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Text-Dependent Speaker Verification:

Classifiers, Databases and RSR2015

Anthony Larcher∗, Kong Aik Lee, Bin Ma, Haizhou Li
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Abstract

The RSR2015 database, designed to evaluate text-dependent speaker verifi-
cation systems under different durations and lexical constraints has been col-
lected and released by the Human Language Technology (HLT) department
at Institute for Infocomm Research (I2R) in Singapore. English speakers were
recorded with a balanced diversity of accents commonly found in Singapore.
More than 151 hours of speech data were recorded using mobile devices.
The pool of speakers consists of 300 participants (143 female and 157 male
speakers) between 17 and 42 years old making the RSR2015 database one of
the largest publicly available database targeted for text-dependent speaker
verification. We provide evaluation protocol for each of the three parts of
the database, together with the results of two speaker verification system:
the HiLAM system, based on a three layer acoustic architecture, and an i -
vector/PLDA system. We thus provide a reference evaluation scheme and
a reference performance on RSR2015 database to the research community.
The HiLAM outperforms the state-of-the-art i -vector system in most of the
scenarios.
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1. Introduction

Speaker verification is the process to accept or reject an identity claim by
comparing two speech samples: one that is used as reference of the identity
and the other that is collected during the test from the person who makes
the claim. Under this generic definition, the claimant is free to provide any
utterance for comparison, with no constraints on duration, quality, record-
ing condition and lexical content of the speech sample. The performance
of speaker verification suffers from those many possible variabilities of the
spoken utterance, amongst which lexical content (Boies et al., 2004; Hébert,
2008) and channel variations (Kinnunen and Li, 2010; Kenny et al., 2007;
Wu et al., 2008; Vogt and Sridharan, 2008) are the most detrimental.

It is generally believed that speaker verification achieves better accuracy
when the lexical content of the test utterance matches that of the enroll-
ment material, especially in the case of short utterances (Boies et al., 2004;
Hébert, 2008). In this regard, two approaches have shown to be effective in
tackling the issue of lexical variability. The first approach consist of con-
ducting an a posteriori analysis of the speech samples to compensate for the
lexical mismatch between enrollment and test utterances (Boakye and Pe-
skin, 2004; Stolcke et al., 2012; Sturim et al., 2002; Vogt et al., 2009) while
the second approaches consider the case of cooperative speakers for whom
lexical variability can be easily reduced. Despite the higher flexibility of the
first approach, it suffers from two drawbacks. On one hand, the lexical anal-
ysis increases the computational cost of the verification task. On the other
hand, the lexical compensation may be limited by a strong lexical mismatch
as it is not possible to guaranty that enrollment and test lexicon overlap.
The second approach considers that a cooperative speaker can be asked to
pronounce a pre-defined sentence or phrase during both enrollment and test
phases. This process is called text-dependent speaker verification as opposed
to text-independent speaker verification in which no constraint is put on the
input lexicon. In other words, text-dependent speaker verification can be
defined as a speaker verification task in which the lexicon used during the
test phase is a subset of the lexicon pronounced by the speaker during the
enrollment (Hébert, 2008).

Compared to channel variability which usually resulted from uncontrol-
lable environmental factors, lexical variability is relatively more manageable
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if we can assume cooperative speakers. With the text-dependent assumption,
we achieve a higher accuracy with a shorter duration of both enrollment and
test phases by simply forcing the lexical content of the test utterance to
match the enrollment material. Therefore, text-dependent speaker verifica-
tion is well suited for commercial applications which ergonomic constraints
require high accuracy and short recording duration.

The absence of lexical constraint on the train/test utterances allows text-
independent technique to cover a wide range of applications such as forensic
authentication (Campbell et al., 2009; Mandasari et al., 2011), speaker clus-
tering (Silovsky et al., 2011; Brümmer and de Villiers, 2010) and speaker
mining (Karam et al., 2011). Moreover, research on text-independent task
is strongly supported by the international benchmarking events organized
by the National Institute of Standards and Technology (NIST) and the
large amount of data that is made available in this context (Martin and
Greenberg, 2009). For these reasons, a large scientific community focuses
on text-independent speaker verification, despite the commercial potential
of text-dependent speaker verification (Lee et al., 2013b; Hébert and Boies,
2005; Wagner et al., 2006; Dialogues Spotlight Technology, 2000; Gu and
Thomas, 1998). However, text-dependent speaker verification can be seen
as a sub-case of the text-independent task where enrollment and verifica-
tion utterances have similar duration and lexicon that aim to compensate for
the current insufficient performance of more flexible systems. Historically,
this statement is supported by a succession of improvements in the field of
text-independent speaker verification benefiting the text-dependent sub-case
(Schmidt and Gish, 1996; Dong et al., 2008; Aronowitz, 2012; Larcher et al.,
2012a).

Recent breakthroughs in terms of accuracy and robustness of text-independent
speaker verification systems were achieved at the cost of an intensive use
of development data. These improvements have been strongly supported
and motivated by the NIST and the Linguistic Data Consortium (LDC2)
which provide the community with increasingly more challenging data for
decades (Martin and Greenberg, 2010). While text-independent speaker ver-
ification is using more and more data to train robust systems, research on
text-dependency suffers from the lack of data. This leads to practical dif-

2http://www.ldc.upenn.edu/ (Accessed February 28, 2014)
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ficulty in adapting existing methods to this specific sub-case. For instance,
nine years after its introduction, no paper has been published on the use
of Joint Factor Analysis (Kenny and Dumouchel, 2004) for text-dependent
speaker verification to our best knowledge. This can partially be explained
by the lack of database to support the development of such systems for text-
dependent task.

The lack of data affects the text-dependent speaker verification research
in more than one way. The limitation of existing databases does not allow a
proper study of the effect of lexical variability that would condition the choice
of the constraint to put on the speaker. In addition, an overview of existing
databases conducted in Section 2 shows imbalanced representation of genders
in most of the available corpora when performance of automatic systems are
well known to differ across genders (Reynolds et al., 2000; Cumani et al., 2012;
Senoussaoui et al., 2011). Finally, the improvement of automatic verification
systems calls for a huge number of trials to allow statistically significant
performance measures.

In text-dependent speaker verification, the lexical content of the speech
data is especially important and there are many ways to constrain the lexicon
of the enrollment and test utterances. With different verification protocols,
we may need to fix the lexical constraint at different levels such as phone
(Matsui and Furui, 1993; Hebert and Heck, 2003), syllable, word (Rosenberg
et al., 1991; Kato and Shimizu, 2003) or sentence (BenZeghiba and Bourlard,
2006). Several studies have shown that preserving the lexical sequence within
the verification utterances could lead to a 50% relative reduction in terms of
error rate (Kato and Shimizu, 2003; Hébert, 2008). Therefore, the choice of
a specific protocol is critical from the application point of view as it would
strongly affects the accuracy. Nevertheless, very few studies have been con-
ducted to compare the effect of the different lexical constraints (Hébert,
2008), partly due to the lack of databases that could support a fair com-
parison study.

In this paper, we present the RSR2015 database that has been released
to the public by the Human Language Technology Department3 at I2R to
address some of the limitations of existing corpora (Larcher et al., 2012b).

3Institute for Infocomm Research, A?STAR, Singapore, http://hlt.i2r.a-star.

edu.sg/ (Accessed February 28, 2014)
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It was recorded as part of the efforts in the deployment of robust speaker
recognition for smart-home under the HOME2015 program (Lee et al., 2011),
which leads to its name of RSR2015 database. The RSR2015 database is
designed to support the research on text-dependent speaker verification and
to allow for comparison of verification systems under different lexical and
duration constraints. Involving 143 female and 157 male speakers for a total
of 151 hours of audio recording, the RSR2015 database is one of the largest
text-dependent speaker verification database publicly available, in terms of
speakers and lexical variability. The database is arranged into three parts
that address different scenarios. All three parts have been recorded in similar
conditions to guarantee a fair comparison between the tasks. The acquisi-
tion was realized on six mobile devices including different smart-phones and
tablets available commercially. Part I of the RSR2015 database has been
described in (Larcher et al., 2012b).

In the remaining of this paper, we first give an overview of existing
databases for text-dependent speaker verification. We summarize 23 databases
described in the literature by giving their main characteristics, strengths and
weaknesses. The RSR2015 database is then described in details in Section
3. In the following sections, we propose realistic evaluation protocols and
performance measures to allow a fair comparison of systems on the RSR2015
database. In Section 4, we give a survey of classifiers used for text-dependent
speaker verification before describing two state-of-the-art systems that are
evaluated on the RSR2015 database. Section 5 describes the protocols and
reports the performance of the two systems on the three parts of RSR2015
database. Section 6 provides the practical information about how to get
this database. We will also discuss some research directions and perspectives
regarding text-dependent speaker verification in Section 7.

2. Databases for text-dependent speaker verification

In this section, we present a survey of speech databases available for de-
velopment and evaluation of text-dependent speaker verification. Although
the given list of databases (Table 1) may not be exhaustive, it constitutes
the largest inventory in the literature to our best knowledge. Complementary
information about resources for speaker recognition can be found in (Camp-
bell and Reynolds, 1999) and a survey of multi-modal biometric databases
is given in (Faundez-Zanuy et al., 2006). It is also worth noting that there
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Table 1: Overview of existing databases including text-dependent speech material.

