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Abstract. RDF-based data integration is often hampered by the lack
of methods to translate data locked in heterogeneous silos into RDF
representations. In this paper, we tackle the challenge of bridging the
gap between the Semantic Web and NoSQL worlds, by fostering the de-
velopment of SPARQL interfaces to heterogeneous databases. To avoid
defining yet another SPARQL translation method for each and every
database, we propose a two-phase method. Firstly, a SPARQL query is
translated into a pivot abstract query. This phase achieves as much of
the translation process as possible regardless of the database. We show
how optimizations at this abstract level can save subsequent work at the
level of a target database query language. Secondly, the abstract query is
translated into the query language of a target database, taking into ac-
count the specific database capabilities and constraints. We demonstrate
the effectiveness of our method with the MongoDB NoSQL document
store, such that arbitrary MongoDB documents can be aligned on exist-
ing domain ontologies and accessed with SPARQL. Finally, we draw on
a real-world use case to report experimental results with respect to the
effectiveness and performance of our approach.

Keywords: Query rewriting, SPARQL, RDF, NoSQL, xR2RML, Linked
Data

1 Introduction

The Resource Description Framework (RDF) [11] is increasingly adopted as the
pivot format for integrating heterogeneous data sources. It offers a unified data
model that allows building upon countless existing vocabularies and domain
ontologies, while benefiting from Semantic Web’s reasoning capabilities. It also
allows leveraging the growing, world-scale knowledge base referred to as the Web
of Data. Today, increasing amounts of RDF data are published on the Web, no-
tably following the Linked Data principles [2,19]. These data often originate from
heterogeneous silos that are inaccessible to data integration systems and search
engines. Hence, a first step to enabling RDF-based data integration consists in
translating legacy data from heterogeneous formats into RDF representations.
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During the last fifteen years, much work has investigated how to translate
common databases and data formats into RDF. Relational databases were pri-
marily targeted [36,34], along with a handful of data formats such as XML [3]
and CSV [28]. Meanwhile, the database landscape has significantly diversified
with the adoption of various non-relational models. Initially designed as the core
system of Big Data Web applications, NoSQL databases have gained momentum
and are now increasingly adopted as general-purpose, commonplace databases.
Today, companies and institutions store massive amounts of data in NoSQL in-
stances. So far however, these data often remain inaccessible to RDF-based data
integration systems, and consequently invisible to the Web of Data. although
unleashing their data could potentially spur new integration opportunities and
push the Web of Data forward.

The Semantic Web and NoSQL worlds build upon very different paradigms
that are challenging to bridge over: whereas the former handles highly connected
graphs along with the rich expressiveness of SPARQL, the latter trades off query
expressiveness for scalability and fast retrieval of denormalized data1. As a result
of these discrepancies, bridging the gap between those two worlds is a challenging
endeavor.

Two strategies generally apply when it comes to access non-RDF data as
RDF. In the graph materialization strategy, the transformation is applied ex-
haustively to the database content, the resulting RDF graph is loaded into a
triple store and accessed through a SPARQL query engine [18] or by derefer-
encing URIs (as Linked Data). On the one hand, this strategy easily supports
further processing or analysis, since the graph is made available at once. On
the other hand, the materialized RDF graph may rapidly become outdated if
the pace of database updates is high. Running the transformation process pe-
riodically is a common workaround, but in the context of large data sets, the
cost (in time, memory and CPU) of materializing and reloading the graph may
become out of reach. To work out this issue, the query rewriting strategy aims
to access heterogeneous databases as virtual RDF graphs. A query processor
rewrites a SPARQL query into the query language of the target database. The
target database query is evaluated at run-time such that only relevant data are
fetched from the database and translated into RDF triples. This strategy better
scales to big data sets and guarantees data freshness, but entails overheads that
may penalize performances if complex analysis is needed.

In previous works we defined a generic mapping language, xR2RML [25], that
enables the translation of a broad scope of data sources into RDF. The mapping
instructs how to translate each data item from its original format into RDF
triples, by adapting to the multiplicity of query languages and data models. We
applied xR2RML to the MongoDB NoSQL document store2 and we implemented
the graph materialization strategy.

1We refer to key-value stores, document stores and column family stores but leave out
graph stores that generally come with a richer query expressiveness.

2https://www.mongodb.org/
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To cope with large and frequently updated data sets though, we wish to tackle
the question of accessing such databases using the query rewriting strategy.
Hence, to avoid defining yet another SPARQL translation method for each and
every database, in this paper we investigate a general two-phase method. Firstly,
given a set of xR2RML mappings, a SPARQL query is rewritten into a pivot
abstract query. This phase achieves as much of the translation process as possible
regardless of the database, and enforces early query optimizations. Secondly, the
abstract query is translated into the target database query language, taking
into account the specific database capabilities and constraints. We demonstrate
the effectiveness of our method in the case of MongoDB, accessing arbitrary
MongoDB documents with SPARQL. We show that we can always rewrite an
abstract query into a union of MongoDB find queries that shall return all the
documents required to answer the SPARQL query.

The rest of this article is organized as follows. After a review of SPARQL
query rewriting approaches in section 2, we quickly remind the principles and
main features of the xR2RML mapping language in section 3. Then, in sections 4
and 5 we describe the two-phase method introduced above. In section 6, we de-
scribe a real-world use case and we report experimental results with respect to
the effectiveness and performance of our approach. Finally, we discuss our solu-
tion and envision some perspectives in section 7, and we draw some conclusions
in section 8.

2 Related Works

2.1 Rewriting SPARQL to SQL and XQuery

Since the early 2000’s, various works have investigated methods to query legacy
data sources with SPARQL. Relational databases (RDB) have caught much at-
tention, either in the context of RDB-backed RDF stores [10,35,14] or using
arbitrary relational schemas [5,38,29,31,32]. These methods harness the ability
of SQL to support joins, unions, nested queries and various string manipulation
functions. Typically, a conjunction of two SPARQL basic graph patterns (BGP)
results in the inner join of their respective translations; their union results in
a SQL UNION ALL clause; the SPARQL OPTIONAL clause results in a left
outer join, and a SPARQL FILTER results in an encapsulating SQL SELECT
WHERE clause.

Chebotko’s algorithm [10] focused on RDB-based triple stores. Priyatna et
al. [29] extended it to support custom R2RML mappings (the W3C recommen-
dation of an RDB-to-RDF mapping language [12]) while applying several query
optimizations. Two limitations can be emphasized though: (i) R2RML map-
pings must have constant predicates, i.e. the predicate term of the generated
RDF triples cannot be built from database values; (ii) Triple patterns are consid-
ered and translated independently of each other, even when they share SPARQL
variables. The resulting SQL query embeds unnecessary complexity that is taken
care of later on, in the SQL query optimization step. Unbehauen et al. [38] clear
the first limitation by defining the concept of compatibility between the RDF
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terms of a SPARQL triple pattern and R2RML mappings, which enables man-
aging variable predicates. Furthermore, to address the second limitation, they
pre-checking join constraints implied by shared variables in order to reduce the
number of candidate mappings for each triple pattern. Yet again, two limitations
can be noticed: (iii) References between R2RML mappings are not considered,
hence joins implied by shared variables are dealt with but joins declared in the
R2RML mapping graph are ignored. (iv) The rewriting process associates each
part of a mapping to a set of columns, called column group, which enables filter,
join and data type compatibility checks. This leverages SQL capabilities (CASE,
CAST, string concatenation, etc.), making it hardly applicable out of the scope
of SQL-based systems. In the three aforementioned approaches, the optimization
is dependent on the target database language, and can hardly be generalized. In
our attempt to rewrite SPARQL queries in the general case, such optimization
are performed earlier, regardless of the target database capabilities.

In a somewhat different approach, Rodŕıguez-Muro and Rezk [32] extend
the ontop Ontology-Based Data Access (OBDA) system to support R2RML
mappings. A SPARQL query and an R2RML mapping graph are translated
into a Datalog program. This formal representation is used to combine and
apply optimization techniques from logic programming and SQL querying. The
optimized program is then translated into an executable SQL query.

Other approaches investigated the querying of XML databases in a rather
similar philosophy. For instance, SPARQL2XQuery [4] relies on the ability of
XQuery to support joins, nested queries and complex filtering. Typically, a
SPARQL FILTER is translated into an encapsulating For-Let-Where XQuery
clause.

Finally, it occurs that the rich expressiveness of SQL and XQuery makes
it possible to translate a SPARQL 1.0 query into a single, possibly deeply
nested, target query, whose semantics is provably strictly equivalent to that of
the SPARQL query. Commonly, query optimization issues are addressed at the
level of the produced target query, or they may even be delegated to the target
database optimization engine. Hence, the above reviewed methods are tailored
to the expressiveness of the target query language, such that SQL or XQuery
specificities are woven into the translation method itself, which undermines the
ability to use such methods beyond their initial scope.

2.2 Rewriting SPARQL to NoSQL

To the best of our knowledge, little work has investigated how to perform RDF-
based data integration over the NoSQL family of databases. An early work3

has tackled the translation of CouchDB4 documents into RDF, but did not
addressed SPARQL rewriting. MongoGraph5 is an extension of the AllegroGraph
triple store to query arbitrary MongoDB documents with SPARQL. But very

3https://github.com/agrueneberg/Sessel
4http://couchdb.apache.org/
5
http://franz.com/agraph/support/documentation/4.7/mongo-interface.html
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much like the Direct Mapping [1] defined in the context of RDBs, both works
come up with an ad-hoc ontology (e.g. each JSON field name is turned into
a predicate) and hardly supports the reuse of existing ontologies. Tomaszuk
proposed to use a MongoDB database as an RDF triple store [37]. In this context,
the author devised a translation of SPARQL queries into MongoDB queries,
that is however closely tied to the specific database schema and thus is unfit for
arbitrary documents.

More in line with our work, Botoeva et al. proposed a generalization of the
OBDA principles [30] to MongoDB [8]. They describe a two-step rewriting pro-
cess of SPARQL queries into a MongoDB aggregate pipeline. In section 7, we
analyze in further details the relationship between their approach and ours.
Interestingly, to the best of our knowledge, only one approach tackled the key-
value store subset of NoSQL databases. Mugnier et al. [26] define the NO-RL
rule language that can express lightweight ontologies to be applied to key-value
stores. Leveraging the formal semantics of NO-RL, they propose an algorithm to
reformulate a query under a NO-RL ontology, but SPARQL is not considered.

Finally, since NoSQL document stores are based on JSON, let us mention
the JSON-LD syntax that is meant for the serialization of Linked Data in the
JSON format. When applied to existing JSON documents, a JSON-LD profile
can be considered as a lightweight method to interpret JSON data as RDF.
Such a profile could be exploited by a SPARQL rewriting engine to enable the
querying of document stores with SPARQL. This approach would be limited
though, since JSON-LD is not meant to describe rich mappings from JSON to
RDF, but simply to interpret JSON as RDF. It lacks the expressiveness and
flexibility required to align JSON documents with domain ontologies that may
model data in a rather different manner. Besides, we do not want to define
a method specifically tailored to MongoDB; our point is to provide a generic
rewriting method that can be applied to the concrete case of MongoDB as well
as various other databases.

3 The xR2RML Mapping Language

The xR2RML mapping language [25] intends to foster the translation of legacy
data sources into RDF. It can describe the mapping of an extensible scope of
databases to RDF, independently of any query language or data model. It is
backward compatible with R2RML and relies on RML [13] for the handling of
various data formats. It can translate data with mixed embedded formats and
generate RDF collections and containers.

An xR2RML mapping defines a logical source (property xrr:logicalSource)
as the result of executing a query against an input database (xrr:query and
rr:tableName). An optional iterator (value of property rml:iterator) can be ap-
plied to each query result, and a xrr:uniqueRef property can identify unique
fields. Data from the logical source is mapped to RDF terms (literal, IRI, blank
node) by term maps. There exists four types of term maps: a subject map gener-
ates the subject of RDF triples, predicate and object maps produce the predicate
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and object terms, and an optional graph map is used to name a target graph.
Listing 1.1 depicts two mappings <#Mbox> and <#Knows>, each consisting of a
subject map, a predicate map and an object map.

Term maps extract data from query results by evaluating xR2RML references
whose syntax depends on the target database and is an implementation choice:
typically, this may be a column name in case of a relational database, an XPath
expression in case of an XML database, or a JSONPath6 expression in case of
NoSQL document stores like MongoDB or CouchDB. xR2RML references are
used with property xrr:reference whose value is a single xR2RML reference,
and property rr:template whose value is a template string which may contain
several references. In Listing 1.1, both subject maps use a template to build IRI
terms by concatenating http://example.org/member/ with the value of the "id"

JSON field.

