .

Remark that we do not claim Subject Expansion, as we did in MIN . In fact, we did prove the
subject expension, but for a richer system whose other properties are equivalent. As for MIN , the
weight of a MIV derivation of the judgement Γ `M : A is the norm

∑
A of the type distribution.

Theorem 6.6 Let M be any closed term in let-normal form. The probability of CbV-convergence
of M is the least upper bound of the weights of its derivations:∑

JMK =
∨
`M :A

∑
A

6.3 Trading Completeness for Decidability

Intersection type systems are well-known to have undecidable (but semi-decidable) type inference
problems, due to their completeness. This also holds for all the systems we have introduced in this
paper. A natural way to get a type system with decidable type inference out of an intersection
type system is to get rid of intersections, thus collapsing down to a propositional type system. We
also abolish general distribution types and only consider sub-Diracs, i.e., arrow types are of the
form {p〈α〉}→q〈β〉, which we denote p·α→q·β.

We call these restricted types probabilistic simple types, and the corresponding type system
PSTN . Its rules are given in Figure 9(a). As a subsystem of MIN , system PSTN is sound, which
is an easy consequence of the following theorem:
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(SN -x)
Γ;x : p·α ` x : p·α

Γ `M : p·α Γ ` N : q·α
(SN -⊕)

Γ `M ⊕N : p+q2 ·α
(SN -〈〉)

Γ `M : 0·α
Γ;x : p·α `M : q·β

(SN -λ)
Γ ` λx.M : 1·(p·α→q·β)

Γ `M : p·(r·α→q·β) Γ ` N : r·α
(SN -@)

Γ `M N : (pq)·β
(a) The Call-by-Name Probabilistic Simple Type System PSTN

(SV -x)
Γ;x : α ` x : 1·α

Γ `M : p·α Γ ` N : q·α
(SV -⊕)

Γ `M ⊕N : p+q2 ·α
(SV -〈〉)

Γ `M : 0·α
Γ;x : α `M : p·β

(SV -λ)
Γ ` λx.M : 1·(α→p·β)

Γ `M : q·(α→r·β) Γ ` N : p·α
(SV -@)

Γ `M N : (pqr)·β
(b) The Call-by-Value Probabilistic Simple Type System PSTV

Figure 9: The Probabilistic Simple Type Systems

Theorem 6.7 For any derivation Γ `M : p·α and any reduction M →∗M, there is a family of
provable judgements (Γ ` N : qN ·α)N∈SUPP(M) such that

p ≤
∑
N

qN ·M(N) .

Theorem 6.8 The type inference of PSTN is decidable.

Proof. First, we infer a derivation without probabilistic annotations. Then, we use the inference
algorithm for simply typed λ-calculus except that the algorithm use a non-deterministic oracle4

that can stop the inference of a branch by the rule (MIN -〈〉). Then we add the probabilistic
annotations in a top-down manner. �

However, this system is far from being complete. For example, the following term is not typable
(with a probability above 0): (λf.f (f I)) (I ⊕Ω).

As usual, the same ideas can be turned into a type system for CBV evaluation, called PSTV

and described in Figure 9(b).

7 Related Work

Intersection types appeared for the first time in the classic work by Coppo and Dezani [7]. Although
the reason for their inception was mainly semantical, they have been immediately recognised as
a means to characterise various notions of normalisation in the λ-calculus. As such, they have
later been the object of many studies. In particular, if type intersection is not assumed to be
idempotent, intersection types are able to capture also quantitative properties, like the number
of reduction steps to normal form [5]. Recently, intersection types have been proved to be useful
in synthesis [13], but also in verification [36, 26]. Noticeably, none of the work above deal with
probabilistic effects.

The denotational semantics of probabilistic higher-order programming languages have been
studied since the eighties, with the pioneering work of Sahjeb-Djaromi [34], followed by many oth-
ers, and in particular by Jones and Plotkin [23]. Particularly relevant to our work are probabilistic

4Notice that the size of the derivation is bounded by the size of the term so that there is a finite number of
choices made by the oracle.
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coherent spaces [10, 14]. In [14], the authors derive intersection types from probabilistic coherent
spaces. Those are fundamentally different from ours, as discussed in Section 4.

Recently, probabilistic higher-order computation has received a lot of attention from the re-
search community, given the appearance of programming languages like Church or Anglican.
Those programming languages provides not only primitives for sampling from continuous distri-
butions, but also operators for conditioning. As such, they cannot be subjected to the analysis we
do here.

Designing powerful type systems for probabilistic programming languages, and for higher-
order ones in particular, has remained an elusive research direction until very recently. The only
publication dealing with it is due to Dal Lago and Grellois [28], and proposes a system of sized
types ensuring almost-sure termination. There is however a difference: while sized types are by
definition incomplete, intersection types are designed in such a way as to reflect the underlying
dynamic process very precisely.

8 Conclusion

In this paper, we have showed that probabilistic higher-order languages can indeed be subjected
to intersection type analysis, obtaining results similar to those one gets in the usual, deterministic,
setting. The price to pay for capturing a class of terms which stands very high in the arithmeti-
cal hierarchy is the fact that not one, but countably many derivations need to be analysed for
completeness to hold. The main result then trades completeness and elegance for tractability,
providing a type system which is complete only up-to approximations.

