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ABSTRACT

Assessing properties about specific sound sources is important to
characterize better the perception of urban sound environments. In
order to produce perceptually motivated noise maps, we argue that
it is possible to consider the data produced by acoustic sensor net-
works to gather information about sources of interest and predict
their perceptual attributes.

To validate this important assumption, this paper reports on a
perceptual test on simulated sound scenes for which both percep-
tual and acoustic source properties are known. Results show that it
is indeed feasible to predict perceptual source-specific quantities of
interest from recordings, leading to the introduction of two predic-
tors of perceptual judgments from acoustic data. The use of those
predictors in the new task of automatic soundscape characterization
is finally discussed.

Index Terms— Soundscape, urban acoustic monitoring, event
detection

1. INTRODUCTION

The ongoing urbanization process has led to an increase in sound
quality concerns. In urban areas the noise has been linked to several
health issues including sleep-related troubles as well as heart dis-
ease rates, and is a major cause for city dwellers’ annoyance in cer-
tain areas. In this context, the 2002/49/CE European directive [1]
requires that large cities maintain noise maps to facilitate the de-
velopment of noise reducing plans. These noise maps are mainly
based on predictive maps generated using propagation and emis-
sion acoustic models. The studies are also 1) often limited to traffic
and other transportation sources, and 2) no fusions of simulations
with physical measurements are used. Furthermore, the models de-
pend on data that may be at times or in certain locations unavailable
or incomplete. The advent of the internet of things (IoT) presents
an opportunity for the development of large, scalable networks of
acoustic sensors [2, 3]. The ”characterization of urban sound envi-
ronments” (CENSE) project [4] aims at implementing such a net-
work to produce perceptually motivated noise maps.

The ISO 12913-1 [5] standard gives the following definition of
soundscape: ”the acoustic environment as perceived and understood
and/or experienced by people and/or society, in context”. The as-
sessment of subjective descriptors [6, 7, 8] such as the liveliness or
calmness is thus necessary to evaluate the quality of urban scenes.
The relevant attributes describing the appreciation of soundscapes
can be mapped in perceptual spaces [9, 10]. The set of considered
attributes is reduced to a few dimensions which are used as a basis

for perceptual experiments. Specifically, the dimension of pleas-
antness is increasingly associated with soundscape quality in recent
works [11, 12, 13, 14]. Soundscape perception is highly dependent
on the composition of the scene [15, 16]. Indeed, each sound source
yields a different perceptual response. For example, soundscape
pleasantness is likely to be improved by birdsongs and deteriorated
by mechanical noises.

Acoustic monitoring applications typically rely on the measure-
ment of energetic (sound levels, eg. LAeq) and psychoacoustic
(eg. Zwicker’s loudness N ) indicators. These global quantities de-
scribe the overall activity, with percentile values linked to event or
background assessment. However they do not differentiate sound
sources and are thus not sufficient to a perceptual characterization
of soundscapes. Additional information about the taxonomic clas-
sification of active sources and their distribution in time is needed.
Several sets of relevant indicators have been studied [17, 18, 19] to
better account for the specificities of each scene and their source
composition.

The use of large-scale sensor networks yields a problematic for
the extraction of content-related quantities of interest from impor-
tant amounts of data. Despite a growing interest in the community,
machine learning models - to the best of our knowledge - were not
yet specifically targeted to the prediction of source-specific percep-
tual parameters in complex urban environments. Most event detec-
tion applications focus on obtaining a precise annotation of source
activity, within usual ranges of tens of milliseconds. The estimation
of sound levels involves entirely different models through source
separation and regression [20] and longer time scales.

We believe that the use of machine listening techniques could
greatly benefit the automatic assessment of urban soundscape qual-
ity using sensor networks. The aim of this paper is to 1) bring some
context of soundscape characterization, and 2) report on a percep-
tual experiment performed in order to study which features shall be
brought by automatic event detection systems in order to gather rel-
evant information for the task of characterize perceptual attributes
of the soundscape.

