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Abstract 

The aim of this report is to derive the equations of motion for biped robot during different walking 

phases using two well-known formulations: Euler-Lagrange (E-L) and Newton-Euler (N-E) 

equations. The modeling problems of biped robots lie in their varying configurations during 

locomotion. They could be fully actuated during the single support phase (SSP) and overactuated 

during the double support phase (DSP). Therefore, first, the E-L equations of 6-link biped robot 

are described in some details for dynamic modeling during different walking phases with 

concentration on the DSP. Second, the detailed description of modified recursive Newton-Euler 

(N-E) formulation (which is very useful for modeling complex robotic system) is illustrated with 

a novel strategy for solution of the over-actuation/discontinuity problem. The derived equations of 

motion of the target biped for both formulations are suitable for control laws if the analyzer needs 

to deal with control problems. As expected, the N-E formulation is superior to the E-L concerning 

dealing with high degrees-of freedom (DOFs) robotic systems (larger than six DOFs).  
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1 Dynamic modeling 

Humans have perfect mobility with amazing control systems; they are extremely versatile with 

smooth locomotion. However, comprehensive understanding of the human locomotion is entirely 

still not analyzed. Please see [Hay19, Hay18/1, Hay18/2, Hay18/3, Hay18/4, Hay17/1, Hay17/2, 

Hay16, Hay15, Hay14, Hay14/1, Hay14/2, Hay14/3, Hay14/4, Hay13/1, Hay13/2, Hay13/3, 

Sam08] for more details on dynamics, walking pattern generators and control of biped locomotion 

(biped robots, lower-extremity exoskeletons, prosthetics, etc.). To dynamically model the ZMP-

based biped mechanisms, the following points should be considered: 

 Biped robots are kinematically varying mechanisms such that they could be fully actuated 

during the SSP and over-actuated during the DSP. If we assume the biped robot as fixed-

base mechanism, the dynamic modeling and control strategies of fixed-base manipulators 

can efficiently be used.   

 Dealing with unilateral contact of the foot-ground interaction as a passive joint (rigid-to-

rigid contact) or as compliant model (penalty-based approach). 

 Reducing the number of links/joints of the target biped as possible. However, they can 

still have more than six DOFs resulting in computational problems of advanced control 

systems. 

 Reducing the walking phases as much as possible, e.g., most conventional ZMP-based 

biped robots (see Tab. 2.2 of [Hay14]) can walk with two substantial walking phases: 

the SSP and the DSP. Adjustments of the walking patterns are possible by modification 

of foot design as described in [Sat10]. 

 Most ZMP-based biped robots walks with flat swing /stance feet all the time; this can 

facilitate the analysis of biped locomotion by reducing walking phases to exactly two 

phases: the SSP and the DSP (see ref. [Van08]). However, heel-off/toe-off sub-phases 

can offer better characteristics but with careful analysis as we will see later. 

In the light of the above comments, classical Euler-Lagrange (E-L) equations and recursive 

Newton-Euler (N-E) can be used for dynamic modeling of biped robots. For complex robotic 

systems, such as humanoid robots or any robot having the number of degrees of freedom (DOFs) 

larger than 6 DOFs, difficulties are encountered in the implementation of the control algorithms. 

Therefore, over 30 years, the robotics researchers have focused on the problem of computational 

efficiency. Many efficient O (𝑛) algorithms have been developed for inverse [Sah99] and forward 

dynamics [Moh07] of robotic systems. For more literature on the efficient dynamic algorithms, 

refer to refs. [Kha11]. The adaptive control algorithm, however, which deals with controlling the 

robotic systems despite their uncertain parameters may decrease the computational efficiency of 
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the dynamics O (𝑛) algorithms. Fu et al. [Fu87] have shown that the combined identification and 

control algorithms can be computed in O (𝑛3) time despite using the recursive (N-E) formulation. 

One of the efficient tools to deal with full-dynamics-based control for complex robotic systems is 

the virtual decomposition control (VDC) suggested by Zhu [Zhu10]. It is equivalent to the recursive 

NE formulation if the dynamic parameters of the target robotic system are known.  

This work deals with the ZMP-based biped robot as a fixed-base robot with rigid foot-ground 

interaction. In addition, E-L equations are described in some details for dynamic modeling of the 

biped during different walking phases; problems of over-actuation/ discontinuity are resolved. 

Then detailed description of the VDC is illustrated with a novel strategy for solution of the over-

actuation/discontinuity problem. The remainder of this report is organized as follows. Selection of 

the walking patterns suggested throughout the current work is presented in Section 1.1. Section 1.2 

deals with detailed modeling of biped robot using the E-L equations and VDC. Section 2 concludes.  

1.1 Selection of walking patterns 

As mentioned earlier, different walking patterns can be constructed according to point view of the 

designer. In general, two walking patterns will be investigated throughout the current work; 

therefore, this report is interested with dynamic modeling of these walking patterns. The details of 

the DOFs for the referred walking patterns are as follows. 

(i) According to Fig. 1-1 (a), the walking pattern 1 has six generalized coordinates without 

constraints; the biped behaves as an open-chain mechanism. Consequently, the biped has 

six DOFs in this walking phase with six links (neglecting the stance-foot link). Whereas, 

it has seven generalized coordinates with seven links during the DSP due to the rotation 

of the front foot, but with two constraints equations; the tips of the front and rear feet are 

fixed(see Fig. 1-1). Consequently, the biped has five DOFs during this constrained 

walking phase, DSP, with six actuators (over-actuated system). 

(ii) The walking pattern 2 has also six DOFs with six links during the SSP; it has the same 

configuration of walking pattern 2. The first sub-phase of DSP (henceforth called DSP1) 

has six generalized coordinates with two constraint equations; therefore, the biped has 4 

DOFs with 6 actuators (over-actuated system). During the second sub-phase of DSP 

(henceforth called DSP2), similar configurations of that of DSP1 appear and 

consequently the biped has four DOFs and six actuators. Both DSP1 and DSP2 have six 

links as shown in Fig. 1-2 (a) and (b) respectively. 
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Fig. 1-1: Walking pattern 1 with description of generalized coordinates. (a) Intermediate 

configuration of biped locomotion during the SSP. (b) Intermediate configuration of biped 

locomotion during the DSP. 

(a) 

(b) 
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 Fig. 1-2: Walking pattern 2 with description of generalized coordinates. (a) Intermediate 

configuration of biped locomotion during the DSP1; link (1) has negligible dynamics in such case. 

(b) Intermediate configuration of the biped locomotion during the DSP2; link (7) has negligible 

dynamics in such case. 

(a) 

(b) 
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1.2 Dynamic modeling 

As mentioned previously, two approaches are commonly used to obtain the differential equations 

of motions: E-L and N-E formulations. Depending on the purpose of the analyzer/designer, various 

forms of modified formulations have been conducted such as recursive E-L equations [Hol80], 

recursive N-E formulation [Moh07], and generalized D’Alembert (G-D) formulation [Lee83]. This 

work concentrates on formulating the dynamic equations that are suitable for adaptive control 

purposes. Throughout the current analysis, the following assumptions have been proposed. 

