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The 2λ−O oscillatory mode of cellular solidification patterns is studied in thin samples of a
succinonitrile-acrylonitrile transparent alloy. The origin and the nature of oscillations are revisited
and discussed by combining experiment with 3D phase-field numerical simulations. The existence
domain of 2λ−O oscillations and the evolution of their period with growth velocity are determined
and compared. Simulations evidence transversal solute fluxes between neighbor cells as an essential
feature of cell dynamics. A solute balance model in which transversal fluxes are crucial for oscillations
recovers the emergence of a 2λ−O mode and its period-velocity relationship. It thus confirms the
fundamental role of transversal fluxes and provides a complete coherent description of the physical
mechanisms of 2λ−O oscillations. Parametric excitations are finally used to force 2λ−O oscillations
beyond their stability domain and highlight the nature of the underlying oscillator, especially its
non-linearity responsible for intermittent oscillations and complex behavior in the resonance band.

PACS numbers: 81.10.Aj, 68.70.+w, 81.30.Fb

I. INTRODUCTION

In physical, chemical or even biological systems, a
canonical mechanism for the emergence of oscillatory pat-
terns stands in the destabilization of a fixed point into a
limit cycle [1, 2]. In directional solidification, spectacular
examples of such oscillatory growth modes are provided
in either the isotropic phase of a cholesteric liquid crystal
[3], eutectic alloys [4–6], or diluted binary alloys [7–10].

In the latter case, 2λ−O oscillations have been ob-
served in thin samples of a diluted succinonitrile-based
alloy [7]. Adjacent cells were found to form pairs (spacing
2λ) that oscillate (O) in phase opposition while remain-
ing left-right symmetric. The stability of cellular arrays
with respect to various modes including 2λ−O oscilla-
tions has been determined by a Floquet-Bloch analysis
and found to critically depend on surface tension [11].
Related vacillating-breathing modes have also been ob-
served in numerical studies based on amplitude equations
[12, 13] or on a phase-field model [14].

In the above experiment [7], a large scan of velocity and
cell spacing provided 2λ−O oscillations on a bounded
velocity range 1.0 < V/Vc < 4.5 close to the critical
velocity Vc. As several instabilities compete in this ve-
locity domain [11, 15], saturated oscillations lasting ten
or more periods were seldom observed. In particular,
the large cell deformations displayed during an oscillation
period offered the solidification front the opportunity to
evolve toward asymmetric structures like doublons [16].
Meanwhile, both the spatial and the temporal symme-
tries broke since the system turned from an oscillatory
to a stationary growth mode [7]. This corresponds to a
rare experimental example of such a doubly-broken sym-
metry. Following this destabilization to doublons, the
2λ−O mode is usually impermanent in practice, so that
observing it requires some patience, both in experiments
and in simulations. In this context, combining both ex-
periment and numerical simulation could therefore pro-

vide valuable insights into its mechanism.

More recently, experiments were performed under mi-
crogravity conditions in extended samples of a different
succinonitrile-based alloy. They provided globally disor-
dered arrays of oscillating cells displaying locally corre-
lated oscillations with a π phase-shift in the case of local
square ordering or a 2π/3 phase-shift in the case of local
hexagonal ordering [8–10]. Here too, these spatiotem-
poral patterns refer to generic modes [2]. On the other
hand, numerical simulations were performed in extended
systems, first by using amplitude equations [17], later
by using the two-sided phase-field model for a model sys-
tem [18]. Parameterizing the one-sided phase-field model
with the actual physical parameters of microgravity ex-
periments, π and 2π/3 oscillatory modes were recently
recovered with oscillation periods comparable to the ex-
perimental ones [8–10]. This strongly suggests that quan-
titative numerical results could also be obtained for the
2λ−O oscillating mode.

For thin samples, a pioneering study using the one-
sided phase field model [19] reported the onset of an
oscillatory single structure in an intermediate domain
of spacings but, to our knowledge, no simulations were
performed so far to specifically study the 2λ−O mode.
We report here on new experimental results and numer-
ical simulations relying on a phase-field code designed
to incorporate the most salient experimental character-
istics. A very similar code was recently validated [20]
by means of quantitative comparisons with the orienta-
tional response of inclined solidification structures grow-
ing in comparable experimental systems [21–23]. The
good agreement found there motivates us to adopt here
a similar strategy for studying the 2λ−O mode by com-
bining experiments with numerical simulations.

Altogether, the experimental and numerical studies
performed here provide new insights into both the ex-
istence domain of 2λ−O oscillations and the relation be-
tween the oscillation period T and the pushing velocity
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V . In addition, a parametric excitation of the 2λ−O
mode, performed both in experiment and simulation, re-
veals an intermittent occurrence of 2λ−O oscillations in
the resonance band which emphasizes the intrinsic non-
linearity of this mode. On the other hand, an analy-
sis of the dynamics of the concentration field revealed
by simulation points out the importance of transversal
fluxes between cells. On this basis, a simple model of
cell dynamics based on concentration balance leads the
2λ−O oscillations to be recovered. Its underlying phys-
ical mechanisms emphasize the role of cell coupling by
transversal fluxes in the emergence of oscillations of a
cell pair.

This paper is organized as follows. Section II describes
the experimental procedure and the 2λ-O mode, while
section III reports the basic ingredients of the phase-field
code used in the simulations. Section IV is devoted to
the stability diagram and to the period-velocity relation.
The data extracted from the concentration field are an-
alyzed in section V and the essential role of transversal
fluxes between cells is identified. Their implication is an-
alyzed in section VI within a model of concentration bal-
ance and of cell evolution which succeeds in recovering
2λ−O oscillations. Section VII reports the parametric
excitation of the 2λ−O mode worked out in experiment
and simulation and emphasizes the role of non-linearity
in the intermittent occurrence of 2λ−O oscillations. Fi-
nally, a discussion completed by our main conclusions is
provided in section VIII.

II. EXPERIMENTAL

The experimental setup is designed to achieve direc-
tional solidification of a layer of cells or dendrites in ho-
mogeneous and controlled conditions capable of allowing
the real-time visualization of microstructures dynamics.

Details of the classical directional solidification setup
are described elsewhere [22, 24]. A thin sample filled with
the solidifying material is pushed in a controlled uniform
thermal gradient towards the cold zone at a given ve-
locity V . The growing liquid-solid interface is then ob-
served through an appropriate optical stage. The sample
is made of two parallel glass plates glued on their sides
to define a 45mm×100mm×100µm thin cavity. Sample
thickness is selected by using mylar sheets as calibrated
spacers, thin enough to avoid the emergence of a second
layer and thick enough to ensure a 3D behavior of mi-
crostructures as opposed to the 2D ribbon-like behavior
displayed for excessive squeezing [19]. A thermal gradient
of 110 K.cm−1 is provided by two heaters and two cool-
ers which sandwich the sample, all being electronically
regulated with an accuracy better than 0.1◦C. When ad-
dressing the periods of the 2λ-O mode, it has also been
extended to 140 K.cm−1. The material used in experi-
ments and modeled in numerical simulations is a trans-
parent plastic crystal, succinonitrile, with a small amount
of acrylonitrile as dilute solute. Care has been taken to

obtain a single crystal without grain boundaries in the
whole sample, the selected orientation involving a [0 0
1] direction perpendicular to the sample plane and a [1
0 0] direction parallel to the thermal gradient (and thus
normal to isothermal lines and planar fronts). Physical
and control parameters of experiments and simulations
are given in Tab. I.

TABLE I: Physical parameters of the succinonitrile-
acrylonitrile alloy of interest and control parameters imposed
in the experiments and the numerical simulations. In the first
entry, m is the liquidus slope (negative here) and c∞ is the
acrylonitrile concentration

Physical parameter Symbol Magnitude Unit

liquidus temperature drop −mc∞ 2.0 K

solute diffusion coefficient (liq.) D 1350 µm2/s

capillary length d0 0.01296 µm

partition coefficient k 0.286 −
anisotropy strength ε4 0.011 −
Control parameter Symbol Magnitude Unit

thermal gradient G 0.011 K/µm

pushing velocity V 3.0− 13.5 µm/s

critical velocity Vc 2.97 µm/s

On a given sample, the solidification velocity is in-
creased up to a constant value V at which observations
are performed. The velocity growth rate influences the
mean cell spacing, narrow spacings being displayed at
large rates and wide spacing at small ones. In any case,
sufficient time is given to spacing inhomogeneities to
relax by diffusion, thereby providing a quasi homoge-
neous spacing over the observation window which typ-
ically spans over a dozen of cells. Instabilities, as the
2λ-O instability studied here, occur naturally by devel-
opment of fluctuations usually on steady patterns but
sometimes also on dynamical ones, following the pertur-
bations induced by a previous instability.

Figure 1 displays a typical sequence of oscillation ev-
idenced on a cycle of the 2λ-O mode at V = 8µm.s−1.
(See the corresponding movie in [25] as well as the movie
for G = 140K.cm−1 with a larger number of cells.) The
spatial period of oscillation extends over two cell spacings
with neighboring cells in phase opposition. This actually
corresponds to a 2λ instability. Oscillations involve both
the cell shape and the cell position (or undercooling). As
displayed in figure 1-a, when cell positions are the same,
the shape differences are the largest. This means that
their oscillations are nearly in phase quadrature. Typi-
cal values of the oscillation periods are 1 or 2 min. This
stands as an unusually long characteristic time for cellu-
lar instabilities since, for instance dendritic oscillations
only last a few seconds [24].

