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Abstract

A Projection-based Digital Image Correlation (P-DVC) method (presented in a
companion paper [1]) is extended to an integrated approach for the calibration of an
elastoplastic law based on a single radiograph per loading step. Instead of following
a two-step sequential procedure (i.e., first, measurement of the displacement field;
second, identification), the integrated method aims at identifying few model param-
eters directly from the gray-level projections. The analysis of an in-situ tensile test
composed of 127 loading steps performed in 6 minutes is presented. An isotropic
elastoplastic constitutive law with free form hardening behavior (i.e., controlled by
only 8 parameters) is identified and shows a very ductile behavior (up to 6.3 % strain
before failure). A large improvement on the residual quality is shown and validates the
proposed model and procedure. The obtained displacement fields revealed to be sim-
ilar to those measured with no mechanical integration. A different parameterization
of the constitutive law provides a very similar result, thereby assessing the robustness
of the procedure.
Keywords: Tomography; In-situ tests; 4D measurement; Inverse methods; Inte-
grated DVC; P-DVC

1 Introduction

The identification and validation of increasingly complex mechanical models is a major
concern in experimental solid mechanics [2]. Model refinements require ever more precise
and complex experimental protocols, from experimental setup and sample (e.g., complex
multiaxial loading, optimized geometry) to sensor and acquisition devices (such as infrared,
X-ray, or neutron imaging coupled with full field measurements). Especially in 4D situa-
tions (i.e., 3D space and time), the acquisition, processing and analysis of such big amounts
of data (for the most part redundant) is challenging [3].
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Computed Tomography (CT) allows materials to be imaged in 3D, thereby revealing
their 3D microstructure in a non-destructive way [4, 5, 6]. Coupled with ex-situ or in-
situ mechanical tests [7, 8, 9, 10], it is possible to measure the deformation of a specimen
with full field measurement techniques (Digital Volume Correlation, or DVC [11, 12])
that provide a link with mechanical models and simulations. Intimate experiment-model
dialogue has been developed to study crack propagation [13, 14], plastic behavior [15],
damage model [16], and allows for model identification and validation [17, 18].

The measured displacement fields are used to calibrate model parameters with inverse
methods (e.g., finite element model updating [19], virtual fields method [20]). Because
model identification is the final goal of the entire experiment (contrary to displacement
fields that are an intermediate step), one may identify and optimize model parameters
directly on the acquired images. This fusion of two steps into one, has been called “in-
tegrated approach” [15, 21] and leads to a drastic reduction of the number of unknowns.
The more loading steps are acquired in the experiment, the more accurate and sensitive
the identification procedure. DVC methods have hence been developed in a 4D space-
time framework [15, 18, 22] using all available volumes globally. In lab-CT analysis, no
more than 10 to 20 acquisitions are usually performed because of the acquisition time
(approximately 1 hour is necessary to acquire the 1000 radiographs needed for one full 3D
scan).

Projection-based DVC (P-DVC [23]) is a measurement method that aims to measure the
3D displacement fields directly from few radiographs instead of 3D volumes. The outputs of
this method are the same as DVC procedures but require two to three orders of magnitude
less data, and thus acquisition time. Moreover, the method offers a much enhanced time
(or load) resolution from its higher time sampling without significant degradation in spatial
resolution, and hence it reveals very valuable in particular for mechanical identification.
The comparison between two projections of the sample at the same angle with different
loadings can be read as due to 3D motion. Previous works have developed this method for
the analysis of a cracked cast iron sample imaged with a synchrotron X-ray source [24, 25].
It was shown that the measurement was possible with only two orthogonal projection angles
leading to a huge gain in acquisition time (of a factor 300). The identification of a brittle-
elastic behavior of a plaster sample with crack propagation inside of a lab tomograph was
performed within such a 4D framework [26].