<#Mbox >
xrrxrrxrr:logicalSourcelogicalSourcelogicalSource [ xrrxrrxrr:queryqueryquery "db.people.find({’emails ’:{ $ne: null }})" ];
rrrrrr:subjectMapsubjectMapsubjectMap [ rrrrrr:templatetemplatetemplate "http :// example.org/member /{$.id}" ];
rrrrrr:predicateObjectMappredicateObjectMappredicateObjectMap [

rrrrrr:predicatepredicatepredicate foaf:mbox;
rrrrrr:objectMapobjectMapobjectMap [ rrrrrr:templatetemplatetemplate "mailto :{$.emails .*}"; rrrrrr:termTypetermTypetermType rrrrrr:IRIIRIIRI ]

].
<#Knows >

xrrxrrxrr:logicalSourcelogicalSourcelogicalSource [
xrrxrrxrr:queryqueryquery "db.people.find({’contacts ’:{ $size: {$gte :1}}})" ];

rrrrrr:subjectMapsubjectMapsubjectMap [ rrrrrr:templatetemplatetemplate "http :// example.org/member /{$.id}" ];
rrrrrr:predicateObjectMappredicateObjectMappredicateObjectMap [

rrrrrr:predicatepredicatepredicate foaf:knows;
rrrrrr:objectMapobjectMapobjectMap [

rrrrrr:parentTriplesMapparentTriplesMapparentTriplesMap <#Mbox >;
rrrrrr:joinConditionjoinConditionjoinCondition [ rrrrrr:childchildchild "$.contacts .*"; rrrrrr:parentparentparent "$.emails .*" ] ]

].

Listing 1.1. xR2RML example mapping graph

When the evaluation of an xR2RML reference produces several RDF terms,
the xR2RML processor creates one triple for each term. Alternatively, the rr:termType

property of a term map can be used to group the terms in an RDF collection
while specifying a language tag or data type. Besides, the default iteration model
can be modified using nested term maps, notably useful to parse nested collec-
tions of values and generate appropriate triples.

xR2RML allows to model cross-references by means of referencing object
maps that use values produced by the subject map of a parent mapping as
the objects of triples produced by a child mapping. Properties rr:child and
rr:parent specify the join condition between documents of both mappings.

Running Example. To illustrate the description of our method, we define a
running example that we shall use throughout this paper. Let us consider a
MongoDB database with a collection people depicted in Listing 1.2: each JSON
document provides the identifier, email addresses and contacts of a person; con-
tacts are identified by their email addresses.

Let us now consider the xR2RML mapping graph in Listing 1.1, consisting
of two mappings <#Mbox> and <#Knows>. The logical source of mappings <#Mbox>,

6
http://goessner.net/articles/JsonPath/
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{ "ididid": 105632 ,
"firstnamefirstnamefirstname ":" John",
"emailsemailsemails ": [" john@foo.com"," john@example.org"],
"contactscontactscontacts ": [" chris@example.org", "alice@foo.com"] }

{ "ididid": 327563 ,
"firstnamefirstnamefirstname ":" Alice",
"emailsemailsemails ": [" alice@foo.com"],
"contactscontactscontacts ": [" john@foo.com"] }

Listing 1.2. MongoDB collection “people” containing two documents

respectively <#Knows>, is a MongoDB query that retrieves documents having
a non-null emails field, respectively a contacts array field with at least one
element. Both subject maps use a template to build IRI terms by concatenating
http://example.org/member/ with the value of JSON field id. Applied to the
documents in Listing 1.2, the xR2RML mapping graph generates the following
RDF triples:

<http :// example.org/member /105632 >
foaf:mbox <mailto:john@foo.com >, <mailto:john@example.org >;
foaf:knows <http :// example.org/member /327563 >.

<http :// example.org/member /327563 >
foaf:mbox <mailto:alice@foo.com >;
foaf:knows <http :// example.org/member /105632 >.

4 From SPARQL to Abstract Queries

Section 2 emphasized that SPARQL rewriting methods for SQL or XQuery
rely on prior knowledge about the target query language expressiveness. This
makes possible the semantics-preserving translation of a SPARQL query into a
single equivalent target query. In the general case however (beyond SQL and
XQuery), the target query language may not support joins, unions, sub-queries
and/or filtering. To tackle this challenge, our method first enacts the database-
independent steps of the rewriting process. To generate the abstract query, we
rely on and extend the R2RML-based SPARQL rewriting approaches reviewed in
section 2, while taking care of avoiding the limitations highlighted. More specif-
ically, we focus on rewriting a SPARQL 1.0 graph pattern, whatever the query
form (SELECT, ASK, DESCRIBE, etc.). The translation of a SPARQL graph
pattern into an abstract query consists of four steps, sketched in Fig. 1 and de-
scribed in the next sub-sections. §4.1: A SPARQL 1.0 graph pattern is rewritten
into an abstract expression exhibiting operators of the abstract query language.
§4.2: We identify candidate xR2RML mappings likely to generate RDF triples
that match each triple pattern. §4.3: Each triple pattern is translated into a sub-
query according to the set of xR2RML mappings identified. A sub-query consists
of operators of the abstract query language and atomic abstract queries. §4.4:
We enforce several optimizations on the resulting abstract query, e.g. self-joins
or self-unions elimination.
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Fig. 1. Translation of a SPARQL 1.0 graph pattern into an optimized abstract query

4.1 Translation of a SPARQL Graph Pattern

Our pivot abstract query language complies with the grammar depicted in Def. 1.
It derives from the syntax and semantics of SPARQL [27]: the language keeps
the names of several SPARQL operators (UNION, LIMIT, FILTER) and prefers
the SQL terms INNER JOIN ON and LEFT OUTER JOIN ON to refer to join
operations more explicitly. A notable difference with SPARQL is that, in the
tree representation of a query, the leaves of a SPARQL query are triple patterns.
Conversely, the leaves of an abstract query are Atomic Abstract Queries (§4.3).

The INNER JOIN and LEFT OUTER JOIN operators stem from the join
constraints implied by shared variables. Somehow, the second INNER JOIN in
Def. 1, including the “AS child” and “AS parent” notations, is entailed by the
join constraints expressed in xR2RML mappings using referencing object maps
and properties rr:child and rr:parent. Notation v1,... vn, in the join operators,
stands for the set of SPARQL variables on which the join is to be performed.
Notation <Ref> stands for any valid xR2RML data element reference, i.e. a col-
umn name for a tabular data source, an XPath expression for an XML database,
a JSONPath expression for a NoSQL document store such as MongoDB and
CouchDB, etc.

Definition 1. Grammar of the Abstract Pivot Query Language

<AbstractQuery > ::= <AtomicQuery > | <Query > |
<Query > FILTERFILTERFILTER <SPARQL filter > | <Query > LIMITLIMITLIMIT <integer >

<Query > ::= <AbstractQuery > INNERINNERINNER JOINJOINJOIN <AbstractQuery > ONONON {v1 ,... vn} |
<AbstractQuery > ASASAS child INNERINNERINNER JOINJOINJOIN <AbstractQuery > ASASAS parent

ONONON child/<Ref > = parent/<Ref > |
<AbstractQuery > LEFTLEFTLEFT OUTEROUTEROUTER JOINJOINJOIN <AbstractQuery > ONONON {v1 ,... vn}|
<AbstractQuery > UNIONUNIONUNION <AbstractQuery >

<AtomicQuery > ::= {From , Project , Where , Limit}

The first query transformation step is implemented by function transm de-
picted in Def. 2. It rewrites a well-designed SPARQL graph pattern [27] into an
abstract query while making no assumption with respect to the target database
query capabilities. It extends the algorithms proposed in [10], [38] and [29].
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Definition 2. Translation of a SPARQL query into an abstract query under
xR2RML mappings (function transm).
Let m be an xR2RML mapping graph consisting of a set of xR2RML mappings. Let gp
be a well-designed SPARQL graph pattern, f be a SPARQL filter and l an integer limit
value representing the maximum number of results.
We denote by transm(gp, f, l) the translation, under m, of “gp FILTER f” into an
abstract query that shall not return more than l results. We denote by transm(gp) the
result of transm(gp, true, ∞). Function transm is defined recursively as follows:

– if gp consists of a single triple pattern tp, transm(gp, f, l) = transTPm(tp, spar-
qlCond(tp, f), l)
where transTPm translates a single triple pattern into an abstract query (§4.3)
and sparqlCond discriminates SPARQL filter conditions (§4.1).

– if gp is (P LIMIT l’), transm(gp, f, l) = transm(gp, f, min(l, l’))
– if gp is (P FILTER f’), transm(gp, f, l) = transm(P, f ∧ f ’, ∞) FILTER spar-

qlCond(P, f ∧ f ’) LIMIT l
– if gp is (P1 AND P2), transm(gp, f, l) = transm(P1, f, ∞) INNER JOIN

transm(P2, f, ∞) ON var(P1) ∩ var(P2) LIMIT l
– if gp is (P1 OPTIONAL P2), transm (gp, f, l) =

transm(P1, f, ∞) LEFT OUTER JOIN transm(P2, f, ∞) ON var(P1) ∩
var(P2) LIMIT l

– if gp is (P1 UNION P2), transm (gp, f, l) = transm (P1, f, l) UNION transm
(P2, f, l) LIMIT l

As a simplification, notations “FILTER true” and “LIMIT ∞” may be omitted.

Example. Let us give a first simple illustration. SPARQL query Q1 contains a
graph pattern gp1 that consists of two triple patterns, tp1 and tp2:

Q1: SELECTSELECTSELECT ?x WHEREWHEREWHERE {
?x foaf:mbox ?mbox. # tp1

?x foaf:knows ?y. } # tp2

The application of function transm to the graph pattern gp1 is as follows:

transm(gp1)
= transm(gp1, true , ∞)
= transTPm(tp1, true , ∞) INNERINNERINNER JOINJOINJOIN

transTPm(tp2, true , ∞) ONONON {var(tp1) ∩ var(tp2)}
LIMIT ∞

= transTPm(tp1) INNERINNERINNER JOINJOINJOIN transTPm(tp2) ONONON {?x}

Dealing with SPARQL filters. SPARQL rewriting methods reviewed in sec-
tion 2 generally adopt a bottom-up approach where, typically, a SPARQL FIL-
TER translates into an encapsulating query (e.g. a SELECT-WHERE clause
in the case of SQL). Thus, filters in the outer query do not contribute to the
selectivity of inner-queries that may return large intermediate results. This flaw
is commonly worked out in a subsequent SQL query optimization step, or by
assuming that the underlying database engine can take care of this optimization.

In our context though, we cannot assume that the target query can be op-
timized nor that the database query engine is capable of doing it. We therefore
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consider SPARQL filters at the earliest stage: function transm pushes SPARQL
filters down into the translation of each inner query in order to return only
necessary intermediate results.

Let us consider a SPARQL filter f as a conjunction of n conditions (n ≥ 1):
C1 ∧ ... Cn. Function sparqlCond, formally defined in [22], discriminates between
these conditions with regards to two criteria:
(i) A condition Ci is pushed into the translation of triple pattern tp if all variables
of Ci show up in tp, e.g. a condition involving variables ?x and ?y is pushed into
the translation of tp only if tp involves at least ?x and ?y.
(ii) A condition Ci is part of the abstract FILTER operator if at least one
variable of Ci is shared by several triple patterns, e.g. if Ci contains variable ?x,
and variable ?x also shows up in two different triple patterns, then Ci is in the
condition of the abstract FILTER operator.
Note that both criteria are not exclusive: a condition may simultaneously show
up in the translation of a triple pattern and in the FILTER abstract operator.

Example. SPARQL query Q2, depicted in Listing 1.3, contains the graph pat-
tern gp2 that consists of three triple patterns tp1, tp2 and tp3, and a filter con-
sisting of the conjunction of two conditions c1 and c2:

SELECTSELECTSELECT ?x WHEREWHEREWHERE {
?x foaf:mbox ?mbox. # tp1

?y foaf:mbox <mailto:john@foo.com >. # tp2

?x foaf:knows ?y. # tp3

FILTERFILTERFILTER {
contains(str(?mbox), "foo.com") # c1

&& ?x != ?y } } # c2

Listing 1.3. SPARQL query Q2

Let us compute function sparqlCond for each triple pattern:
- tp1 has two variables, ?x and ?mbox. No condition involves both variables, but
c1 involves ?mbox and has no other variable, thereby c1 matches criterion (i) for
tp1. Condition c2 involves ?x but it also involves ?y that is not in tp1. Hence, c2
does not match criterion (i) for tp1, and sparqlCond(tp1, c1 ∧ c2) = c1.
- tp2 has one variable, ?y, and no condition involves only ?y. Hence, no condition
can be pushed into the translation of tp2, denoted
sparqlCond(tp2, c1 ∧ c2) = true.
- tp3 has two variables ?x and ?y, and only condition c2 involves them both.
Hence, only c2 matches criterion (i) for tp3 and sparqlCond(tp3, c1 ∧ c2) = c2.
- Lastly, only condition c2 involves variables shared by several triples patterns:
?x and ?y. Thus, only c2 matches criterion (ii), which entails the generation of
the abstract filter FILTER(c2).