Figure 2 displays a cycle provided by oscillating cells
over many periods. To enhance the signal, the difference
between the tip positions δzt(t) and the cell widths δλ(t)
of two adjacent cells is considered. On these oscillating
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cells, the cell widths are measured at the position of their
tip curvature center.

At a given V , a scan of the 40 mm wide front displays
both steady and oscillating cells. As the cell spacing is
quite uniform even on such a large distance, it appears
that at the same values of V and λ, steady and oscillating
cells can coexist [7]. This makes a difference with other
cell instabilities such as cell elimination, tip splitting or
dendritic emission which develop as soon as the required
conditions in (V , λ) are satisfied. Here, the coexistence of
steady and oscillating cells suggests a sub-critical nature
of the 2λ-O instability. This is supported by the response
to a sudden velocity pulse which makes previously steady
cells develop 2λ-O oscillations.

In practice, the fact that some cells remain steady
whereas other similar cells have undergone the instabil-
ity means that the former have not yet encountered the
perturbations that made the latter go unstable. The rea-
son is that the perturbations yielding the instability are
rare, for instance because they are intense or spatially
coherent. Intense fluctuations are actually required in
sub-critical instabilities to leave the basin of attraction
of a stable fixed point. They then involve a threshold
in intensity that makes their probability of occurrence
low. Here, in addition, one may suspect that some level
of spatial coherence over a couple of cells is required to
make oscillations develop. In particular, no oscillation
of a single cell has ever been observed and the model of
section VI will find them damped. Accordingly, one may
guess that fluctuations involving a characteristic length
of 2λ are required, with a positive perturbation on a cell
and a negative one on its neighbors. Here again, this
specificity reduces the probability of occurrence.

In this context, two kinds of procedure have been used
to document the 2λ-O mode. The first one consists in
applying a slow ramp or small increments of velocities
and in observing a given domain of a dozen of cells over
a long time to detect and follow the birth and the devel-
opment of the oscillations. As this is time and sample
consuming, this cannot be used systematically. The sec-
ond procedure consists in scanning the whole front at a
given velocity V so as to detect yet developed oscilla-
tions. It has been used to fill in the existence diagram
in the (V , λ) space (Sect.IV), the spacing λ being de-
termined from the distance between the cell axes. Both
procedures have their own merit : the first one enables
to detect 2λ-O oscillations from their birth to their long-
term development ; the second one enables to determine
the existence diagram in a reasonable time.

For velocities close to the upper limit of the existence
domain, oscillations succeed in keeping the same ampli-
tude over about ten periods (Fig. 2). However, for ve-
locities below, i.e. in most of the existence domain, 2λ
oscillations display an increasing amplitude which yields
one of the oscillating cells to either tip-split or get elimi-
nated depending on whether its initial spacing is large or
small. In both cases, neighboring cells relax toward an
asymmetric state corresponding to a so-called doublon

that is stable with respect to the 2λ-O mode [7]. In this
respect, the 2λ-O instability stands as a mediator for the
formation of doublons. This emphasizes its long-term
role on the cellular pattern dynamics.

FIG. 1: Experimental evidence of a 2λ-O mode. From (a)
to (f), six successive snapshots of the same front are shown
at time intervals of 20s over a cycle. The pushing velocity is
V = 8µm/s, the image width is 280 µm, the oscillation period
100s and the thermal gradient G = 110K/cm. Snapshots (a)
and (f) thus refer to the same phase of the cycle. Oscillations
of tip position are tiny but those of cell width and of tip
curvature are noticeable. First neighbor cells are in phase
opposition and arrows in snapshot (a) indicate the direction
of cell velocities in the frame of the thermal gradient.

III. PHASE-FIELD

The thin interface phase-field model (TIPM) was in-
troduced by Alain Karma and co-workers to simulate the
solidification of a pure substance [26, 27]. This model was
extended later to the case of a dilute binary alloy [28, 29].
Recently, direct comparisons of the TIPM with 3D exper-
iments of alloy solidification performed in confined sam-
ples [19, 20] and in extended ones [8–10] became feasible,
and quantitative agreement was found in each case.

Here, as in a number of recent studies [8–10, 20, 30, 31],
we replace the usual phase-field ϕ ∈ [−1, 1] by the pre-
conditioned phase-field

ψ =
√

2 tanh−1(ϕ), (1)
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FIG. 2: Limit cycle of oscillating cells obtained from the dif-
ferences of cell tip positions δzt and cell widths δλ between
two neighbor cells. V = 13µm.s−1, λ = 45µm, G = 140K/cm.

which is a signed distance from the interface. For a given
numerical accuracy, this transformation allows one to use
coarser numerical grids, which significantly reduces the
numerical effort [32]. Graphics Processing Unit (GPU)
parallel programming is used to further increase the code
efficiency [8–10, 33]. We only give the main lines of the
model here. For more details, we refer the reader to
our recent study of inclined solidification structures un-
der very similar experimental conditions [20]. Numerical
simulations are performed in a thin parallelepipedic do-
main, x lying along the sample width, y along the sample
thickness, and z along the temperature gradient.

A. Evolution equations

In the TIPM, the solid-liquid interface is given a thin
but finite width W0 which is used as the unit length here
[26, 27]. For rough materials like succinonitrile, attach-
ment kinetics can be neglected. We thus impose a zero
kinetic coefficient here by setting the characteristic time
of the phase-field model to τ0 = a0W

3
0 /(Dd0), where d0

is the capillary length, D the solute diffusion constant in
the liquid phase, and a0 ' 0.5539 [26, 27]. In order to
obtain a nondimensional version of the evolution equa-
tion for ψ, we follow the usual convention where lengths
and times are respectively divided by W0 and τ0. The

resulting equation is

(1− βkz∗)a2
s

∂ψ

∂t
=
√

2
[
ϕ− C(1− ϕ2)(U + z∗)

]
+a2

s

[
∇2ψ −

√
2ϕ(∇ψ)2

]
+ 2as∇as ·∇ψ

+

√
2

(1− ϕ2)
∇ ·A, (2)

with βk = (1−k), k being the partition coefficient. Here,
the nondimensional concentration field U is related to the
physical concentration field c by

c =
c∞
k

(
1 + βkU

)(αk − βkϕ
2

)
, (3)

where αk = (1 + k), c∞ is the nominal solute concen-
tration, and the additional term βkz

∗ on the left hand
side of Eq. (2) is introduced to reduce higher order cor-
rections that appear in the asymptotic expansion of the
phase-field equations [29]. The nondimensional variable
z∗ is defined as

z∗ = [z + zs(t)− V t]/lT , (4)

where

lT = mc∞(k − 1)/(kG) (5)

is the thermal length. The quantity V t−zs is a small ver-
tical offset that becomes constant (up to one mesh size)
at large times. It is the difference between the physical
pushing velocity term V t and the numerical term zs(t)
which adds up the vertical shifts performed during the
simulation (as explained in subsection B).

For our rough material, the constant that couples the
nondimensional concentration field U to the phase-field
is C = 75D∗/47, with D∗ = Dτ0/W

2
0 [27].

Both as and A depend on the crystal anisotropy. In
the present case, the anisotropy is cubic and the crystal
axes [1 0 0] and [0 0 1] are oriented as in the experiment
(see section II). The corresponding anisotropy function
reads then [34]

as = (1− 3ε4) + 4ε4(n4
x + n4

y + n4
z), (6)

where nx, ny, nz are the components of the unit vector n
along the normal to the solid-liquid interface and ε4 is the
anisotropy strength. Moreover, the three components of
the anisotropy vector A are given by

Aµ = 16ε4
(1− ϕ2)√

2
|∇ψ|as nµ

[
(n4
x+n4

y+n4
z)−n2

µ

]
, (7)

with µ = x, y, z.
We use here the one-sided model that neglects solute

diffusion in the solid. Following references [28, 29], a
corrective solute current

jat =
W0

2
√

2

c∞
k
βkγn, (8)
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is used to avoid artificial solute trapping and other spu-
rious corrections due to the finite interface thickness W0.
Here

γ =
1− ϕ2

√
2

(1 + βkU)
∂ψ

∂t
. (9)

The evolution equation for the nondimensional concen-
tration field U is then [28, 29](

αk − βkϕ
)∂U
∂t

= (1− ϕ)D∗ ∇2U

− (1− ϕ2)√
2

D∗ ∇ψ ·∇U

− 1√
2
n ·∇γ + γ

(
1− ∇ · n√

2

)
.(10)

B. Parameters and conditions imposed

Along the y direction (sample thickness), no-flux
boundary conditions are imposed on U while a con-
tact angle θc is prescribed by imposing ∂ψ/∂y at both
boundaries (see for instance [35] for a detailed descrip-
tion of such limit conditions). We use here the same
value as in [20], ∂ψ/∂y = ±0.8333, the positive (nega-
tive) value corresponding to the front (rear) boundary,
so that θc ' 33.5◦. We verified that for such small con-
tact angles the actual value of θc has a weak influence
on the simulation results [36]. Periodic boundary con-
ditions are preferred for the x direction (sample width).
Along the z direction (thermal gradient), the boundary
conditions are no-flux at the bottom of the domain and
U = −1.0 at its top. In addition, the fields ψ and U are
shifted when needed to keep the interface roughly at the
same vertical location in the simulation domain. In the
stationary regime, the cumulated shift zs(t) = V t + z0,
where z0 is a constant offset due to the fact that the
growth velocity varies during the initial transient. The
initial conditions used here are either a randomly per-
turbed flat interface or a 2λ−O mode obtained from a
previous simulation on which a dilation or a contraction
of space is applied in order to vary the spacing λ. Both
lead to the same features for the developed steady or os-
cillating state. The convergence parameter ξ = W0/d0

has been tested on steady cells until reaching constant
cell features. It has also been taken sufficiently small
that no spurious side-branching occurs on the cells and
that the oscillation period T remains constant within a
few percent if ξ is further decreased by about ten per-
cents. Altogether, a satisfactory convergence is obtained
for ξ = 90.0.