In a companion paper [1], the measurement of the kinematics from a series of single
projections per loading step was presented. Coupling P-DVC and model reduction meth-
ods provided a global measurement of the full 4D (i.e., space and time) displacement field.
These results will be used as comparison means of the present approach. It is proposed
in this paper to identify an elastoplastic model based on a fast 4D measurement. A stan-
dard approach would consist of performing the identification from the previously measured
displacement fields, using for instance Finite Element Model Updating (FEMU) or the vir-
tual fields method (VFM). In comparison with this pathway, it is shown that the fast 4D
kinematic measurement and the identification can be performed in a unique “integrated”
procedure, leading to more accurate determination of the constitutive parameters. A free
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form representation of the hardening behavior is chosen and controlled by 8 parameters.
A variant with 7 parameters leads to a very similar hardening response showing the ro-
bustness of the procedure. The test case that was chosen in the companion paper for the
kinematic measurements [1] is further analyzed herein. A nodular graphite cast iron dog
bone sample was tested in-situ with 127 uninterrupted loading steps performed in 6 min-
utes until failure (leading to a gain in acquisition time of more than 2 orders of magnitude
compared to standard methods).

2 In-situ mechanical test

The main features of the test are summarized hereafter. The interested reader will find
additional details in Ref. [1]. The tested sample was made of nodular graphite cast iron
(similar to those studied in Refs. [15, 17, 27]). It was tested in uniaxial tension with a
slender dog-bone geometry. An in-situ tensile testing machine similar to that of Buffière
et al. [28] was used. The sample was scanned in a lab-tomograph (X-View X50-CT, North
Star Imaging, 180 kV, 130 µA, W target, North Star Imaging, Rogers (MN), USA). The
voxel size (using 4×4 binning at the acquisition stage) was set to 10.7 µm. Each radiograph
was averaged with 5 frames in order to reduce acquisition noise without loosing too much
time. The radiographs of initial definition 954×768 pixels were cropped to a region of
interest of 954×432 pixels. This set of data will be referred to as “scale 1” in the following.
Radiographs were further coarsened by a factor of 2 in all directions (referred to as “scale
2”) for speed up. Reconstructions and projections were performed with the ASTRA tool-
box [29] with Feldkamp-Davis-Kress (FDK) procedure [30]. The initial projections f(r, θ)

could be compared with the re-projection Πθ[F (x)](r) of the reconstructed volume F (x).
The SNR of these projection residuals is 21.7 dB.

A 3D scan of the reference state (subjected to a small load of 250 N in order to remove
the backlash that would introduce large rigid body motions) was first acquired. It consisted
of 600 radiographs captured at equally spaced angles ranging over a full 360° revolution.
The initial force was measured during the procedure (hence considered in the following
stress measurement) but the initial elastic deformations of the sample, assumed to be very
small were not considered in the displacement measurement. This scan was acquired in
22 min. Then, a continuous rotation of the sample was set with 50 acquisitions per turn.
A total of 127 loading steps were acquired over 2.5 turns (see Figure 1). A first series (i.e.,
one full rotation or 50 projections, up to 100 s) was performed at constant load and was
used to quantify the uncertainty. A second series (i.e., 77 projections starting at 100 s)
were carried out with a continuous load increase (from 250 to 750 N), which was controlled
at a constant stroke velocity of 2 µm/s. Figure 1 shows 3 selected projections at different
times (steps 90, 110 and 123). The first one (90) is representative of most of the test
where the kinematics will be very well captured. The second one (110) corresponds to a
more heterogeneous displacement field (strains not yet localized but concentrated in the
central section). It is a more difficult case but will be seen to be very well captured. The
last one (123), with a very similar load as the second, is at the onset of localized strain
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(actually a crack has initiated). The axial force measurement κ during the procedure for
each radiograph acquisition is shown in Figure 2.