Database Year Modalities Ref.
# Speakers

Languages # Sessions Environment
Intersession Age

Male/Female Interval Info

YOHO 1995 Sp Campbell and Higgins (1994); Campbell (1995)
138

EN 14 Quiet 3 days no
106/32

BT-DAVID 1996 Sp,Vi Mason et al. (1996)
31

EN 5 Quiet days/months yes
15/16

M2VTS 1997 Sp,2Fa Pigeon and Vandendorpe (1997)
37

EN 5 Quiet 1 week no
30/7

PolyVAR 1997 Sp Chollet et al. (1996)
143

EN 1-229 Quiet days/months yes
85/58

OGI Speaker
1998 Sp Cole et al. (1998)

91
EN 12 Quiet/Noisy months/years yes

Recognition 43/48

XM2VTS 1999 Sp,Vi Messer et al. (1999)
295

EN 4 Quiet weeks/months no
158/137

Ahumada 2000 Sp Ortega-Garcia et al. (2000)
104

SP 6 Quiet > 11days yes
104/0

PolyCOST 2000 Sp Hennebert et al. (2000)
134

EN,EU 5-14 Quiet 3 days yes
74/60

Verivox 2000 Sp Karlsson (1999); Karlsson et al. (2000)
50

SW 2 Quiet same day no
50/0

SmartKom 2002 Sp,Ir,Vi Steininger et al. (2002)
45

GE 2 Quiet same day no
20/25

BANCA 2003 Sp,Vi Bailly-Bailliere et al. (2003)
208

EN,FR,IT,SP 12 Quiet/Noisy - no
104/104

BIOMET 2003 Sp,2Fa,3Fa,Fp,Hg,Sg Garcia-Salicetti et al. (2003)
91

FR 3 Quiet months yes
45/46

STC 2003 Sp ELDA - Evaluations and Language resources Distribution Agency (2003)
89

RU 1-15 Quiet months no
54/35

MyIdea 2005 Sp,Fp,Hg,Pp,Sg,Vi Dumas et al. (2005)
30

EN.FR 3 Quiet/Noisy days/months no
30/0

Valid 2005 Sp,Vi Fox et al. (2005)
106

EN 5 Quiet weeks yes
76/30

CCC-VPR2C2005
2006 Sp Zheng (2005)

10,000
PU 2 Quiet - no

10000 -/-

MIT-MDSVC 2006 Sp Woo et al. (2006)
88

EN 2 Quiet/Noisy days no
49/39

M3 2006 Sp,2Fa,Fp Meng et al. (2006)
39

CA,EN,PU 3 Quiet/Noisy months yes
29/10

BIOSEC 2007 Sp,2Fa,Fp,Is Fierrez et al. (2007); Toledano et al. (2008)
250

EN,SP 4 Quiet months yes
-/-

BioSecurID 2007 Sp,2Fa,Fp,Hg,Is,Ks,Pp,Sg Fierrez et al. (2010)
400

SP 4 Quiet months yes
-/-

MBioID 2007 Sp,2Fa,3Fa,Fp,Is,Sg Dessimoz et al. (2008)
120

EN,FR 2 Quiet same day yes
-/-

BioSecure 2010 Sp,Fp,Hg,Is,Sg,Vi Ortega-Garcia et al. (2010)
400

EU 2 Quiet months yes
-/-

UNMC-VIER 2011 Sp,Vi Wong et al. (2011)
123

EN 2 Quiet same day no
74/49

RSR2015 2012 Sp Larcher et al. (2012b)
300

EN 9 Quiet same day yes
157/143

The nomenclature for biometric modalities is as follows: 2Fa stands for Face 2D, 3Fa stands for Face 3D, Fp stands for Fingerprint, Hg stands for Hand geometry,

Ir stands for Infra-red video, Is stands for Iris, Ks stands for Keystrokes, Pp stands for Palm-print, Sg stands for Handwritten signature, Sp stands for speech and Vi

stands for Video.

Languages abbreviations are used as follows: CA stands for Cantonese, EN stands for English, EU stands for various European languages, FR stands for French, GE

stands for German, IT stands for Italian, PU stands for Putonghua, RU stands for Russian, SP stands for Spanish and SW stands for Swedish.

The number specified in column 5 corresponds to the number of speakers who completed all recordings for enrollment and test sessions given the standard protocol

released with the database. Additional recordings for impostor speakers are distributed with some of the databases (e.g. BT-DAVID, M3, Biosecure).

have been some reported results i the literature on databases that are not
publicly available (Li et al., 2002; Toledo-Ronen et al., 2011).

Our intention is to provide some context about the motivations of the
RSR2015 database but not to give an exhaustive description of existing
databases. Indeed, databases for text-dependent speaker verification have
been designed for various purposes and the diversity of protocols makes it
difficult for a fair comparison of the corpora. In the remaining of this section,
we discuss some of the main characteristics of the existing databases related
to the major challenges of text-dependent speaker verification.
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2.1. Demography
Population demographics are critically important when evaluating the

performance of speaker verification systems (Doddington, 2012). In speaker
verification, where development and evaluation of automatic systems are
driven by existing corpora, the population recorded for a database has to
be carefully selected. For specific applications, the population is selected to
be as representative as possible of the target population whereas databases
designed for generic research purpose tend to cover the largest possible pop-
ulation. In the remaining of this paper we consider the demography of the
population in terms of gender and age which are often considered as two
of the main criteria affecting speaker verification engines. For this reason,
the set of recorded speakers should be representative of the gender and age
distribution of the target population. Additionally, the population needs to
be large enough as improvement in performance of automatic speaker verifi-
cation systems requires enormous number of trials to ensure the results are
statistically significant (Doddington, 1998).

In practice, the size of the population, together with its representativeness
are limited by technical and pecuniary concerns. Interestingly, a large part of
the databases that include text-dependent speech material are multi-modal
databases, i.e., out of the 24 databases listed in Table 1, 14 are multi-modal.
The advantage of collecting multi-modal databases is twofold. First it allows
research on comparison and combination of modalities for person authenti-
cation (Marcel et al., 2010). Second, it pools the cost and complexity load
that goes along the collection of biometric samples. The huge effort that the
scientific community has put in collecting data to sustain the research on
biometrics in the past twenty years can be acknowledged from Table 1. Nev-
ertheless, the number of speakers enrolled in those database is still limited
as only 7 of the 24 entries in the table count more than 200 subjects.

Another limitation is the imbalanced gender representation that can be
observed from Figure 1. Out of the 19 databases for which the gender in-
formation is available, 8 can be considered as gender balanced with at least
45% of speakers for each gender while 7 of the databases include less than
30% of female speakers. This disequilibrium is especially damaging as the
performance of speaker verification systems is known to differ for male and
female speakers (Doddington, 2012). Furthermore, information about the
age is not always available (at least in the documentations publicly available
and listed in Table 1). The discrimination between speakers has been shown
to be more difficult when the age difference is small (Doddington, 2012).
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Figure 1: Comparison of the number of speakers per gender in publicly available databases
for text-dependent speaker recognition. Only databases for which the gender information
is available have been sorted by ascendant total number of speakers.

2.2. Lexical variability

Performances of speaker verification systems are known to be strongly
dependent on the condition of the speech material provided as input. For in-
stance, many studies have been carried out to estimate the impact of speech
duration (Vogt et al., 2008; Fauve, 2009; Kanagasundaram et al., 2011).
Other works have shown that discriminancy depends on the speech contents
that were used for enrollment and test, leading to the conclusion that, for a
fixed duration, different parts of an utterance might not be equally useful for
speaker verification (Amino and Arai, 2009; Kahn et al., 2010; Nosratighods
et al., 2010; Kahn et al., 2011). In text-dependent speaker verification where
both enrollment and test utterances are fixed, lexical content is especially
important as it can affect the accuracy of the system (Kato and Shimizu,
2003; Hébert, 2008). Thus, influence of the selected lexical content should
be studied when deploying a text-dependent speaker verification system.

2.2.1. Main stream protocols for speaker verification

In the past twenty years, large databases and their associated protocols
provided by the NIST have become a de facto standard for the evaluation of
text-independent speaker verification technologies (Martin and Greenberg,
2009). No such standard exists for the case of text-dependent speaker ver-
ification, making the comparison across systems difficult and multiplying
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the number of protocols reported in the literature. Nevertheless, two main
streams are reflected in the existing databases. In Yoho, M2VTS, Verivox and
Biosec, the lexical contents of the training and test utterances are strongly
constrained by using only digits, while databases such as SmartKom, STC,
CCC-VPR2C2005-10000 or MIT-MDSVC allow a wider lexical coverage by
using fixed phrases. Those two types of protocols are covered by databases
such as Polyvar, OGI speaker verification, XM2VTS, Ahumada, PolyCost,
BANCA, BioMet, MyIdea, Valid, M3, BiosecureID, MBioID, BioSecure or
UNMC-VIER which offer different sets of digits strings together with fixed
phrases. Most of the time, the lexical variability is limited to a few fixed
sentences and fixed digit strings. For instance, out of the 24 listed in Table
1, 10 databases contain less than 10 different sentences.