A spatiotemporal noise of small amplitude F [8–
10, 20, 31, 37] is introduced during the early stages of
the simulations (t ≤ 100s). Afterwards, noise is turned
off (F = 0) so that only the intrinsic numerical noise
remains : all the results presented here exclusively corre-
spond to this F = 0 regime. Although the growth time

of the 2λ−O oscillations may depend on the details of
the initial noise, the features of the developed oscillating
states do not. In contrast, the simulations of paramet-
ric oscillations considered in section VII are always per-
formed without spatiotemporal noise from the beginning
(F = 0) to avoid introducing a bias in the forcing.

The numerical parameters used in the simulations are
gathered in table II.

TABLE II: Numerical parameters used in the simulations.

Parameter Expression Value

Convergence W0/d0 90.0

Grid spacing δs/W0 1.2

Noise amplitude F 0.05

Based on our previous study [20], we use ε4 = 0.011
[38] for the crystal anisotropy and 35µm for the sample
thickness. For this thickness, the cell tip has a curvature
radius of the order of ten micrometers in the yz plane per-
pendicular to the sample (Fig. 3). This strongly curved
interface suggests a truly 3D behavior. A very different
behavior is expected for the 2D ribbon-shaped interface
that is obtained in thinner samples [19]. To evaluate
the differences between the two cases, we also performed
fully 2D simulations [36]. They showed that compara-
ble oscillations also appear in 2D but their amplitude is
weaker, they rapidly damp out and the scaling exponent
of relation (11) is about −3/4 instead of −3/2.

35µm

FIG. 3: Side view of the numerical domain (35µm in thick-
ness) showing one of the two oscillating fingers intersected by
the yz plane that passes through its tip. The tip radius of
curvature is roughly equal to 11.5µm here.
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IV. EXISTENCE DIAGRAM AND
OSCILLATION PERIOD

Varying both the pushing velocity V and the spacing λ
in the simulations allowed us to observe a number of oc-
currences of the 2λ−O mode. (See the movie in [25] for an
example of oscillations simulated at V = 9.0µm.s−1 and
λ = 77.5µm.) All the occurrences of the 2λ−O mode are
reported in the existence diagram of figure 4, together
with experimental points. Whereas an excellent agree-
ment is obtained regarding the velocity range, the exper-
imental modes span over a wider range of spacing with,
in the central part of this range, a gap in which only
stable cells are observed.

To better compare experiments and numerics, we stress
that numerics provide, for a given set of physical parame-
ters, values of λ smaller than in experiment, as previously
noticed in [8] or in [20]. This corresponds in Fig. 4 to an
overall shift of the numerical data to the left following
which the numerical domain appears as a shift of the
large spacings experimental domain. However, no sim-
ilar shift of the experimental domain for small spacing
is displayed on the numerical data of Fig. 4. This may
be traced back to the impossibility of simulating small
spacings owing to the much shallower grooves in numerics
than in experiment (compare Figs. 7 and 8 with Fig. 1).
As studied in details for the one-sided phase-field model
in [39], this groove feature is found to induce a rapid
cell elimination that preempts any possible emergence of
durable oscillations. Lastly, we also notice that, following
the sensitivity of stability bands to crystalline anisotropy
[19], its slight variation between experiment and numer-
ics may yield noticeable implication on the stability dia-
gram. Considering these differences between experiment
and simulation, we may finally view Fig. 4 as providing a
global agreement between them regarding the existence
domain of the 2λ−O mode.

To provide a reliable measurement of their period, os-
cillations must last several cycles with nearly constant
amplitude, no transition to doublet and no perturba-
tion from neighbors. For these reasons, only a part of
the experimental events displayed in figure 4 provided
data on oscillation periods. Similar restrictions prevented
to measure the period of the numerical occurrence at
V = 4µm/s. In ref. [7], a large set of experimental results
obtained for temperature gradient G = 110 or 140K/cm
yielded the relation

T = AV −3/2, (11)

where A is a constant. As this relationship does not
depend on the thermal gradient in this short range, we
have addressed its relevance by completing experimen-
tal data with few periods obtained at G = 140K/cm.
As can be seen in Fig. 5a, both experimental and nu-
merical data clearly follow this power law relationship
within numerical accuracy. Fitting them to Eq. 11,
one obtains Aexp = (2.46 ± 0.08) × 103µm3/2s−1/2 and

Anum = (2.73± 0.08)× 103µm3/2s−1/2.

FIG. 4: Existence diagram of the 2λ−O mode obtained at
G = 110K/cm : different symbols correspond to the oc-
currences found experimentally (full circles) and numerically
(empty triangles).

The scaling law (11) agrees with that provided by
the 1λ-O instability [40] both regarding the exponent
and the prefactor which, for a relative spacing of 1/2,

amounts to A = 2π(2k)1/2(1 + k)−1 D/V
1/2
c , i.e., 2.90×

103µm3/2s−1/2 here. We also note that the same relation-
ship between period and velocity, with a rather similar
value of coefficient A, was also obtained for 2π/3 oscilla-
tion modes in extended 3D samples, although both the
oscillation mode and the solute were different there [8–
10].

To address the dependence of the oscillation period on
the cell spacing λ, we have looked for a relation T (V, λ)
in non-dimensional variables based on the following dif-
fusive characteristic variables : the diffusion time τD =
D/V 2, the diffusion velocity VD = D/λ and the diffu-
sion length lD = D/V . With T/τD = b(λ/lD)α(V/VD)β ,
relation (11) extends to :

T/τD = b Pe0.5, (12)

Pe denoting the Péclet number Pe = λV/D and b being
a non-dimensional prefactor. As can be seen in Fig. 5b,
experimental data agree with this extended scaling law
with a best fitting prefactor b = 8.1 ± 0.4, but numeri-
cal data do not extend over a sufficient range of Péclet
number to be conclusive.

V. CONCENTRATION FIELD

Intuitively, one may expect the 2λ−O mode to result
from a coupling between neighboring cells but a part of
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FIG. 5: Log-log plot of (a) the oscillation period T vs pushing velocity V and (b) T/τD vs Pe. Full circles for experimental data,
empty squares for numerical data. Data are fitted with respect to relation (11) in (a) and to relation (12) in (b). Continuous
or dotted line for a fit to experimental or numerical data.

the information required to elaborate a complete descrip-
tion of the underlying mechanism is not easy to get from
experiment. The situation is somewhat better in numer-
ics because, in addition to purely geometric characteris-
tics of the cell tip like position zt, velocity żt, and radius
of curvature ρ, phase-field simulations also provide the
concentration field (see Figs. 6, 7, and 8). Thus, in
complement to the geometrical information provided by
the microstructures, one may expect the missing infor-
mation to be gained from the spatiotemporal evolution
of the concentration field.

A concept that proved useful in quantifying the dy-
namics of the growth modes is constitutional supercool-
ing [41]. It is commonly defined as a temperature dif-
ference but may also be expressed in terms of concentra-
tions,

δc(r, t) = cL(z, t)− c(r, t), (13)

where c(r, t) is the actual concentration at location r and
time t and cL(z, t) is the liquidus concentration at the
corresponding temperature T (z, t),

cL(z, t) =
c∞
k

+
G

m
(z + zs − V t) =

c∞
k

+ `T
G

m
z∗, (14)

where z∗ is defined in (4). Using (3) and (5) finally yields
the nondimensional undercooling

Ω = − k

c∞
δc = βkz

∗+
(

1 + βkU
)(αk − βkϕ

2

)
− 1. (15)

When, for a given velocity, the thermal gradient G is less
than a critical value, the planar front destabilizes and

time

-1

0

1

ca , zt
zt

ρ

T/8 T/4 3T/8 T/2 3T/4 T7T/85T/80

a b c d e f g h i
label

~~
.

~
~

FIG. 6: (Color online) Time evolution of the fluctuations (de-
noted by a tilde) of four different parameters (schematic rep-
resentation). The fluctuations of a given parameter are de-
fined as its instant value minus its average value and they are
normalized to one here. The parameters represented are the
solute concentration at a fixed distance above the cell tip, c̃a,
and three geometric parameters of the cell tip: position z̃t,
velocity ˙̃zt, and radius of curvature ρ̃. The oscillation time
period is denoted by T and labels a to i refer to those used in
Figs. 7 and 8

cells form. A zone of negative undercooling then builds
up in the liquid and Ω goes through a minimum Ωa < 0
at some distance ∆za ahead of the cell tips, as seen in
Fig. 7.
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FIG. 7: (Color online) Time evolution of the 2λ−O mode obtained numerically. The pushing velocity is V = 9µm/s and the
image width is 310µm. Solid cells appear in black in the lower part of the panels and white arrows indicate the cell tip velocities.
In the liquid phase above them, isosurfaces are drawn for the constitutional undercooling Ω defined in the text. A complete
oscillation period, T ' 108s is swept, the frames respectively corresponding to times (a) 0; (b) T/8; (c) T/4; (d) 3T/8; (e) T/2;
(f) 5T/8; (g) 3T/4; (h) 7T/8; (i) T .