As a result, gp2 is rewritten into the following abstract query:

transm(gp2, c1 ∧ c2) = transTPm(tp1, c1)
INNERINNERINNER JOINJOINJOIN transTPm(tp2, true) ONONON {}
INNERINNERINNER JOINJOINJOIN transTPm(tp3, c2) ONONON {?x,?y}
FILTERFILTERFILTER(c2)

Dealing with the LIMIT solution modifier. Similar to the case of SPARQL
filters, the common bottom-up approach of SQL rewriting methods consists in
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rewriting a LIMIT into an encapsulating query. Thus, again, sub-queries may
return unnecessary large intermediate results. Therefore, function transm pushes
the LIMIT value down into the translation of each triple pattern using the limit
argument l, initialized to∞. During the parsing of the graph pattern by function
transm, the limit argument is updated according to the graph pattern encoun-
tered. Below, we elaborate on some of the situations tackled in Def. 2:

- In a graph pattern P LIMIT l’, the smallest limit is kept, hence the min(l, l’)
in transm(gp, f, min(l, l’)).
- In a graph pattern P FILTER f’, we cannot know in advance how many results
will be filtered out by the FILTER clause. Consequently, we have to run the query
with no limit and apply the filter afterward. Hence the ∞ argument in
transm(P, f ∧ f ’, ∞) FILTER sparqlCond(...) LIMIT l.
- Similarly, in the case of an inner or left join, we cannot know in advance how
many results will be returned. Consequently, the left and right queries alike are
run with no limit first, the join is computed, and only then can we limit the
number of results. Hence the ∞ argument in the expressions:
transm(P1,f,∞) ... INNER JOIN transm(P2,f,∞) ... LIMIT l.

Dealing with other solution modifiers. For the sake of simplicity, we do
not describe in further details the management of SPARQL solution modifiers
OFFSET, ORDER BY and DISTINCT. Let us simply mention that they are
managed in the very same way as the SPARQL FILTER clause and LIMIT
solution modifier, i.e. as additional parameters of the transm and transTPm

functions, and additional operators of the abstract query language.

4.2 Binding xR2RML Mappings to Triple Patterns

An important step in the rewriting process consists in figuring out which of the
mappings are good candidates to answer the SPARQL query. More precisely, for
each triple pattern tp of the SPARQL graph pattern, we must figure out which
mappings can possibly generate triples that match tp. We call this the triple
pattern binding7, defined in Def. 3:

Definition 3. Triple Pattern Binding.
Let m be an xR2RML mapping graph consisting of a set of xR2RML mappings,
and tp be a triple pattern. A mapping M ∈ m is bound to tp if it is likely to
produce triples that match tp. A triple pattern binding is a pair (tp, MSet)
where MSet is the set of mappings of m that are bound to tp.

Function bindm (Def. 4) determines, for a graph pattern gp, the bindings of
each triple pattern of gp. It takes into account join constraints implied by shared

7We adapt the triple pattern binding proposed by Unbehauen et al. in [38], and we
assume that xR2RML mappings are normalized in the sense defined by [32], i.e. they
contain exactly one predicate-object map with exactly one predicate map and one
object map, and any rr:class property is replaced by an equivalent predicate-object
map with a constant predicate rdf:type
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variables and by cross-references defined in the mapping (xR2RML referencing-
object map), and the SPARQL filter constraints whose unsatisfiability can be
verified statically. This is achieved by means of two functions: compatible and
reduce. These functions were introduced in [38] but important details were left
untold. Especially, the authors did not formally define what the compatibility
between a term map and a triple pattern term means, and they did not investi-
gate the compatibility between a term map and a SPARQL filter. In this section
we give a detailed insight into these functions. A formal definition is provided
in [22].

Definition 4. Binding xR2RML mappings to triple patterns (bindm).
Let m be a set of xR2RML mappings, gp be a well-designed graph pattern, and f
be a SPARQL filter. Let M.sub, M.pred and M.obj respectively denote the subject
map, the predicate map and the object map of an xR2RML mapping M.
We denote by bindm(gp, f) the set of triple pattern bindings of “gp FILTER f”
under m, and we denote by bindm(gp) the result of bindm(gp, true).
Function bindm(gp, f) is defined recursively as follows:

– if gp consists of a single triple pattern tp, bindm(gp, f) is the pair (tp, MSet)
where MSet = {M | M ∈ m ∧ compatible(M.sub, tp.sub, f) ∧ compati-
ble(M.pred, tp.pred, f) ∧ compatible(M.obj, tp.obj, f)}
where compatible verifies the compatibility between a term map, a triple
pattern term and a SPARQL filter

– if gp is (P1 AND P2), bindm(gp, f) = reduce(bindm(P1, f), bindm(P2,
f)) ∪ reduce(bindm(P2, f), bindm(P1, f))
where reduce utilizes dependencies between graph patterns to reduce their
bindings

– if gp is (P1 OPTIONAL P2), bindm(gp, f) = bindm(P1, f) ∪ reduce(bindm(P2,
f), bindm(P1, f))

– if gp is (P1 UNION P2), bindm(gp, f) = bindm(P1, f) ∪ bindm(P2, f)

– if gp is (P FILTER f’), bindm(gp, f) = bindm(P, f ∧ f ’)

Function compatible checks whether a term map is compatible with (i) a term
of a triple pattern and (ii) a SPARQL filter, so as to rule out incompatible asso-
ciations. When the triple pattern term is constant (literal, IRI or blank node),
incompatibilities may occur when its type does not mach the term map type
(e.g. when the triple pattern term is a literal whereas the term map produces
IRIs). Incompatibilities may also occur for literals when language tags or data
types do not match. When the triple pattern term is a variable, incompatibil-
ities may arise from unsatisfiable SPARQL filters. These situations pertain to
type constraints expressed using SPARQL functions isIRI, isLiteral or isBlank,
as well as language and data type constraints expressed using functions lang,
langMatches and datatype. For instance, if variable ?v is associated with a term
map that produces literals, the SPARQL filter isIRI(?v) can never be satisfied,
which ensures that the association is invalid. We provided a formal definition of
function compatible in [23].
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Function reduce uses the variables shared by two triple patterns to detect
unsatisfiable join constraints, and accordingly to reduce the set of mappings
bound to each triple pattern. For instance, let us consider two triple patterns
tp1 and tp2 that have a shared variable ?v. Mapping M1 is bound to tp1 and
mapping M2 is bound to tp2. If the term map associated to ?v in M1 generates
literals whereas the term map associated to ?v in M2 generates IRIs, we say
that the term maps are incompatible. Consequently, function reduce rules out
M1 from the bindings of tp1 and M2 from the bindings of tp2. In other words,
reduce(bindm(tp1), bindm(tp2)) returns the reduced bindings of tp1 such that
the term maps associated to ?v in the bindings of tp1 are compatible with the
term maps associated to ?v in the bindings of tp2.

Running Example. Let us consider query Q2 depicted in Listing 1.3. We first
compute the triple pattern bindings for tp1, tp2 and tp3 independently. The
constant predicate of tp1 and tp2 matches the constant predicate map of mapping
<#Mbox>. The subject and object of tp1 are both variables, and the constant object
of tp2 (<mailto:john@foo.com>) is compatible with the object map of <#Mbox>.
Hence, <#Mbox> is bound to both triple patterns:

bindm(tp1, c1 ∧ c2) = (tp1, {<#Mbox>})
bindm(tp2, c1 ∧ c2) = (tp2, {<#Mbox>})

Likewise, we can show that <#Knows> is bound to tp3:
bindm(tp3, c1 ∧ c2) = (tp3, {<#Knows>}).

Let us consider the join constraint implied by variable ?y:

?y foaf:mbox <mailto:john@foo.com >. # tp2

?x foaf:knows ?y. # tp3

?y is the subject in tp2 that is bound to <#Mbox>, ?y is thereby associated to
<#Mbox>’s subject map. ?y is also the object in tp3 that is bound to <#Knows>, ?y
is thereby associated to <#Knows>’s object map. Therefore, the expression

reduce(bindm(tp2, c1 ∧ c2), bindm(tp3, c1 ∧ c2))

checks whether the subject map of <#Mbox> is compatible with the object map of
<#Knows>. But since the object map of <#Knows> is a referencing object map whose
parent is <#Mbox>, this amounts to check whether the subject map of <#Mbox>

is compatible with itself, which is obvious. Consequently, the join constraint
implied by variable ?y does not rule out any binding.

Similarly, we can show that the join constraint implied by variable ?x, shared
by tp1 and tp3, does not rule out any binding. Lastly, the set of triple pattern
bindings for the graph pattern of query Q2 is as follows:
bindm(tp1 AND tp2 AND tp3, c1 ∧ c2) =

(tp1,{<#Mbox>}), (tp2,{<#Mbox>}), (tp3,{<#Knows>})

4.3 Translation of a SPARQL Triple Pattern

The last step of the rewriting towards the abstract query language consists in
the translation of each triple pattern into an abstract query, under the set of
xR2RML mappings bound to that triple pattern by function bindm. This is
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achieved by function transTPm defined in Def. 5, that may have to deal with
various situations.

Definition 5. Translation of a SPARQL Triple Pattern into Atomic
Abstract Queries (function transTPm).
Let m be an xR2RML mapping graph consisting of a set of xR2RML mappings,
gp be a well-designed graph pattern, and tp a triple pattern of gp. Let l be the
maximum number of query results, and f be a SPARQL filter expression. Let
getBoundMm(gp, tp, f) be the function that, given gp, tp and f, returns the set
of mappings of m that are bound to tp in bindm(gp, f).
We denote by transTPm(tp, f, l) the translation, under getBoundMm(gp, tp,
f), of tp into an abstract query whose results can be translated into at most l
RDF triples matching “tp FILTER f”. The resulting abstract query, denoted
<ResultQuery> in the grammar below, is a union of per-mapping subqueries,
where a subquery is either an Atomic Abstract Query or the inner join of two
Atomic Abstract Queries.
As a simplification, arguments f and l may be omitted when their values are
“true” and ∞ respectively.

<ResultQuery > ::= <SubQuery > (UNIONUNIONUNION <SubQuery >)*
<SubQuery > ::= <AtomicQuery > |

<AtomicQuery > ASASAS child INNERINNERINNER JOINJOINJOIN <AtomicQuery > ASASAS parent
ONONON child/<Ref >= parent/<Ref >

Let us now give an insight into how transTPm deals with these situations.
(1) The most simple situation is encountered when a simple triple pattern tp is
bound with a single xR2RML mapping M . If M has a regular object map (not
a referencing object map denoting a cross-reference), then tp translates into
an atomic abstract query. We will define the concept of atomic abstract query
further on in this section. At this point, let us just notice that it is an abstract
query obtained by matching the terms of a triple pattern with their respective
term maps in a mapping.
(2) If the mapping M denotes a cross-reference by means of a referencing object
map, .i.e. it refers to another mapping for the generation of object terms, then
the result of transTPm is the INNER JOIN of two atomic abstract queries,
denoted:

<AtomicQuery1 > ASASAS child INNERINNERINNER JOINJOINJOIN
<AtomicQuery2 > ASASAS parent ONONON
child/childRef=parent/parentRef

where childRef and parentRef denote the values of properties rr:child and
rr:parent respectively.
(3) We have seen, in the definition of bindm, that several mappings may be
bound to a single triple pattern tp, each one may produce a subset of the RDF
triples that match tp. In such a situation, transTPm translates tp into a union
of per-mapping atomic abstract queries.

Interestingly enough, we notice that INNER JOINs may be implied either by
shared SPARQL variables (Def. 2) or cross-references denoted in the mappings
(situation (2) described above). Similarly, UNIONs may arise either from the
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SPARQL UNION operator (Def. 2) or the binding of several mappings to the
same triple pattern (situation (3) described above).

Due to size constraints, we do not go through the full algorithm of transTPm

in this paper, however the interested reader is referred to [22] for a comprehensive
description.

Atomic Abstract Query. An atomic abstract query consists of four parts,
denoted by {From, Project, Where, Limit}. We now describe these components
and the way they are computed by function transTPm.

- From. The From part provides the concrete query that the abstract query
relies on. It contains the logical source of an xR2RML mapping, that con-
sists of the xrr:query or rr:tableName properties, an optional iterator (prop-
erty rml:iterator) and the optional xrr:uniqueRef property. With the example
of query Q2 (Listing 1.3), the From part for tp1 simply consists of the logical
source of <#Mbox>: db.people.find({’emails’:{$ne: null}}).