In order to increase the lexical coverage, some databases like PolyCost,
Banca, MyIdea or MIT-SDSVC include lexical content that varies across
speakers. Trials in which the impostor pronounces the text used by the
target speaker to enroll are produced by asking each subject to pronounce
the content of some other subjects. Under such protocol, the possibilities of
inter-speaker impostor trials are greatly limited as the impostors and target
don’t all speak the same speech content.

2.2.2. Languages for text-dependent speaker verification

As the lexical content is constrained by the language of the application
(Li et al., 2013) an important effort has been observed in the recent years to
provide the community with resources in languages such as French (Bailly-
Bailliere et al., 2003; Garcia-Salicetti et al., 2003; Dumas et al., 2005; Dessi-
moz et al., 2008), German (Steininger et al., 2002), Italian (Bailly-Bailliere
et al., 2003), Mandarin Chinese (Zheng, 2005; Meng et al., 2006), Russian
(ELDA - Evaluations and Language resources Distribution Agency, 2003),
Spanish (Ortega-Garcia et al., 2000; Bailly-Bailliere et al., 2003; Dessimoz
et al., 2008; Ortega-Garcia et al., 2010) or Swedish (Karlsson, 1999). A few
databases, mostly due to collaborative efforts within the European Union
(Hennebert et al., 2000; Bailly-Bailliere et al., 2003; Ortega-Garcia et al.,
2010), also include multi-lingual contents. However, 10 databases out of the
24 listed in Table 1 contain only English speech when another 6 include En-
glish contents in addition to another language. The omnipresence of English
in the existing protocol is mainly due to the fact that English speakers are
easily available in addition to the local ones (Dumas et al., 2005; Meng et al.,
2006; Fierrez et al., 2007; Toledano et al., 2008; Dessimoz et al., 2008) or that
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English is used as an international standard for historical reasons.

2.3. Session variability

The mismatch between enrollment and test utterances can be greatly re-
duced by matching the lexical content of both utterances, making the speaker
verification task easier when dealing with short duration (Hébert, 2008). Nev-
ertheless, other factors that we refer to as session variability still affect the
performance of speaker verification systems such as channel mismatch, am-
bient noise or intra-speaker variability. In the remaining of this article, the
term session is used to refer to recordings that differ by one or more element
such as environment, recording device or time.

Due to the complexity and the cost of data acquisition, especially for
the case of multi-modal corpora, most databases were recorded using the
same microphone and under controlled environment,which strongly limits the
channel and noise variability across sessions (e.g. Yoho, BT-David, M2VTS,
XM2VTS, Verivox, SmartKom, Biomet, STC, Biosec). Other databases fo-
cus especially on adverse condition by providing recordings of speakers in
various environments such as outdoor, in the street, in a public area like
building lobby or cafeteria (e.g. BANCA, MyIdea, MIT-MDSVC or M3).
Those databases are labeled as Noisy in the eighth column of Table 1 in
contrast to to other databases that do not explicitly address environment
mismatch. Finally, some databases include explicit channel mismatch with
speakers recorded on different devices but do not impose any background
noise or environment factors during the recording (e.g. PolyCOST or Poly-
VAR).

The number of sessions in text-dependent databases is often limited due
to the cost of recording which is proportional to the number of times and the
duration on which a speaker has to be mobilized. Amongst the 24 databases
listed in Table 1, 16 include less than 5 sessions per speaker (Table 1). A
number of databases have been recorded with a special attention to the time
interval between two sessions (e.g., OGI Speaker Recognition, Ahumada,
Biomet, Valid, etc.) to maximize the within speaker variability as influ-
ence of aging is well known in biometrics. However, (Lei and Hansen, 2009;
Lawson et al., 2009; Kelly and Harte, 2011; Kelly et al., 2012) show that,
for the case of text-independent speaker verification, aging effect only be-
comes significant after a period of several years that is only covered by the
OGI Speaker Recognition database (or by the Greybeard database for the
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case of text-independent speaker recognition4). On the contrary, other works
show significant degradation appearing after a period of months for the case
of text-dependent speaker verification (Furui, 1981b; Mistretta and Farrell,
1998). Those studies suggest that aging phenomenon is not well understood
yet and might differently affect text-dependent and text-independent speaker
verification.

3. RSR2015 database

The RSR2015 database was recorded in order to provide the community
with a sufficiently large dataset from a gender-balanced set of speakers. It
consists of recordings from 300 speakers in 9 sessions recorded with multiple
hand-phones and tablets. The 196,844 files resulting from this recording
contain 151 hours and 30 minutes of audio signal.

A special attention has been paid to the lexical content in order to al-
low for fair comparison of speaker verification systems under different lexical
constraints. Therefore, recordings of the 300 speakers are divided into three
parts, each dedicated to a specific task involving different lexical and duration
constraints. Part I of the RSR2015 database is dedicated to speaker verifi-
cation using fixed short pass-phrases. Part II is dedicated to speaker-loaded
command control (Lee et al., 2011). Part III is devoted to speaker verifi-
cation using randomly prompted digit strings. To allow a fair comparison
between use-cases, the three parts have been recorded in similar conditions
with the same speakers and channels.

3.1. Demography

With 300 speakers, the RSR2015 database is one of the largest database
publicly available for text-dependent speaker verification. To our best knowl-
edge, the only databases including more speakers for text-dependent speaker
verification are BioSecure, BioSecurID and the CCC-VPR2C2005-10000 which
lexical content is narrower than RSR2015 database (Section 3.3).

In order to be representative of the Singaporean population, the 300
speakers recorded for the RSR2015 database have been selected according to
their ethnic group and gender. The result is a gender-balanced database in
which 143 speakers out of the 300 are female (Figure 2(a)). Additionally, 237

4LDC Catalog No LDC2013S05

11



speakers are of Chinese origin, 42 are of Malay origin while the remaining 21
are from other various ethnic groups (Figure 2(b), 2(c) and 2(d)).

Chinese(82%)

Malay(10%)

Others(8%)

(c) Ethnic groups of RSR2015
female speakers

Chinese(76%)

Malay(18%)

Others(6%)

(d) Ethnic groups of RSR2015
male speakers

Chinese(79%)

Malay(14%)

Others(7%)Female(48%)

Male(52%)

(a) Gender of RSR2015
speakers

(b) Ethnic groups of RSR2015
speakers

Figure 2: Gender and ethnic statistics from the 300 speakers of the RSR2015 database. A
special attention has been ported to balance genders (female: 143, male: 157) and ethnic
origins to reflect Singapore population (Chinese: 237, Malay: 42 and others: 21).

The RSR2015 database includes speakers from 17 to 42 years old (Figure
3). Given the limited sample size of the RSR2015 database, widening the
age bracket would create a sparse distribution of speakers across ages that
may artificially facilitate the task of speaker verification. Indeed, it was
shown in (Doddington, 2012) that the difficulty of the speaker verification
task increases when the age difference between speakers is limited. Therefore
a population of speakers in a limited age bracket may increase the challenge
of speaker verification.

12



Number of male speakers Number of female speakers

Figure 3: Age pyramid of both male and female speakers of the RSR2015 database.

3.2. Acquisition Protocol

The nine sessions of the RSR2015 database were recorded indoor under
a typical office environment. Each subject completed the recording process
on a single day so the RSR2015 database does not include aging variability.
However, it has been shown in (Lawson et al., 2009) that aging variability
within 3 years is negligible compared to session variability.

Six mobile devices5 (five smart-phones and one tablet) available in the
market were used for recording. Three portable devices (labeled A, B and
C ) were assigned to each subject. The nine sessions of each subject were then
recorded using the three devices in the following sequence: {A,B,C,A,B,C,A,B,C}
and the meta-data information is provided together with the data. A dia-
logue manager was implemented as an Android c© application to manage the
recording. This application uses the touch-screen capability of the devices to
prompt the text content. A push-to-talk feature was used to allow the user
to start the recording and stop it after reading the prompt. The subject was
free to hold the portable device in a way (s)he was comfortable and acoustic
quality can thus vary significantly within and across sessions.

The audio signal was recorded through the internal microphone of each of
the six portable devices in raw PCM format, at 16 kHz sampling frequency
with a resolution of 16 bits per sample. A SPHERE6 header was added
afterwards to each file including information about the device, the language,

5Samsung Nexus c©, Samsung GalaxiS c© ×2, HTC Desire c©, Samsung Tab c©, HTC
Legend c©

6http://www.itl.nist.gov/iad/mig/tools/ (Accessed February 28, 2014)
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the number of samples, the sample rate and the data format.