Here and in the following, we want to focus on the
physical limit where the interface becomes very sharp.
To do so, everywhere in the liquid Ω is obtained by eval-
uating the right hand side of Eq. (15) for the far-field
value ϕ = −1.0. As αk + βk = 2, one then gets

Ω = βk(z∗ + U) (in the liquid). (16)

In the solid, we uniformly set the undercooling to an
arbitrary negative constant

Ω = cst < 0 (in the solid). (17)

Figure 7 represents Ω in the xz plane that intersects the
cell tips. The simulation is performed for a single pair
of cells with periodic boundary conditions along x. The
resulting data are then duplicated along x to ease visual
inspection by the reader. As detailed below, the main
characteristics observed in the experiments (Fig. 1) are
recovered here.

The fluctuations of four cell parameters are schemat-
ically represented as functions of time in Fig. 6. The
three geometrical parameters were introduced above, the

fourth, ca is the solute concentration at the altitude ∆za
above the cell tip where Ω is minimal. One can follow
their evolutions by focussing attention on the central cell
in the successive panels of Fig. 7. At initial time (panel

a), ˙̃zt is maximum, c̃a and z̃t are zero and increasing and
ρ̃ increases after having reached its minimum about a pic-
ture earlier (panel h). Taking the tip velocity fluctuation
˙̃zt as the phase reference, the initial phase shifts remain
constant in time, that is roughly π/2 for c̃a and z̃t, and
3π/4 for ρ̃.

At time t = T/2 (panel e) the tip velocity is mini-
mum, so that the vertical solute flux rejected at the tip
is lower than average. As a result, at later times, the so-
lute concentration ca ahead of the tip decreases, as shown
in panels f, g, h, and i in Fig. 7, producing the large
black area at a distance ∆za above the cell tip (panels
f and g). As ∆za ' 40µm, the vertical diffusion time
∆z2

a/D ' 1.2s is rather short as compared to the oscilla-
tion period T ' 108s. The effects of żt on the dynamics
of ca are thus almost immediate.

The counteracting mechanism that re-equilibrates the
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∂Ω/∂x

FIG. 8: (Color online) Time evolution of the field ∂Ω/∂x for the same parameters as those of Fig. 7. The two arrows in panel
g indicate the orientations of the horizontal solute currents, proportional to −∂Ω/∂x, that converge toward the central cell. At
the bottom and the top of the frames, the zero current areas respectively represent the solid and the far-field liquid.

concentration in the dark stripe around altitude ∆za
above the cell tips comes from horizontal solute diffu-
sion currents. In the far-field limit of Eqs. (16) and (17),
we obtain

∂Ω

∂x
= βk

∂U

∂x
(in the liquid), (18)

and

∂Ω

∂x
= 0 (in the solid). (19)

Note that this quantity is simply proportional to the
horizontal component of the concentration gradient
∂c(r, t)/∂x, or to the opposite of the horizontal concen-
tration current jx = −D(∂c/∂x).

Figure 8 represents the time evolution of ∂Ω/∂x over
an oscillation period. When ca is minimum (panel g) the
horizontal solute currents coming from the two neigh-
boring cells reach maximum extensions and converge to
increase the solute concentration above the tip of the cen-
tral cell (panel g). This mechanism definitely supersedes
the coupling between first-neighbor cells but, since the
central cell is not totally screened, it still survives for the
next period. One can see that the two converging hori-
zontal currents cooperate to pinch the tip of the central

cell. As a consequence, ρ decreases to reach a minimum
value on the next panel (panel h). This increases diffu-
sion currents at the tip and thus its velocity żt. In the
meantime, the situation is the exact opposite for the two
cells neighboring the central one: the tip radius increases,
so that the tip velocity decreases. This completes the ex-
planation of the way the central cell manages to survive.

As compared to the time analysis just detailed that
starts from t = T/2 (panels e to i), the sequence is pre-
cisely reversed half a period earlier, as shown by the pan-
els starting from t = 0 (panels a to e). Thus a unique
mechanism accounts well for the periodic nature of the
2λ-O mode, with a doubling of the spacing. The follow-
ing section is devoted to model it.

VI. EMERGENCE OF OSCILLATIONS

The specific features of the 2λ−O instability are its
oscillatory character and its wavelength, twice the cell
spacing λ. The former feature calls for understanding
why a cell that is on the way to be eliminated succeeds
in reversing its dynamics to get back to the mean cell po-
sition. The latter feature suggests that the same mech-
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anisms that render unstable the oscillatory modulations
at the scale of a cell pair leave those at a single cell scale
stable. Our objective here is to identify the main mech-
anisms responsible for these features and to model their
interplay so as to uncover the emergence of oscillatory
states.

In terms of temporal eigenvalues of perturbation
modes, σ = σr + iσi, this requires to find out the mecha-
nisms yielding σr(V, λ) to change sign or σi(V, λ) to be-
come non-zero. The former event deals with stability and
the latter with the occurrence of oscillations (damped or
amplified). Here we shall focus on the latter one since
our concern points more to the emergence of oscillations
than to stability.

To date, the neutral stability of the 2λ−O mode has
been determined in a symmetric model by Floquet anal-
ysis at given surface tension and anisotropy [11] and a
similar instability called vacillating-breathing instability
has been evidenced at large solidification velocity by sim-
ulation of a symmetric model with constant miscibility
gap [12]. However, to our knowledge, no theoretical mod-
eling of the instability mechanism of the 2λ−O mode has
been proposed so far. This contrasts with the case of
oscillations of individual cells, i.e., with the 1λ−O mode,
where various theoretical [40] or analytical and numeri-
cal results [42, 43] have been obtained, with controversial
conclusions however. In comparison, the major difference
that will be brought about by the 2λ−O mode here will
be the coupling between neighbor cells.

In this context, the ambition of our modeling will be
more qualitative than quantitative : identifying the phys-
ical mechanisms responsible for the oscillations, modeling
them and their interplay so as to uncover cell oscillations
and their main features. Our analysis will rely on the
major outcomes pointed out by simulation : the cou-
pling between cells and the interplay between cell form
and cell position. It will then aim at expressing them on
a rational basis, up to modeling approximations and thus
up to quantitative inaccuracies.

In practice, our model will assume quasi-steady states,
Laplacian dynamics close to cell tips, a 2D space, negligi-
ble surface tension, and a given family of cell forms with
infinite grooves. It will explicitly consider the transversal
fluxes between cells as the major factor of the 2λ−O in-
stability and will provide both their expression and their
implication on cell form and cell tip position.

The model will succeed in uncovering the emergence
of oscillations, i.e., of non-zero σi. However, the velocity
at which oscillations occur as well as the stability of the
state on which they emerge will differ from those deter-
mined in experiment or simulation. In particular, oscil-
lations will appear on an unstable state rather than on
a stable one, so that their occurrence will correspond to
a transition between 2λ−S and 2λ−O instabilities [11].
Beyond these differences with observations, the mech-
anisms that generate non-zero σi and thus oscillations
may be expected to be responsible for those of the 2λ−O
mode. In particular, the eigenvalue σi will yield a rela-

tionship between period and velocity in close agreement
with that evidenced in experiment and simulation.

We now build the model on the following ingredients
revealed by experiment and simulation :

(i) two dynamical cell variables : the cell tip position
zt and the cell tip curvature radius ρ (Figs. 1 and 6).

(ii) a major dynamical factor : the transversal solute
flux between cells. It is correlated to the non-dimensional
undercooling Ω (15) and drives the modulations of both
zt and ρ (Figs. 7 - 8).

We respectively label the interface and the cell tips
by the indexes I and t. We consider a central cell and
we index its left and right neighbors by ”−” and ”+”
respectively. The origin of coordinates (x, z) is placed in
the middle of the central cell and on the solidus. Time
derivation will be denoted by a dot.

A. Regimes and assumptions

Following the experimental and numerical results, the
velocities that will be considered are weak enough for
making the Péclet number Pe = λV/D significantly
smaller than unity : Pe << 1. For instance, for a
cell spacing λ = 80µm, Pe = 1 is reached at a veloc-
ity VD = D/λ ≈ 17µm/s, well above the studied range
V ≤ 10µm/s (Fig.4).

We then consider the tip region defined as the cell do-
main closer to the tip than half a cell spacing λ. There, as
variations of solute concentration involve the length scale
λ, the low Pe condition yields the advection term V.∇c
to be negligible compared to the diffusion term D∇2c.
In steady states, the dynamics of solute concentration
then yields the concentration field to be quasi-Laplacian,
λ2∇2c/c∞ = O(Pe) and the variation of solute concen-
tration over the cell width to be negligible in comparison
to the variation ct − c∞ undergone over the liquid phase
[40].

Regarding the dynamics of the 2λ−O mode, we no-
tice that its period T is actually large compared to the
diffusion time τD = D/V 2 : (T/τD)2 = V/VT with
VT = D2/A2 = 0.25µm/s. As the instability domain
starts at V ≈ 4µm/s (Fig.4), this yields T/τD > 4 fol-
lowing which a quasi-steady approximation for the dy-
namical states may be assumed. According to it, we
may invoke an exponential relaxation of the concen-
tration field in the z direction over a diffusion length
l̃D = D/VI based on the instantaneous growth velocity
VI = VI · ez = V + żt.

Considering a two-dimensional growth in the plane
(x, z), the above approximations then allow the concen-
tration field to be approximated as :

c(x, z, t) = c∞+ (ct− c∞) exp[−(z− zt)/l̃D] + o(ct− c∞).
(20)

For simplicity, we shall work within a prescribed family
of forms involving a circular tip of radius ρ, a constant
width l = 2ρ and infinite grooves (Fig. 9). In the os-
cillatory state, the cell form will then drift within this
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family with variable ρ or `. This is analogous to the cell
evolution considered in the analysis of the 1λ−O mode
[40] except that the family of forms was that of Saffman-
Taylor fingers and no coupling between cells was in order.
In particular, as in [40] and in agreement with the quasi-
steady approximation, we shall not consider the effects
of the groove modulation implied by the variation of cell
width λ(t).