- Project . Traditionally, the projection part of a database query restricts the
set of attributes that must be returned in the query response. In relational alge-
bra, this is denoted by the projection operator π: πa1,...an

(R) denotes the tuple
obtained when the attributes of tuple R are restricted to the set {a1, ...an}. Simi-
larly, the Project part of an atomic abstract query is a set of xR2RML references.
For each variable in the triple pattern, the xR2RML references in the term map
matched with that variable are projected. In our running example, the subject
and object of tp1 are ?x and ?mbox1. They are matched with the subject and
object maps of mapping <#Mbox>. Thus, the corresponding xR2RML references
within these subject map and object map must be projected. Hence the Project
part for tp1: {$.id AS ?x, $.emails.* AS ?mbox1}. Furthermore, the child and
parent joined references of a referencing object map must be projected in order
to accommodate databases that do not support joins. In the relational database
case, these projections would be useless since the database can compute the
join internally. But the abstract query must accommodate any target database,
hence the systematic projection of joined references.

- Where . The Where part is a set of conditions about xR2RML references. They
are produced by matching each term of a triple pattern tp with its corresponding
term map in mapping M : the subject of tp is matched with M ’s subject map,
the predicate with M ’s predicate map and the object with M ’s object map. Ad-
ditional conditions are entailed from the SPARQL filter f. In [22], we show that
three types of condition may be created:
(i) a SPARQL variable in the triple pattern is turned into a not-null condition on
the xR2RML reference corresponding to that variable in the term map, denoted
by isNotNull(<xR2RML reference>);
(ii) A constant term in the triple pattern (IRI or literal) is turned into an equal-
ity condition on the xR2RML reference corresponding to that term in the term
map, denoted by equals(<xR2RML reference>, value);
(iii) A SPARQL filter condition about a SPARQL variable is turned into a filter
condition, denoted by sparqlFilter(<xR2RML reference>, f).
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transtranstransm(gp2) =
transTPtransTPtransTPm(tp1, c1) INNERINNERINNER JOINJOINJOIN
transTPtransTPtransTPm(tp2, true) ONONON {} INNERINNERINNER JOINJOINJOIN
transTPtransTPtransTPm(tp3, c2) ONONON {?x,?y}
FILTERFILTERFILTER (?x != ?y)

transTPtransTPtransTPm(tp1, c1) =
{ FromFromFrom: {"db.people.find({’emails ’: {$ne: null }})"},

ProjectProjectProject: {$.id ASASAS ?x, $.emails .* ASASAS ?mbox1},
WhereWhereWhere: {isNotNullisNotNullisNotNull($.id), isNotNullisNotNullisNotNull($.emails .*),

sparqlFiltersparqlFiltersparqlFilter(contains(str(?mbox1),"foo.com "))}}

transTPtransTPtransTPm(tp2, true) =
{ FromFromFrom: {"db.people.find({’emails ’: {$ne: null }})"},

ProjectProjectProject: {$.id ASASAS ?y},
WhereWhereWhere: {isNotNullisNotNullisNotNull($.id), equalsequalsequals($.emails .*," john@foo.com ")}}

transTPtransTPtransTPm(tp3, c2) =
{ FromFromFrom: {"db.people.find({’contacts ’:{$size: {$gte :1}}})"} ,

ProjectProjectProject: {$.id ASASAS ?x, $.contacts .*},
WhereWhereWhere: {isNotNullisNotNullisNotNull($.id), isNotNullisNotNullisNotNull($.contacts .*),

sparqlFiltersparqlFiltersparqlFilter (?x != ?y)}} ASASAS childchildchild
INNERINNERINNER JOINJOINJOIN
{ FromFromFrom: {"db.people.find({’emails ’:{$ne: null }})" },

ProjectProjectProject: {$.emails.*, $.id ASASAS ?y},
WhereWhereWhere: {isNotNullisNotNullisNotNull($.emails .*), isNotNullisNotNullisNotNull($.id),

sparqlFiltersparqlFiltersparqlFilter (?x != ?y)}} ASASAS parentparentparent
ONONON childchildchild/$.contacts .* = parentparentparent/$.emails .*

Listing 1.4. Rewriting of the graph pattern gp2 of query Q2 (Listing 1.3) into an
abstract query

Running Example. In the case of query Q2 (Listing 1.3), triple pattern tp2 is
matched with mapping <#Mbox>. It has the variable ?y in the subject position,
which entails an isNotNull condition. It also has a constant term in the object
position, which entails an equals condition. Finally, the Where part for tp2 con-
tains two conditions: isNotNull($.id) and equals($.emails.*, "john@foo.com").
When we put all the pieces together, we can rewrite the graph pattern gp2 of
SPARQL query Q2 into the abstract query depicted in Listing 1.4.

4.4 Abstract Query Optimization

At this point, the method we have exposed translates a SPARQL graph
pattern into an effective abstract query, i.e. that preserves the semantics of
the SPARQL query. Yet, shortcomings such as unnecessary complexity or re-
dundancy may lead to the generation of inefficient queries, and consequently
yield poor performances. Although we may postpone the query optimization
to the translation into a concrete query language, it is beneficial to figure out
which optimizations can be done at the abstract query level first, and leave only
database-specific optimizations to the subsequent stage.

SPARQL-to-SQL methods proposed various SQL query optimizations such
as [39,32,14]. In this section, we review some of these techniques, referring to the
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transtranstransm(tp1 AND tp2 AND tp3 , c1 ∧ c2) =
{ FromFromFrom: {"db.people.find({’emails ’:{$ne:null }})"},

ProjectProjectProject: {$.id ASASAS ?x, $.emails .* ASASAS ?mbox1},
WhereWhereWhere: {isNotNullisNotNullisNotNull($.id), isNotNullisNotNullisNotNull($.emails .*),

sparqlFiltersparqlFiltersparqlFilter(contains(str(?mbox1),"foo.com "))}}
INNERINNERINNER JOINJOINJOIN
{ FromFromFrom: {"db.people.find({’contacts ’:{$size: {$gte :1}}})"} ,

ProjectProjectProject: {$.id ASASAS ?x, $.contacts .*},
WhereWhereWhere: {isNotNullisNotNullisNotNull($.id), isNotNullisNotNullisNotNull($.contacts .*),

sparqlFiltersparqlFiltersparqlFilter (?x != ?y)}} ASASAS childchildchild
INNERINNERINNER JOINJOINJOIN
{ FromFromFrom: {"db.people.find({’emails ’:{$ne: null }})" },

ProjectProjectProject: {$.emails.*, $.id ASASAS ?y},
WhereWhereWhere: {isNotNullisNotNullisNotNull($.emails .*), isNotNullisNotNullisNotNull($.id),

equalsequalsequals($.emails .*," john@foo.com"),
sparqlFiltersparqlFiltersparqlFilter (?x != ?y)}} ASASAS parentparentparent

ONONON childchildchild/$.contacts .* = parentparentparent/$.emails .* )
ONONON {?x,?y}
FILTERFILTERFILTER (?x != ?y)

Listing 1.5. Optimization of transm(gp2) (Listing 1.4) by self-join elimination

terminology defined in [39]. We show how these optimizations can be adapted
to fit in the context of our abstract query language. In particular, we show that
our translation method implements some of these optimizations by construction.
In addition, we propose a new optimization, the Filter Propagation, that, to our
knowledge, was not proposed in any SPARQL-to-SQL rewriting method.

Filter Optimization. In a naive approach, strings generated by R2RML
templates are dealt with using an SQL comparison of the resulting strings rather
than the database values used in the template. Typically, when the translation of
an R2RML template relies on the SQL string concatenation, a SPARQL query
can ben rewritten into something like this:

SELECT ... FROM ... WHERE
(’http :// domain/’ || TABLE.ID) = ’http :// domain/1’

Such a query returns the expected results but is likely to perform very poorly:
due to the concatenation, the query evaluation engine cannot take advantage of
existing database indexes. Conversely, a much more efficient query would be:

SELECT (’http :// domain/’ || TABLE.ID)... FROM ...
WHERE TABLE.ID = 1

In our approach, equality conditions apply to xR2RML references rather than
on the template-generated values, hence the Filter Optimization is enforced by
construction.

Filter pushing. As mentioned earlier, the translation of a SPARQL filter
into an encapsulating SELECT WHERE clause lowers the selectivity of inner
queries, and the query evaluation process may have to deal with unnecessarily
large intermediate results. In our approach, Filter pushing is enforced by con-
struction by the sparqlCond function: relevant SPARQL conditions are pushed
down, as much as possible, in the translation of individual triple patterns.

Self-Join Elimination. A self-join may occur when several mappings share
the same logical source. This can lead to several triple patterns being translated



18 F. Michel et al.

into atomic abstract queries with the same From part. The Self-Join Elimination
consists in merging the criteria of several atomic queries into a single equivalent
query. In Listing 1.4, the atomic query in transTPm(tp2, true) and the second
atomic query in transTPm(tp3, c2) have the same From part and project the
same JSONPath expression as variable ?y. Using joins commutativity, those two
queries can be merged into a single one depicted in the third atomic abstract
query in Listing 1.58.

Self-Union Elimination. A UNION operator can be created either due to
the SPARQL UNION operator or during the translation of a triple pattern to
which several mappings are bound (in function transTPm). Analogously to the
Self-Join Elimination, a union of several atomic abstract queries sharing the
same logical source can be merged into a single query when they have the same
From part.

Constant Projection. The Constant Projection optimization detects cases
where the only projected variables in the SPARQL query are matched with
constant values in the bound mappings. In the relational database context, it
has been referred to as the Projection Pushing optimization [39]. Let us consider
the example query below:

SELECT DISTINCT ?p WHERE {?s ?p ?o}.

In a naive approach, all mappings are bound to the triple pattern ?s ?p ?o.
Hence, the resulting abstract query is a union of the atomic queries derived from
all the possible mappings. In other words, this query will materialize the whole
database before it can provide an answer. Very frequently, xR2RML predicate
maps are constant-valued: the predicate is not computed from a database value,
on the contrary it is defined statically in the mapping. This is typically the
case in our running example that has only constant predicate maps (values of
property rr:predicate: foaf:knows and foaf:mbox (Listing 1.1). In such cases,
given that the SPARQL query retrieves only DISTINCT values of the predicate
variable ?p, no query needs to be run against the database at all: it is sufficient to
collect the distinct constant values that variable ?p can be matched with. More
generally, this optimization checks if the variables projected in the SPARQL
query are matched with constant term maps. If this is verified, the SPARQL
query is rewritten such that the values of the projected variables be provided as
an inline solution sequence using the SPARQL 1.1 VALUES clause. Using the
mapping graph of our running example, we would rewrite the query in this way:

SELECT DISTINCT ?p WHERE
{ VALUES ?p ( foaf:mbox foaf:knows )}

Filter Propagation. We identified another type of optimization that was
not implemented in the SPARQL-to-SQL context. This optimization applies to
the inner join or left outer join of two atomic queries, and seeks to narrow down
one of the joined queries by propagating filter conditions from the other query. In
an inner join, if the two queries have shared variables, then equals and isNotNull

8Note that for a self-join elimination to be safe, additional conditions must be met,
that we do not detail here.
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AND(<exp1>, <exp2>, ...) → $andandand:[<exp1 >,<exp2 >,...]
OR(<exp1>, <exp2>, ...) → $ororor:[<exp1 >,<exp2 >,...]
WHERE(<JavaScript exp >) → $wherewherewhere:’<JavaScript exp >’
ELEMMATCH(<exp1 >,<exp2 >...) → $elemMatchelemMatchelemMatch:{<exp1 >,<exp2 >...}
FIELD(p1) ... FIELD(pn) → "p1. ... .pn":
SLICE(<exp >, <number >) → <exp >:{$slicesliceslice:<number >}
COND(equals(v)) → $eqeqeq:v
COND(isNotNull) → $existsexistsexists:truetruetrue , $nenene:nullnullnull
EXISTS(<exp >) → <exp >:{$existsexistsexists:truetruetrue}
NOT_EXISTS(<exp >) → <exp >:{$existsexistsexists:falsefalsefalse}
COMPARE(<exp >, <op>, <v>) → <exp >:{<op >:<v>}
NOT_SUPPORTED → ∅
UNION(<query1 >, <query2 >...) Same semantics as OR, although OR is processed

by the NoSQL engine whereas UNION is processed
by the query processing engine

Listing 1.6. Abstract representation of a MongoDB query and translation to a concrete
query string. <op> stands for one of the MongoDB comparison operators: $eq, $ne, $lt,
$lte, $gt, $gte, $size and $regex.

conditions of one query on those shared variables can be propagated to the other
query. In a left join, propagation can happen only from right to left query since
null values must still be allowed in the right query.