Assumption 1-1. The stance foot, link (1), is in full contact with the ground during the SSP; 

therefore, its dynamics could be neglected in such case. 

Assumption 1-2. The foot-ground contact is rigid-to-rigid contact. Accordingly, the tips of the feet 

(in case of foot rotation) are assumed passive joints. 

Assumption 1-3.There are only two substantial walking phases, the SSP and the DSP, with 

possibly sub-phases during the DSP. The instantaneous impact event is avoided by making the 

swing foot contact the ground with zero velocity (disadvantage of zero end velocity at impact is 

the higher energy consumption due to need for braking in swing leg).  

In biped systems, three important aspects should be taken into consideration: 

(i) Preventing the biped legs from slippage. 

(ii) Avoiding discontinuities of the ground reaction forces which can result in discontinuities 

of the actuator torques as detailed in Section 1.2.1.3 

(iii) Concentrating on the adaptive control of the biped robot associated with less 

computational complexity.  

1.2.1 The Euler-Lagrange formulation 

Although the E-L equations can provide closed-form state equations suitable to advanced control 

strategies, their computational complexity, unless it is simplified, could be inefficient for 

analysis/control of complex robotic system (more than 6 DOFs) [Zhu10]. In fact, E-L formulation 

could be used recursively [Hol80]; it has been equivalent to recursive N-E formulation in most all 

aspects [Spo89]. In general, the computational complexity of E-L, N-E and G-D are 

𝑂 (𝑛4)𝑜𝑟 𝑂(𝑛3), 𝑂(𝑛) and 𝑂(𝑛3) respectively.  Below we present modeling of biped robot during 

the two phases: the SSP and the DSP with two different kinds of Lagrange equations. 
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1.2.1.1 E-L equations of the second kind (the SSP) 

The E-L equations for open chain mechanism (biped robot during the SSP) can be expressed as 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 𝑇𝑖   (𝑖 = 1, 2, … … , 𝑛𝑞)  Eq. 1-1 

where 𝐿 is Lagrangian function which is equal to the kinetic energy of the robotic system (𝐾) minus 

its potential energy (𝑃), 𝑞𝑖 denotes the generalized coordinates of link (i), and �̇�𝑖 is the derivative 

of the generalized coordinates. 

The generalized coordinates are a set of coordinates that completely describes the location 

(configuration) of the dynamic systems relative to some reference configuration [Fu87]. There are 

many choices to select these generalized coordinates; however, the joint/link displacements are 

proved being suitable in case of robotic systems. If the number of these generalized coordinates is 

equal to the degrees of freedom of the target system, then Eq. 1-1 is valid; Eq. 1-1 is called 

Lagrange equations of the second kind and it suitable for open-chain mechanism. Solution of Eq. 

1-1 can result in the following second order differential equations. 

𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�)�̇� + 𝒈(𝒒) = 𝑨(𝝉 − 𝝉𝑓)  

or simply, 

𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�)�̇� + 𝒈(𝒒) + 𝑨𝝉𝑓 = 𝑨𝝉  Eq. 1-2  

where 𝑴 ∈ ℝ𝑛𝑞×𝑛𝑞 is the mass matrix, 𝒒, �̇� and �̈� ∈ ℝ𝑛𝑞 are the absolute angular displacement, 

velocity and acceleration of the robot links, 𝑪 ∈ ℝ𝑛𝑞×𝑛𝑞  represents the Coriolis and centripetal 

robot matrix, 𝒈 ∈ ℝ𝑛𝑞×1 is the gravity vector, 𝑨 ∈ ℝ𝑛𝑞×𝑛𝜏  is a mapping matrix derived by the 

principle of the virtual work, 𝝉 ∈ ℝ𝑛𝜏×1 is the actuating torque vector, 𝑛𝜏 represents the number of 

actuators, and 𝝉𝑓 ∈ ℝ𝑛𝜏×1 represents the dissipative torques resulted from joint friction. 

In the following, some details are presented to determine the dynamic coefficient matrices of Eq. 

1-2. 

(i) Inertia matrix 

The derivation, structure and properties of the mass matrix (𝑴) can be obtained from the total 

kinetic energy of the biped system. The velocity wrench, �̅�𝑖 ∈ ℝ6×1, of link (𝑖) can be expressed 

in term of Jacobian matrices as follows [Spo89, Fu87]. 
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�̅�𝑖 = [
𝒗𝑖

𝒘𝑖
] = [

𝑱𝑣𝑖

𝑱𝑤𝑖
] �̇� Eq. 1-3 

with  𝒗𝒊 ∈ ℝ3×1 and 𝒘𝑖 ∈ ℝ3×1 are the translational and angular velocity components of link (𝑖), 

𝑱𝑣𝑖 ∈ ℝ3×𝑛𝑞  and 𝑱𝑤𝑖 ∈ ℝ3×𝑛𝑞 denote the Jacobian matrices associated with translation and rotation 

components respectively. 

The total kinetic energy of 𝑛 − DOF robotic system can be expressed as 

𝐾 = ∑ 𝐾𝑣𝑖 + ∑ 𝐾𝑤𝑖 =
1

2

𝑛

𝑖=1

∑ �̇�𝑇(

𝑛

𝑖=1

𝑛

𝑖=1

𝑱𝑣𝑖
𝑇  𝑚𝑖  𝑱𝑣𝑖)�̇� +

1

2
∑ �̇�𝑻(𝑱𝒘𝑖 

𝑇

𝑛

𝑖=1

𝓘𝑖 𝑱𝒘𝑖)�̇� =
1

2
�̇�𝑇 𝑴 �̇� Eq. 1-4 

where 𝓘𝑖  is the inertia tensor of link (𝑖)  relative to the inertial coordinate frame; it is a 

configuration-dependent parameter. Using similarity transformation [Spo89], it is necessary to 

express the inertia tensor in terms of body frame to get the configuration-free inertia tensor, 𝑰𝑖,  as 

follows 

𝓘𝑖 = 𝑹(𝒒)𝑰𝑖𝑹
𝑇(𝒒) Eq. 1-5 

Thus, the mass matrix of the biped mechanism can be defined as 

𝑴 = ∑ 𝑱𝑣𝑖
𝑇  𝑚𝑖  𝑱𝒗𝒊

𝑛

𝑖=1

+ ∑ 𝑱𝑤𝑖 
𝑇 𝑹(𝒒) 𝑰𝑖𝑹

𝑇(𝒒)𝑱𝑤𝑖

𝑛

𝑖=1

 Eq. 1-6 

(ii) Coriolis and centripetal terms 

Following the detailed derivation of [Spo89, Fu87], without showing the details here, the (𝑘, 𝑗)𝑡ℎ 

element of the Coriolis and centripetal matrix can be defined as 

𝑐𝑘𝑗 =
1

2
∑ [

𝜕𝑚𝑘𝑗

𝜕𝑞𝑖
+

𝜕𝑚𝑘𝑖

𝜕𝑞𝑗
−

𝜕𝑚𝑖𝑗

𝜕𝑞𝑘
]𝑛

𝑖=1 �̇�𝑖      (𝑘, 𝑗 = 1,2, … . , 𝑛) Eq. 1-7 

with 𝑚𝑖𝑗 denotes an element of mass matrix with row index, 𝑖, and column index, 𝑗.  