3.3. Three different text-dependent tasks

Different scenarios could be used to constrain the lexical content of the
enrollment and test utterances. Despite the different lexical and duration
constraints required by various scenarios, existing databases rarely include
data that allow comparison of systems across scenarios. Only 8 databases
out of the 24 listed in Table 1 include material that can be used to study the
co-articulation effect which strongly affects the performance of verification
systems (Kato and Shimizu, 2003). In order to allow comparison of systems
across different scenarios, the three parts of the RSR2015 database have been
designed with different lexical constraints7 while keeping identical recording
conditions. For all three parts described below, all 300 speakers pronounce
the same lexical content within a given session. In each session, a given
speaker pronounces each sentence exactly once.

Part I of the RSR2015 database focuses on a text-dependent speaker ver-
ification task where speakers pronounce fixed pass-phrases to authen-
ticate. In each of the nine sessions, a speaker pronounces 30 fixed
sentences selected from the TIMIT database (Garofolo et al., 1993)
to cover all English phonemes. The average recording duration across
speakers, sessions and sentences is 3.20 seconds and the average du-
ration per sentence varies from 2.73 to 3.65 seconds. Note that these
sentences have been selected to evaluate the impact of different lexi-
cal content with a similar duration. After applying the energy-based
speech activity detection (SAD) as described in Section 5.1, the aver-
age nominal speech duration across sentences is 1.25 seconds8 (varying
from 1.01 to 1.59 seconds across sentences). The entire Part I of the
RSR2015 database consists of 72 hours of audio recording (28 hours
and 15 minutes of nominal speech after SAD).

Part II of the RSR2015 database focuses on a speaker-loaded command
control task where speakers pronounce fixed commands to control home

7described in Appendix Appendix A
8Drastic duration reduction after applying SAD is partly due to silence removal before

and after the utterance as the recording was controlled by the speakers through a push-
to-talk process.
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appliances and be authenticated at the same time. In each of the
nine sessions, a speaker pronounces 30 short commands defined to con-
trol home appliances of the StarHome, a fully functional 180 square
meters smart home prototype located at the Fusionopolis, Singapore
(Lee et al., 2011). Average recording duration across speakers, ses-
sions and commands is 1.99 seconds and average per command duration
vary from 1.66 to 2.46 seconds. After applying the energy-based SAD,
the average nominal speech duration across commands is 0.63 seconds
(varying from 0.44 to 0.99 seconds across sentences). The entire Part II
of the RSR2015 database consists of 44 hours and 53 minutes of audio
recording (14 hours and 12 minutes of nominal speech after SAD).

Part III of the RSR2015 database focuses on a text-dependent speaker ver-
ification task where speakers are prompted with random sequences of
digits. In each of the nine sessions, a speaker pronounces 3 sequences
of ten digits and 10 sequences of five digits. The digit sequences are
different across sessions but identical for all speakers in order to gener-
ate trials where impostor pronounce the correct sequence. The speech
material used for enrollment and test is constrained to ten English dig-
its (zero - one - two - three - four - five - six - seven - eight - nine) but
the left-right context of each digit is different between enrollment and
test in order to evaluate the effect of co-articulation.
For the ten-digit sequences, the average recording duration across speak-
ers, sessions and sequences is 5.19 seconds. After applying the energy-
based SAD, the average nominal speech duration across sequences is
2.07 seconds. For the five-digit sequences, the average recording du-
ration across speakers, sessions and sequences is 3.06 seconds. After
applying the energy-based SAD, the average nominal speech duration
across sequences is 1.09 seconds.
The entire Part III of the RSR2015 database consists of 34 hours and
36 minutes of audio recording (12 hours and 51 minutes of nominal
speech after SAD).

4. Classifiers for text-dependent speaker verification

Meaningful comparison of accuracy in text-dependent speaker verification
tends to be very difficult due to the lack of standard evaluation protocol and
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Figure 4: Distribution of the audio recording (in light blue) and nominal speech duration
(in dark red) in seconds for the three parts of the RSR2015 database. For Part III,
durations are given for 10-digits sequences and 5-digits sequences separately.

database which motivates the collection of the RSR2015 database. Moreover,
system architectures can be strongly influenced by specific use-cases and their
inherent lexical constraints. In this section, we first give an overview of exist-
ing classifiers used for text-dependent speaker verification. We describe then
two state-of-the-art speaker verification systems: a text-dependent system
based on GMM and HMM modeling and an i -vector system, which perfor-
mance on the RSR2015 database is given as baseline in Section 5. The choice
of these classifiers is motivated by their representativeness of current speaker
verification engines. Indeed, the text-dependent engine has been recently
deployed in a large-scale commercial application while the i -vector system is
adapted from the main-stream state-of-the-art engines for text-independent
speaker verification (Dehak et al., 2011a). To establish a fair comparison,
both systems use the same front-end and their performance is given by using
two performance metrics described thereafter.

4.1. Survey of existing classifiers

A specificity of text-dependent speaker verification systems is that they
have to model the speaker characteristics together with the lexical content
of the verification utterances. In the last thirty years, two major trends have
been dominating the field of text-dependent speaker verification.

A first category of classifiers, based on dynamic programming has been
proposed when the quantity of speech available is limited (Furui, 1981a;
Dutta, 2008). Working at the frame level, they offer a precise modeling of the
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temporal structure of the speech utterances but lack the generalization power
offered by generative approaches. In particular, as the dynamic programming
technique typically provides Euclidean distance rather than likelihood proba-
bility between speech samples, thus requiring additional decision mechanism
for speaker verification which is typically formulated as a hypothesis test in
probabilistic domain. Several attempts have been made to compensate for
the intra-speaker variability by introducing a distance normalization (Luan
et al., 2006) or a multi-template approach (Ramasubramanian et al., 2006).
Additional information such as suprasegmental and source features can also
be used to reinforce the system (Yegnanarayana et al., 2005; Avinash et al.,
2010).

A second category of classifiers, by far the most common, is based on
Hidden Markov Models (HMMs). HMMs are inherently more robust to the
variability of the speech signal and can take advantage of a larger quantity
or enrollment data. Additionally, they benefit from the progress achieved in
the fields of text-independent speaker verification (Kinnunen and Li, 2010)
and speech recognition (Young, 2008). In practice, text-dependent speaker
verification faces different use cases, each of which has a unique modeling and
run-time requirement. With HMM, granularity of models can be tailor-made
to represent the temporal structure of the speech utterances. Systems based
on phone models offer the finest granularity and thus can be used for any
lexical content (Matsui and Furui, 1993; Che et al., 1996; Charlet and Jouvet,
1997; Nakagawa et al., 2004) while HMMs modeling words (Rosenberg et al.,
1991; Yoma and Pegoraro, 2002; Kato and Shimizu, 2003) or entire utterances
(Rosenberg et al., 2000; Forsyth, 1995; Subramanya et al., 2007; Charlet
et al., 2000; Larcher et al., 2013b), which granularity is less, are restrained to
limited lexicon. Research is also carried out to improve the robustness of such
models to channel and speaker variability. In (Chatzis and Varvarigou, 2007),
the Gaussian distributions of the HMMs states are replaced by Student-t
distributions, more robust to noise. In (Aronowitz, 2012), the authors adapt
the concept of support vector machines together with the nuisance attribute
projection (NAP) (You et al., 2010) to be used with HMMs. Despite the
good performance of this approach, it is limited to the case where all users of
the system share the same pass-phrase, due to the amount of data required
to train the NAP matrix.

Other works in the literature propose to model the temporal structure of
the speech utterance by using artificial neural network (Chen et al., 1996;
Finan et al., 1996; Woo et al., 2000) or make use of spectrogram-based rep-
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resentation (Das and Tapaswi, 2010; Dutta, 2007; Kekre et al., 2010). The
different modeling approaches can eventually be combined in order to com-
pensate for individual weaknesses (Farrell, 1995; Farrell et al., 1998; Bonastre
et al., 2003).

Finally, progress of text-independent speaker verification have inspired a
number of systems. Architectures based on the classical GMM/UBM (Boies
et al., 2004; Aronowitz, 2012; Chen et al., 2012; Hebert and Heck, 2003) or
on the more recent i -vector representation (Aronowitz, 2012; Larcher et al.,
2012a, 2013c; Stafylakis et al., 2013) have been shown to take advantages
of the lexical information required by text-dependent speaker verification.
These systems have achieved a limited success as they don’t explicitly take
advantages of the temporal structure of the speech utterances. It is however
possible to combine these approaches with a speech recognition engine to
effectively verify both speaker and speech content (Heck and Genoud, 2001)
in exchange for an extra computational cost.

From a Bayesian perspective, systems based on generative approaches are
superior to those relying on dynamic programing in the sense that they can
produce likelihood ratio scores, easier to calibrate and interpret when taking
a decision (van Leeuwen and Brümmer, 2013). In the following, we present
two state-of-the-art speaker verification systems: the text-dependent HiLAM
speaker verification engine based on GMM and HMM modeling and an i -
vector system, which both produce natural likelihood ratios. The HiLAM
has been extensively tested (Lee et al., 2013b) for its robustness and practi-
cality in commercial deployments, and the i -vector system is derived from the
state-of-the-art text-independent speaker verification engines (Larcher et al.,
2013b).