5 Application to the MongoDB NoSQL Database

In the previous section, we have exhibited an abstract query model and a method
to translate a SPARQL graph pattern into an optimized abstract query, relying
on the xR2RML mapping of a target database to RDF. We now want to illus-
trate the effort it takes to translate from the abstract query language towards a
concrete query language with a somewhat different expressiveness.

To this end, we consider the MongoDB NoSQL database. Its JSON-based
data model and its query language differ greatly from SQL-based systems for
which many rewriting works have been proposed. Hence, we believe that it should
provide an interesting illustration of our method. Besides, MongoDB has become
a popular NoSQL actor in recent years. It is provided as a service by major cloud
service providers and tends to become common within the scientific community,
suggesting that it is increasingly adopted as a commonplace database.

In this section, we first glance at the MongoDB query language, and we
describe an abstract representation of MongoDB queries (section 5.1). Then,
we show that the translation from the abstract query language towards Mon-
goDB is made challenging by the expressiveness discrepancy between the two lan-
guages (section 5.2) and we describe a complete method to achieve this. Finally,
we summarize the whole SPARQL-to-MongoDB process orchestration, from the
SPARQL graph pattern translation until the generation of the RDF triples that
match this graph pattern (section 5.3).
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5.1 The MongoDB Query Language

MongoDB comes with a rich set of APIs to allow applications to query a database
in an imperative way. In addition, the MongoDB interactive interface defines a
JSON-based declarative query language consisting of two query methods. The
find method retrieves documents matching a set of conditions and returns a cur-
sor to the matching documents. Optional modifiers amend the query to impose
limits and sort orders. Alternatively, the aggregate method allows for the defini-
tion of processing pipelines: each document of a collection passes through each
stage of a pipeline thereby creating a new collection. This allows for a richer
expressiveness but comes with a higher resource consumption that entails less
predictable performances. Thus, as a first approach, this work considers the find
query method, hereafter called the MongoDB query language.

The MongoDB find query method takes two arguments formatted as JSON
documents. The first argument describes conditions about the documents to
search for. Query operators are denoted by a heading ’$’ character. The optional
projection argument specifies the fields of the matching documents to return.
For instance, the query below matches all documents with a field “emails” and
returns only the “id” field of each matching document.

db.people.find ({" emails ": {$exists: true}}, {"id": true})

The MongoDB documentation provides a rich description of the find query
that however lacks precision as to the formal semantics of some operators. At-
tempts were made to clarify this semantics while underlining some limitations
and ambiguities: Botoeva et al. [7] mainly focus on the aggregate query and ignore
some of the operators we use in our translation, such as $where, $elemMatch,
$regex and $size. On the other hand, Husson [20] describes the find query, yet
some restrictions on the operator $where are not formalized.

Hence, in [22] we specified the grammar of the subset of the query lan-
guage that we consider. We also defined an abstract representation of MongoDB
queries, that allows for handy manipulation during the query construction and
optimization phases. Listing 1.6 details the constructs of this representation and
their equivalent concrete query string, when relevant. The NOT SUPPORTED
clause helps keep track of any location, within the query, where a condition can-
not translate into an equivalent MongoDB query element. It shall be used in the
last rewriting and optimization phase.

Let us consider the following abstract representation of a MongoDB query
(or “abstract MongoDB query” for short):

AND( COMPARE(FIELD(p) FIELD (0), $eq, 10),
FIELD(q) ELEMMATCH(COND(equals ("val")) )

It matches all documents where “p” is an array field whose first element (at
index 0) is 10, and “q” is an array field in which at least one element has value
“val”. Its concrete representation is:

$and: [ {"p.0": {$eq:10}},
{"q": {$elemMatch: {$eq:"val "}}} ]



Title Suppressed Due to Excessive Length 21

Fig. 2. Translation of atomic abstract queries into concrete MongoDB queries

5.2 Translation of an Abstract Query into MongoDB queries

Section 4 elaborated on how a SPARQL graph pattern translates into an ab-
stract query based on xR2RML mappings. Abstract operators INNER JOIN,
LEFT OUTER JOIN and UNION relate sub-queries. The lowest level of sub-
queries consists of atomic abstract queries of the form {From, Project, Where,
Limit}, that stem from the translation of individual triple patterns. The From
part contains the logical source of a mapping bound to the triple pattern to
translate. The Project part lists the xR2RML data element references that are
projected, i.e. that are part of the query result. In the context of MongoDB,
these xR2RML data element references are JSONPath expressions. The Where
part is calculated by matching triple pattern terms with relevant xR2RML term
maps. This generates conditions on JSONPath expressions (isNotNull conditions
for SPARQL variables or equals conditions for constant triple pattern terms) and
sparqlFilter conditions that encapsulate SPARQL filters. Finally, the Limit part
denotes an optional maximum number of results.

To achieve a translation from the abstract query language towards the Mon-
goDB query language, we must figure out which components of an abstract
query have an equivalent MongoDB rewriting, and, conversely, which compo-
nents shall be computed by the query-processing engine. Below, we analyze the
possible situations.
- Inner and left outer joins. MongoDB find queries do not support joins.
Consequently, there does not exist any MongoDB query that would be equiva-
lent to the INNER JOIN and LEFT OUTER JOIN operators. These operators
need to be processed by the query-processing engine by joining the RDF triples
generated for both sub-queries.
- UNION. The rewriting of the UNION operator depends on the graph patterns
to which it applies. Let us consider the following SPARQL graph pattern, where
tpn is any triple pattern: { tp1. tp2. } UNION { tp3. tp4. } Each member
of the union translates into an INNER JOIN. Since joins cannot be processed
within MongoDB, the outer UNION operator cannot be processed within Mon-
goDB either. The issue occurs likewise as soon as one of the members is either an
INNER JOIN or LEFT OUTER JOIN. Under some circumstances, a UNION
operator may be translated into the MongoDB $or operator. Yet, the Mon-
goDB language definition imposes specific restrictions as to how operators can
be nested. Consequently, in a first approach, we always shift the processing of the
UNION abstract operator to the query-processing engine. Further works could
attempt to characterize more specifically the situations where a UNION can be
processed within MongoDB.
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- FILTER and LIMIT. In section 4, we showed that the FILTER and LIMIT
SPARQL solution modifiers are pushed down into relevant atomic abstract queries
(as sparqlFilter conditions of the Where part or as the Limit part of an atomic
query, respectively). When FILTER and LIMIT SPARQL clauses cannot be
pushed down in atomic queries, they end up as abstract operators with the same
names, FILTER and LIMIT. The latter apply to abstract sub-queries made of
UNION, INNER JOIN and/or LEFT OUTER JOIN operators. Hence, given
that UNION and INNER/LEFT OUTER JOIN operators are not processed
within MongoDB, the FILTER and LIMIT operators cannot be processed within
MongoDB either.

Ultimately, it occurs that only the atomic abstract queries can be processed
within MongoDB, while other abstract operators shall be taken care of by the
query-processing engine. More generally, the translation from the abstract query
language towards MongoDB consists of two steps depicted in Fig. 2. In step 1
(detailed in section 5.2), the translation of each atomic abstract query towards
MongoDB amounts to translate projections of JSONPath expressions (Project
part) into MongoDB projection arguments, and conditions on JSONPath expres-
sions (Where part) into equivalent abstract MongoDB queries. Several shortcom-
ings may appear at this stage, such as unnecessary complexity or untranslatable
conditions. Thus, in step 2 (detailed in section 5.2) each abstract MongoDB
query is optimized and rewritten into valid, concrete MongoDB queries.

In the current status of this work, we do not consider the translation of
SPARQL filters (conditions sparqlFilter) for the sake of simplicity. SPARQL 1.0
filters come with a broad set of conditional expressions including logical com-
parisons, literal manipulation expressions (string, numerical, boolean), XPath
constructor functions, casting functions for additional data types of the RDF
data model, and SPARQL built-in functions (lang, langmatches, datatype, bound,
sameTerm, isIRI, isURI, isBlank, isLiteral, regex ). Handling these expressions
within the translation towards MongoDB would yield a significant additional
complexity without changing the translation principles though. Yet, an imple-
mentation should handle them for the sake of performance and completeness.

Translation of Projections and Conditions Two functions, named proj
and trans, handle the translation of the Project and Where parts of an atomic
abstract query respectively. Below, we illustrate their principles on an example.
The interested reader shall find their formal definition in [22].

In Listing 1.5, the third atomic abstract query is as follows (the sparqlFilter
condition has been omitted):

{FromFromFrom: {"db.people.find({’emails ’:{$ne: null }})"},
ProjectProjectProject: {$.emails.*, $.id ASASAS ?y},
WhereWhereWhere: {isNotNullisNotNullisNotNull($.emails .*), isNotNullisNotNullisNotNull($.id),

equalsequalsequals($.emails .*," john@foo.com") }}

Function proj converts the JSONPath expressions of the From part into a list
of paths to be projected. In the example, expressions $.emails.* and $.id trans-
late into their MongoDB projection counterparts: "emails":true and "id":true.
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Fig. 3. Complete SPARQL-to-MongoDB Query Translation and Evaluation

Function trans translates a condition of the Where part into a MongoDB
query element expressed using the abstract representation in Listing 1.6. In the
example, condition isNotNull($.emails.*) is translated into the following ab-
stract representation:

FIELD(emails) ELEMMATCH(COND(isNotNull)).
Later on, this abstract representation will be translated into an equivalent con-
crete query:

"emails": {$elemMatch: {$exists:true, $ne:null}}.
Similarly, condition isNotNull($.id) will be translated into: "id": {$exists:true,
$ne:null}, and condition equals($.emails.*,"john@foo.com") will be translated
into: "emails": {$elemMatch: {$eq:’john@foo.com’}}.

These conditions are used to augment the query of the From part, initially
provided by the mapping’s logical source. When we put all the pieces together,
the atomic abstract query is translated into the concrete MongoDB query below,
where all conditions are operands of an $and operator:

db.people.find(
# Query argument
{ $and: [

{" emails ": {$ne:null}}, # from the From part
{" emails ": {$elemMatch: {$exists:true ,$ne:null}}},
{"id": {$exists:true ,$ne:null}},
{" emails ": {$elemMatch: {$eq:’john@foo.com ’}}} ]

},
# Projection argument
{ "emails ": true , "id": true }

)

Optimization and Rewriting into Concrete MongoDB Queries In the
previous section, function trans produces abstract MongoDB queries that can be
rewritten into concrete queries straightaway. Yet, this rewriting may be hindered
by three potential issues:
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(i) During the translation process, nested OR or AND clauses may be produced,
as well as sibling WHERE clauses. Such unnecessary complexity may yield an
underperforming query.

(ii) It may not be possible to translate some JSONPath expressions into equiva-
lent MongoDB operators. This occurs with specific JSONPath array slice nota-
tions, or in JSONPath expressions assuming that the root document is an array
field and not a document field (which is forbidden in MongoDB). In such cases,
a NOT SUPPORTED clause tracks the location of this failed translation.

(iii) The MongoDB $where operator passes a JavaScript expression or function
to the query system. It provides greater flexibility than other operators, however
it is valid only in the top-level query document: it cannot be used inside a nested
query such as the $elemMatch operator. During the translation process though,
function trans may nest a WHERE clause beneath other clauses, yielding an
invalid query.

To take care of these issues, in [24] we described a post-translation function
rewrite, depicted by step 2 in Fig. 2. First, a set of rewriting rules address issue (i)
by flattening nested OR, nested AND and nested UNION clauses, and merging
sibling WHERE clauses.

To address issue (ii), these rules remove NOT SUPPORTED clauses while
ensuring that the resulting query returns a superset of the valid answers: all the
correct answers are returned, along with possibly incorrect answers. In turn, the
transformation of this superset into RDF triples shall produce all the triples that
match the SPARQL query, in addition to triples that may not match the query.
The latter are ruled out during the query evaluation process by running a late
SPARQL query evaluation.

A second set of rewriting rules address issue (iii) by “pulling up” WHERE
clauses at the top-level query. This is notably achieved by replacing OR clauses
with UNION clauses that have the same semantics but are processed differ-
ently. An OR clause represents the $or operator and is processed by MongoDB.
Conversely, the UNION clause has no equivalent MongoDB operator: it is pro-
cessed outside of MongoDB by the query processing engine. As a consequence,
an abstract MongoDB query may be rewritten into a union of valid, concrete
MongoDB queries.

Finally, Theorem 1 captures two key properties of the rewriting process. It
has been proved in [22].

Theorem 1. Let C be an equality or not-null condition on a JSONPath expres-
sion. Let Q = (Q1 ... Qn) be the abstract MongoDB query produced by trans(C).
Rewritability: It is always possible to rewrite Q into a query Q

′
= union(Q

′

1,
..., Q

′

m) such that ∀i ∈ [1,m] Q
′

i is a valid MongoDB query, i.e. Q
′

i does not
contain any not supported clause, and a where clause only shows at the
top-level of Q

′

i.