The last assumption will be to neglect the effect of
surface tension on cell tip undercooling. In particu-
lar, in the same set-up, a study of tip position and
of tip temperature evidenced a linear evolution of the
tip undercooling 4 = (ct − c∞)/∆c with 1/V , where
∆c = c∞(1 − k)/k denotes the miscibility gap [44]. As-
suming a zero undercooling at infinite V then yields a
relationship, 4 = Vc/V , that is similar to the Bower-
Brody-Flemings (BBF) criterion [45]. On this basis, the
capillary correction (|m|∆c d0/ρ < 3.10−3K) to the drop
of melting temperature (|m|ct > 3.5K) appears to be of
order of 10−3. In addition, as the oscillation amplitudes
of tip curvature radius ρ and of tip position zt are of the
same order, the oscillations of tip temperature induced
by ρ appear to be less than a percent of those induced
by zt.

These estimates thus legitimize our assumption to ne-
glect capillary corrections to the cell tip undercooling
in both steady and oscillatory states. Accordingly, the
Gibbs-Thomson relationship at the cell tips reduces to
the liquidus relationship :

ct =
c∞
k
− (zt − zp)

G

|m|
, (21)

where zp denotes the position of a steadily growing planar
front. For the sake of simplicity, hereafter the origin of
the z-axis will be placed there : zp ≡ 0.

B. Dynamics of tip position

We now consider a box of width λ and height L larger
than lD, extending from the tip of the central cell towards
the liquid phase. We wish to follow the mean solute
concentration in it (Fig.9). Its evolution is linked by
solute conservation to the concentration fluxes over the
box boundary:

dC

dt
=

d

dt

∫
V

(c− c∞) dx dz = −
∮

Γ

j · n dl, (22)

where C denotes the net excess of solute in the box be-
yond the concentration c∞, V and Γ the volume and the
contour of the box, n its outward normals and j the con-
centration fluxes.

On the contour Γ, the fluxes to consider are at z =
zt + L, the advective flux j∞ = −c∞VIez, the diffusion
fluxes being negligible; at z = zt : the advective flux jt
and the diffusion flux jd induced by solute rejection at
the interface; at x = ±λ/2, the lateral horizontal fluxes
j− and j+ generated by the neighboring cells.

FIG. 9: Sketch of the domain used for modeling. Cells geome-
tries are taken as circular tips of radius ρ = `/2 followed by
a constant width `. The coordinates of a cell interface point
are (xI , zI). The tips of the first neighbor cells are designed
by T− and T+. The points in the middle of the central cell
that stand at the same height as the neighbor cell tips are
called M±. A control volume V of width λ and height L > lD
is defined in which solute evolution is determined from the
solute fluxes across its sides. In addition to the usual advec-
tion and diffusion fluxes, transversal fluxes are induced here
by the shift of tip position between a cell and its neighbors.
The contour of the box is labelled Γ and its outward normals
n. At a finer scale, the evolution of solute concentration in el-
ementary bands δz around the cell tip enables the implication
of transversal fluxes on the evolution of tip curvature radius
ρ to be determined.

As the concentration field is quasi-Laplacian in the tip
region, the divergence theorem may be invoked to express
the integral of the diffusion flux jd = −D∇c on the line
z = zt from that on the interface I where, by solute
conservation, −D∇c ·nI = (1−k)cIVI ·nI . One obtains
[28]:

−
∫
z=zt

jd · n dx = D
G

|m|
(λ− `) + (1− k)ct VI `, (23)

where ` denotes the cell width and n = −ez the outward
normal to the contour Γ at z = zt.

Following the exponential relaxation (20), one may ap-
proximate the excess of solute concentration in the box
by C ≈ λl̃D(ct − c∞). Similarly, the advection flux jt at
zt may be approximated by by its value jt = −ctVIez at
the cell tip and the integrals of the lateral fluxes over the
lateral sides of the box as l̃D times their value j±(zt) at
zt. These fluxes are driven by the differences of concen-
tration δc± = cT± − cM± between the tip of a neighbor
cell (point T± in Fig.9) and the center of the central cell
at the same height zt± (point M± in Fig.9). Fluxes may
thus be approximated from the resulting mean concen-
tration gradient δc±/λ as : j±(zt) ≈ ∓D δc±/λ ex.

Following the liquidus relationship (21), the cell tip
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concentrations cT± equal the liquidus concentration
cL(zt±, t) at the altitude zt± : cT± = cL(zt±, t). Evaluat-
ing cM± from (20) then yields, at first order in (zt±− zt)
and żt, δc± = [ct − c∞ − lD G/|m|](zt± − zt)/lD or
δc± = ∆c (4− Vc/V ) (zt± − zt)/lD.

Accordingly, the concentration differences δc±, and
thus the resulting fluxes j±(zt), depend on the devia-
tion (4− Vc/V ) to the BBF criterion which is known to
be small here [44]. Our simulations provide however the
opportunity of determining this deviation since, follow-
ing cT± = cL(zt±, t), it appears that δc± = δc(0, zt±, t)
as defined in (13) or δc± = −Ω(0, zt±, t) c∞/k according
to (15). In particular, noticing that Ω(0, zt, t) = 0 and
linearizing Ω with respect to the shift (zt± − zt) of cell
tip positions yields δc± = −(c∞/k) (∂Ω/∂z)|zt (zt±−zt)
and, finally :

j±(zt) = ±D
λ

c∞
k

∂Ω

∂z

∣∣∣
zt

(zt± − zt) ex. (24)

Knowing the concentration fluxes, we may now express
relation (22) as a dynamical equation for the tip posi-

tion. Regarding the time derivative of C ≈ λl̃D(ct−c∞),

we note that dct/dt = −żtG/|m| and that dl̃D/dt =

−l̃D z̈t/VI so that dC/dt = −λl̃D G/|m| żt [1 + δ] with
δ = (ct−c∞)/VI |m|/G z̈t/żt. The BBF criterion and the
amplitude estimate |z̈t| ≈ |żt|/T then yield |δ| ≈ τD/T .
As, in our velocity range, |δ| stands below 1/4, we shall
neglect its contribution in the following. This turns out
neglecting the variations of the diffusion length l̃D and
thus the internal dynamics of the solute layer. One then
obtains from (22):

żt = τ̃−1
D [ (1− `/λ)(lT − zt)− k zt `/λ]− (1− `/λ)VI

+
D2

λ2Vc
(1− k)−1 ∂Ω

∂z

∣∣∣
zt

(zt+ + zt− − 2zt), (25)

where τ̃D = D/V 2
I . This relation shows the effect on the

tip velocity of both the cell form (i.e., the cell width ` or
the tip radius ρ = `/2) and the lateral fluxes induced by
a shift (zt±− zt) of tip position with respect to neighbor
cells. It calls for completing the dynamical system with
a dynamical equation for the tip curvature radius ρ.

C. Dynamics of cell form

For isolated dendrites growing in a homogeneous melt,
a solvability condition prescribes the tip curvature radius
ρ in steady and quasi-steady growth states : ρ2V ∝ γ/ct
where γ denotes surface tension [46]. This relation can be
extended to dendritic arrays provided that dendrites are
separated enough for not being noticeably influenced by
their neighbors [47, 48]. This restriction requires their
spacing λ to be large compared to the diffusion length
lD = D/V , and thus their Péclet number Pe = λV/D to
be large : Pe >> 1.

Here, the cellular pattern stands in the opposite
regime, Pe = O(1), where cells are close enough to sig-
nificantly interact by diffusion. Then, their steady form

is largely dependent on the cell spacing λ [49]. It then
does not refer to a solvability condition which, in par-
ticular, involves no dependence on λ. For small Péclet
numbers, Pe� 1, and a uniform cellular pattern, steady
cells correspond to Saffman-Taylor fingers [49] whose rel-
ative width l/λ is selected by surface tension [50, 51].
However, this kind of form ceases to be valid when lat-
eral fluxes of solute are induced by neighboring cells. We
shall then model the dynamics of form evolution by con-
sidering two factors : (i) the direct effect of transversal
fluxes on the interface position ; (ii) the relaxation of
perturbed forms towards the steady form.

(i) Lateral fluxes make the solid phase melt, as modeled
in (25) for the tip position dynamics. However, this melt-
ing may be differential, yielding an evolution of form, i.e.
of ρ. We model this effect by considering the evolution of
concentration on the side of a cell (Fig.9). As we restrain
attention to the tip vicinity, fluxes may be taken as con-
stant and equal to j±(zt). We then look at an altitude zI
for solute conservation in a band of liquid of height δz and
length λ/2−|xI | where xI denotes the interface abscissa.
Assuming homogeneous solute concentration, we obtain
the evolution of concentration ċI = ∓j±(zt)/(λ/2−|xI |).
Invoking the liquidus relationship (21) at the interface,
cI = c∞/k−zIG/|m|, yields the evolution of interface po-
sition, żI = ±j±(zt)/(λ/2 − |xI |) (|m|/G). Using ρ−1 =
−∂2zI/∂x

2
I |xI=0, we now deduce from it the evolution of

the tip curvature radius : ρ̇ = ±16 (|m|/G) j±(zt)ρ
2/λ3.

(ii) The basic stability of the cellular form in absence of
transversal fluxes goes together with a natural relaxation.
As this relaxation is driven by diffusion, it involves a dif-
fusive time scale τρ driven by the relevant length scale,
the steady state curvature radius ρ̄ : τρ ∝ ρ̄2/D. For
simplicity, we shall assume that the relaxation time scale
reduces to the diffusive time scale, thus yielding the fol-
lowing contribution to the tip curvature radius dynamics:
ρ̇ = −D/ρ̄2 (ρ− ρ̄).