2. SOUNDSCAPE CHARACTERIZATION

Urban soundscape monitoring has only scarcely been studied by the
machine listening community[21]. This work aims at contributing
to this task by focusing on pleasantness as it is the most recurrent
descriptor of urban soundscape quality, though similar studies could
be led for other notions such as liveliness.

Several perceptual experiments on the urban soundscape qual-
ity have indeed proposed a model of pleasantness from other per-
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Figure 1: The three suggested levels of metrics to predict sound-
scape pleasantness. (a) Traffic (T), voice (V) and bird (B) events
are detected and their sound level roughly estimated. (b) The per-
ceptual time of presence for each source is computed on one-minute
frames, resulting in a pleasantness value (c).

ceptual parameters [22, 9, 14, 13]. In all cases, a good approxima-
tion of pleasantness can be obtained by linear combination of both
overall and source-specific parameters evaluated on discrete scales.
Global parameters consider the sound scene in its entirety for which
the overall loudness is commonly used. The parameters used for the
assessment of source-wise contributions include 1) the sound level
where each source is considered separately, 2) the emergence or
dominance relating to the influence of the source in the global mix,
or 3) the time of presence, that is the ratio of time where the source
s is heard in a given scene. The notion of time of presence is of par-
ticularly interest as it hints at the possibility of automatic prediction
through event detection systems. The corresponding model is:

P = aL+
∑
s

bsTs,p + c (1)

where P is the scene’s pleasantness, L is the perceived overall level
and Ts,p is the perceived time of presence for source s. These pa-
rameters are evaluated on discrete scales through perceptual tests.
The coefficients a, bs and c are usually found via multiple linear
regression and thus differ in each study. Furthermore, three princi-
pal source categories are usually identified: mechanical, human and
nature. Mechanical sounds are mainly composed of traffic and are
mostly found to have a negative impact on soundscape pleasantness,
whereas nature sources such as bird activity or water sounds have
a positive influence and human sounds (voices) can yield mixed ef-
fects.

Assuming this perceptual model, the prediction of pleasantness
can be assimilated as that of perceived times of presence of sources.
Three levels of metrics are thus identified. First, the physical level
Figure 1(a) is evaluated on the presence and emergence of the three
identified sound sources: traffic (T), voice (V) and birds (B). The
second level Figure 1(b) is the perceived time of presence for each
source represented as a scalar in the 0-1 range. The third level Fig-
ure 1(c) is the estimate of pleasantness, also represented as a 0-1
scalar. Both the perceptual levels of metrics are only relevant on
longer time scales, about one minute being a usual value in existing
experiments.

The transition model between the perceived time of presence
per source and pleasantness has already been proposed. However no
previous work exists that uses detection models for the estimation of
source-specific subjective parameters. The feasibility of assessing

source perception from the postulated metrics at the physical level
shall be verified as a first step prior to building the full estimation
model.

3. FROM PHYSICAL TO PERCEPTUAL TIME OF
PRESENCE OF SOURCES

We thus conduct a perceptual experiment to validate this key step
of the estimation procedure. We wish to study the relation between
extracted source-dependent physical indicators to their perceptual
equivalents, then validate the relevance of the first level of metrics
introduced in the previous section.

3.1. Perceptual Test

For this test, a set of sound scenes recorded in the 13th district of
Paris as part of the GRAFIC project [14] is used as reference. Some
artificial scenes with equivalent event sequencing are also used for
which the acoustic properties of each active source can be computed
precisely.

Of the 19 different recording locations, 9 are selected to rep-
resent diverse compositional properties: park (P3, P9), quiet street
(P5, P11, P13, P17), noisy street (P2, P6) and very noisy street
(P16). Corresponding artificial scenes are simulated following the
method described in [23]. Simulations are obtained using the sim-
Scene software [24]. To do so, the recordings are first annotated
by identifying active background and event sources. Background
sounds are present throughout the whole scene and are character-
ized by an absolute level parameter. Conversely, events are local-
ized occurrences that are defined by their onset and duration as well
as an event-to-background ratio (EBR). The sound scenes are simu-
lated from these annotations and a database of extracts for isolated
sources obtained on freesound.org, see [23] for more details. This
ensures that ground truth source-specific presence and sound level
can be computed. One minute of audio is extracted for each scene
such as no single event overwhelms the rest of the excerpt.