(a) (b) (c)

Figure 1: Projection of the sample at different angles and loads during the tensile experi-
ment.(scale 1, where voxel size is equal to 10.7 µm). (a) Time step 90, θ = 80°, κ = 630 N;
(b) time step 110, θ = −64.8°, κ = 715 N; (c) time step 123, θ = −158.4°, κ = 736 N

Figure 2: Applied force at steps of the tensile testing machine starting from 250 N. A first
rotation is performed at constant load (corresponding to the first plateau up to time step
50, or 100 s) then the load is increased until failure. The three red dots are the projections
at time steps 90, 110 and 123 shown in Figure 1

3 Full-field measurement method

The proposed “integrated identification” is performed within the P-DVC framework [23,
25]) that is briefly recalled hereafter. In this approach, a key ingredient is the parame-
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terization of the displacement field. The slender geometry of the specimen offers a first
simplification to a mostly uniaxial displacement field. When a constitutive law is intro-
duced in this framework, the kinematics is further constrained. From this point on, two
strategies for identification can be envisioned:
- either a displacement field exploiting only the geometrical constraints is first determined,
and then constitutive parameters are calibrated to fit the measured displacement, through
a chosen methodology, here FEMU;
- or the constitutive law is directly used to restrict the space of possible displacements
considered in the P-DVC procedure. In this so called “integrated” strategy, the kinemat-
ics that is measured is directly parameterized by the constitutive parameters, and hence
kinematic measurement and identification are performed in a single operation.
In the sequel, the above listed ingredients are introduced in more details.

3.1 Projection-based DVC

The P-DVC framework [23, 25]) aims to evaluate the quantities of interest (be they kine-
matic or mechanical parameters) directly from the radiographs (i.e., the projection at an
angle θ(t) of the 3D microstructure) acquired at different angles and loadings and not from
the reconstructed volumes as in standard DVC methods [11, 12, 31].

The registration consists in finding the appropriate 3D displacement field u(x, t) by
minimizing the quadratic norm of the residual

χ2[u] =
∑
r,t

ρ(r, t;u)2 (1)

where ρ(r, t;u) is the residual field defined as the differences between Nθ 2D projections
g(r, t) of the deformed volume at different angles θ(t). The procedure makes use of the 3D
reference image reconstructed using classical means, which provides for all voxels of the
3D space x = (x, y, z) the local x-ray absorption coefficient, F (x). This reference volume,
corrected by the displacement u(x, t), and projected at orientation θ(t) should coincide
with the acquired projections when the solution is reached. In other words, introducing
the reference volume deformed with any arbitrary trial displacement field v

F̃v(x) ≡ F (x− v(x, t)) , (2)

the residual field defined as

ρ(r, t;v) =
(

Πθ(t)[F̃v]
)
(r, t)− g(r, t) (3)

with Πθ(t) the projection operator in the θ(t) direction angle and r = (r, z) the coordinates
in the detector space.

The previous summand is linearized considering small displacement field correction δu
compared to the microstructure correlation length

χ2[u+ δu] =
∑
r,t

(
ρ(r, t;u)−

(
Πθ(t)[δu ·∇F̃u]

)
(r, t)

)2
(4)
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with ∇ the 3D gradient operator. It is noteworthy that after each evaluation of the
displacement corrections δu from a known displacement u(n−1) such that u(n) = u(n−1) +

δu, a correction of the volume F̃u(x) is performed so that the previous equation is used
without approximation. The P-DVC framework requires the acquisition of one reference
volume in order to compute the correction term. The latter is to be performed ideally in
the same conditions as the experiment itself, with or without load. This single (classical)
tomographic scan is not challenging and can be acquired for example before launching the
experiment, in a static configuration.

In order to validate the proper evaluation of the displacement, one should consider
the magnitude of the residual field that highlights all projection differences that are not
explained by the displacement field (e.g., noise, artifacts of the detector, ill-convergence,
model error). Ideally, it should be statistically indistinguishable from noise.