4.2. Text-dependent system: HiLAM

4.2.1. Utterance modeling

The Hierarchical multi-Layer Acoustic Model (HiLAM) is a text-dependent
speaker verification engine that has been described in (Lee et al., 2011;
Larcher et al., 2012b). It is an extension of the classical GMM/UBM ap-
proach as depicted in Figure 5. All the emission probabilities in this archi-
tecture are mixtures Gaussian distributions (GMM) sharing the same vari-
ance and weight parameters. The first two layers are similar to the standard
GMM/UBM in which the UBM at the upper layer models the general speech
acoustic space. The middle layer is the text-independent speaker model ob-

18



Figure 5: The Hierarchical multi-Layer Acoustic Model (HiLAM).

tained by a classical Maximum a Posteriori (MAP) adaptation of the UBM.
The bottom layer hinges on the abilities of a left-to-right Hidden Markov
Model (HMM) to harness the specific temporal structure of pass-phrases.
The emission probability density function of each HMM state is derived from
the middle-layer speaker-dependent GMM. Each of those GMMs is adapted
from the text-independent speaker model following the MAP criterion. Only
the mean parameters are adapted, which is different from that proposed orig-
inally in (Larcher et al., 2008) where the weights parameters are adapted.
This essentially replaces the semi-continuous HMM (SCHMM) (Young, 1992)
used in the original work with a continuous density HMM (CDHMM) pro-
viding higher accuracy at the expense of higher computation.

The training of the HiLAM is similar to the original one described in
(Larcher et al., 2008). A gender-independent UBM is firstly trained to model
the acoustic space. The text-independent speaker model is then adapted from
the UBM with all data pronounced by the target speaker. Finally an iterative
training is performed to train the third layer’s HMM. In order to initialize the
HMM for each pass-phrase, the utterance is cut into S segments {segi}i∈[1,S]
of the same length. Each state of the HMM is adapted from the middle layer
GMM using the corresponding segi. A new segmentation is then performed
using the adapted HMM. Viterbi algorithm is used for this purpose. This
iterative process is performed until convergence of the Viterbi path. The
number of states S is chosen empirically. Transitions of the left-to-right
HMM are set equiprobable.

During testing, given a speech sequenceX, a text-dependent score, STD(X),
is computed as:

STD(X) = log
LHMM(X)

LUBM(X)
(1)
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where STD(X) is the log-ratio between the likelihood of the given sequence
over the speaker’s text-dependent HMM aligned by Viterbi decoding, LHMM(X),
and the likelihood of X on the UBM, LUBM(X). The number of states for
each semi-continuous HMM is empirically set to 5 when modeling sentences
from the Part I and it is set to 3 when modeling the shorter commands from
Part II.

4.2.2. Digit modeling

A modified version of the HiLAM has been developed to deal with ran-
domly prompted digits. The two upper layers of the architecture are simi-
lar to the original model. During the enrollment, each speaker pronounces
several occurrences of the ten English digits. Recordings from the target
speaker are automatically segmented to train a set of ten GMMs (one per
digit) by adapting the speaker-dependent GMM from the middle layer using
a Maximum a Posteriori (MAP) criterion. Note that the segmentation of
the enrollment utterances is done using a state-of-the-art speech recognition
system and thus no iterative adaptation is performed to train the HMM com-
ponents. During testing, given a randomly prompted sequence of N digits,
a left-to-right HMM is composed with the corresponding N digit models.
The verification score is then computed according to Equation 1 where the
likelihood of the test segment over the HMM is obtained using a Viterbi
alignment.

4.3. Standard i-vector system

The paradigm of i -vectors (Dehak et al., 2011a) is based on the assump-
tion that speech segments of variable duration can be represented as fixed
dimension vectors, the i -vectors, in a low-dimensional space referred to as to-
tal variability space. Taking advantage of the low dimensionality of the total
variability space, many classifications techniques have been applied to per-
form different tasks such as speaker and language recognition (Dehak et al.,
2011b; Bousquet et al., 2011; Kanagasundaram et al., 2011; Mandasari et al.,
2011; Xu et al., 2011) or speaker diarization (Prazak and Silovsky, 2011). As
i -vectors retain different types of variability available in the speech segments,
such as speaker and lexical content, recent works have shown that i -vectors
can be used for the task of text-dependent speaker recognition (Larcher et al.,
2012a; Aronowitz, 2012; Larcher et al., 2013c).
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4.3.1. I-vector extraction and normalization

The projection of a speech segment onto the total variability space can be
considered as a probabilistic compression process that reduces the dimension-
ality of a channel- and speaker-dependent super-vector of concatenated Gaus-
sian Mixture Model (GMM) means, according to a linear-Gaussian model.
The super-vector, m, is projected onto the total variability space according
to the generative equation:

m = M + Tφ (2)

where M is a speaker and channel independent super-vector, T is a factor-
loading low-rank matrix and φ is a random vector that is assumed to follow
a standard normal distribution. An i -vector x is the maximum a posteriori
point estimate of φ given a speech utterance. More details about the i -
vector extraction process can be found in (Dehak et al., 2011a; Martinez
et al., 2011).

Most of the classification techniques using i -vector assume that they fol-
low a Gaussian distribution which is not the case in practice. Several nor-
malization algorithms have been proposed to modify the i -vector distribution
according to the Gaussian assumption (Dehak et al., 2010; Bousquet et al.,
2011; Garcia-Romero and Espy-Wilson, 2011). Spherical Nuisance Normal-
ization, SphNorm, has been shown to produce good performance when as-
sociated with Probabilistic Linear Discriminant Analysis (PLDA)(Bousquet
et al., 2012).

SphNorm is an iterative process which parameters are estimated in a large
development set of i -vectors. For each iteration n the mean µn and within-
class covariance Wn of the development set are computed. All i -vectors x
from the development set are then normalized according to the following
algorithm:

Spherical Nuisance Normalization algorithm for i -vector normalization

Given a test vector x,

for n = 1 to nb iterations: x← W
− 1

2
n (x− µn)∥∥W
− 1

2
n (x− µn)

∥∥
I-vectors from the test set are then normalized following the same transfor-
mation.
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4.3.2. Speaker Modeling with Probabilistic Linear Discriminant Analysis

Introduced in (Prince and Elder, 2007), PLDA is a generative model
which assumes that the observation xi,j of a speaker i in a session j is a sum
of four components

xi,j = µ + Fhi + Gwi,j + εi,j (3)

where µ is the mean of the i -vector distribution, F and G are low rank ma-
trices which column vectors form bases of two sub-spaces that are supposed
to contains the speaker and session variability respectively. Thus, hi and
wi,j are latent variables related to xi,j in these sub-spaces. ε is a normally
distributed additive noise of covariance matrix Σ and conditional and prior
densities are given by:

P (xi,j|hi,wi,j) = Nxi,j
(µ + Fhi + Gwi,j,Σ)

P (hi) = Nhi
(0, I)

P (wi,j) = Nwi,j
(0, I)

(4)

The PLDA graphical model is illustrated in Figure 6 and the implementation
used for this follows the work in (Jiang et al., 2012; Lee et al., 2013a).

I
J

w
h

H1 - Identity differ

h2h1

N
H0 - Identity match

h

N

a.PLDA generative model b.Modelling of the two verification hypotheses

x xt x xtx

Figure 6: a. Graphical model for the PLDA generative model. For each of the I speakers,
J i -vectors x are observed in the Total Variability space. The PLDA model is described
by a set of parameters θ = {µ,F,G,Σ}
b. Graphical model of the two verification hypotheses considered in the native PLDA
framework. The NULL hypothesis, H0, considers that the N enrollment i -vectors x and
the the test i -vector xt belongs to the same speaker and have the same latent variable h
when the alternative hypothesis, H1, considers that they belong to different speakers and
have separate latent variables h1 and h2.

22



4.3.3. I-vector configuration

For this work, the configuration of the i -vector has been chosen empir-
ically to optimize the performance on the development data. A gender-
independent 2048-distribution UBM with diagonal covariance matrix is trained
on 12,706 sessions from NIST-SRE 2004, 2005 and 2006. A gender-independent
Total Variability matrix of rank 400 is then trained by using 10 iterations of
EM algorithm described in (Kenny and Dumouchel, 2004) on 66,702 sessions
from SwitchBoard II Phase 2 and 3, SwitchBoard Cellular, Part I and II,
Fisher English and NIST-SRE 2004, 2005 and 2006 databases. A gender-
independent PLDA model is estimated on 26,136 sessions from the 50 male
and 47 female speakers of the background set of RSR2015 database. The
rank of the matrix F is set to 400, the matrix G is set to zero and Σ is full.

In our previous work (Larcher et al., 2013c) we found that using an appro-
priate definition of the classes used to train the SphNorm and PLDA improves
the performance of the i -vector system for the case of text-dependent speaker
verification. Thus, for experiments on Part I and II, the classes are defined
by considering both speaker identity and lexical content of the utterances
when they are trained per speaker for experiments on Part III. All compo-
nent of the i -vector system have been implemented using the open-source
toolkit ALIZE (Larcher et al., 2013a).