(iii)Gravity term 

This term can be derived from the total potential energy of the biped system as follows. 
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𝑃 = ∑ 𝑚𝑖𝒈𝑖
𝑇𝒄𝑖

𝑛

𝑖=1

 Eq. 1-8 

where 𝒈𝑖 denotes the gravitational acceleration vector of link (𝑖); for plane system it is equal to 

[0 −9.81 0]𝑇. Every element of the gravitational term of Eq. 1-2 can be expressed as 

𝑔𝑘 = −
𝜕𝑃

𝜕𝒒𝑘
           (𝑘 = 1,2, … … . , 𝑛) Eq. 1-9 

(iv) The mapping matrix 𝐴 

This mapping (coordinates transformation) matrix can be determined by the principle of the virtual 

work. The virtual work, 𝑊, of the generalized link torques acting on the biped system can be 

expressed in terms of generalized link coordinates as  

𝛿𝑊 = 𝑇1𝛿𝑞1 + 𝑇2𝛿𝑞2 + ⋯ +  𝑇𝑛𝑞
𝛿𝑞𝑛𝑞

 Eq. 1-10 

with 𝑇𝑖 denote the generalized torque of link (𝑖) associated with its generalized coordinate, 𝑞𝑖. 

Eq. 1-10 can be re-written in a vector form as 

𝛿𝑊 = 𝑻𝑇 𝛿𝒒 Eq. 1-11 

Let 𝜽 ∈ ℝ𝑛𝑞 be the generalized joint coordinates; thus, we can get a linear relationship between 

links and joint coordinates as follows. 

𝛿𝒒 = 𝑨−𝑇 𝛿𝜽 Eq. 1-12 

Substituting Eq. 1-12 into Eq. 1-11, we have 

𝛿𝑊 = 𝑻𝑇𝑨−𝑇 𝛿𝜽 Eq. 1-13 

  𝑻 = 𝑨𝝉 Eq. 1-14 

Remark 1-1. Alternatively, the matrix 𝑨 can be found simply according to the principle of free-

body diagram as done in [Van08]. 

(v) Friction torques and other disturbance sources 

In effect, the friction terms are complex and may be modeled approximately using the following 

form [Zhu10] 
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𝝉𝑓𝑖
= 𝑐𝑜𝑢𝑙𝑜𝑚𝑏 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + 𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + 𝑆𝑡𝑟𝑖𝑏𝑒𝑐𝑘 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

+ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓𝑓𝑠𝑒𝑡 𝑡𝑒𝑟𝑚 

= 𝓀𝑐𝑖  𝑠𝑖𝑔𝑛(�̇�𝑖) + 𝓀𝑣𝑖�̇�𝑖 + 𝓀𝑠𝑖 𝑠𝑖𝑔𝑛(�̇�𝑖) exp(− (
�̇�𝑖

𝜂𝑠𝑖
⁄ )) + 𝓀𝑜𝑖      (𝑖 =

1,2, … 𝑛) 

Eq. 1-15 

where �̇�𝑖 represents the angular joint velocity of each link, 𝓀𝑐𝑖, 𝓀𝑣𝑖 and 𝓀𝑠𝑖 denote the Coulomb 

friction coefficient, viscous friction coefficient, and Stribeck friction effect respectively, and 𝓀𝑜𝑖 

is the friction offset term.  

As we see from Eq. 1-15, friction has a local effect; the vector of friction torque is uncoupled. 

In the light of the above formulae, Eq. 1-2 can be re-written as 

∑ 𝑚𝑘𝑗  (𝒒)�̈�𝑗 +

𝑛

𝑗=1

∑ 𝑐𝑘𝑗(𝒒) �̇�𝑗 + 𝑔𝑘(𝒒) + 𝑇𝑓𝑘 =

𝑛

𝑗=1

𝑇𝑘   (𝑘 = 1,2, … , 𝑛) Eq. 1-16 

with 𝑇𝑓𝑘 represents the friction torque affecting each link.  

Remark 1-2. There are several fundamental properties of the dynamic coefficient matrices, the 

mass matrix and the Coriolis and centripetal terms, which could be exploited in controller design 

of adaptive control. For more details on other properties, refer to [Spo89]. 

Property 1-1.  The mass matrix (𝑴) is symmetric and positive definite. This can be deduced from 

Eq. 1-4 and the property of the kinetic energy. 

Property 1-2. The matrix �̇�(𝒒) − 𝟐𝑪(𝒒, �̇�) is skew matrix, if the 𝑪(𝒒, �̇�) matrix is described in 

terms of Christoffel symbols, Eq. 1-7.  Proof of this property can be found in [Spo89]. 

Property 1-3. The dynamic equations described in Eq. 1-2 are dependent linearly on certain 

parameters such as link masses, moment of inertia, friction coefficients etc.; consequently 

𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�)�̇� + 𝒈(𝒒) + 𝑨𝝉𝑓 = 𝒀(𝒒, �̇�, �̈�)𝜶 Eq. 1-17 

where 𝒀(𝒒, �̇�, �̈�) ∈ ℝ𝑛×𝑛𝛼  is called the regressor matrix, a function of the known generalized 

coordinates and their first two derivatives, and 𝜶 ∈ ℝ𝑛𝛼  denotes the vector of unknown biped 

parameters.  
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Selection of 𝜶 is not unique, and it is difficult to find minimal set of these parameters [Spo89]. Eq. 

1-17 is very important to adaptive control. 

1.2.1.2 The E-L equations of the first kind (the DSP) 

As mentioned earlier, the biped mechanism constitutes a closed-chain with over-actuation during 

the DSP. Therefore, the Lagrange formulation of the 1st kind, which can deals with constraints, is 

needed for dynamic modeling of the constrained biped. In such case, the motion equations are 

represented by redundant coordinates resulting in differential algebraic equations DAEs. The 

algebraic equations result from the constraints derived from the kinematics [Tsa99]. The 

constraints can be easily incorporated into the main equations using Lagrange multipliers. The 

Lagrange equations of the biped robot during the DSP can be defined as 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 𝑇𝑖 + ∑ 𝜆𝑗

𝜕𝜑𝑗

𝜕𝑞𝑖

𝑛𝑐
𝑗=1        (𝑖 = 1, 2, … … . . , 𝑛𝑞) Eq. 1-18 

where 𝜑𝑗 denotes the constraint function of each closed loop, 𝑛𝑐 is the number of these constraints, 

𝜆𝑗 is the Lagrange multipliers associated with each constraint. Here 𝑛𝑞 is the number of redundant 

generalized coordinates and equal to the number DOFs (𝑛) of the biped systems plus the number 

of constraints(𝑛𝑐).  

Eq. 1-18 can be solved using two well-known techniques [Pen07]: the redundant coordinates-based 

techniques which are used mainly in commercial software such as MSC ADAMS, and the 

minimum coordinates-based techniques which could be, to some extent, suitable for control 

strategies and real-time applications. Many researchers have preferred the former technique due to 

its simplicity and ease of derivation at the expense of difficulties of numerical methods encountered 

in the solution [Pen07]. Consequently, this motivates the researchers to investigate the second 

technique which includes eliminating the constraint equations (Lagrange multipliers) from Eq. 