Using (24), the two above contributions altogether
yield the following evolution equation for the tip cur-
vature radius:

ρ̇ = 16
D2

λ2Vc

ρ2

λ2
(1− k)−1 ∂Ω

∂z

∣∣∣
zt

(zt± − zt)−
D

ρ̄2
(ρ− ρ̄).

(26)

D. Coupled dynamics and 2λ−0 oscillations

Altogether, relations (25) and (26) provide, with ` =
2ρ, a coupled dynamical system for zt and ρ. Labeling by
a tilde the fluctuations z̃t = zt−z̄t, ρ̃ = ρ−ρ̄ where z̄t and
ρ̄ denote average values, their linearized dynamics may
be straightforwardly derived (see Appendix). It reads

˙̃zt = az̃t + bρ̃, (27)

˙̃ρ = cz̃t + dρ̃, (28)
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where, in case of phase opposition between a cell and its
neighbors, z̃t± = −z̃t, and

a = (λ/¯̀+ k − 1) (
V ′2 − V 2

D
), (29)

b = −2k
(λ/¯̀)2

λ/¯̀+ k − 1

V

λ
(
V

Vc
− 1), (30)

c = −32
D2

λ2Vc

ρ̄2

λ2
(1− k)−1 ∂Ω

∂z

∣∣∣
zt
, (31)

d = −D
ρ̄2
, (32)

with

V ′2 = −4
λ/¯̀

λ/¯̀+ k − 1

D3

λ2Vc
(1− k)−1 ∂Ω

∂z

∣∣∣
zt
. (33)

Transverse fluxes strenghten the V ′2 term and param-
eter c. We stress that, as ∂Ω/∂z(zt) is negative (Fig.7),
both of them are intrinsically positive. On the other
hand, a is positive for V < V ′ and negative above, while
b is negative above onset V > Vc and d is always negative.

The eigenvalues σ1 and σ2 of the linear system (27)
(28) are monitored by the trace Σ = a + d = σ1 + σ2,
the determinant Π = ad−bc = σ1σ2 of the corresponding
Jacobian matrix, and by the discriminant D = Σ2−4Π =
(a− d)2 + 4bc of its characteristic polynomial. In partic-
ular, emergence of oscillations corresponds to D turning
negative. Here D(V ) is positive at Vc since b(Vc) = 0.
It then decreases with V as a(V ) and b(V ) do and even-
tually turns negative at some velocity VO at which an
oscillatory dynamics emerges.

FIG. 10: (Color online) Evolution of the eigenvalue spectrum
with V for modulations at two cell spacings. Dashed lines
: real eigenvalues σ± with σ− < σ+ ; full lines : complex
eigenvalues with σr and σi the real and imaginary parts. As
V increases, a transition from 2λ−S to 2λ−O instability is
encountered at VO = 18µm.s−1. At larger velocity, the 2λ−O
instability restabilizes as the real part σr turns negative.

Figure (10) displays the evolution with V of eigenval-
ues for the following specific values of parameters cor-
responding to the simulation displayed in Figs 7 and

8 : λ = 77.5µm, ρ̄ = 27µm, ¯̀ = 2ρ̄, ∂Ω/∂z(zt) =
−3.75 × 10−3µm−1 that we assume independent of V ,
and V ′ = 75.6µm/s. It shows the occurrence of a nonzero
imaginary part of eigenvalues for V > VO. Below VO,
eigenvalues are real with one of them positive, so that
the cellular state is unstable with respect to the 2λ−S
instability [11]. This mode, which drives an elimination
of one cell over two, is reminiscent of the spatial period-
doubling instability of dendrites [47, 52].

The facts that the cellular pattern on which the os-
cillatory instability develops is actually stable and that
VO = 18.0µm/s is large compared to observations, in-
dicate that the modeling is too crude to grasp the cor-
rect behavior of the real part of eigenvalues. Fixing this
caveat stands beyond the scope of this study. This would
require a more refined model that better addresses cell ge-
ometry, cell undercooling, transversal fluxes and the pul-
sation of the boundary layer implied by cell oscillations.
In particular, the latter is an important ingredient of the
1λ-O instability [40] that has been overlooked here by
neglecting the factor δ in the derivation of (25). On the
other hand, determining more accurately the relaxation
time scale τρ and its dependency on velocity would be im-
portant for dealing with stability. Finally, as stressed by
Kessler and Levine on the 1λ−O mode [42], the interac-
tion between tail and tip, which is overlooked here, might
be relevant to cell stability. Beyond these shortcomings,
the occurrence of complex eigenvalues (σi 6= 0) in the
actual modeling succeeds in pointing out how transver-
sal solute fluxes driven by differential cell positions can
trigger oscillations.

It is worth highlighting the essential role of cell cou-
pling by transversal fluxes on both oscillation and sta-
bility. Regarding oscillations, these fluxes sustain the
parameter c that is essential for having negative D and
hence oscillations. In particular, with no fluxes, c would
vanish and yield positive D and thus real eigenvalues.
This situation refers in particular to 1λ-modes where, as
all cells undergo the same evolution (zt± = zt), transver-
sal fluxes vanish by symmetry. The model is thus unable
to capture 1λ-O oscillations, presumably because of its
neglect of the boundary layer pulsation. Regarding sta-
bility, fluxes provide a positive contribution to parame-
ter a from V ′2, which supports instability. In particular,
we note that, for a single oscillating cell surrounded by
steady neighbors, i.e., for z̃t± = 0, the flux amplitudes
would be divided by two. Then the same modeling would
turn unstable oscillations into damped oscillations.

From a more physical point of view, the mechanisms
yielding oscillations may be described this way. Consider
a positive modulation of curvature radius at same tip po-
sitions : ρ̃ > 0, z̃t = 0, Fig. 7e. As the flatter the tip,
the weaker the diffusion flux around it, the resulting de-
pletion of diffusion on the central cell yields a negative
tip velocity modulation : ˙̃zt < 0, z̃t < 0, ρ̃ > 0, Fig. 7f.
The difference of tip position between the cell and its
neighbors then drives lateral fluxes which make the cell
melt at its tip and on its sides. Tip melting raises the
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strength of the negative modulation of velocity ˙̃zt < 0,
possibly yielding cell elimination by the 2λ−S instability.
Sides melting yields the tip radius to decrease, in addi-
tion to its natural tendency to relax towards its mean
value. When this effect has enough time to develop, it
may yield the modulation of curvature radius to reverse
sign : ρ̃ < 0, z̃t < 0, Fig. 7g. Meanwhile, thanks to a
resulting stronger diffusion at the cell tip, the tip velocity
raises. When this effect is stronger than that induced by
tip melting, it may even reverse the velocity modulation,
˙̃zt > 0, z̃t < 0, ρ̃ < 0, Fig. 7h, and yield the cell to
recover the neutral position but with a positive velocity
and a thin curvature radius : z̃t = 0, ˙̃zt > 0, ρ̃ < 0,
Fig. 7i. The remaining half cycle may then resume and
complete the oscillation.

Accordingly, transversal fluxes between cells generate
both tip melting and side melting. Whereas cell elimina-
tion is induced by tip melting, oscillations result from side
melting which can make a cell drifting down the grooves
succeed to recover. The dynamical competition between
both these effects either yield the 2λ-S instability, the
2λ-O instability or cell stability (Fig.10).

FIG. 11: Evolution with the pushing velocity V of the period
Ti = 2π/|σi| of the 2λ−O mode at λ = 77.5µm, following the
imaginary part of the eigenvalue σi provided by the system
(27) (28). To compare with the experimental and numerical

trend (11), the period Ti is multiplied by V 3/2. The nearly
constant value reached shortly after the occurrence of oscilla-
tions at VO = 18µm.s−1 agrees with the observed relationship
(11). The insert shows data in log-log coordinates and a com-

parison with the trend Ti ∝ V −3/2 of relation (11).

On a quantitative ground, the period Ti of oscillations
is provided by the imaginary part σi of eigenvalues :

Ti = 2π/|σi|. Its evolution with V at λ = 77.5µm, is
compared in Fig. 11 to the relationship (11) found in
experiment and simulation. Apart from a sudden de-
crease at the onset of oscillations VO, the combination
TiV

3/2 quickly reaches a nearly constant value of about
A ≈ 0.4×103µm3/2s−1/2, of the same order as the values
found in experiment (Aexp = 2.46 × 103µm3/2s−1/2) or

simulation (Anum = 2.73× 103µm3/2s−1/2). This agree-
ment on both the type of power law and the order of
magnitude of its prefactor gives additional credit on the
relevance of our model regarding oscillations.

VII. PARAMETRIC EXCITATION

The 2λ−O instability corresponds to a spontaneous
destabilization of the cellular state towards a limit cy-
cle and thus to the natural emergence of an oscillating
pattern by a Hopf bifurcation. A canonical way to ex-
plore the vicinity of this bifurcation and reveal the main
features of the underlying oscillator consists in forcing os-
cillations by an external, resonant, mean. Below, we use
this mean to explore some features of the 2λ−O oscilla-
tor by addressing, both experimentally and numerically,
its response to a parametric excitation.

Extrinsic excitations are induced here by modulations
of the pushing velocity. This corresponds to uniform
modulation whose spatial signature thus differs from that
of the 2λ−O mode. It may yield an additive or a mul-
tiplicative forcing depending on whether the modulation
affects the absolute or the relative value of the main vari-
able, here the solute concentration. We show below that
solute advection by this velocity forcing yields a multi-
plicative forcing which is known to possibly excite oscil-
latory modes when parametric resonance is in order.