3.2 Beam regularization of the kinematics

Different regularization procedures of the displacement field have been introduced in the
literature for global DVC methods where the kinematics is expressed on a finite element
mesh [32]. Model-based regularizations, called strong regularizations or integrated methods
with a reduced basis composed of elementary fields issued from a mechanical mode have
been considered [15, 21]. It is proposed, in the same spirit as global DVC, to express
the displacement field in a reduced basis where the entire kinematics is controlled by the
amplitude, ui(t), of a few fields whose number is denoted by Nf

u(x, t) =

Nf∑
i=1

ui(t)Φi(x) (5)

The chosen reduced basis exploits the slender geometry of the sample that makes it
amenable to a beam kinematics description [33]. Because of the slowly varying cross
section, it is chosen to parametrize the displacement field by rigid body motions of Ns

equally spaced cross-sections, with a linear interpolation of the displacement in between.
Because of the uniaxial loading prescribed during the test, a single component of the motion
(i.e., axial displacement along the z tensile axis) is sought. Hence the spatial displacements
of the beam regularization Φi(x) is defined as

Φi(x) = pi(z)ez (6)

where ez accounts for a uniform translation along the tensile axis and pi(z) the shape
functions selecting a specific section and interpolating between them. If the final residual
fields are judged unsatisfactory, additional degrees of freedom could easily be added.

It can be noted that no restriction holds on the number of control sections, nor on the
type of axial interpolation, and hence the proposed discretization is very generic and is
suited to any slender sample geometry.
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3.3 Mechanical identification

Because the goal is to identify a mechanical behavior with an integrated method, the un-
knowns of the displacement field are written considering a constitutive model depending
on Nγ constitutive parameters, gathered in the column vector {γ}. Knowing the consti-
tutive law, the local cross section and the loading at any time t (and possibly its complete
history if needed as for elastoplasticity with unloading), it is straightforward to compute
the mean axial displacement at control cross sections, and its incremental variation for a
variation δγ of the constitutive parameters about a reference set {γ0} for which the section
displacements are u0i (t)

ui(t) = u0i (t) + Γij(t)δγj (7)

where Γij denotes the kinematic sensitivity associated with each parameter γj .

3.3.1 FEMU identification

Finite Element Model Updating (FEMU) [34, 35, 36] is an identification procedure based
on the minimization of the quadratic difference between the experimental measured dis-
placement field uexp

i (t) for each beam section i (identified for each analyzed section and
the computed field from the mechanical model uci (t, γ)

χ2
FEMU =

∑
i,t

‖uexp
i (t)− uci (t, γ)‖2 (8)

Here the most standard FEMU method is presented although a metric different from L2
(rather based on the covariance matrix of the measurement data) would be more appro-
priate [3], or another identification procedure (e.g., VFM).

The computed model has to be controlled by boundary conditions (generally the dis-
placement field measured on surfaces). In this identification approach, the measured load
during the experiment is prescribed and controls the kinematics of the beam. The mini-
mization of the linearized functional with respect to the parameters γ leads to

δγi =

[∑
t

Γij(t)Γjk(t)

]−1(∑
t

Γkl(t)(u
exp
l (t)− ucl (t, γ0))

)
(9)

The result given by FEMU will be compared with those of the integrated approach based
on the gray level images, and is considered as a baseline reference.

3.3.2 Integrated identification

The integrated approach aims at identifying the model parameters directly on the images
hence minimizing the following functional

{γid} = Argmin{γ}(χ
2
u(x, T (t), {γ})) (10)

It can be noted that this cost function is similar to the one used in Ref. [1] for the P-
DVC procedure, at the exception that the displacement field is now parameterized with
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the constitutive parameters directly. The derivative of this functional with respect to {γ}
gives an equation very close to FEMU-U but weighted by the gray level uncertainty of each
degree of freedom

{δγ} = [H]−1{h} (11)

where [H] is the “gray level” Hessian of χ2
u with respect to {γ}, {h} the residual vector,

and {δγ} the correction vector to the current estimate of the sought parameters. It is
convenient to write the projected gray level sensitivity for each degree of freedom of each
section (i.e., the projected signature of a small motion for each degree of freedom)