1-18 to result in constraint-free differential equations [Pen07]. This can be implemented using one 

of the orthogonalization methods which are [Pen07]: coordinate partitioning method, zero-

eigenvalue method, singular value decomposition (SVD), QR decomposition, Udwadia-Kabala 

formulation, PUTD method, and Schur decomposition. For more details, see [Pen07]. 

Solution of Eq. 1-18 results in 

𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�)�̇� + 𝒈(𝒒) + 𝑨𝝉𝑓 = 𝑨𝝉 + 𝑱𝑇𝝀 Eq. 1-19 

𝝋(𝒒) = 𝟎 Eq. 1-20 
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with 𝝋 ∈ ℝ𝑛𝑐 is the constraint vector, and 𝑱 ∈ ℝ𝑛𝑐×𝑛𝑞 =
𝜕𝝋(𝒒)

𝜕𝒒
 denotes the Jacobian matrix. 

Remark 1-3. The coefficient dynamic matrices (mass matrix, Coriolis and centripetal matrix etc.) 

of Eq. 1-19 could be determined by the same mathematical formulae defined in the open-chain 

mechanism as in Eq. 1-6 to Eq. 1-8 

To reduce the dimension size of Eq. 1-19 (to eliminate 𝝀), a relationship between the redundant 

generalized coordinates (𝒒 )and the independent coordinates (𝒒𝑖𝑛 ∈ ℝ𝑛) should be found. In this 

report, the coordinate partitioning is used for size reduction of the equation of motion [Mit97].  

Twice differentiating Eq. 1-20 can result in 

𝑱(𝒒)�̇� = 𝟎 Eq. 1-21 

𝑱(𝒒)�̈� + �̇�(𝒒, �̇�)�̇� = 𝟎 Eq. 1-22 

Due to the redundancy of coordinates in Eq. 1-19, it is possible to express the dependent 

generalized coordinates in terms of the independent ones as in Eq. 1-23. 

𝒒𝑖𝑛 = �̆�(𝒒)𝒒 Eq. 1-23 

Twice differentiating Eq. 1-23 yields 

�̇�𝑖𝑛 = 𝑱𝒓(𝒒)�̇� Eq. 1-24 

with 𝑱𝒓(𝒒) ∈ ℝ𝑛×𝑛𝑞 = 𝜕�̆�(𝒒)

𝜕𝒒
 

�̈�𝑖𝑛 = 𝑱
𝒓
(𝒒)�̈� + �̇�

𝒓
(𝒒)�̇� Eq. 1-25 

Blocking together Eq. 1-21 and Eq. 1-24 to get 

[
𝑱(𝒒)
𝑱

𝒓
(𝒒)

] �̇� = [
𝟎

�̇�𝑖𝑛
] Eq. 1-26 

Thus, it is possible to get the following important relations 

�̇� = [
𝑱(𝒒)
𝑱

𝒓
(𝒒)

]
−1

[
𝟎

�̇�𝑖𝑛
] = [�̆� 𝑭] [

𝟎
�̇�𝑖𝑛

] = 𝑭(𝒒)�̇�𝑖𝑛 Eq. 1-27 
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The matrix 𝑭 ∈ ℝ𝑛𝑞×𝑛  plays an important role in eliminating 𝝀 ; the following orthogonality 

condition holds 

𝑱(𝒒)𝑭(𝒒) = 𝟎 Eq. 1-28 

Differentiating Eq. 1-27 to obtain 

�̈� = 𝑭(𝒒) �̈�𝑖𝑛 + �̇�(𝒒, �̇�) �̇�𝑖𝑛 Eq. 1-29 

Substituting Eq. 1-27 and Eq. 1-29 into Eq. 1-19 to get 

𝑴(𝒒)(𝑭(𝒒)�̈�𝑖𝑛 + �̇�(𝒒, �̇�)�̇�𝑖𝑛) + 𝑪(𝒒, �̇�)𝑭(𝒒)�̇�𝑖𝑛 + 𝒈(𝒒) + 𝑨𝝉𝑓 = 𝑨𝝉 + 𝑱(𝒒)𝑇𝝀 Eq. 1-30 

Alternatively, Eq. 1-30 can be re-written as  

�̅�(𝒒)�̈�𝑖𝑛 + �̅�(𝒒, �̇�)�̇�𝑖𝑛 + 𝒈(𝒒) + 𝑨𝝉𝑓 = 𝑨𝝉 + 𝑱(𝒒)𝑇𝝀 Eq. 1-31 

with 

�̅�(𝒒) = 𝑴(𝒒)𝑭(𝒒), �̅�(𝒒, �̇�) =  𝑴(𝒒)�̇�(𝒒, �̇�) + 𝑪(𝒒, �̇�)𝑭(𝒒) Eq. 1-32 

Using Eq. 1-27 and Eq. 1-30 can yield 

𝝀 = �̆�(𝒒)𝑇(�̅�(𝒒)�̈�𝑖𝑛 + �̅�(𝒒, �̇�)�̇�𝑖𝑛 + 𝒈(𝒒) + 𝑨𝝉𝑓 − 𝑨𝝉) Eq. 1-33 

Exploiting Eq. 1-28 and pre-multiplying Eq. 1-31 by 𝑭(𝒒)𝑇 to obtain 

𝑭(𝒒)𝑇�̅�(𝒒) �̈�𝑖𝑛 + 𝑭(𝒒)𝑇�̅�(𝒒, �̇�)�̇�𝑖𝑛 + 𝑭(𝒒)𝑇𝒈(𝒒) + 𝑭(𝒒)𝑇𝑨𝝉𝑓 = 𝑭(𝒒)𝑇𝑨𝝉 Eq. 1-34 

Remark 1-4. Although most researchers have written the matrices, 𝑭(𝒒), �̅�(𝒒), and �̅�(𝒒, �̇�), in 

terms of the independent coordinates (𝒒𝒊𝒏), these matrices still contain the dependent coordinates 

(𝒒). Therefore, we have expressed the mentioned matrices in terms of the last coordinates.  

Remark 1-5. The matrix 𝑭(𝒒) is not unique; the orthogonalization methods mentioned at the 

beginning of this subsection are used to get the matrix 𝑭(𝒒). Pennesri and Valentini [Pen07] 

simulated simple pendulum to compare the computational complexity of these orthogonalization 

methods. QR decomposition ranked best among the other methods. However, all these techniques 

could be computationally unsuitable to deal with the advanced adaptive control. 

Remark 1-6.  Eq. 1-31 has the same properties of that of Eq. 1-2 as follows [Su90]. 
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Property 1-4. Let 𝑫(𝒒) = 𝑭(𝒒)𝑻�̅�(𝒒), 𝑯(𝒒, �̇�) = 𝑭(𝒒)𝑻�̅�(𝒒, �̇�), then the matrix 𝑵(𝒒, �̇�) = �̇�(𝒒, �̇�) −

𝟐𝑯(𝒒, �̇�) is skew-matrix. 