5. Experimental protocols and results

The rest of this section describes the experimental protocols proposed
for the three parts of the RSR2015 database and performance of the two
systems. We will discuss the experiments on the three parts sepaately. To
begin with, let’s highlight a number of common characteristics to allow for
comparison of the systems across the different tasks. In order to develop an
evaluation framework, the 300 speakers of the RSR2015 database are divided
into three groups referred to as background, development and evaluation.
Although different settings are possible, we propose here a reference protocol
that aims at promoting the comparison of algorithms for text-dependent
speaker verification. Recordings from the background speakers can be used
for any purpose, including estimation of the meta-parameters of the speaker
verification systems. Decision threshold and possible calibration parameters
can be estimated on the development part as the evaluation set is used for
validation. Partitioning of the speakers is given in Table 2.
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Table 2: Partitioning of male and female speakers into three groups consisting of back-
ground, development and evaluation sets.

Set
Number of speakers
Male Female

Background 50 47
Development 50 47
Evaluation 57 49

All trials are gender dependent and involve speakers within the same set
(development or evaluation). As described in Section 3.2, each speaker was
given a set of three portable devices - A,B,C - to record the nine sessions
following the sequence: {A,B,C,A,B,C,A,B,C }. In order to maximize the
mismatch between enrollment and test, sessions {1,4,7}, recorded on device
A, are used for enrollment while sessions {2,3,5,6,8,9}, recorded on devices B
and C, are used for test9. However, a limited inter-session variability might be
captured during the modeling as the enrollment utterances come from three
different sessions. Multiple models trained per speaker are tested against all
test utterances from the other speakers of the same set and gender. The
number of trials generated for each part of the database and gender is given
in the corresponding sections. All protocols are designed so that the speaker
enrollment duration is around 3× 3 seconds (3 utterances per enrollment) as
this limitation seems reasonable for a commercial application.

5.1. Experimental setup

All systems use the same front-end processing. The training of a state-of-
the-art i -vector extractor requires a large amount of data which is only avail-
able in 8 kHz telephone channel. For this reason, all data used in this work
have been made compatible with our development data by down-sampling
the signal to 8 kHz. A bandpass filter (300-3,400 Hz) has then been applied
for compatibility with the telephone channel.

Spro10 is used to extract 19 Mel-Frequency Cepstral Coefficients (MFCC)
and the log-energy on a 20 ms sliding window with a shifting of 10 ms between
two frames. The first derivatives as well as eleven second derivatives are
added to form a feature vector of dimension 50. The normalized log-energy

9Note that devices A,B,C can be different between speakers.
10http://www.irisa.fr/metiss/guig/spro/
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(zero mean, unique variance), is used to select high energy frames based on
a two Gaussian distribution model trained for each speech segment. Mean
and Variance normalization (MVN) is then applied to the remaining frames.

5.2. Performance measure

Text-independent speaker verification only considers two classes of trials
whether the speaker who produces the test utterance is the target speaker
or not. Text-dependent speaker verification can be seen as a classification
task involving four types of trials whether the speaker who produces the test
utterance is the target speaker or not and whether the test-utterance matches
the lexical constraint or not (Table 3). Out of these four types of trials,
the case where the target speaker pronounces the correct lexical content
is regarded as target trial while the three other types of trials should be
considered as non-target. Indeed, an impostor should be rejected regardless
of the lexical content that (s)he pronounces. Note that the case where the
impostor pronounces the correct lexical content (IMP-correct) is a genuine
imposture that is likely to be more difficult to reject than a naive impostor
pronouncing a different lexical content (IMP-wrong). Additionally, the case
where test utterance is pronounced by the target speaker but does not match
the lexical content (TAR-wrong) should be rejected as it could be an impostor
playing back a recording from the target speaker.

Table 3: The different types of trials defined for text-dependent speaker verification.

Correct lexical content Wrong lexical content
Target TAR-correct TAR-wrong

Impostor
IMP-correct IMP-wrong

The cost of accepting any of the three types of non-target trials depends
of the application so as the probability of each type of trial depends on the de-
ployment conditions. Thus, in order to allow a fair comparison of the systems,
performance will be presented for each type of non-target trials separately
in terms of equal error rate (EER) and minimum cost (argmin

θ
CDET (θ)) by

considering the decision cost function (DCF) given by:

CDET (θ) = CMiss × PMiss(θ)× PTarget + CFA × PFA(θ)× (1− PTarget) (5)

where CMiss and CFA are the relative costs of detection errors, PMiss and
PFA are the miss and false alarm error probabilities and PTarget is the a
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priori probability of a target speaker. The values for the different parame-
ters are those used for the NIST Speaker Recognition evaluation until 2008
(Przybocki et al., 2006); i.e. (CMiss, CFA, PTarget) = (10, 1, 0.01)

5.3. Experiments on Part I and II

Due to the similar structure shared by these two parts, a unique protocol
is defined to allow an easier comparison. Part I and II address similar scenar-
ios where each speaker pronounces his own pass-phrase, chosen or generated
by the system. For each session, the speakers pronounce 30 short sentences
in Part I while they pronounce 30 commands in Part II. Part I and II mainly
differ in two points. First, utterances from Part II have an average nominal
speech duration which is half of the average of Part I (0.63 s against 1.25
s, see Section 3.3). Second, Part II is designed for the task of user-loaded
command control in which lexical content of different commands strongly
overlap, e.g., “Volume up” and “Volume down”. Thus Part II is expected to
be more difficult than Part I.

5.3.1. Protocol

On Part I, during the enrollment, one model is trained for each of the
30 sentences of a target speaker. The enrollment duration is kept below 10
seconds by using only the three occurrences of this sentence recorded during
the enrollment sessions. During the test, the other six occurrences of the
same sentence, pronounced by the target speaker in the test sessions, are
used to generate TAR-correct trials. The other 29 sentences from the 6 test
sessions of the target speaker are used to generate TAR-wrong trials. Data
from all the other speakers from the same set (development or evaluation)
are used to generate impostor trials. The same protocol is applied for the
Part II.

5.3.2. Results on Part I

Tables 5 and 6 summarize the performance of the HiLAM and the i -
vector system on the Part I of the RSR2015 database for the development
and evaluation sets respectively. The number of trials for each test set is
given per gender in Table 4.

26



Table 4: Number of trials performed on the Part I of the RSR2015 database for each of the four
classes defined for text-dependent speaker verification. The number of trials is given for both male
and female protocols on development and evaluation sets.

Speaker Lexical content
Male Female

development evaluation development evaluation

TAR correct 8,931 10,244 8,419 8,631
TAR wrong 259,001 297,076 244,123 250,299
IMP correct 437,631 573,664 387,230 414,249
IMP wrong 6,342,019 8,318,132 5,612,176 6,006,596

The nomenclature is as follows: TAR refers to the target speaker. IMP refers to an
impostor speaker. A correct lexical content means that the test utterance exactly matches
the training material. A wrong lexical content means that training and test utterances
are different.

The HiLAM system, based on GMM and HMM, outperforms the i -vector
system for all definitions of non-target trials, regardless of the speaker’s gen-
der and the test set (Tables 5 and 6). The EER obtained by the HiLAM
system is at most 66% of the one obtained by the i -vector system (male
development set considering IMP-wrong trials) while, in the best case (fe-
male evaluation set considering IMP-wrong trials) the EER of the HiLAM
system is only 18% of the value obtained by the i -vector system. The better
performance of the HiLAM system was expected due to the short duration
of the training and test utterances as well as the limited channel variability
of the dataset (Stafylakis et al., 2013). Additionally, it can be observed on
Figure 7-a that, for the evaluation male set, the advantage of the HiLAM
over the i -vector system persists though all operating regions of the DET
curve. Similar behavior has been observed for other sub-sets.

Comparing the performance across genders, performance of the i -vector
system is consistent with observations reported in the context of the NIST-
SRE evaluation where error rates are usually lower or equivalent for the male
speakers. Error rates of the HiLAM system are however lower for the female
speakers for two of the three definitions of the non-target trials on the de-
velopment set and on the evaluation set. A possible explanation for this
phenomenon may be the different repartition of speaker specific and lexical
information in the frequency bands. A preliminary analysis suggests that a
large part of the speaker specific information, located in high frequency for
the female is discarded when down-sampling to 8 kHz while more informa-
tion remains for the male speakers. For this reason, the influence of lexical
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Table 5: Performance of HiLAM and i -vector systems on the development set of Part I in terms of Equal Error Rate
and minimum DCF ( EER % / minDCF×100) for different definitions of target and non-target trials.

User Target Impostor Male Female
Text correct wrong correct wrong HiLAM i -vector HiLAM i -vector

Trials
tar non - - 1.66 / 7.40 2.87 / 13.56 1.77 / 7.42 3.05 / 17.26
tar - non - 3.69 / 16.78 5.95 / 26.74 3.24 / 15.39 7.87 / 40.45
tar - - non 0.49 / 1.65 0.74 / 3.43 0.45 / 1.81 0.94 / 4.65

The nomenclature is as follows: a correct text means that the test utterance exactly matches the training
material; a wrong text means that training and test utterances are different.

Table 6: Performance of HiLAM and i -vector systems on the evaluation set of Part I in terms of Equal Error Rate and
minimum DCF ( EER % / minDCF×100) for different definitions of target and non-target trials.