Si(r, t) = Πθ(t)[Φi(x) ·∇F (x)] (12)

and the associated matrix components

Bij(t) =
∑
r

Si(r, t)Sj(r, t) (13)

Computing and storing this sparse matrix is one of the longest operations in the procedure.
However all the sensitivity fields for all parameters of the model are easily obtained from
combinations of these projected 3D gray level sensitivity fields. It follows that

Hij =
∑
t

Γim(t)Bmn(t)Γjn(t) (14)

and
hj =

∑
r,t

ρ(r, t)Γjn(t)Sn(r, t) (15)

Before applying this integrated approach, a first measurement and correction of the
Rigid Body Motions (RBMs) is convenient. A 4D analysis based on a regularized space
(including RBM) and time evolution is first performed using a Proper Generalized Decom-
position approach [1]. Then a first estimate of the displacement field is based on scale
2 measurements, which allow large displacements to be coarsely captured (this scale is
particularly focused on the edge alignment of the specimen). When scale 2 has converged,
the measured displacement field is doubled and used to initialize scale 1 computations.

4 Application

4.1 Elastoplastic behavior

This paper aims at identifying an isotropic elastoplastic constitutive law. A “free form”
isotropic hardening law is proposed with Nγ = 8 degrees of freedom to describe a piece-wise
linear stress strain curve. Such discrete model can be the input behavior for commercial
FE softwares. Contrary to some parametric models (e.g., Ludwik [37], Voce [38] or more
complex models [39]) whose parameters may lack sensitivity in the measurement procedure,
the chosen free form behavior can be designed for identification purposes according to the
analyzed experiment.
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The degrees of freedom are chosen to have a fixed stress level (imposed by the applied
load and sample geometry) while the corresponding strain level is unknown. The calibrated
parameters and their initial values are reported in Table 1. The last parameter is chosen
as the ultimate strength of all sections during the test. Therefore it controls all sections
with high strain levels (i.e., central part of the sample at the highest load). A linear inter-
polation, in the [σ, ε] space is performed between the control points. Other interpolations
have been tested in the procedure (e.g., linear) but show no appreciable difference.

Table 1: Free form hardening law parameterized by 8 control points at predetermined
stress values. εi denotes the initial values of the strain at those control points. εc are the
calibrated values.

Parameters - γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

σ [MPa] 0 235 335 435 525 555 595 605 620
εi [%] (initialization) 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
εc [%] (identified) 0 0.20 0.32 0.50 1.42 1.62 4.26 5.96 6.16

Because of a low sensitivity on the elastic part, the analysis focuses on the plastic
part (i.e., the first slope of the stress-strain curve will not be interpreted as the Young’s
modulus). In addition to the 8 unknown parameters that control the elastoplastic behavior,
a vertical translation is introduced as an additional degree of freedom that may vary
arbitrarily in time. Although the vertical motion had been corrected (with respect to gray
level residuals) prior to the identification procedure, this extra freedom allows for a fine
tuning of the vertical position without any interference with the mechanical identification.

In order to study the robustness of the identified plastic law with respect to the dis-
cretization, another identification based on 7 parameters, at different stress levels, is also
performed. The same overall behavior is expected.

4.2 Initially corrected residual fields

An initial measurement and correction of all rigid body motions is performed based on the
method described in Ref. [1]. The SNR increases very significantly from 9.9 to 25.4. The
residual field for the three selected angles is shown in Figure 3 with a diverging color map
to highlight positive and negative patterns.
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(a) (b) (c)

Figure 3: Residual fields from volumes corrected by its rigid body motions. (a) Time step
90, θ = 80°, κ = 630 N; (b) time step 110, θ = −64.8°, κ = 715 N; (c) time step 123,
θ = −158.4°, κ = 736 N

With this first procedure, the mean displacement field is corrected and hence the motion
appears to be well corrected in the center of the specimen, i.e., the top (resp. bottom) part
is moving upward (resp. downward). Alternating positive and negative spots are visible on
the top and bottom parts, which are signature of a vertical motion of the sample. Those
residuals will be corrected by the following procedure. Note that the color bar amplitudes
differ in the figures as they are adapted to the residual amplitude.