Proof. Let  

 𝑵 = �̇� − 2𝑯 Eq. 1-35 

By substituting Eq. 1-32 into Eq. 1-35 we get 

𝑵 = �̇�𝑇𝑴𝑭 + 𝑭𝑇�̇�𝑭 + 𝑭𝑇𝑴�̇� − 2𝑭𝑇𝑴�̇� − 𝑭𝑇𝑪𝑭 

    = 𝑭𝑇(�̇� − 2𝑪)𝑭 + �̇�𝑇𝑴𝑭 − 𝑭𝑇𝑴�̇�= 𝑭𝑇(�̇� − 2𝑪)𝑭 
Eq. 1-36 

Since �̇� − 2𝑪 is skew-matrix according to Property 1-1, then 𝑵 is also skew-matrix. 

Property 1-5.  The orthogonality condition is satisfied by the matrix 𝑭(𝒒) such that Eq. 1-28 

holds. 

Proof. From Eq. 1-21 and substituting Eq. 1-27, we have  

𝑱𝑭 �̇�𝑖𝑛 = 𝟎 Eq. 1-37 

Since �̇�𝑖𝑛 is linearly independent, then 

𝑱𝑭 = 𝑭𝑇 𝑱𝑇 =0 Eq. 1-38 

Property 1-6. If 𝑭(𝒒) is known, then the left hand side of Eq. 1-31 are linearly dependent on the 

unknown biped parameters (the same Property 1-3). 

1.2.1.3 Continuous dynamic response 

One of the inherent problems of legged locomotion (bipeds, quadrupeds, etc.) is the discontinuity 

at the transition instances due to: (i) impact events; these can be avoided by setting the foot velocity 

equal to zero at the instance of contact (see Chapters 5 and 6 of [Hay14]), and (ii) varying 

configurations of the biped from the SSP to the DSP and vice versa. As said previously in Section 

1.1, the number of actuators is more than the DOFs of the biped during the constrained DSP. This 

means that there are infinity combinations of actuator torques to drive the biped systems as 

explained below. 

One of the methods for determining the actuating torques and the ground reaction forces is the 

pseudo-inverse matrix as follows. 
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Eq. 1-19 can be re-arranged to yield 

𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�)�̇� + 𝒈(𝒒) +  𝑨𝝉𝑓 = [𝑨 𝑱(𝒒)𝑇] [
𝝉
𝝀

] Eq. 1-39 

One of the possible solutions to get the actuating torques and Lagrange multipliers are 

[
𝝉
𝝀

] = [𝑨 𝑱𝑇]≠(𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�)�̇� + 𝒈(𝒒) +  𝑨𝝉𝑓) Eq. 1-40 

where the notation [. ]≠ denotes the pseudo-inverse of the referred matrix. 

As seen from Eq. 1-40, there is no guarantee that 𝝉 and 𝝀 have the same values at the start/end of 

the SSP due to this optimization solution. Therefore, the following assumption is proposed to 

resolve this dilemma. 

Assumption 1-4. Because the biped robot does not have a unique solution during the DSP, a linear 

transition function could be proposed for the ground reaction forces [Alb12]. Thus, for the front 

foot 

𝝀 = (
𝑡 − 𝑡𝑠

𝑡𝑑 − 𝑡𝑠
) 𝑚𝐺(�̈�𝐺 + [0, 𝑔, 0]𝑇) Eq. 1-41 

where 𝑡, 𝑡𝑠 and 𝑡𝑑 are time parameter, the time of SSP, and the DSP time. Meanwhile, the ground 

reaction forces, �̅�, of the rear foot are 

�̅� = 𝑚𝐺(�̈�𝐺 + [0, 𝑔, 0]𝑇) − 𝝀 Eq. 1-42 

Accordingly, at the initial instance of DSP, 𝝀 = 𝟎, and the full ground reaction forces are supported 

by the rear foot, whereas, at the end of the DSP, the full support appears to be in the front foot with 

�̅� = 𝟎. On the other hand, because COG acceleration of the biped is nonlinear, the resulted ground 

reaction forces from Eq. 1-41 can generate nonlinear profile despite of multiplication of the latter 

equation with linear scaling function. 

1.2.2 The modified recursive N-E formulation 

Due to computational complexity inherent in the classical Lagrangian formulation, unless it is 

simplified, the researchers have resorted to the recursive N-E formulation for real time 

implementation. The philosophy of deriving N-E formulation is different from that of Lagrangian 

formulation. In the former, the translation/angular equations of motion of each link are derived 

sequentially using the D’Alembert principle. Due to the coupling effect between each neighbored 
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links and appearance the translation equations of motion, the coupling force wrench appears in the 

derivation. Then a set of forward and backward recursive equations is used to determine the 

velocity and force wrenches respectively [Spo89, Fu87]. Various forms of N-E formulations for 

different robotic mechanism have been investigated; for details refer to [Kha11].  

However, Fu et al. [Fu87] have shown that the combined identification and control algorithms can 

be computed in 𝑂(𝑛3) despite using recursive N-E formulation. Strictly speaking, dealing with 

advanced adaptive control techniques, the recursive N-E formulations could not be powerful; a 

modification is needed to satisfy the desired target. Zhu [Zhu10] exploited the recursive nature of 

N-E equations to virtually decompose complex robotic systems into subsystems and to use the 

advanced adaptive techniques recursively. The derivation is exactly of that of recursive N-E 

formulation, but the difference is that the VDC derives the equation of motion of each link in terms 

of a frame attached at it first end rather than its COM. 

1.2.2.1 Derivation of the dynamic equations 

Now let us consider a fixed base serial-chain manipulator with revolute and prismatic joints. Thus, 

the links are numbered from 1 to 𝑛𝑞, where the base link is numbered as zero link. Fig. 1-3 shows 

link (𝑖) where 𝑖 = 1,2, … . , 𝑛𝑞 , is connected to other links via mechanical joints at its ends. This 

link has one driving cutting point associated with the frame {𝑇𝑖+1} and one driven cutting point 

associated with the frame {𝐵𝑖}. Thus, the joint (𝑖) has one driven cutting point associated with the 

frame {𝐵𝑖} and one driving cutting point associated with the frame {𝑇𝑖}.  

Below, we will illustrate some remarks to make the derivation of dynamic equation of each 

subsystem (link, joint) accessible.  
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Fig. 1-3: Virtual decomposition of a serial-chain manipulator 

Remark 1-7. [Zhu10]. The matrix of force wrench transformation, 𝑼𝑨 ∈ ℝ𝟔×𝟔𝑩 , transforms the 

force wrench expressed in frame {𝑨} to the same force wrench expressed in frame {𝑩} as follows. 