Completeness: Executing Q
′

against the database retrieves all the documents
matching condition C. If Q contains at least one not supported clause, then
Q

′
may retrieve additional documents that do not match condition C.
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A corollary of Theorem 1 is that, using the xR2RML mapping of a MongoDB
database to RDF, we can rewrite any SPARQL 1.0 graph pattern into an abstract
query whose atomic abstract queries are valid MongoDB queries or unions of
valid MongoDB queries.

5.3 Complete SPARQL-to-MongoDB Query Translation and
Evaluation

Fig. 3 summarizes the whole SPARQL-to-MongoDB process orchestration, from
the graph pattern translation to the subsequent MongoDB queries evaluation
and the production of RDF triples.

In step 1, function transm (section 4.1) translates a SPARQL graph pattern
into an abstract query under a set of xR2RML mappings denoted by m. It
leverages function transTPm (section 4.3) to translate a triple pattern tp into
an abstract query under the set of mappings bound to tp by function bindm

(section 4.2). The resulting abstract query contains atomic abstract queries of the
form {From, Project, Where, Limit}, combined with abstract operators INNER
JOIN, LEFT OUTER JOIN, UNION, FILTER, LIMIT. The Project part of an
atomic abstract query is a set of xR2RML references (i.e. JSONPath expressions
for MongoDB) that must be projected. The Where part consists of isNotNull,
equals and sparqlFilter conditions on JSONPath expressions. In step 2, function
proj translates each projected JSONPath expression into a MongoDB projection
argument, function trans translates each isNotNull and equals condition into an
abstract representation of a MongoDB query (section (section 5.2), and function
rewrite (section 5.2) optimizes and rewrites this abstract representation into a
concrete MongoDB query or a union of concrete MongoDB queries.

Two steps remain, that we have not described yet. In step 3, the concrete
queries are executed against the database. In step 4, the result JSON docu-
ments are translated into RDF triples according to the xR2RML mappings,
then the query processing engine evaluates the abstract query by computing the
INNER/LEFT OUTER JOIN, UNION, FILTER and LIMIT operators. Finally,
in case one atomic abstract query contained a NOT SUPPORTED clause, a late
SPARQL evaluation is performed to rule out the RDF triples that do not match
the query (as explained in section 5.2).

6 Experimentation and Evaluation

To date, to our knowledge, the method proposed in this paper and the MongoDB-
enabled ontop software [8] are the only approaches meant to query arbitrary
MongoDB documents with SPARQL. So far though, this ontop version is not
available for test, which hinders possible performance comparison. Addition-
ally, no benchmark similar to the Berlin SPARQL Benchmark for relational
databases [6] exists so far for querying NoSQL databases with SPARQL.

Therefore, in this section, we describe a real-world use case that we used to
build a test database, and we report experimental results with respect to the
effectiveness and performance of our approach.
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6.1 Prototype Implementation

Morph-xR2RML is the prototype implementation we developped to evaluate the
effectiveness of the xR2RML mapping language and the SPARQL-to-MongoDB
method proposed in this paper. It comes with connectors for the MySQL and
Postgres relational databases, and for the MongoDB document store. It can
process an xR2RML mapping graph in either the data materialization or the
query rewriting modes.

Morph-xR2RML is available on GitHub9 under the Apache 2.0 license, it
is written in the Scala programming language. It is based on and extends the
Morph-RDB[29] R2RML implementation. We performed a substantial code refac-
toring in order to isolate any RDB-related code into a dedicated software mod-
ule. As a result, our prototype is extensible by design: supporting a new type
of database amounts to create a new software module that implements a given
set of interfaces, thereby encapsulating and isolating any database-specific con-
cerns from the rest of the project code. Following this approach, we developed
a connector for the MongoDB document store, to translate MongoDB JSON
documents into RDF and rewrite SPARQL queries into MongoDB queries.

Morph-xR2RML relies on several open-source Java APIs, the most salient
ones are listed here. Jena10 is a well known Java framework consisting of several
APIs meant to build Semantic Web Data applications. We use the Jena RDF API
that helps handle RDF triples and graphs. MongoDB comes with a native Java
API11 that allows for imperative style querying only. The Jongo API12 builds
on top of it to translate a declarative MongoDB query (a find query in our case)
into imperative code. Lastly, Jayway JsonPath13 is a Java implementation of the
JSONPath language.

The query rewriting experimentation we report in this section was conducted
on a server equipped with a 3.0 GHz CPU with two physical cores, and 8 GB
RAM. The MongoDB engine and the Morph-xR2RML Java virtual machine
alike were running on the same server. The Java virtual machine was allowed a
maximum of 4 GB memory.

6.2 Experimentation Database

TAXREF[15] is the French national taxonomic register for fauna, flora and fun-
gus, maintained and distributed by the French National Museum of Natural
History (MNHN). It is a manually curated register of all the species invento-
ried in metropolitan France and overseas territories, organized as a hierarchy of
over 485.000 scientific names (in version 9) that mark a national and interna-
tional consensus. As an example, the listing below shows a JSON excerpt from
TAXREF’s Web service14, describing the common dolphin species (Delphinus

9https://github.com/frmichel/morph-xr2rml/
10http://jena.apache.org/
11https://mongodb.github.io/mongo-java-driver/
12http://jongo.org/
13https://github.com/json-path/JsonPath
14https://taxref.mnhn.fr/taxref-web/api/doc
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delphis). Annotation "habitat":1 states that it lives in a marine habitat, anno-
tation "rang":"ES" states that the taxon belongs to the “species” taxonomical
rank. Annotation "fr":"P" characterizes one of its biogeographical statuses: it
states that Delphinus delphis is present in mainland France.

{
"codeTaxon ":"60878" ,
"codeReference ":"60878" , "codeParent ":"191591" ,
"rang ":"ES",
"libelleNom ":" Delphinus delphis",
"libelleAuteur ":" Linnaeus , 1758" ,
"nomVernaculaire ":" Dauphin commun",
"nomVernaculaireAnglais ":" Common Dolphin",
"url":" http :// inpn.mnhn.fr/espece/cd_nom /60878" ,
"habitat ":"1",
"fr":"P",
(...)

}

We are involved in an on-going collaboration with TAXREF experts from
MNHN, aimed to publish TAXREF on the Web of Data as a SKOS thesaurus [9].
In this context, we imported into a MongoDB database the JSON representation
of TAXREF v9.0, wherein each of the 485.189 JSON documents accounts for one
scientific name, may it be a taxon reference of synonymous name. Listing 1.7
exemplifies the SKOS modeling with taxon Delphinus delphis and its synonym
Delphinus vulgaris. The taxon is represented as a SKOS concept (line 10). The
skos:broader property models the relationships towards the parent taxon in the
classification (line 13), i.e. genus Delphinus in this example. The taxon reference
and synonymous names are represented as SKOS-XL labels (lines 23-33), referred
to with properties skosxl:prefLabel and skosxl:altLabel respectively (lines 14-
15). The taxonomical rank, habitat and bio-geographical status are properties
of the SKOS concept (lines 16-21), while the authorities and vernacular names
are properties of SKOS labels (lines 25-27 and 31-33).

Leveraging this existing database, we set up an experimentation of the SPARQL-
to-MongoDB query rewriting. In the next section, we shortly describe the xR2RML
mappings designed for the experimentation.

1 @prefix txrp: <http :// inpn.mnhn.fr/taxref/properties/> .
2 @prefix txrbgs: <http :// inpn.mnhn.fr/taxref/bioGeoStatus#> .
3 @prefix nt: <http :// purl.obolibrary.org/obo/ncbitaxon#> .
4 @prefix dwc: <http ://rs.tdwg.org/dwc/terms/> .
5 @prefix txn: <http ://lod.taxonconcept.org/ontology/txn.owl#> .
6 @prefix dct: <http :// purl.org/dc/elements /1.1/> .
7 @prefix skos: <http ://www.w3.org /2004/02/ skos/core#> .
8 @prefix skosxl: <http :// www.w3.org /2008/05/ skos -xl#> .
9

10 <http :// inpn.mnhn.fr/taxref /9.0/ taxon /60878 > a skos:Concept ;
11 skos:inScheme <http :// inpn.mnhn.fr/taxref /9.0/ Taxref > ;
12 skos:note "Delphinus delphis" ;
13 skos:broader <http :// inpn.mnhn.fr/taxref /9.0/ taxon /191591 > ;
14 skosxl:prefLabel <http :// inpn.mnhn.fr/taxref/label /60878 > ;
15 skosxl:altLabel <http :// inpn.mnhn.fr/taxref/label /577834 > ;
16 txrp:habitat <http :// inpn.mnhn.fr/taxref/habitat#Marine > ;
17 nt:has_rank <http :// inpn.mnhn.fr/taxref/taxrank#Species > ;
18 txrp:bioGeoStatusIn [
19 rdfs:label "Metropolitan France" ;
20 dct:spatial <http ://sws.geonames.org /3017382/ > ;
21 dwc:locationId "TDWG:FRA; WOEID :23424819" ;
22 dwc:occurrenceStatus txrbgs:P ] .
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23
24 <http :// inpn.mnhn.fr/taxref/label /60878 > a skosxl:Label ;
25 txrp:isPrefLabelOf <http :// inpn.mnhn.fr/taxref /9.0/ taxon /60878 > ;
26 txn:authority "Linnaeus , 1758" ;
27 txrp:vernacularName "Common Dolphin"@en , "Dauphin commun"@fr ;
28 skosxl:literalForm "Delphinus delphis" .
29
30 <http :// inpn.mnhn.fr/taxref/label /577834 > a skosxl:Label ;
31 txrp:isAltLabelOf <http :// inpn.mnhn.fr/taxref /9.0/ taxon /60878 > ;
32 txn:authority "Lacepede , 1804" ;
33 txrp:vernacularName "Common Dolphin"@en , "Dauphin commun"@fr ;
34 skosxl:literalForm "Delphinus vulgaris" .

Listing 1.7. SKOS representation of the Delpinus delphis taxon

6.3 Experimentation xR2RML Mapping Graph

The xR2RML mapping graph designed to generate the TAXREF-based SKOS
thesaurus is provided in the xR2RML GitHub repository15. It consists of 90
mappings, a somewhat high number that spawns from the distance between
the internal structure of TAXREF JSON documents and the targeted SKOS
modeling. We illustrate this distance with an example.

Habitats are coded in TAXREF with integer values, e.g. value ‘1’ repre-
sents the marine habitat, ‘2’ represents fresh water, etc. Translating the marine
habitat into URI http://inpn.mnhn.fr/taxref/habitat#1 would be straightfor-
ward using a template that would append the value read from the database
to http://inpn.mnhn.fr/taxref/habitat#. A single mapping would be sufficient
to generate the triples related to all types of habitat. However, our modeling
targets the generation of more meaningful URIs that cannot be generated by
a template, e.g. http://inpn.mnhn.fr/taxref/habitat#Marine; instead, we must
write a mapping whose query filters only taxa with habitat ’1’:
<#TM_Habitat_Marine >
xrrxrrxrr:logicalSourcelogicalSourcelogicalSource [ xrrxrrxrr:queryqueryquery """db.taxrefv9.find(

{$where: ’this.codeTaxon ==this.codeReference ’,
’habitat ’:’1’} )""" ];

rrrrrr:subjectMapsubjectMapsubjectMap <#SM_Taxon >;
rrrrrr:predicateObjectMappredicateObjectMappredicateObjectMap [
rrrrrr:predicatepredicatepredicate txrfp:habitat;
rrrrrr:objectMapobjectMapobjectMap [
rrrrrr:constantconstantconstant
<http :// inpn.mnhn.fr/taxref/habitat#Marine >;

rrrrrr:termTypetermTypetermType rrrrrr:IRIIRIIRI ]].

Such a mapping must be written for each of the 8 habitat values. A similar situ-
ation is observed for the 48 taxonomical ranks and 30 bio-geographical statuses,
that all comme with dedicated mappings.