4.3 Results of the integrated approach

From the initial guess of parameters (shown in Table 1), the procedure aims to identify the
set of parameters that leads to the residual field having the lowest norm. The procedure
converges in 5 to 7 iterations. A new set of parameters is found (Table 1). The values of
the parameters have significantly changed with respect to their initial guess. This result
shows that even though the initialization was very far from the converged solution, it
did not prevent the algorithm to find a good solution (i.e., the gray level residuals were
significantly reduced).

This new set of parameters leads to a mean value of the SNR of 26.4 (the SNR for each
radiograph is shown in Figure 4, curve (b)). A decrease of the residuals (i.e., increase of
the SNR) is observed from step 80 on, where the displacement correction is large because of
plastic yielding. The SNR decreases at the end of the loading (120) step where the model
may not be adapted (i.e., high strains including localized features such as necking and
shear bands). Low SNRs are located every 25 time steps and correspond to angles where
the sample edges are “aligned” with the X-ray beam (i.e., where the residual field is very
sensitive to the radial positioning). A very small mis-positioning of the sample generates
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large residuals. The small SNR at step 50 is due to the first load increase that may have
generated spurious vibrations.

Figure 4: SNR for all radiographs of the test with different corrections. (a) Initial RBM-
corrected residual fields, (b) residual fields with the kinematic measurement performed in
Ref. [40], (c) at the end of the proposed integrated approach

Figure 5(a) shows the identified mechanical behavior of the studied sample using 3
different procedures (i.e., FEMU and Integrated P-DVC for the 8-parameter hardening
law and Integrated P-DVC with the 7-parameter variant). The positions of the control
points in the stress space were selected at will, which allowed the hardening curve to be
refined where needed. The three approaches lead to very similar shapes especially for
the higher strain part, which also corresponds to a high displacement sensitivity after
integration of the strain. The difference between 7 and 8 control points (blue and black
curves) is minimal, which means that the procedure is not much sensitive to the chosen
discretization. These three results are very different from the initial guess, which proves
the robustness of the proposed framework. The equivalent stress-strain curve shows a
ductile behavior with a total strain reaching approximately 6.3 % in the central part. The
longitudinal space-time displacement field obtained from the identified model is shown in
Figure 5(b). A displacement amplitude of 16 voxels (≈ 170 µm) is reached at the end of
the experiment. High gradients appear in the central part, as expected from the geometry.
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(a) (b)

Figure 5: (a) Equivalent stress-strain curve reconstructed from the converged parameters
with different methods. (+, orange): initial guess, (∗, red): FEMU approach from dis-
placement results of Ref. [1], (�, blue): integrated approach with 7 unknowns, (•, black):
integrated approach with 8 unknowns. (b) Longitudinal displacement expressed in vox-
els (1 voxel↔ 10.7 µm), obtained from the identification of the mechanical law with the
integrated approach with 8 parameters

The residual fields at the end of the analysis are presented in Figure 6. Most of the
previous patterns have been erased. Some residuals are still visible in the bottom part of
the sample, especially at the end of the experiment and may be due to the localization of
plastic strain and/or damage inducing softening. This interpretation is supported by a thin
transverse mark at mid-height of the sample (z ≈ 500 pixels) at the end of the experiment
that is visible in Figure 6(c) and may be interpreted as damage localization. This is also
consistent with the fact that failure took place at the next scheduled radiograph. The onset
of this localized strain band could be traced back to time step 115 where a degradation of
the SNR was detected. Although such a phenomenon may occur in reality, as it leads to a
breakdown of uniqueness in the solution [41, 42, 43, 44], this situation was excluded from
the scope of identification, and the absence of softening was enforced in the parametrization
of the constitutive law.
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(a) (b) (c)