�̅� =𝐵 𝑼𝐴
𝐵  �̅�𝐴  Eq. 1-43 

with 

𝑼𝐴
𝐵 = [

𝑹𝐴
𝐵 𝟎3×3

( 𝒓𝐵
𝐵𝐴 ×) 𝑹𝐵

𝐴 𝑹𝐴
𝐵 ] Eq. 1-44 

where 𝑹𝐴
𝐵 ∈ ℝ3×3 refers to the rotation matrix from the frame {𝐴} to the frame {𝐵}, 𝟎3×3 is 3 ×

3 null matrix, ( 𝒓𝐵
𝐵𝐴 ×) is the skew matrix of  the vector 𝒓𝐵

𝐵𝐴, which represents a vector from the 

origin of frame {𝐵} to the origin of frame {𝐴}, expressed by 

( 𝒓𝐵
𝐵𝐴 ×) = [

0 − 𝑟𝐵
𝐵𝐴)𝑧 𝑟𝐵

𝐵𝐴)𝑦

𝑟𝐵
𝐵𝐴)𝑧 0 − 𝑟𝐵

𝐵𝐴)𝑥

− 𝑟𝐵
𝐵𝐴)𝑦 𝑟𝐵

𝐵𝐴)𝑥 0

] Eq. 1-45 
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whereas the transpose of 𝑼𝐴
𝐵  can transform the velocity wrench from frame to another as follows. 

�̅� = 𝑼𝐵
𝐴
𝑇𝐴  �̅�𝐵  Eq. 1-46 

Remark 1-8.  The net force wrench of link (𝒊) can be sequentially expressed in terms of frame 

{𝑩𝒊} as 

�̅�∗ = �̅�
𝐵𝑖𝐵𝑖 − 𝑼𝑇𝑖+1

𝐵𝑖 �̅�
𝑇𝑖+1  Eq. 1-47 

Exploiting Remark 1-7 to yield 

�̅�∗ = �̅�
𝐵𝑖𝐵𝑖 − 𝑼𝑇𝑖+1

𝐵𝑖 𝑼𝐵𝑖+1

𝑇𝑖+1 �̅�
𝐵𝑖+1 = �̅�

𝐵𝑖 − 𝑼𝐵𝑖+1

𝐵𝑖 �̅�
𝐵𝑖+1  Eq. 1-48 

Remark 1-9.  The velocity wrench of link (𝒊) can sequentially be determined by 

�̅� = 𝒛 �̇�𝑖 +
𝐵𝑖 𝑼

𝐵𝑖−1
𝐵𝑖

𝑇  �̅�
𝐵𝑖−1  Eq. 1-49 

with 𝒛 = [0 0 0 0 0 1] or  [0 0 1 0 0 0] for revolute and prismatic joints respectively. Alternatively 

and simply, the velocity wrench can be calculated as 

�̅� = [
𝑹𝐼𝒗𝐵𝑖

𝐵𝑖

𝑹𝐼𝒘𝐵𝑖

𝐵𝑖
]

𝐵𝑖  Eq. 1-50 

with 𝒗𝐵𝑖
∈ ℝ3and 𝒘𝐵𝑖

∈ ℝ3 are the absolute translational and angular velocity vector of frame 𝐵𝑖 

respect to the inertial frame {I}. 

Remark 1-10.  Concerning the target biped, the number of the generalized coordinates (𝒏𝒒) is 

always equal to the number of links, e.g. both the number of links and the generalized coordinates 

are equal to six during the SSP. Consequently, we named the number of links as that of generalized 

coordinates.   

(i) Dynamics of link subsystem 

By applying the D’Alembert principle to link (𝑖), with respect to the inertial frame about the COM 

of link (𝑖), we can get the following relations for the net forces �̅�𝑖
∗ and the net moment �̅�𝑖

∗, as 

shown in Fig. 1-4. 
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Fig. 1-4: Virtual decomposition of link (𝑖) with description of the net force wrench. (a) The free-

body diagram of the link (𝑖) with force wrench at its ends and gravity effect. (b) The net force 

wrench applied at the COG of link (𝑖) with gravity effect. (c) The net force wrench applied at one 

end of link (𝑖) with gravity effect. 

𝒇𝑖
∗ =

𝑑(𝑚𝑖 𝒗𝑖)

𝑑𝑡
= 𝑚𝑖 �̇�𝑖 + 𝑚𝑖 𝒈 Eq. 1-51 

𝒎𝑖
∗ =

𝑑(𝑰𝑖(𝑡)�̂�𝑖)

𝑑𝑡
= 𝓘𝒊 (𝑡) �̇�𝑖 + (𝒘𝑖 ×)𝓘𝒊 (𝑡)𝒘𝑖=𝓘𝒊 (𝑡) �̇�𝑖 + 𝒘𝑖 × (𝓘𝒊 (𝑡)𝒘𝑖) Eq. 1-52 

where 𝒗𝑖 ∈ ℝ3×1  refers to the translation velocity vector of each link. 

Putting Eq. 1-51 and Eq. 1-52 into block matrix to deal with velocity and force wrenches 

[
𝑚𝑖 𝑰3 𝟎3×3

𝟎3×3 𝓘𝒊 (𝑡)
] [

�̇�𝑖

�̇�𝑖
] + [

𝑚𝑖  𝒈

(𝒘𝑖 ×)𝓘𝒊 (𝑡)𝒘𝑖
] = [

𝒇𝑖
∗

𝒎𝑖
∗] Eq. 1-53 

or 

[
𝑚𝑖 𝑰𝟑 𝟎3×3

𝟎3×3 𝓘𝒊 (𝑡)
] �̇̅�𝑖 + [

𝑚𝑖  𝒈

(𝒘𝑖 ×) 𝓘𝒊 (𝑡)𝒘𝑖
] = �̅�𝑖

∗ Eq. 1-54 

with 𝑰3 is 3 × 3 identity matrix.  

Exploiting Remark 1-8, the net force wrench on the right hand side of Eq. 1-54 can be expressed 

(transformed) in terms of the frame {𝐵𝑖} as follows. 

�̅�∗ = 𝑼
𝐵𝑖

𝐴𝑖

𝐵𝑖 �̅�𝑖
∗𝐴𝑖 = 𝑼

𝐵𝑖
𝐴𝑖

[
𝑹𝐼

𝐴𝑖 𝟎3×3

𝟎3×3 𝑹𝐼
𝐴𝑖

] [
𝒇𝑖

∗

𝒎𝑖
∗] Eq. 1-55 
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In similar manner, the velocity wrench can be represented in terms of the frame {𝐵𝑖}  as   

�̅�𝑖 = [
𝒗𝑖

𝒘𝑖
] = [

𝑹𝐴𝑖

𝐼 𝟎3×3

𝟎3×3 𝑹𝐴𝑖

𝐼 ] 𝑼
𝐵𝑖

𝐴𝑖

𝑇  �̅�𝑖
𝐵𝑖  Eq. 1-56 

Differentiating Eq. 1-56 results in 

�̇̅�𝑖 = [
�̇�𝑖

�̇�𝑖
] = [

(𝒘𝑖 ×) 𝑹𝐴𝑖

𝐼 𝟎3×3

𝟎3×3 (𝒘𝑖 ×) 𝑹𝐴𝑖

𝐼 ] 𝑼𝐴𝑖

𝑇𝐵𝑖  �̅�𝑖
𝐵𝑖 + [

𝑹𝐴𝑖

𝐼 𝟎3×3

𝟎3×3 𝑹𝐴𝑖

𝐼 ] 𝑼𝐴𝑖

𝑇𝐵𝑖  
𝑑

𝑑𝑡
( �̅�𝑖

𝐵𝑖 ) Eq. 1-57 

Substituting Eq. 1-55 and Eq. 1-57 into Eq. 1-54 results in 

𝑴𝐵𝑖
�̇̅�𝑖 + 𝑪𝐵𝑖

𝐵𝑖 ( 𝒘
𝐵𝑖

𝑖) �̅�𝑖
𝐵𝑖 + 𝒈𝐵𝑖

= �̅�∗𝐵𝑖  Eq. 1-58 

with   

𝑴𝐵𝑖
= [

𝑚𝑖𝑰3 −𝑚𝑖( 𝒓
𝐵𝑖

𝐵𝑖𝐴𝑖
×)