6.4 Experimentation Results

In section 5, we showed that atomic abstract queries can be translated into
equivalent MongoDB queries, but other operators of the abstract query lan-
guage (INNER JOIN, LEFT OUTER JOIN, UNION) must be computed by the

15xR2RML mapping graph for TAXREF v9: https://github.com/frmichel/morph-
xr2rml/blob/master/morph-xr2rml-dist/example taxref/xr2rml taxref v9.ttl



Title Suppressed Due to Excessive Length 29

Table 1. Execution time of SPARQL queries with one triple pattern

Q. Id
Query semantics and

SPARQL triple pattern
No.

results

Exec.
time
± std
dev.
(ms)

Exec.
time
per

result
(ms)

Q0
Find the reference name for taxon 60587
?t skosxl:prefLabel
<http://inpn.mnhn.fr/taxref/label/60587>

1
451
± 36

451.00

Q1
Get synonyms of taxon 95372
<http://inpn.mnhn.fr/taxref/9.0/taxon/95372>

skosxl:altLabel ?a
164

522
± 14

3.18

Q2

Get all bio-geographical statuses in
St Pierre et Miquelon
?bgs dct:spatial
<http://sws.geonames.org/3424932/>

4835
4.056
± 65

0.84

Q3
Get all bio-geographical statuses in Guadeloupe
?bgs dct:spatial
<http://sws.geonames.org/3579143/>

17956
9665
± 45

0.54

Q4

Get all bio-geographical statuses in
New Caledonia

?bgs dct:spatial
<http://sws.geonames.org/2139685/>

35703
17289
± 78

0.48

Q5
Get bio-geographical statuses in mainland France
?bgs dct:spatial
<http://sws.geonames.org/3017382/>

128018
61645
± 671

0.48

Q6
Get all taxa (that are SKOS concepts)
?c a skos:Concept

227224
108508
± 459

0.48

query-processing engine, i.e. Morph-xR2RML. Therefore, a first series of tests
aimed to assess the performance of Morph-xR2RML with a SPARQL query con-
sisting of a single triple pattern, bound to exactly one mapping and producing
a single MongoDB query (section 6.4). In a second series of tests, we measured
the completion time of SPARQL queries involving joins and/or unions, and we
compared them to the time needed for a single triple pattern. Furthermore,
we measured the gain obtained by performing optimizations at the level of the
abstract query (section 6.4).

Processing a Single Triple Pattern To measure the performance of Morph-
xR2RML in the case of a single triple pattern translated into a single MongoDB
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Fig. 4. Average query processing time as a function of the number of results. Dotted
lines represent the linear regression lines of both series.

Fig. 5. Processing time overhead imposed by Morph-xR2RML, compared to a direct
database query. The overhead comprises rewriting the SPARQL query and translating
the MongoDB results into RDF triples

query, we selected seven SPARQL SELECT queries (Q0 to Q6) tailored to pro-
duce an increasing number of results: from 1 result in Q0 to 227,224 results in
Q6. In each case, one JSON document yields one RDF triple. Table 1 lists each
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Fig. 6. Overhead of querying MongoDB through the Jongo API compared to a direct
query through MongoDB’s Java API

query along with the corresponding triple pattern and semantics, the number of
results it retrieves from the database, and the average time it took to process
the query (the query processing spans the SPARQL query rewriting, the query
evaluation against MongoDB and the RDF triples generation). For each query,
10 measures were performed: we report the average value and standard devia-
tion. The last column gives the average processing time per query result, that
converges towards 0.48ms.

Figure 4 depicts the average query processing time (fourth column of Table 1)
as a function of the number of results (blue line). Since Morph-xR2RML relies on
the Jongo API to process a MongoDB query, we also measured the time needed
by Jongo to parse the query, pass it on to MongoDB and retrieve the results from
MongoDB. Red dots represent the measures when simply querying MongoDB
with Jongo, while blue dots represent the measures of the whole process executed
by Morph-xR2RML.

The distance between the two lines gives an estimation of the overhead im-
posed by Morph-xR2RML to rewrite the query and generate the triples. Figure 5
depicts this overhead. The confidence for Q0 and Q1, and to some extend for
Q2, is very low as attested by the large error bars. Indeed, materializing a few
triples is barely measurable (<1ms for Q0, and in the order of 30ms for Q1),
such that the measure is very sensitive to environment variations. Conversely,
the confidence for Q3 to Q6 is quite high. Q3, Q4 and Q5 show a similar over-
head of approximately 19%. Although we could expect the overhead percentage
to be constant with higher numbers of results, it reaches 32% for Q6. A detailed
analysis shows that the difference lies in the time needed to generate the RDF
triples. Compared to Q5, the number of results in Q6 increases by 77% while
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the materialization time increases by 120%. The variable term in Q3, Q4 and
Q5 is a blank node whereas it is a URI in Q6. A tentative explanation is that
Morph-xR2RML may be faster when producing blank nodes than when produc-
ing URIs, unless this difference lies in the Jena API on which Morph-xR2RML
relies to handle RDF triples. Further works should consider using more sub-
stantial databases to assess this difference with more precision. In any case, the
processing performed by Morph-xR2RML adds no more than a 30% overhead
to the time needed to query the database and retrieve the results.

Yet, waiting 10 seconds to get 18000 results (query Q3) can be considered
surprisingly long compared to native RDF triple stores. To investigate this ques-
tion, we compared the time it takes to run a query (i) through the Jongo API
(the case of Morph-xR2RML) and (ii) directly through MongoDB’s own Java
API. The results are presented in Figure 6. Surprisingly, they attest that, while
Jongo is efficient for few results (in the order of 100), it entails a significant
overhead for larger results: 116% overhead for query Q6 (i.e. using Jongo more
than doubles the query time). Jongo’s authors argue that the library is almost
as fast as querying MongoDB directly, under the assumption that the mar-
shalling/unmarshalling of JSON documents is left to Jongo. Morph-xR2RML
retrieves JSON documents from Jongo as Java strings in order to evaluate them
with JSONPath expressions. It is likely that converting documents to strings
and evaluating them with a third-party JSONPath library significantly impairs
performances. Further investigation should be conducted to figure this out more
precisely, keeping in mind that solving this issue could approximately save a
factor 2 during the processing of large result sets.

Impact of Query Optimizations In this section, we measure the completion
time of two example SPARQL queries involving joins. Notably, we measure the
gain obtained by performing optimizations at the level of the abstract query,
namely the self-join elimination and the filter propagation. Additional example
queries are reported in [22] along with measures of the impact of the self-union
elimination and the constant projection optimizations.

Join Query, Self-Join Elimination. SPARQL query Q7, depicted be-
low, looks for taxa (variable ?t) that are present in the overseas collectivity of
Saint-Pierre-et-Miquelon (http://sws.geonames.org/3424932/). The graph pat-
tern matches 12,708 triples that yield a SPARQL result set of 4,236 solutions.

SELECTSELECTSELECT * WHEREWHEREWHERE {
?t taxrefprop:bioGeoStatusIn ?bgs . # tp1
?bgs dct:spatial

<http :// sws.geonames.org /3424932/ > . # tp2
?bgs dwc:occurrenceStatus taxrefbgs:P . # tp3

}

Executed separately, the first triple pattern would be bound to 15 mappings
(one for each geographical location) and would yield 311,489 RDF triples; the
second one would be bound to one mapping and would yield 4,835 triples, and
the third one would be bound to 15 mapping and would yield 260,631 documents.
Executed as such, query Q7 completes in almost 10 minutes (600s).
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[ { BindingBindingBinding(tp1: ?t taxrefprop:bioGeoStatusIn ?bgs -> TM_SBG_SPM)
FromFromFrom : db.taxrefv9.find({$where:’this.codeTaxon ==this.codeReference ’,

’spm ’:{$ne:’’},’spm ’:{$ne:null }})
ProjectProjectProject: $.codeTaxon ASASAS ?t, $.codeTaxon ASASAS ?bgs
WhereWhereWhere : isNotNullisNotNullisNotNull($.codeTaxon) }

] INNERINNERINNER JOINJOINJOIN [
[ { BindingBindingBinding(tp2: ?bgs dct:spatial http :// sws.geonames.org /3424932/

-> TM_SBG_SPM_BN2)
FromFromFrom : db.taxrefv9.find({$where:’this.codeTaxon ==this.codeReference ’,

’spm ’:{$ne:’’}, ’spm ’:{$ne:null }})
ProjectProjectProject: $.codeTaxon ASASAS ?bgs
WhereWhereWhere : isNotNullisNotNullisNotNull($.codeTaxon) }

] INNERINNERINNER JOINJOINJOIN [
{ BindingBindingBinding(tp3: ?bgs dwc:occurrenceStatus taxrefbgs:P ->TM_SBG_SPM_BN1)

FromFromFrom : db.taxrefv9.find({$where:’this.codeTaxon ==this.codeReference ’,
’spm ’:{$ne:’’}, ’spm ’:{$ne:null }})

ProjectProjectProject: $.codeTaxon ASASAS ?bgs)
WhereWhereWhere : isNotNullisNotNullisNotNull($.codeTaxon), equalsequalsequals($.spm , P) }

] ONONON ?bgs
] ONONON ?bgs

{ BindingBindingBinding(tp1: ?t taxrefprop:bioGeoStatusIn ?bgs -> TM_SBG_SPM),
BindingBindingBinding(tp2: ?bgs dct:spatial http :// sws.geonames.org /3424932/

-> TM_SBG_SPM_BN2),
BindingBindingBinding(tp3: ?bgs dwc:occurrenceStatus taxrefbgs:P -> TM_SBG_SPM_BN1)
FromFromFrom : db.taxrefv9.find({$where:’this.codeTaxon == this.codeReference ’,

’spm ’:{$ne:’’}, ’spm ’:{$ne:null }})
ProjectProjectProject: $.codeTaxon ASASAS ?t, $.codeTaxon ASASAS ?bgs
WhereWhereWhere : isNotNullisNotNullisNotNull($.codeTaxon), equalsequalsequals($.spm , P)

}

Listing 1.8. Top: rewriting of the graph pattern of query Q7 after bindings reduction.
Bottom: the same query after self-join elimination.
Compared to the notation used in previous sections, each atomic abstract query con-
tains heading lines providing the binding(s) of the triple pattern(s) that this atomic
query accounts for, denoted by Binding(triple pattern -> mapping name).

The binding reduction step (section 4.2) removes all but one mapping bound
to the first and third triple patterns. The query now amounts to the join of three
atomic abstract queries depicted in Listing 1.8 (top). The first and second atomic
queries yield 4,835 RDF triples while the third query yields 4,236 triples. Under
such reduced bindings, query Q7 completes in 8.53s in average, the querying to
MongoDB accounts for 47% of this total time, the generation of the RDF triples
accounts for 11% and the processing of joins for 39%.

A closer look to the abstract query shows that it contains two self-joins that
can be eliminated for the following reasons: (i) all three queries share the same
From part (the logical source), (ii) they are joined on the ?bgs variable that
is always projected from the same reference $.codeTaxon, and (iii) $.codeTaxon

is declared as a unique identifier in at least one mapping bound to the three
triple patterns (with property xrr:uniqueRef). This self-join elimination yields
an optimized query that now consists of a single atomic query depicted in Listing
1.9 (bottom). Note that the Project and Where parts have been merged, and
the three bindings now apply to this atomic query: the same MongoDB query is
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[{ BindingBindingBinding (?t skosxl:prefLabel http :// inpn.mnhn.fr/taxref/label /60585
-> TM_Taxon_PrefLabel)

FromFromFrom : db.taxrefv9.find( {
$where: ’this.codeTaxon ==this.codeReference ’ } )

ProjectProjectProject: $.codeTaxon ASASAS ?t
WhereWhereWhere : isNotNullisNotNullisNotNull($.codeTaxon), equalsequalsequals($.codeTaxon , 60585) }

] INNERINNERINNER JOINJOINJOIN [
[{ BindingBindingBinding (?t skosxl:altLabel ?a -> TM_Taxon_AltLabel)

FromFromFrom : db.taxrefv9.find( {
$where: ’this.codeTaxon !=this.codeReference ’ } )

ProjectProjectProject: $.codeReference ASASAS ?t, $.codeTaxon ASASAS ?a
WhereWhereWhere : isNotNullisNotNullisNotNull($.codeReference), isNotNullisNotNullisNotNull($.codeTaxon) }

] INNERINNERINNER JOINJOINJOIN [
{ BindingBindingBinding (?t skosxl:altLabel ?b -> TM_Taxon_AltLabel)

FromFromFrom : db.taxrefv9.find( {
$where: ’this.codeTaxon !=this.codeReference ’ } )

ProjectProjectProject: $.codeReference ASASAS ?t, $.codeTaxon ASASAS ?b
WhereWhereWhere : isNotNullisNotNullisNotNull($.codeReference), isNotNullisNotNullisNotNull($.codeTaxon) }

] ONONON ?t
] ONONON ?t

Listing 1.9. Rewriting of the graph pattern of query Q8.

used to generate RDF triples matching the three triple patterns. This optimized
query completes in 2,966ms in average, i.e. a 65% gain compared to the query
with reduced bindings.

Filter Propagation. SPARQL query Q8, pictured herebelow, retrieves the
taxon (variable ?t) whose preferred label has a certain URI, alongside two of its
alternate labels (variables ?a and ?b).