Figure 6: Residual fields from volumes corrected with the identified plastic law. (a) Time
step 90, θ = 80o, κ = 630 N; (b) time step 110, θ = −64.8o, κ = 715 N; (c) time step 123,
θ = −158.4o, κ = 736 N

5 Comparison with kinematic measurements

A comparison with the results obtained in Ref. [1] is performed. A first point is that the
SNR whose mean value is 26.4 for the integrated approach and 26.3 with FEMU, is barely
smaller than that obtained from the kinematic measurement, namely, 26.7. The temporal
changes of the SNR with the two approaches are shown in Figure 4, curves (b-c). Even
though it is obtained with a significantly larger amount of degrees of freedom the kinematic
approach has only slightly lower residuals. The accuracy of the plastic model based on no
more than 7 or 8 parameters is remarkable.

A second comparison has already been performed with the FEMU procedure using
the measured displacement field of Ref. [1]. The equivalent stress-strain curve is extremely
close to the integrated identification (the first two degrees of freedom are different but they
correspond to low displacement sensitivities). The two approaches lead to results that can
hardly be distinguished.

The relevance of the chosen model can also be judged from the difference in the iden-
tified displacement field. The latter is reported in Figure 7. The mean of the absolute
differences is 0.37 voxel and the standard deviation is equal to 0.56 voxel. The low spatial
frequency differences are due to model differences (i.e., the identified integrated displace-
ment cannot reproduce the localized behavior).
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Figure 7: Difference between the displacement field obtained from the integrated approach
and that measured with the kinematic approach of Ref. [1]. The color bar is expressed in
voxels (1 voxel↔ 10.7 µm).

The comparison of the two displacement fields is presented here to show a visual ap-
preciation of the correspondence. It cannot be considered as a judgment criterion of the
methods as none of the two fields can be considered as the reference since they are built
on different kinematic bases. The only objective comparison metric is given by the gray
level residuals [3, 17].

6 Conclusion and Perspectives

An integrated method was developed within the Projection Based Digital Volume Cor-
relation framework. Relying on a free form isotropic hardening model, the identification
was carried out from radiographs (i.e., 127 projections of the 3D microstructure) instead
of 3D (reconstructed) volumes. An in-situ tensile test on a spheroidal graphite cast iron
sample, where the acquisition was performed on the fly (i.e., with continuous rotation of
the sample inside of the tomograph and a continuous loading history until failure) was
used to illustrated the identification strategy.

As in the purely kinematic study [1], this approach enabled for huge gains in acquisi-
tion time (about 2.5 orders of magnitude as compared to standard approaches). However,
the main benefit of the integrated approach is that its outputs consist of the numerical
estimate of the constitutive parameters, together with a mechanically admissible displace-
ment field. In the studied example, the calibrated constitutive law was shown to be in
good agreement with the one that results from a FEMU procedure applied to the kinemat-
ics measured with P-DVC (i.e., with no mechanical constraints). In fact, the integrated
approach can be shown to be “optimal” with respect to noise robustness. Additionally, the
restriction of the kinematic space to mechanically admissible displacement fields provides
a better conditioning of the DVC problem itself, thereby allowing a fine discretization of
the kinematics to be used.

A key property of the proposed approach is that the quality of the result can be ob-
jectively assessed from the projection residual fields. The identification procedure showed
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an important decrease of its norm. A large part of the residual fields was erased with
the kinematic correction, meaning that motions were well captured by the model and this
observation validated the proposed constitutive law. The onset of strain localization and
crack formation can be read from the late residuals, which is a clear demonstration of
the ability offered by this tool to either validate a material model, or detect model er-
rors. Moreover, the pathway to correcting the model can often be interpreted from those
residuals.
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