𝑚𝑖( 𝒓
𝐵𝑖

𝐵𝑖𝐴𝑖
×) 𝑰𝐵𝑖

− 𝑚𝑖( 𝒓
𝐵𝑖

𝐵𝑖𝐴𝑖
)2

] 

where 𝑰𝐵𝑖
 represents the configuration-free inertia tensor expressed in frame {𝐵𝑖} 

Eq. 1-59 

𝑪𝐵𝑖
( 𝒘

𝐵𝑖
𝑖) = [

𝑐11 𝑐12

𝑐21 𝑐22
] Eq. 1-60 

with   

𝑐11 = 𝑚𝑖( 𝒘𝑖 ×)
𝐵𝑖 , 𝑐12 = −𝑚𝑖( 𝒘𝑖 ×)

𝐵𝑖 ( 𝒓
𝐵𝑖

𝐵𝑖𝐴𝑖
×), 𝑐21 = 𝑚𝑖( 𝒓

𝐵𝑖
𝐵𝑖𝐴𝑖

×)( 𝒘𝑖 ×)
𝐵𝑖  

𝑐22 = ( 𝒘𝑖 ×)
𝐵𝑖 𝑰𝐵𝑖

+ 𝑰𝐵𝑖  
( 𝒘𝑖 ×)

𝐵𝑖 − 𝑚𝑖( 𝒓
𝐵𝑖

𝐵𝑖𝐴𝑖
×)( 𝒘𝑖 ×)( 𝒓

𝐵𝑖
𝐵𝑖𝐴𝑖

×)
𝐵𝑖  

 

𝒈𝐵𝑖
= [

𝑚𝑖 𝑹𝐼𝒈
𝐵𝑖

𝑚𝑖( 𝒓
𝐵𝑖

𝐵𝑖𝐴𝑖
×) 𝑹𝐼𝒈

𝐵𝑖
] Eq. 1-61 

 

(ii) Dynamics of revolute joint subsystem 

There are two types of drive transmission systems for robotic joint systems. The first is the direct 

drive joints, in which the inertia of the motor is included in the corresponding links [Zhu10, Spo89], 

such that the dynamics of the joint is neglected. The second type of the system deals with a high 
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gear transmission assuming that the inertial forces/torques act along the joint axis [Zhu10]. In the 

latter case, the dynamic equation of the joint (𝑖) can be described as [Zhu10] 

𝐼𝐽𝑖
�̈�𝑖 + 𝓀𝑐𝑖 𝑠𝑖𝑔𝑛(�̇�𝑖) + 𝓀𝑣𝑖�̇�𝑖 + 𝓀𝑠𝑖 𝑠𝑖𝑔𝑛(�̇�𝑖) exp(− (

�̇�𝑖
𝜂𝑠𝑖

⁄ )) + 𝓀𝑜𝑖 = 𝜏𝑖
∗ (𝑖

= 1,2, … . , 𝑛𝑗) 
Eq. 1-62 

where 𝐼𝐽𝑖
 represents the equivalent inertia of the joint (𝑖), �̈�𝑖 denote the ith joint acceleration,  𝜏𝑖

∗ 

represents the net torque applied to the joint (𝑖), and 𝑛𝑗  denotes the number of joints. The net torque 

of the joint (𝑖) can be described as  

𝜏𝑖
∗ = 𝜏𝑐𝑖 − 𝒛𝑇 �̅�

𝐵𝑖   (𝑖 = 1,2, … . , 𝑛𝑗) Eq. 1-63 

where 𝜏𝑐𝑖  is the input control torque of the joint (𝑖) and the second term represents the output 

torque of the joint (𝑖) towards the link (𝑖). 

1.2.2.2 Dynamics of the biped robot 

Since the target biped is of a planar motion, simplifications appear in the dynamic equation of link 

(𝑖) derived in Eq. 1-58 to Eq. 1-61 via the following: 

(i) Since the center of mass of link (𝑖)  is located on the 𝑥 − 𝑎𝑥𝑖𝑠  of frame {𝐵𝑖} with 

distance 𝑑𝑖 from its its origin, 𝒓𝐵𝑖𝐴𝑖

𝐵𝑖 = [𝑑𝑖, 0, 0]𝑇. 

(ii) Since there is orientation in z-axis only, 𝒘 = [0, 0, 𝑤𝑧𝑖
]𝑇𝐵𝑖 . 

(iii) 𝐼𝐵𝑖
= 𝑑𝑖𝑎𝑔(0, 0, 𝐼𝑐𝑖

) . 

(iv) Removal of the third to the fifth rows/columns of 𝑴𝐵𝑖
 and 𝑪𝐵𝑖

. 

Thus, the dynamics of planar biped robot can be expresses as in Eq. 1-58 with the following 

dynamic coefficient matrices 

𝑴𝐵𝑖
= [

𝑚𝑖 0 0
0 𝑚𝑖 𝑚𝑖𝑑𝑖

0 𝑚𝑖𝑑𝑖 𝐼𝑐𝑖 + 𝑚𝑖𝑑𝑖
2

] Eq. 1-64 

𝑪𝐵𝑖
= [

0 −𝑚𝑖 −𝑚𝑖𝑑𝑖

𝑚𝑖 0 0
𝑚𝑖𝑑𝑖 𝑚𝑖𝑑𝑖 0

] 𝑤𝑧𝑖
 with 𝑤𝑧𝑖

= �̇�𝑖 Eq. 1-65 
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𝒈𝐵𝑖
= [

𝑚𝑖 sin(𝑞𝑖) 𝑔

𝑚𝑖 cos(𝑞𝑖) 𝑔

𝑚𝑖 𝑑𝑖 cos(𝑞𝑖) 𝑔

] Eq. 1-66 

1.2.2.2.1 The SSP 

As mentioned earlier, during this walking phase, the biped mechanism is an open chain mechanism 

with stance foot as fixed link; it should be in full contact with the ground. Therefore, the seven 

link-biped reduces to 6-link biped during its dynamic analysis. Three important points should be 

considered carefully when dealing with Eq. 1-56 that are: 

(i) Determination of velocity wrench.  

Solution of the dynamic Eq. 1-56 needs finding the velocity wrench which plays an important role  

in the adaptive control problem; it can be found as follows. See Fig. 1-5 for clear description of 

local frames. 