SELECTSELECTSELECT * WHEREWHEREWHERE {
?t skosxl:prefLabel

<http :// inpn.mnhn.fr/taxref/label /60585 > .
?t skosxl:altLabel ?a .
?t skosxl:altLabel ?b .
FILTERFILTERFILTER (?a != ?b)

}

In a first step, Q8 translates into the inner join of three atomic abstract
queries, portrayed in Listing 1.9. The first atomic query retrieves 1 document
from the database, while the second and third queries retrieve 257,965 documents
each. Executed naively, the inner-most join computes the join of 257,965 triples
with another 257,965 triples generated from the same database documents. With
a smarter join ordering, the triple produced by the first atomic query is joined
with the 257,965 triples of the second one to produce two triples (taxon 60585
has two synonyms), that, in turn, are joined with the 257,965 triples of the third
query. Yet, two joins of 257,965 triples with one then two triples have to be
performed. Some tests show that the time needed to complete this query is in
the order of 4 minutes.

The Filter Propagation optimization leverages some situations where, within
the join of two sub-queries, a condition on a variable shared by both sub-
queries can be propagated from one sub-query to the other. In the example,
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[{ BindingBindingBinding (?t skosxl:prefLabel http :// inpn.mnhn.fr/taxref/label /60585
-> TM_Taxon_PrefLabel)

FromFromFrom : db.taxrefv9.find( {
$where: ’this.codeTaxon ==this.codeReference ’ } )

ProjectProjectProject: $.codeTaxon ASASAS ?t
WhereWhereWhere : isNotNullisNotNullisNotNull($.codeTaxon), equalsequalsequals($.codeTaxon , 60585) }

] INNERINNERINNER JOINJOINJOIN [
[{ BindingBindingBinding (?t skosxl:altLabel ?a -> TM_Taxon_AltLabel)

FromFromFrom : db.taxrefv9.find( {
$where: ’this.codeTaxon !=this.codeReference ’ } )

ProjectProjectProject: $.codeReference ASASAS ?t, $.codeTaxon ASASAS ?a
WhereWhereWhere : isNotNullisNotNullisNotNull($.codeTaxon), equalsequalsequals($.codeReference , 60585) }

] INNERINNERINNER JOINJOINJOIN [
{ BindingBindingBinding (?t skosxl:altLabel ?b -> TM_Taxon_AltLabel)

FromFromFrom : db.taxrefv9.find( {
$where: ’this.codeTaxon !=this.codeReference ’ } )

ProjectProjectProject: $.codeReference ASASAS ?t, $.codeTaxon ASASAS ?b
WhereWhereWhere : isNotNullisNotNullisNotNull($.codeTaxon), equalsequalsequals($.codeReference , 60585) }

] ONONON ?t
] ONONON ?t

Listing 1.10. Rewriting of the graph pattern of query Q8 after enforcing the filter
propagation optimization.

the two joins are performed on variable ?t. The first atomic query projects
?t as expression $.codeTaxon and has condition equals($.codeTaxon, 60585).
In the second and third queries, variable ?t is projected as $.codeReference.
Therefore, the join condition can only be satisfied if expression $.codeReference

returns the value 60585. In other words, we can propagate the condition on
$.codeTaxon, equals($.codeTaxon, 60585) to the second and third queries as a
condition on $.codeReference: equals($.codeReference, 60585). The optimized
abstract query is pictured in Listing 1.10. The second and third queries now
only yield two RDF triples. Finally, the execution of this query lasts 565ms in
average, that is a gain factor in the order of 400.

7 Discussion and Perspectives

In the case of MongoDB, the processing of joins is shifted to the query processing
engine, and can ensue poor performances when joined sub-queries are not selec-
tive enough. Furthermore, real-world SPARQL queries often contain substantial
graph patterns with multiple joined triple patterns. It is therefore critical to be
able to process joins efficiently. Thus, beyond the optimizations that we imple-
mented at the abstract query level, query-plan optimization techniques shall be
investigated to help answer the following questions:

– Can we rewrite a SPARQL graph pattern in a way that facilitates the pro-
duction of an efficient abstract query?

– How to inject intermediate results into a subsequent query, as performed in
the bind join optimization [17]?

– How to reorder joins considering the number of results of sub-queries, in a
way similar to methods proposed by distributed query engines? [33,16,21]
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– Can we perform lazy evaluation of joins by progressively materializing triples
on each side of the join until the expected number of results is reached?
This would typically resemble the method employed in the non-blocking
evaluation of queries in the context of Triple Pattern Fragments [40].

Additionally, several leads could be investigated to overcome the limitations
of the translation from the abstract query language to MongoDB.

– Our method generates the RDF triples resulting from each atomic queries
and subsequently performs joins (INNER JOIN, LEFT OUTER JOIN). In
some cases though, joins may rule out many of the triples that were just
materialized. Hence, it should be studied when joins can be evaluated on the
database documents. This would typically rule out unnecessary documents
earlier in the process, thus saving the useless generation of RDF triples.

– Our implementation of xR2RML for MongoDB relies on JSONPath to ex-
tract data elements from MongoDB results. In turn, the SPARQL rewriting
process must handle conditions on JSONPath expressions. Consequently,
we have to cope with the expressiveness discrepancy between SPARQL and
MongoDB, and between JSONPath and MongoDB alike. While we must cope
with the earlier (our goal is specifically to access heterogeneous databases
with SPARQL), the latter is somewhat more an implementation choice.
Hence, an investigation should figure out whether considering a restricted
subset of JSONPath may produce a simpler solution while still enabling to
address most mapping situations.

– Beyond this, another promising lead is to determine what type of MongoDB
query should be used preferably: find or aggregate queries. We address this
question in section 7, as part of a broader discussion about the similarities
and discrepancies between our approach and that of ontop’s authors.

Comparison with the MongoDB-enabled ontop. To the best of our knowl-
edge, the only other approach meant to access arbitrary MongoDB documents
with SPARQL has been proposed by the authors of ontop, Botoeva et al. [8].
This approach starts with deriving a set of type constraints (literal, object, ar-
ray) from the mapping assertions, called the MongoDB database schema. Then,
a relational view over the database is defined with respect to that schema, no-
tably by flattening array fields. A SPARQL query is rewritten into relational
algebra (RA) query, and RA expressions over the relational view are translated
into MongoDB aggregate queries. Similarly, we translate a SPARQL query into
an abstract representation (that is not relational algebra) under xR2RML map-
pings. To deal with the tree structure of JSON documents we use JSONPath
expressions. On the one hand, this avoids the definition of a relational view over
the database, but this comes with additional complexity in the translation pro-
cess, as translating conditions on JSONPath expressions is not straightforward.
On the other hand, the advantage of our method is that the query evaluation
relies on existing database indexes, whereas in the case of Botoeva et al., the
flattening step prevents from exploiting these indexes.
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The mappings are quite similar in both approaches although xR2RML is
more flexible: (i) class names (in triples ?x rdf:type A) and predicates can be
built from database values whereas they are constant in the approach proposed
by Botoeva et al., and (ii) xR2RML allows to turn an array field into an RDF
collection or container, while the latter approach only supports the multiple-
triples strategy.

Finally, the main differences pertain to the type of target query. Botoeva et
al. produce MongoDB aggregate queries, with the major advantage of ensuring a
semantics-preserving SPARQL-to-MongoDB query translation, thus delegating
the whole processing to MongoDB and making the query translation simpler.
In practice however, aggregate pipelines may perform poorly. To optimize them,
an option suggested by the authors is to decompose the pipeline into smaller
queries and have the query-processing engine perform the remaining steps. Our
approach works the other way around: it produces less-expressive MongoDB find
queries, leaving much more work to the query-processing engine. Nevertheless,
having the job done outside of the database engine allows to leverage extensive
works about smart query optimizations[17,33,16,21], whereas this is not possible
when the database performs an aggregate query in a black-box manner.

Typically though, in situations involving large joins, aggregate queries per-
form faster than find queries as they can leverage database indexes. In the future,
it would be interesting to assess whether we could characterize mappings with
respect to the type of query that shall perform best: single vs. multiple separate
queries, find vs. aggregate, and figure out a balance between the two approaches.

Furthermore, unlike ontop, xR2RML allows for rich JSONPath expressions
to evaluate a JSON document and generate RDF terms. In this matter, further
studies should figure out how to translate such expressions into aggregate queries.

8 Conclusion

The method proposed in this paper aims at fostering the development of SPARQL
interfaces to heterogeneous databases, as we believe this is a key to push the Web
of Data forward. In particular, we think that this should help to bridge the gap
between the Semantic Web and the NoSQL family of databases.

To achieve this goal without defining yet another SPARQL translation method
for each and every database, we proposed a two-phase approach. First, we de-
fined an abstract query language deriving from the syntax and semantics of
SPARQL. Utilizing the xR2RML mapping language and leveraging R2RML-
based SPARQL-to-SQL works, we introduced a generic method to translate a
SPARQL 1.0 graph pattern into an abstract query. We showed how optimiza-
tions can be beneficially enforced at this abstract level, saving subsequent work
at the level of a target database language. In a second phase, the abstract query
is translated into the query language of a target database. To demonstrate the
effectiveness of our approach, we applied it to the MongoDB NoSQL document
store. We devised a method to translate an abstract query into MongoDB find
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queries, and we showed that this translation is challenged by the expressiveness
discrepancy between SPARQL and the MongoDB query language.

Finally, we conducted an experimentation based on the real-world use case of
a taxonomical reference stored in a MongoDB database. Utilizing a mapping of
this database to a SKOS thesaurus, we first measured performances in the case
of single SPARQL triple patterns that translate into single MongoDB queries.
Then, we measured the performances of richer SPARQL queries and we demon-
strated the effectiveness of some of the optimizations performed at the level of
the abstract query language. We underlined some limitations of the translation
from the abstract query language to MongoDB, that can impair performances.
In section 7 we discuss several improvement leads that could be investigated.

From a broader perspective, we have shown that translating a SPARQL query
into efficient concrete queries can be challenging when it comes to address data
sources such as NoSQL databases. These systems are generally optimized for fast
storage and retrieval of vast collections of documents. They favor scalability, high
throughput and availability over consistency and query language expressiveness.
As a consequence, they often come with denormalized data models where redun-
dancy is common, and barely support joins. This is the case of other document
stores such as CouchDB that are designed in a way very similar to MongoDB.
Column family stores usually allow for a richer data model and provide a more
expressive query language. But although their columnar data model makes them
easily compared with relational systems, they often suffer the same limitations
as document stores with respect to the limited support of joins. Key-value stores
are designed for fast retrieval of data e.g. accessed by key. They are typically used
to implement cache systems, for which a very simple query language (consisting
essentially of put and retrieve by key operations) covers most use cases.

Consequently, it is likely that the hurdles we encountered with MongoDB will
be encountered with other NoSQL databases alike. The situation may not be so
much different for the last category of NoSQL databases, namely graph stores.
By nature, their data models are closer to RDF. Still, whereas RDF predicates
can be used with literal values as well as resources, graph databases such as
Neo4J16 manage literals (called node attributes) and other graph nodes in a
very different way. As a result, querying a graph database with SPARQL may
be more challenging that it seems, and we believe that our two-phase approach
may be relevant in this context too.
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32. Rodŕıguez-Muro, M., Rezk, M.: Efficient SPARQL-to-SQL with R2RML mappings.
Web Semantics 33, 141–169 (2015)

33. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: Fedx: Optimization
techniques for federated query processing on Linked Data. In: Proceedings of the
10th International Conference on Semantic Web (ISWC’11), pp. 601–616. Springer
(2011)

34. Sequeda, J., Tirmizi, S.H., Corcho, s., Miranker, D.P.: Survey of directly mapping
SQL databases to the Semantic Web. Knowledge Eng. Review 26(4), 445–486
(2011)

35. Sequeda, J.F., Miranker, D.P.: Ultrawrap: SPARQL execution on relational data.
Web Semantics 22 (2013)

36. Spanos, D.E., Stavrou, P., Mitrou, N.: Bringing Relational Databases into the
Semantic Web: A survey. Semantic Web Journal 3(2), 169–209 (2012)

37. Tomaszuk, D.: Document-oriented triplestore based on RDF/JSON. In: Logic, phi-
losophy and computer science, pp. 125–140. University of Bialystok (2010)

38. Unbehauen, J., Stadler, C., Auer, S.: Accessing Relational Data on the Web with
SparqlMap. In: Semantic Technology, pp. 65–80. Springer (2013)

39. Unbehauen, J., Stadler, C., Auer, S.: Optimizing SPARQL-to-SQL Rewriting. In:
Proceedings of Information Integration and Web-based Applications & Services
(iiWAS’13). p. 324. ACM (2013)

40. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L.,
De Meester, B., Haesendonck, G., Colpaert, P.: Triple pattern fragments: a low-
cost knowledge graph interface for the web. Web Semantics 37–38, 184–206 (2016)


	Bridging the Semantic Web and NoSQL Worlds: Generic SPARQL Query Translation and Application to MongoDB