User Target Impostor Male Female
Text correct wrong correct wrong HiLAM i -vector HiLAM i -vector

Trials
tar non - - 0.82 / 4.62 1.95 / 11.83 0.61 / 3.44 1.91 / 10.63
tar - non - 2.47 / 13.51 4.03 / 21.39 2.96 / 15.58 6.61 / 32.69
tar - - non 0.19 / 0.87 0.32 / 1.88 0.14 / 0.80 0.75 / 3.56

The nomenclature is as follows: a correct text means that the test utterance exactly matches the training
material; a wrong text means that training and test utterances are different.

information may affect more the female speakers than the male.
Results reported in Tables 5 and 6 show that the HiLAM system, mod-

eling each sentence by a 5-state HMM can better reject the target speaker
pronouncing a wrong sentence than an impostor who knows the correct pass-
phrase. This result shows the efficiency of the HMM to model the temporal
structure of the pass-phrase, even with a limited amount of training data.
The same conclusion stands for the i -vector system that does not model any
temporal information but includes lexical information through the i -vector
normalization and PLDA training (Larcher et al., 2013c). Indeed, for all
male and female trials on both development and evaluation sets, the lexical
information conveyed by the i -vectors seem predominant compared to the
speaker information as shown in (Larcher et al., 2012a).

5.3.3. Results on Part II

Tables 8 and 9 summarize the performance of the HiLAM and the i -
vector system on Part II of the RSR2015 database for the development and
evaluation sets respectively. The number of trials for each test set is given
per gender in Table 7.
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a) Part I b) Part II c) Part III

Figure 7: Detection error trade-off (DET) curves for the male evaluation sets of Part I, II
and III of the RSR2015 database. In all trials, target and impostor speaker pronounce the
correct text, i.e., the test utterance exactly matches the training material or the prompted
sequence of digits.

Table 7: Number of trials performed on the Part II of the RSR2015 database for each of the four
classes defined for text-dependent speaker verification. The number of trials is given for both male
and female protocols on development and evaluation sets.

Speaker Lexical content
Male Female

development evaluation development evaluation

TAR correct 8,960 10,238 8,444 8,637
TAR wrong 259,841 296,902 244,876 250,473
IMP correct 439,042 573,328 388,424 414,579
IMP wrong 6,361,855 8,311,644 5,630,820 6,009,351

The nomenclature is as follows: TAR refers to the target speaker. IMP refers to an
impostor speaker. A correct lexical content means that the test utterance exactly matches
the training material. A wrong lexical content means that training and test utterances
are different.

As expected, both systems suffer from the short duration and the lexi-
cal similarity of the commands from the Part II of the RSR2015 database.
Compared to Part I where sentences are twice longer in average, the EERs
on Part II are at least 61 % higher than on Part I for the same set of speak-
ers (female development set when considering IMP-correct trials). In the
worst case, for the female speakers of the evaluation set when considering
IMP-wrong trials, the error rate increases by 903%.

For the female speakers, and similarly to the experiments on Part I, an
important performance gap in favor of HiLAM system can be observed in
all configurations. On the opposite, the gap between the two systems is
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Table 8: Performance of HiLAM and i -vector systems on the development set of Part II in terms of Equal Error Rate and
minimum DCF ( EER % / minDCF×100) for different definitions of target and non-target access.

User Target Impostor Male Female
Text correct wrong correct wrong HiLAM i -vector HiLAM i -vector

Trials
tar non - - 6.14 / 34.40 5.41 / 32.19 4.62 / 28.16 6.94 / 43.04
tar - non - 10.58 / 50.24 13.75 / 58.34 6.66 / 30.10 12.73 / 57.62
tar - - non 3.03 / 13.36 2.50 / 12.68 1.29 / 5.94 2.86 / 14.26

The nomenclature is as follows: a correct text means that the test utterance exactly matches the training
material; a wrong text means that training and test utterances are different.

Table 9: Performance of HiLAM and i -vector systems on the evaluation set of Part II in terms of Equal Error Rate and
minimum DCF ( EER % / minDCF×100) for different definitions of target and non-target access.

User Target Impostor Male Female
Text correct wrong correct wrong HiLAM i -vector HiLAM i -vector

Trials
tar non - - 4.42 / 28.05 4.39 / 26.66 3.71 / 23.48 5.16 / 28.79
tar - non - 8.38 / 46.93 11.26 / 51.66 7.95 / 40.04 15.27 / 67.01
tar - - non 1.71 / 8.80 1.81 / 9.59 1.45 / 7.14 3.05 / 15.06

The nomenclature is as follows: a correct text means that the test utterance exactly matches the training
material; a wrong text means that training and test utterances are different.

reduced for the male speakers. For non-target trials where the target speaker
pronounces a wrong lexical content, the best performance is even obtained
by the i -vector system on both development and evaluation sets as well as
for the case of impostor pronouncing a wrong lexical content in development
set. The curved DET plot obtained for the HiLAM system on Figure 7-b
shows that the score distributions of the HiLAM system are less Gaussian
than for the Part I while the i -vector does not suffer from such effect.

Performance across genders follows the same trend as for the Part I.
In all configurations except impostor pronouncing the correct command for
the development set, the i -vector system performs better on male speakers.
On the contrary, the HiLAM system consistently performs better for female
speakers.

5.4. Part III

Part III of the RSR2015 database focuses on scenario where the train-
ing and test utterances share the same phonetic content but with different
context. Thus, co-articulation is different between train and test. Due to
the limited lexicon used in this part - only English digits - the UBM of the
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HiLAM system is trained only on digit strings from the background set speak-
ers. The i -vector system is the same as for the other parts as the quantity
of data available is not enough to train the i -vector extractor on digits only.

5.4.1. Protocol

Part III of the RSR2015 database is designed to evaluate the ability of
a system to take advantage of the temporal structure of the prompted se-
quence. During the test, the sequence of digits for the speaker to pronounce is
assumed to be randomly generated. For the HiLAM system, especially mod-
ified for this task, the model used for a test is created on the fly to match the
prompted sequence. Because the i -vector system does not model the tem-
poral structure of the utterances, the model used for testing is unchanged
whatever the prompted digit sequence. Yet, the i -vector system only consid-
ers two types of trials, TAR-correct and IMP-correct, as the lexical content
is not taken into account any more. Performance of the i -vector system, is
given to evaluate the degradation caused by the mismatch of co-articulation.

For the HiLAM system, during the enrollment, one set of digit models is
trained for each enrollment session of a target speaker. Using only the three
ten-digit sequences pronounced by the target speaker in this session keeps
the enrollment duration around 15 seconds. During the test, all five-digit
sequence’s prompts from the six test sessions are used to generate trials.
Duration of the test utterance is thus comparable with Part I. For each of
those 60 prompts, the specific model created by the HiLAM is compared to
all five-digit recordings from all speakers of the test set.

Four types of trials are defined whether the speaker is the target speaker
(TAR) or an impostor (IMP) and whether the lexical content, i.e., the digit
sequence, matches the sequence prompted by the system at test time (correct)
or is different (wrong). Note that the definition of trials involving correct
lexical content is different from the one given in Part I and II. A correct lexical
content in Part I and II was defined according to the training utterances while
in Part III it is define according to the prompted utterance. For any trial,
the model created at test time by the HiLAM system exactly match the
prompted digit sequence. The number of trials of each category are given in
Table 10.

5.4.2. Results on Part III

Tables 11 and 12 summarize the performance of the HiLAM and the i -
vector system on the Part III of the RSR2015 database for the development
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Table 10: Number of trials performed on the Part III of the RSR2015 database for each of the
four classes defined for text-dependent speaker verification. The number of trials is given for both
male and female protocols on development and evaluation sets.

Speaker Lexical content
Male Female

development evaluation development evaluation

TAR correct 5,154 5,943 5,025 5,283
TAR wrong 412,968 476,331 402,405 422,883
IMP correct 251,310 332,863 231,155 253,584
IMP wrong 10,022,832 13,255,958 9,197,556 10,085,760

The nomenclature is as follows: TAR refers to the target speaker. IMP refers to an
impostor speaker. A correct lexical content means that the test utterance exactly matches
the prompted sequence of digits. A wrong lexical content means that the sequence of digits
pronounced during the test is different form the prompted one.

and evaluation sets.
First it can be noticed that the HiLAM system does not reach the same

performance as when compared to Part I despite comparable test durations.
Our results are consistent with the work in (Kato and Shimizu, 2003; Hébert,
2008) when lexical content is not kept. The authors of (Kato and Shimizu,
2003) report that “preserving digit strings improves accuracy” by a relative
50%. The benefit of co-articulation is even higher for the HiLAM system
as EER on Part III is higher by 76% relative for male and by 227% for fe-
male on development set (115% and 267% for evaluation set) when compared
to Part I in IMP-correct non-target definition. Second, performance on fe-
male speakers are significantly worse than the one on male speakers for both
systems and test sets.