We thus introduce, both in experiment and simula-
tions, a sinusoidal modulation of the pushing velocity:

Vf (t) = V0 + V1(t) = V0 + V1 cos(ωf t), (34)

where V0 is the average pushing velocity, V1 the exci-
tation amplitude, ωf the forcing pulsation and Tf =
2π/ωf the forcing period. Regarding the experiment,
we stress that the forcing period will be larger than the
relaxation time of the thermal field, τ = g2/κ = 50s,
g = 5mm being the gap between heaters and coolers and
κ = 5.105µm2.s−1 the thermal diffusivity of the sam-
ple plates. Accordingly, we may consider that the veloc-
ity modulation negligibly affects the thermal field [24].
However it actually modulates the advection of solute
concentration in the thermal field frame, Vf (t)∂zc, with
noticeable consequences.

The sinusoidal forcing of solute advection, V1(t)∂zc,
splits into the advection of the time-independent solute
field c and that of the remaining fluctuating part c̃. The
former term, V1(t)∂zc, yields an additive sinusoidal mod-
ulation to the dynamics of concentration which simply
drives an homogeneous oscillation of solute concentra-
tion and thus of the whole cellular pattern, at the same
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period Tf . The latter term, V1(t)∂z c̃, corresponds to a
multiplicative forcing term whose time-dependence de-
pends on that of both ∂z c̃ and V1(t). It then drives a
parametric excitation of the system from which the os-
cillatory 2λ−O mode may emerge, in case of resonance.

Looking at a cell as an oscillator, damped or amplified,
of angular pulsation ω = 2π/T , T being the period of the
2λ−O mode, it is instructive to determine the modula-
tion of ω induced by the velocity modulation (34). For
this, we notice that Eq. 11 still applies since the mod-
ulation periods Tf that will be considered hereafter are
long as compared to the diffusive and advective relax-
ation times λ2/D < 9s and τD = D/V 2 ≈ 28s. In terms
of ω, Eq. 11 then reads ω2 = BV 3 with B = 4π2/A2 a
constant. Plugging the forced velocity V = Vf (34) in
this last relation yields ω(t)2 = B V 3

0 [1 + ν cos(ωf t)]
3

with ν = V1/V0 and, as ν will be taken much smaller
than unity here,

ω(t)2 ' ω2 [1 + 3ν cos(ωf t)] (35)

up to first order in ν. This clearly evidences, in the frame-
work of oscillators, the parametric excitation of cells in-
duced by V1(t) in terms of a modulation of the pulsation
of the 2λ−O mode.

Given an oscillator of natural period T , the condition
for parametric resonance at the lowest forcing period Tf
is Tf ≈ T/2. Applying this to the velocity modulation
(34) will first yield a spatially homogeneous oscillation
of both the concentration field and the interface posi-
tion at the forcing period Tf , in response to the additive
modulation brought about by concentration advection.
Moreover, if parametric resonance occurs, cell oscillations
should appear at period 2Tf ≈ T , with phase relation-
ships between cells to be determined.

To better highlight parametric resonance, velocity
modulations are induced, both in experiment and in sim-
ulation, on steady states that stand within the stability
domain of the 2λ−O mode but that are close to the in-
stability frontier. As expected, these modulations are
found to induce first global oscillations of cells at the
forcing period Tf and, for Tf ≈ T/2, cell oscillations
similar to those of the 2λ−O mode with a period close
to 2Tf ≈ T and phase opposition between neighbor cells
(Figs. 12, 13, 14). While the period doubling between ex-
citation at Tf and oscillations at 2Tf results from para-
metric instability, we notice that the breaking of spatial
uniformity when passing from the homogeneous modu-
lation to the phase opposition between oscillating cells
does not result from the forcing. It then reveals the spa-
tial nature of the underlying oscillator, the 2λ−O mode.

Regarding experiment, parametrically induced cell os-
cillations are displayed over a cycle in Figs. 12 and 13.
Figure 12 shows phase opposition between neighbor cells
through spatial alternation of larger and thinner cells on
an isotherm. Over a cycle, each cell alternates between
thin and fat and upward or downward motion. As os-
cillation amplitudes are faint, we complete observations
by figure 13 that shows a span of cells over their whole

FIG. 12: Experimental evidence of a parametrically excited
2λ−O mode over a cycle. G = 140K/cm, V0 = 7µm/s,
V1 = 0.5µm/s and Tf = 141s. The snapshots show cell os-
cillations in the vicinity of cell tips over an oscillation period
T = 282s that is twice the forcing period Tf . The delay
between them is a quarter of period. Arrows denote the di-
rection of cell velocities and the mean cell spacing is 85µm.
Each snapshot shows phase opposition between neighbor cells.
These features correspond to those a 2λ−O mode parametri-
cally excited at a forcing period T/2.

FIG. 13: Cell oscillations from tip to tail. Same parameters
as in figure 12. Snapshots (a) and (b) are distant from a
half-period T/2 = Tf = 141s. On each of them, cell widths
are nearly the same at cell tips but significantly different at
cell tails. On each cell, the modulations of cell width from
tip to tail thus encode the oscillation of cell tip over a long
time, here about T/3, before the grooves end. The mean cell
spacing is 110µm.

groove. On each snapshot, the cell widths are almost the
same at cell tips but significantly differ at cell tails. They
thus encode the oscillation of cell tips over the grooves,
i.e. here, over a time interval of about T/3.

Regarding simulations, Fig. 14 displays, for a given ba-
sic state and various forcing periods Tf , the oscillations of
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the lateral widths of two adjacent cells. At the beginning
of the parametric modulation, one notices, for all forcing
periods, in-phase oscillations of cells at Tf , in response to
the additive forcing induced by the velocity modulation.
However, some periods later, it also appears oscillations
at the double period 2Tf that are in phase opposition
between neighbor cells. These oscillations correspond to
a parametrically excited 2λ-O mode. We signal them by
double arrows in figure 14.

Occurrence of parametric oscillations is especially
manifest for Tf = 115s (Fig. 14a) where, at t ≈ 2700s, the
cell signals grow out of phase to reach robust oscillatory
states displaying a clear phase opposition. This evolution
gathers both the temporal feature of a parametric reso-
nance (period doubling) and the spatial feature inherent
to the 2λ−O mode (phase opposition between adjacent
cells). It thus consists of a mix between parametric res-
onance and 2λ−O instability. In phase space, this cor-
responds to a basic state which, after destabilization by
parametric excitation, restabilizes onto a limit cycle akin
to the 2λ−O oscillatory mode.

On the other hand, at a smaller forcing period Tf =
110s (Fig. 14b), the maxima of the signals show clear os-
cillations at 2Tf , but their minima involve local maxima.
This indicates that oscillations at Tf are still noticeably
present. When these local maxima raise at t ≈ 1400s,
t ≈ 2800s and 3800 < t < 4200s, they then make the
oscillation at Tf dominant, meaning that global cell os-
cillations have overwhelmed the 2λ−O like oscillations.
Oscillations at 2Tf of both the maxima and the minima
of the signals are then only noticeable on limited time
intervals. Parametric resonance thus still occurs, but by
intermittency.

At still smaller forcing periods, Tf = 90s (Fig. 14c)
and Tf = 80s (Fig. 14d), parametric resonance fails to
clearly appear. However, oscillations at 2Tf of the signal
maxima are still noticeable for limited time intervals of
several periods in Fig. 14c and of even reduced duration
in Fig. 14d.

Altogether, these dynamics reveal both a robust para-
metrically excited 2λ−O mode for Tf = 115s (Fig. 14a)
and an intermittent evolution towards this limit cycle,
with an intermittent character that grows when Tf de-
creases (Figs. 14b, c, d). The latter feature signals an
increased complexity of the phase space which still in-
cludes a destabilized basic state by parametric excitation
and an attracting limit cycle, but also additional struc-
tures responsible for this intermittency.

Table III sums up the experimental and the numerical
conditions of the observed parametric oscillations. Here,
one considers parametric oscillations in a broad sense, i.e.
not only for robust 2λ−O modes as in figure 14a but also
for those that show up the characteristic features of the
2λ−O mode intermittently (Figs. 14 b, c, d). The upper
and lower bounds of the corresponding forcing periods
Tf determine a resonance band roughly centered around
half of the natural period T of the unforced 2λ−O mode
at the same spacing and velocity.

Figure 15 reports the way the oscillation amplitudes
vary with the forcing period Tf in simulations. A scan of
Tf has been performed from 70s to 160s but parametric
oscillations have only been found in the range 90− 125s.
As the oscillation amplitudes are tiny, of the order of few
micrometers, error bars are relatively large. In exper-
iment, the oscillation amplitudes are of the same order
but the resolution is even lower, which prevents to obtain
relevant amplitude variations.

In both experiments and simulations, parametric os-
cillations have displayed a band of resonance [Tf−, Tf+]
that is reported in Table III together with its bandwidth
∆Tf = Tf+−Tf− and the resonance bandwidth predicted
for a linear oscillator, δTf = 3νT/4 [53]. For both experi-
ments and numerics, the former is about ten times larger
than the latter. We aim below to relate this discrepancy
to the intermittency noticed on the cell signals and to
the expected non-linear nature of the 2λ−O oscillator.