During the test, the order of appearance is as follows: the orig-
inal recorded scenes from locations P3 and P16 representing quiet
and very noisy environments are always presented first to help par-
ticipants use the full range of the scale during the test. The 9 sim-
ulated sounds are then presented in random order to limit order bi-
ases over the participants population. For each scene, 14 criteria
are evaluated on a 0-10 scale by the subject. These parameters are
displayed in French, but translated in English in this paper for the
sake of clarity. The first four questions cover global perceptual pa-
rameters:

1. Noisy - Quiet: Overall perceived loudness (OL),

2. Boring, uninteresting - Stimulating, interesting: Interest (I),

3. Inert, amorphous - Lively, eventful: Liveliness (L),

4. Agitated, chaotic - Calm, peaceful: Calmness (C).

Source-specific perceived time of presence (scale Never - Contin-
uously) and sound level (scale Very low - Very high) are also eval-
uated. The considered sources are traffic (T), birds (B), horns and
sirens (H), human voice (V) and footsteps (F). The perceived time
of presence and level for source s are respectively noted Ts,p and
Ls,p in the remainder of this paper.

Participants can only listen to each scene once and must answer
all questions before proceeding to the next scene. All subjects used
the same hardware desktop configuration, sound card and software,
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Figure 2: Principal component analysis (first two components) of
the four general perceptual parameters at the scene level (n=9). The
observed space is distorted although comparable that of previous
works in the literature.

as well as Beyerdynamics DT-990 headphones in a quiet environ-
ment. The same output volume on headphones was set by the ex-
perimenter for all scenes and participants. The resulting playback
sound level ranged from approximately 50 dB to 78 dB over the
corpus. 30 subjects took the test in 3 sessions, all reported normal
hearing conditions.

3.2. Perceptual space

An outlier detection procedure is applied on the 270 resulting as-
sessments (30 subjects, 9 scenes). An assessment is rejected when
its distance from the mean is higher than 3 standard deviations at the
question level, that is for each parameter of each scene. The results
from two participants with more than 10% assessments considered
as outliers are removed from the study.

The perceptual space produced by the test is first compared to
previous studies in the literature. This is to ensure that relevant con-
clusions can be made on further analysis. Figure 2 shows the stan-
dardized principal component analysis (PCA) of the average values
of the four general questions at the scene level (n=9). The first two
components respectively explain 52.3% and 30.5% of the global
variance. It is found that liveliness (L) correlates poorly with calm-
ness (C), while interest (I) is between the two. These results can be
compared to previous studies on similar soundscape qualities pa-
rameters [9, 10, 25], where interest and calmness were established
as almost independent. The scale of liveliness was in both cases
correlated similarly with the two others. However, just as the prin-
cipal components space is slightly distorted in [25] due to the study
being focused on park environments. The correspondence between
these results on global perceptual parameters and those of the liter-
ature allows us to think that perceptual data on sources are relevant
for this study.

3.3. Proposed indicators

As discussed in Section 2 several models have been established to
assess pleasantness as a function of global and source-specific pa-
rameters. The main objective of this work is to link physical indi-
cators to perceptual source-specific parameters to ultimately predict
pleasantness from acoustical data without perceptual assessments.
Thus, physical indicators are computed from the audio tracks ob-
tained during scene simulation. To evaluate the overall loudness of
the scene, three measurements are chosen in accordance to previous
studies [11, 13, 14]:

• L50: Z-weighted (no weighting over the observed frequency
range) sound level exceeded 50% of the time in dB,

• LA50: A-weighted sound level exceeded 50% of the time in
dBA,

• L50 for the 1kHz band only.

Source-specific indicators are also computed: the time of pres-
ence and an emergence estimation metric (resp. Ts and Ls for
source s), obtained by subtracting the global L90 (Z-weighted level
exceeded 90% of the time), found to represent well background ac-
tivity, to the L10 of each source. Sound levels are computed with
the Matlab ITA toolbox [26] in the 20 Hz-20 kHz range.