Performance of the HiLAM system is very poor when discriminating be-
tween correct and wrong lexical content (line 3 of Tables 11 and 12). This
may be due to the modeling of each digit by a single state and to the adap-
tation of this state from the digit-independent GMM from the second layer
of the architecture. Modeling each digit by several states may improve the
performance of the system as the mismatch of the co-articulation would not
affect the whole digit model. The same conclusion stands when comparing
the performance between IMP-correct and IMP-wrong. The influence of the
lexical mismatch to help the verification system to reject IMP-wrong is not
as important as for Part I or II. On Figure 7-c, we observe that the higher
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Table 11: Performance of HiLAM system on the development set of Part III in terms of Equal Error Rate and minimum
DCF ( EER % / minDCF×100) for different definitions of target and non-target access.

User Target Impostor Male Female
Text correct wrong correct wrong HiLAM i -vector HiLAM i -vector

Trials
tar non - - 38.32 / 99.96 38.35 / 98.18
tar - non - 6.50 / 33.39 16.37 / 69.09 10.60 / 44.30 18.56 / 80.78
tar - - non 6.13 / 29.84 10.55 / 40.00

The nomenclature is as follows: a correct text means that the test utterance exactly matches the prompted
sequence of digits; a wrong text means that the sequence of digits pronounced during the test is different form
the prompted one.

Table 12: Performance of HiLAM system on the evaluation set of Part III in terms of Equal Error Rate and minimum DCF
( EER % / minDCF×100) for different definitions of target and non-target access.

User Target Impostor Male Female
Text correct wrong correct wrong HiLAM i -vector HiLAM i -vector

Trials
tar non - - 36.41 / 99.98 38.78 / 98.31
tar - non - 5.32 / 32.58 15.44 / 73.83 10.87 / 46.86 25.63 / 93.67
tar - - non 4.88 / 27.95 10.07 / 40.10

The nomenclature is as follows: a correct text means that the test utterance exactly matches prompted sequence of
digits; wrong text means that the sequence of digits pronounced during the test is different form the prompted one.

part of the DET plot obtained for the HiLAM is strongly curved due to non-
Gaussian score distributions. Again, the DET plot of the i -vector / PLDA
system is straight, confirming that this system generate more Gaussian score
distributions.

Results of the i -vector system on Part III can be compared to condition
IMP-correct of Part I as the phonetic content conveyed by the i -vector from
the test utterance is a subset of the phonetic content from the enrollment
material. Nonetheless, temporal structure of enrollment and test is not ex-
actly matching in Part III while the temporal structure of enrollment and
test exactly matches in Part I. Results of the i -vector system confirm the
importance of matching the exact lexical content, including co-articulation.
Indeed, EERs on Part III are at least 76% higher than for the condition
IMP-correct of Part I (Tables 5 and 6).

6. Distribution

The RSR2015 database is distributed at a nominal cost in order to sup-
port the continuous effort of text-dependent speaker verification database
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development. The main goal of the distribution is to provide a framework
for comparison of algorithms and systems across the community. Institutions
willing to acquire the database will have to sign a license agreement that has
been made available on ETPL website11 since 2012. ETPL is the technology
transfer arm of the Agency for Science, Technology and Research (A?STAR)
in Singapore.

7. Conclusion

Among the three contributions presented in this paper, the main one is the
release of a large corpus, the RSR2015 database. The RSR2015 database,
has been collected and made available with the aim of allowing comparison of
text-dependent speaker verification algorithms under different duration and
lexical constraints. As all speakers repeat the same pass-phrases in different
sessions, we believe that the RSR2015 database can also be used to conduct
anti-playback analysis. The RSR2015 database includes 151 hours of speech
signal recorded from 300 gender-balanced speakers and is one of the largest
corpus publicly available for text-dependent speaker verification.

As a second contribution, we produced the largest inventory of speech
databases for text-dependent task available in the literature to our best
knowledge. We presented the tendencies and main characteristics of existing
databases that led to the design of the RSR2015 database. Despite the huge
effort of the community to produce large and usable databases in the recent
years, we highlighted several lacks in the existing databases. The necessary
large number of speakers, the need of a balanced gender representation and
the duration and lexical variability motivated the collection of the RSR2015
database. Recent publications applying resource intensive methods devel-
oped for text-independent task testify of the contribution of the RSR2015
database to fill the gap between text-dependent and text-independent re-
search fields (Larcher et al., 2012a, 2013c; Stafylakis et al., 2013). Together
with this survey of databases, we produced a description of existing classifiers
dedicated to text-dependent speaker verification.

The third contribution of this paper consists of evaluation protocols pro-
posed for each of the three parts of the RSR2015 database. The protocols

11http://www.etpl.sg/innovation-offerings/ready-to-sign-licenses/

rsr2015-overview-n-specifications (Accessed February 28, 2014)
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allow comparison of algorithms in the different tasks covered by the RSR2015
database. Performance of two systems are given as a baseline and compared
on the different protocols, the HiLAM text-dependent system based on GMM
and HMM modeling (Larcher et al., 2012b; Lee et al., 2011) and a state-
of-the-art i -vector/PLDA system based on the open source ALIZE toolkit
(Larcher et al., 2013a).

Experiments show that our GMM/HMM-based system outperforms the
i -vector system in most of the configurations. This confirms the well known
weakness of i -vector systems on short durations that has recently been widely
studied (Kenny et al., 2013; Cumani et al., 2013; Hasan et al., 2013). Be-
havior of the i -vector system in the context of short duration text-dependent
speaker verification is consistent with the previous studies in the context
of text-independent speaker verification (Senoussaoui et al., 2011), reaching
lower error rates on male speakers. On the opposite, the HiLAM system
performs better on female speakers on both Part I and II of the RSR2015
database. This behavior will be the focus of future work investigating the
distribution of speaker and lexical information in the speech signal.

For the case of fixed pass-phrases (Part I and II), we found that it is easier
to reject an attack where the impostor plays back a recording of the target
speaker pronouncing a text-different from the expected pass-phrase than an
impostor pronouncing the correct pass-phrase. This confirms observations
from (Larcher et al., 2012a) that lexical information is dominating in short
speech segments, even for the case of the i -vector system, despite the lack
of consideration for the temporal structure of the utterances. Performances
of both systems are strongly affected by the co-articulation mismatch in-
herent to the randomly prompted digit scenario (Part III of the RSR2015
database). Compared to Part I which offers similar speech durations, degra-
dations caused by co-articulation mismatch are found to be equivalent or
higher than the one reported in (Hébert, 2008; Kato and Shimizu, 2003). The
increase of error rates observed for the i -vector system shows that methods,
without exploiting the temporal information of the speech signal, suffer from
the co-articulation effect.

An extension of the RSR2015 database is being recorded to include more
challenging recording conditions. This part consists of the Part I being trans-
mitted over marine VHF channel.
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Appendix A. The RSR2015 lexical content

Table A.13: List of the prompts recorded by all speakers for each of the 9 sessions of the RSR2015 database.

Part I Part II Part III

Only lawyers love millionaires Watch movie 1 - 7 - 4 - 0 - 9 - 3 - 8 - 2 - 5 - 6
No return address whatsoever Watch cartoon 3 - 7 - 0 - 8 - 6 - 9 - 5 - 1 - 4 - 2
Do without fancy tablecloths Play music 8 - 1 - 5 - 9 - 0 - 6 - 7 - 4 - 2 - 3
She can remove all knick knacks within reach Play Game 4 - 8 - 0 - 7 - 3
I know I didn’t meet her early enough Call mum 1 - 9 - 6 - 5 - 2
Artificial intelligence is for real Call dad 9 - 3 - 6 - 0 - 1
Allow each child to have an ice pop Call sister 2 - 7 - 4 - 8 - 5
When she awoke she was the ship Call brother 7 - 2 - 9 - 0 - 5
Well now we have two big theaters Coffee 6 - 3 - 1 - 4 - 8
Toss a die until an ace appears Cappuccino 8 - 6 - 2 - 3 - 9
This coat looks like a rag heap Espresso 5 - 4 - 0 - 7 - 1
My dress needs some work on it Door open 0 - 6 - 4 - 9 - 2
It was time to go up myself Door close 5 - 8 - 7 - 3 - 1
He would not carry a brief case Door hold
He felt a good deal less shaky Turn on Master
Do buy all purpose mugs or cups Master off
By eating yogurt you may live longer Turn on TV
But how little love we give him TV off
Yet we no longer feel uneasy Turn on dish washer
She is thinner than I am Dish washer off
The drunkard is a social outcast Turn on coffee machine
The Birthday party has cupcake and ice-cream Coffee machine off
A good attitude is unbeatable Turn light on
Basketball can be an entertaining sport Light off
And so he walked aimless again Turn on air-con
A huge power outage rarely occurs Air-con off
Guerrillas were racing toward him Turn on oven
The rose corsage smelled sweet Oven off
There was typhoid and malaria Volume up
The redcoats ran like rabbits Volume down

Speech material for Part I and II is fixed across the 9 sessions while digit sequences in Part III vary from session to
session but are kept the same across speakers. These digit sequences are given as an example as the sequences vary
across sessions. A complete transcription of the speech material recorded for the Part III is provided with the database.
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