To model the parametric excitation of the 2λ−O mode
with minimal complexity, one may overlook its spatial
features to focus attention on a dynamical system in-
volving parametric modulation around a Hopf bifurca-
tion. The Hopf bifurcation signals that the eigenvalues
λ = σ±iω of the system linearized around the fixed point
(0, 0) turn their real part σ positive at some threshold
value of a control parameter, here the pushing velocity V .
This yields the following linear modeling in the vicinity of
the basic state : z̈−2σż+(σ2+ω2)z = 0. Parametric exci-
tation is introduced as a temporal modulation ω(t) of the
pulsation ω following which the linear dynamical system
is then represented by a Mathieu’s equation. Its stan-
dard analysis shows that parametric resonance occurs
for forcing pulsations ωf belonging to a band centered
on 2ω, whose width extends over δωf = 3νω when no
damping is in order and on a more restricted and shifted
domain otherwise [53]. This Arnold tongue corresponds
to forcing periods Tf centered on T/2 and extended over
a bandwidth δTf = 3νT/4. Accordingly, the linear mod-
eling recovers parametric resonance but on a bandwidth
much smaller than ∆Tf . It thus explains the emergence
of a robust 2λ-O mode (i.e. Fig. 14a, Tf = 115s) with
a shift (Tf − T/2) linked to damping and anharmonicity
of the oscillator. However, it fails to uncover the inter-
mittent occurrences of this mode beyond (Figs 14 b, c,
d). Non-linearities must thus be considered for explain-
ing them.

Introducing non-linearities reveal a far more compli-
cated behavior involving, for damped oscillations (σ <
0), a parametric resonance and, for amplified oscillations
(σ > 0), a combination of parametric resonance and of
Hopf-induced oscillations [54]. In particular, in a kind
of Poincaré map, the phase space shows in the former
case a fixed point destabilization towards non-trivial sta-
ble fixed points corresponding to parametric oscillations
and, in the latter case, a more complex structure involv-
ing stable and unstable fixed points together with stable
and unstable limit cycles induced by the Hopf bifurcation
[54, 55]. These limit cycles then modulate the parametric
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FIG. 14: (Color online) Numerical simulations of parametric excitations with a forcing amplitude V1 = 0.2µm.s−1. The basic
state refers to V0 = 7µm.s−1, λ = 65µm, and the forcing period Tf is (a) 115 s, (b) 110 s, (c) 90 s, (d) 80 s. The variables
λi refer to cell width of neighbor cells. Double arrows indicate oscillations at the double period 2Tf , with a phase opposition
between neighbor cells. They correspond to a parametrically forced 2λ-O mode. Figure (a) shows the growth and saturation
of a robust parametrically excited mode involving, as the 2λ−O mode, a period 2Tf for both λi and phase opposition between
them. The remaining figures show that the parametric mode appears more and more intermittently as Tf decreases below its
value in (a).

oscillations yielding quasiperiodic evolutions.

Here, the basic state of parametric forcing was initially
taken in the stable domain of the 2λ−O mode, close to
the stability limit. However the additive forcing induces
oscillations of the growth velocity that make it enter the
unstable domain on some part of the cycle. For this
reason, the damping coefficient σ is presumably not a
small negative constant but a slightly oscillating param-
eter which enters the unstable domain of positive values
σ > 0. Therefore, not only robust parametric oscilla-
tions but also quasi-periodic evolutions resulting from a
combination of 2λ−O mode oscillations at period T and
of parametric oscillations at 2Tf may be expected. In
addition, a sensitivity to perturbations may result from
the existence of unstable fixed points and unstable limit
cycles in the Poincaré map of the model.

These dynamical features actually reproduce those
found in numerical simulations for various forcing period
Tf (Fig. 14). They highlight the difference between the
parametric oscillations in a broad sense that includes in-
termittency and those in the strict sense observed on the
robust oscillations at Tf = 115s (Fig. 14a). In particular,
the small value of the bandwidth δTf of a linear oscil-
lator compared to the observed bandwidths ∆Tf shows
the practical relevance of non-linearities for uncovering
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FIG. 15: Peak to peak amplitude of the driven 2λ−O mode
as a function of the driving period Tf . Average velocity
V0 = 7µm/s, velocity amplitude V1 = 0.2µm/s, spacing
2λ = 130µm. Amplitude is maximum for Tf = 115s close
to T/2 = 100.5s. The shift (Tf − T/2) refers to damping and
anharmonicity of the oscillator.

the intermittent emergence of a parametric 2λ−O mode.
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TABLE III: Experimental and numerical parameters for
the parametric excitation. The fifth entry gives the range
[Tf−, Tf+] of forcing periods for which the 2λ−O mode
is parametrically excited either robustly or intermittently.
∆Tf = Tf+ − Tf− provides the bandwidth of this resonance
band and δTf its predicted value for a linear oscillator.

Parameter Experiments Numerics Unit

λ 100.0 65.5 µm

V0 7.0 7.0 µm/s

V1 0.5 0.2 µm/s

T/2 70.5 100.5 s

[Tf−, Tf+] [50.0, 120.0] [90.0, 125.0] s

∆Tf 70 35 s

δTf = 3νT/4 7.6 4.3 s

VIII. SUMMARY AND CONCLUSION

We have revisited the emergence and the nature of
the 2λ−O oscillatory mode of solidification by combining
experimental and 3D phase field numerical studies.

Both agree qualitatively on the behavior of oscillatory
cells and on the possibility to parametrically excite the
2λ−O mode. They also both conclude quantitatively to
the same bounded range of velocity for the occurrence
of oscillations and on the same relationship between pe-
riod and velocity. As phase field simulations involved the
physical parameters of the experiment, this agreement
confirms the capability of actual 3D phase field simula-
tions to provide realistic dynamics of solidification inter-
faces.

Analysis of the concentration fields displayed in sim-
ulation revealed noticeable transversal fluxes of solute
concentration between a cell and its neighbors. To ex-
plore whether they could be an important part of the
oscillation mechanism, we have built a simple model of
concentration balance in which transversal fluxes led cell
tips to melt with implications on both tip position and
tip curvature radius. These fluxes depend not only on
the temperature difference between cell tips but also on
the deviation of the cell tip undercooling from the Bower-
Brody-Flemings criterion [45]. Emergence of oscillations
were then recovered, the transversal fluxes being manda-
tory for them to occur. In addition, the model recovered
the relationship between period and velocity with the ap-
propriate order of magnitude, thus giving credibility to
its relevance. Analysis of the causal links between the
phenomena involved in the model then provides a com-
plete description of the mechanism of oscillations. How-
ever, some discrepancies regarding the transition from
damped to amplified oscillations call for extending the
model to a more realistic context.

To explore the nature of the oscillator underlying the
2λ−O instability, we have induced parametric excitations
from modulations of the pushing velocity. This homoge-
neous forcing led, both in experiment and simulation,

2λ−O oscillations to emerge, thus exhibiting a break-
ing of homogeneity. This parametric excitation enabled
the 2λ−O instability to be studied on a broader range
extending over its stable domain. It then appeared a
complex behavior mixing 2λ−O oscillations with global
oscillations. Its occurrence has been linked to the non-
linearity of the underlying oscillator, following which
parametric excitations around the corresponding Hopf
bifurcation generate a complex phase space and inter-
mittency.

Altogether, these results deepen the actual knowledge
on the 2λ−O mode while attesting the relevance of 3D
phase field simulations to accurately uncover cell dynam-
ics. More fundamentally, the essential role of cell cou-
pling by transversal fluxes offers a useful insight into the
physical origin of multi-cell dynamics and opens the way
to further model them on various instances.
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APPENDIX A: LINEARIZED SYSTEM

We seek to linearize the dynamical system (25) (26) by
expanding it at first order in perturbation amplitudes.
We denote by a bar v̄ the average values of variables v
and by a tilde ṽ their fluctuating part v − v̄.

We restrict here the analysis to a 2λ mode for which
z̃t± = −z̃t. As z̄t± = z̄t, we obtain :

• at order zero in fluctuations :

0 =
V̄ 2
I

D
[ (1− ¯̀/λ)(lT− z̄t)−k z̄t ¯̀/λ]−(1− ¯̀/λ)V̄I , (A1)

which yields the average tip position :

z̄t =
(λ/¯̀− 1)

(λ/¯̀+ k − 1)
(lT − lD). (A2)

• at first order in fluctuations :

˙̃zt = − V̄
2
I

D
[(1− ¯̀/λ) + k ¯̀/λ] z̃t − 4

D2

λ2Vc
(1− k)−1 ∂Ω

∂z

∣∣∣
zt
z̃t

−
˜̀

λ

V̄ 2
I

D
[(lT − z̄t) + kz̄t] +

˜̀

λ
V̄I

+
ṼI
V̄I

{
2
V̄ 2
I

D
[(1− ¯̀/λ)(lT − z̄t)− k z̄t ¯̀/λ−

(1− ¯̀/λ)V̄I

}
, (A3)

and

˙̃ρ = −32
ρ2

λ2
(1− k)−1 ∂Ω

∂z

∣∣∣
zt
z̃t −

D

ρ̄2
ρ̃. (A4)
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As ` = 2ρ, one gets ¯̀ = 2ρ̄ and ˜̀ = 2ρ̃. Using (A1)

(A2) in (A3) with V̄I = V and ṼI = ˙̃zt then yields :

˙̃zt = − V̄
2

D
(λ/¯̀+ k − 1) z̃t (A5)

−4 λ/¯̀ D2

λ2Vc
(1− k)−1 ∂Ω

∂z

∣∣∣
zt
z̃t

−2k
(λ/¯̀)2

λ/¯̀+ k − 1

V

λ
(
V

Vc
− 1) ρ̃.

Relations (A4) (A5) correspond to the linearized dy-
namical system (27) (28) with the coefficients (a, b, c, d)
reported in section VI D.
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