In the considered scenes, background sources are always ac-
tive. The measurement of time of presence is thus limited to sound
events which leads to relatively poor representation of the scene per-
ception. Furthermore, the ground truth indicators are computed for
each source separately and do not consider the potential impact of
other sources active at the same time. Two additional indicators are
thus designed regarding these considerations.

The first proposed indicator Ts(α) is a time of presence metric
relying on the emergence of each sound source relative to the others.
Sound levels (dB) are computed for audio frames of 125 ms. This
duration is approximately that of the shortest event found during an-
notation and corresponds to the ”fast” measurements used in acous-
tical monitoring applications. The emergence, i.e. difference ∆s(t)
of sound levels between the studied source (Ls(t)) and the back-
ground constituted of all others (Lb(t)) is computed. The source is
then considered present on a given time frame if the emergence is
greater than a threshold value α. A time of presence measurement
is obtained by averaging over time:

Ts(α) =
1

Nt

Nt∑
t=1

1∆s(t)>α (2)

whereNt is the total number of 125 ms analysis frames in the scene.
The optimal threshold α is optimized via grid search to maximize
the resulting correlation with the 45 average perceptual time of pres-
ence assessments. An optimal value of α = −31dB for the con-
sidered corpus is found. As the sound levels of tested scenes range
from 50 dB to 78 dB (cf. Section 3.1), only sources with very low
sound level on the whole spectrum are considered not heard.

However, the masking of a sound by another does not depend
only on the emergence over the whole frequency spectrum. The
spectral distribution is important, the level comparison shall thus be
made around the characteristic frequency components of a source.
A second indicator Ts(α, β), based on a spectral decomposition is
thus proposed. Third-octave bands sound levels are computed on
125 ms frames and the emergence of a source compared to the back-
ground is defined as

∆s(t, f) = Ls(t, f) − Lb(t, f) (3)
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Table 1: Pearson correlation coefficients between perceptual parameters and physical indicators at the scene level (n=9). *: p < 0.05, **:
p < 0.01, non-significant correlations (p > 0.05) are noted NS.

Phys./Perc. OL I L C LT,p TT,p LB,p TB,p LH,p TH,p LV,p TV,p LF,p TF,p
L50,1kHz 0.93** NS NS -0.92** 0.75* 0.7* NS NS NS NS NS NS NS NS
L50 0.98** NS 0.73* -0.97** 0.72* NS NS NS NS NS NS NS NS NS
LA50 0.96** NS 0.73* -0.94** NS NS NS NS NS NS NS NS NS NS
TT NS NS NS NS NS NS NS NS NS NS NS NS NS NS
LT NS NS NS NS NS NS NS NS NS NS NS NS NS NS
TB NS 0.67* NS NS 0.71* 0.75* NS NS NS NS NS NS NS NS
LB NS 0.93** NS NS -0.84** -0.83** 0.91** 0.82** NS NS NS NS NS NS
TH NS NS NS NS NS NS NS NS NS 0.84** NS NS NS NS
LH NS NS NS NS NS NS NS NS 0.98** 0.78* NS NS NS NS
TV NS NS NS NS NS NS NS NS NS NS NS NS NS NS
LV NS NS 0.81** NS NS NS NS NS NS NS 0.84** 0.88** NS NS
TF NS NS NS NS NS NS NS NS NS NS NS NS 0.9** 0.68*
LF NS NS -0.72* NS NS NS NS NS NS NS -0.69* -0.78* 0.92** NS
TT (α) NS -0.81** NS NS 0.90** 0.94** NS NS NS NS NS NS NS NS
TT (α, β) NS -0.80** NS NS 0.88** 0.92** NS NS NS NS NS NS NS NS
TB(α) NS 0.88** NS NS NS NS 0.95** 0.97** NS NS NS NS NS NS
TB(α, β) NS 0.88** NS NS NS NS 0.95** 0.97** NS NS NS NS NS NS
TH(α) NS NS NS NS NS NS NS NS NS 0.83** NS NS NS NS
TH(α, β) NS NS NS NS NS NS NS NS 0.73* 0.88** NS NS NS NS
TV (α) NS NS 0.82** NS NS NS NS NS NS NS 0.79* 0.83** NS NS
TV (α, β) NS NS 0.82** NS NS NS NS NS NS NS 0.75* 0.79* NS NS
TF (α) NS NS NS NS NS NS NS NS NS NS NS -0.71* 0.87** NS
TF (α, β) NS NS NS NS NS NS NS NS NS NS NS NS 0.90** 0.70*