Topics for further work certainly include the study of more tractable version of our type system.
Applications of (variations of) our type disciplines to verification and synthesis, possibly following
the works by Rehof, Kobayashi and others [13, 36, 26] are also very intriguing research directions,
which however lie outside the scope of this paper.

But, for now, we intend to explore the underlying denotational semantics. Indeed, it is folklore
that any reasonable intersection type system should somehow give rise to a denotational model.
In the case of the monadic system, the unusual asymmetry between CBN and CBV indicates that
the underlying semantics is highly non-standard and thus an interesting subject of study.
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[4] Gilles Barthe, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. Coupling proofs are
probabilistic product programs. In Proc. of POPL 2017, pages 161–174. ACM, 2017.

[5] Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types
for the lambda-calculus. Logic Journal of the IGPL, 25(4):431–464, 2017.

[6] Mario Coppo and Mariangiola Dezani-Ciancaglini. A new type assignment for λ-terms. Archiv
für mathematische Logik und Grundlagenforschung, 19(1):139–156, 1978.

[7] Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality
theory for the λ-calculus. Notre Dame Journal of Formal Logic, 21(4):685–693, 1980.

[8] Ugo Dal Lago and Margherita Zorzi. Probabilistic operational semantics for the lambda
calculus. RAIRO - Theor. Inf. and Applic., 46(3):413–450, 2012.

18



[9] V. Danos and R. Harmer. Probabilistic game semantics. ACM Trans. Comput. Log., 3(3):359–
382, 2002.

[10] Vincent Danos and Thomas Ehrhard. Probabilistic coherence spaces as a model of higher-
order probabilistic computation. Information and Computation, 209(6):966–991, 2011.

[11] Daniel de Carvalho. Execution time of lambda-terms via denotational semantics and inter-
section types. CoRR, abs/0905.4251, 2009.

[12] Karel De Leeuw, Edward F Moore, Claude E Shannon, and Norman Shapiro. Computability
by probabilistic machines. Automata studies, 34:183–198, 1956.

[13] Andrej Dudenhefner and Jakob Rehof. Intersection type calculi of bounded dimension. In
Proc. of POPL 2017 2017, pages 653–665, 2017.

[14] Thomas Ehrhard, Michele Pagani, and Christine Tasson. Probabilistic Coherence Spaces are
Fully Abstract for Probabilistic PCF. In Proc. of POPL 2014. ACM, 2014.

[15] John Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on
Computing, 6(4):675–695, 1977.

[16] Jean-Yves Girard. Linear logic. Theorical Computer Science, 50:1–102, 1987.

[17] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of computer and system
sciences, 28(2):270–299, 1984.

[18] Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B.
Tenenbaum. Church: a language for generative models. In UAI, pages 220–229, 2008.

[19] Jean Goubault-Larrecq. Full abstraction for non-deterministic and probabilistic extensions of
PCF I: the angelic cases. Journal of Logic and Algebraic Methods in Programming, 84:155–
184, 2015.

[20] Jean Goubault-Larrecq and Daniele Varacca. Continuous random variables. In Proc. of LICS
2011, pages 97–106, 2011.

[21] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A convenient category for
higher-order probability theory. In Proc. of LICS 2017, pages 1–12, 2017.

[22] John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive systems using
sized types. In Proc. of POPL 1996, pages 410–423, 1996.

[23] C. Jones and Gordon D. Plotkin. A probabilistic powerdomain of evaluations. In Proc. of
LICS 1989, pages 186–195, 1989.

[24] Neil D. Jones and Nina Bohr. Call-by-value termination in the untyped lambda-calculus.
Logical Methods in Computer Science, 4(1), 2008.

[25] Benjamin Lucien Kaminski and Joost-Pieter Katoen. On the hardness of almost-sure termi-
nation. In Proc. of MFCS 2015, volume 9234 of LNCS, pages 307–318, 2015.

[26] Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In Proc. of LICS 2009, pages 179–188,
2009.

[27] Jean-Louis Krivine. Lambda-calculus, types and models. Ellis Horwood series in computers
and their applications. Masson, 1993.

[28] Ugo Dal Lago and Charles Grellois. Probabilistic termination by monadic affine sized typing.
In Proc. of ESOP 2017, volume 10201 of LNCS, pages 393–419, 2017.

19



[29] Ugo Dal Lago, Davide Sangiorgi, and Michele Alberti. On coinductive equivalences for higher-
order probabilistic functional programs. In Proc. of POPL 2014, pages 297–308, 2014.

[30] John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-by-name, call-
by-value, call-by-need and the linear lambda calculus. Theorical Computer Science, 228(1-
2):175–210, 1999.

[31] Eugenio Moggi. Notions of computation and monads. Information and computation, 93(1):55–
92, 1991.

[32] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[33] Michael O Rabin. Probabilistic automata. Information and control, 6(3):230–245, 1963.

[34] N. Saheb-Djahromi. Probabilistic LCF. In Proc. of MFCS 1978, volume 64 of LNCS, pages
442–451, 1978.

[35] Eugene S Santos. Probabilistic Turing machines and computability. Proceedings of the Amer-
ican Mathematical Society, 22(3):704–710, 1969.

[36] Takeshi Tsukada and Naoki Kobayashi. An intersection type system for deterministic push-
down automata. In Proc. of TCS 2012, pages 357–371, 2012.

[37] Daniele Varacca and Glynn Winskel. Distributing probability over non-determinism. Math-
ematical Structures in Computer Science, 16(1):87–113, 2006.

20