Similarly to the first metric Ts(α, β) then relies on simple thresh-
olds applied on the emergence, first in frequency then in time. Its
expression is as follows:

Ts(α, β) =
1

Nt

Nt∑
t=1

1

[∑Nf

f=1 ∆s(t, f)1∆s(t,f)>α∑Nf

f=1 1∆s(t,f)>α

> β

]
(4)

where Nf is the number of third-octave bands. Here the emergence
threshold α is applied to each frequency band of the signal at a
given time frame. To determine if the source is heard in the frame
a second threshold β is then used on the mean emergence of the
source on emergent bands. Again, optimal values for parameters
αopt = −6dB and βopt = −5dB are found via grid search on the
experiment corpus as no other subset of scenes with both physical
and perceptual data is available. This set of values is more plausi-
ble physically, as it indicates that a source is considered heard if its
sound level is at most 5 dB lower than that of other sources overlap-
ping in time and frequency.

Table 1 shows the Pearson’s correlation coefficients between
the computed indicators and assessed parameters at the sound scene
level (n=9). The three globally computed sound levels L50, LA50

and L50,1kHz represent well the perceived overall loudness of the
scene and can be used directly for pleasantness prediction. Ground
truth emergences also correlate with the evaluated sound level pa-
rameters for all sources but traffic. The perceived time of presence
is however represented poorly by its corresponding ground truth es-
timation in common background sources: traffic, birds and human
voices. Traffic, specifically, is almost always present throughout a
scene in real life conditions. Its ground truth activity thus does not
vary significantly across the considered corpus, although high vari-
ations in perceptual assessments indicate that it may not be heard
at all time. The two proposed indicators successfully account for
this effect for background sources while yielding similar correla-
tions for horns and footsteps. Furthermore, these parameters are
more discriminative for traffic and birds. This confirms the need
of an emergence-based time of presence indicator to successfully

represent heard sources in the scene’s mix.
For all sources the perceived time of presence and sound level

are highly correlated (r > 0.8, p < 0.01). This is not the case
for the corresponding acoustic indicators, indicating information re-
dundancy between these two quantities at the perceptual level. As a
result one of the two quantities is often omitted in proposed pleas-
antness models.

4. CONCLUSION

A pilot experiment was performed to assess the relevance of pre-
dicting perceptual parameters from acoustic indicators in simulated
scenes for soundscape quality assessment. The ground truth time
of presence of sources is found not sufficient to fully characterize
soundscape perception. Some sources can be active but not heard
in the mix, especially background sounds such as traffic. This illus-
trates the need to design a masking model-based metric to determine
each source’s perceptual importance in complex soundscapes. The
proposed indicator Ts(α, β), while relying on a basic emergence
model due to the small amount of available data, can be directly
linked to source-specific perceptual quantities. Predicting the aver-
age pleasantness of a soundscape can thus be achieved by estimating
the source activity and emergence indicators proposed in Section 2.

Precision requirements of the postulated physical metrics are
also obtained. 125 ms or longer time scales used for the computa-
tion of all indicators in the presented experiment allow the design of
perceptually relevant indicators. A binary masking model is shown
in this study to improve parameter prediction. The estimation of
source-wise emergence as a classification process (e.g. 4 classes
from Not heard at all to Dominant) as opposed to continuous re-
gression is thus sufficient for the application needs.

Future work will 1) consider a refined perceptual experiment
with a richer soundscape corpus in order to achieve a stronger vali-
dation and model design including comparison with state-of-the-art
masking models and 2) formulate a complete experimental protocol
dedicated to the soundscape characterization task.
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