 

Fig. 1-5: Biped robot during the SSP with description of assumed local frames 

Link (1) (stance foot link): It is assumed fixed link with negligible dynamics. 

Link (2) (stance shank link): 

𝑥𝐵2
= −0.2 , �̇�𝐵2

= 0 Eq. 1-67 



                                                                                           22 

 

𝑦𝐵2
= 0 , �̇�𝐵2

= 0 Eq. 1-68 

�̅� = [
0
0
�̇�2

]
𝐵2  Eq. 1-69 

Link (3) (stance thigh link): 

𝑥𝐵3
= −0.2 + 𝑙2cos (𝑞2) , �̇�𝐵3

= −𝑙2sin (𝑞2)�̇�2 Eq. 1-70 

𝑦𝐵3
= 𝑙2sin (𝑞2) , �̇�𝐵3

= 𝑙2cos (𝑞2)�̇�2 Eq. 1-71 

�̅� = [
[

cos (𝑞3) sin (𝑞3)
−sin (𝑞3) cos (𝑞3)

] [
�̇�𝐵3

�̇�𝐵3

]

�̇�3

]
𝐵3 = [

−𝑙2 �̇�2 sin (𝑞2 − 𝑞3)
𝑙2 �̇�2 cos (𝑞2 − 𝑞3)

�̇�3

] Eq. 1-72 

Link (4) (Trunk): 

𝑥𝐵4
= −0.2 + 𝑙2 cos(𝑞2) + 𝑙3 cos(𝑞3) , �̇�𝐵4

= −𝑙2 sin(𝑞2) �̇�2 − 𝑙3 sin(𝑞3) �̇�3 Eq. 1-73 

𝑦𝐵4
= 𝑙2 sin(𝑞2) + 𝑙3 sin(𝑞3) ,  �̇�𝐵4

= 𝑙2 cos(𝑞2) �̇�2 + 𝑙3 cos(𝑞3) �̇�3 Eq. 1-74 

�̅� = [
[

cos (𝑞4) sin (𝑞4)
−sin (𝑞4) cos (𝑞4)

] [
�̇�𝐵4

�̇�𝐵4

]

�̇�4

]
𝐵4  

         = [

−𝑙2 �̇�2 sin (𝑞2 − 𝑞4)−𝑙3 �̇�3 sin (𝑞3 − 𝑞4)

𝑙2 �̇�2 cos(𝑞2 − 𝑞4) + 𝑙3 �̇�3 cos (𝑞3 − 𝑞4)
�̇�4

] 

 

Eq. 1-75 

Link (5)( swing thigh link): 

𝑥𝐵5
= −0.2 + 𝑙2 cos(𝑞2) + 𝑙3 cos(𝑞3) − 𝑙5 cos(𝑞5), �̇�𝐵5

= −𝑙2 sin(𝑞2) �̇�2 −

𝑙3 sin(𝑞3) �̇�3 + 𝑙5sin (𝑞5)�̇�5 
Eq. 1-76 

𝑦𝐵5
= 𝑙2 sin(𝑞2) + 𝑙3 sin(𝑞3) − 𝑙5 sin(𝑞5)  

 �̇�𝐵5
= 𝑙2 cos(𝑞2) �̇�2 + 𝑙3 cos(𝑞3) �̇�3 − 𝑙5cos (𝑞5)�̇�5 

Eq. 1-77 
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�̅� = [
[

cos (𝑞5) sin (𝑞5)
−sin (𝑞5) cos (𝑞5)

] [
�̇�𝐵5

�̇�𝐵5

]

�̇�5

]
𝐵5  

        = [

−𝑙2 �̇�2 sin (𝑞2 − 𝑞5)−𝑙3 �̇�3 sin (𝑞3 − 𝑞5)

𝑙2 �̇�2 cos(𝑞2 − 𝑞5) − 𝑙5�̇�5 + 𝑙3 �̇�3 cos (𝑞3 − 𝑞5)
�̇�5

] 

 

Eq. 1-78 

Link (6) (swing shank link): 

𝑥𝐵6
= −0.2 + 𝑙2 cos(𝑞2) + 𝑙3 cos(𝑞3) − 𝑙5 cos(𝑞5) − 𝑙6 cos(𝑞6)  

�̇�𝐵6
= −𝑙2 sin(𝑞2) �̇�2 − 𝑙3 sin(𝑞3) �̇�3 + 𝑙5 sin(𝑞5) �̇�5 + 𝑙6 sin(𝑞6) �̇�6 

Eq. 1-79 

𝑦𝐵6
= 𝑙2 sin(𝑞2) + 𝑙3 sin(𝑞3) − 𝑙5 sin(𝑞5) − 𝑙6 sin(𝑞6)  

�̇�𝐵6
= 𝑙2 cos(𝑞2) �̇�2 + 𝑙3 cos(𝑞3) �̇�3 − 𝑙5 cos(𝑞5) �̇�5 − 𝑙6cos (𝑞6)�̇�6 

Eq. 1-80 

�̅� = [
[

cos (𝑞6) sin (𝑞6)
−sin (𝑞6) cos (𝑞6)

] [
�̇�𝐵6

�̇�𝐵6

]

�̇�6

]
𝐵6   

    

        = [

𝑙5 �̇�5 sin (𝑞5 − 𝑞6)−𝑙2 �̇�2 sin (𝑞2 − 𝑞6)−𝑙3 �̇�3 sin (𝑞3 − 𝑞6)

𝑙2 �̇�2 cos(𝑞2 − 𝑞6) − 𝑙6�̇�6 + 𝑙3 �̇�3 cos(𝑞3 − 𝑞6) − 𝑙5 �̇�5 cos(𝑞3 − 𝑞6)
�̇�6

] 

 

Eq. 1-81 

Link (7) ( swing foot link): 

𝑥𝐵7
= −0.2 + 𝑙2 cos(𝑞2) + 𝑙3 cos(𝑞3) − 𝑙5 cos(𝑞5) − 𝑙6 cos(𝑞6) −𝑙7𝑎 cos(𝑞7)  

�̇�𝐵7
= −𝑙2 sin(𝑞2) �̇�2 − 𝑙3 sin(𝑞3) �̇�3 + 𝑙5 sin(𝑞5) �̇�5 + 𝑙6 sin(𝑞6) �̇�6

+ 𝑙7𝑎 sin(𝑞7) �̇�7 

Eq. 1-82 

𝑦𝐵7
= 𝑙2 sin(𝑞2) + 𝑙3 sin(𝑞3) − 𝑙5 sin(𝑞5) − 𝑙6 sin(𝑞6) −𝑙7𝑎 sin(𝑞7)  

�̇�𝐵7
= 𝑙2 cos(𝑞2) �̇�2 + 𝑙3 cos(𝑞3) �̇�3 − 𝑙5 cos(𝑞5) �̇�5 − 𝑙6 cos(𝑞6) �̇�6

− 𝑙7𝑎 cos(𝑞7) �̇�7 

Eq. 1-83 
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�̅� = [
[

cos(𝑞6) sin(𝑞6)

− sin(𝑞6) cos(𝑞6)
] [

�̇�𝐵7

�̇�𝐵7

]

�̇�7

]
𝐵6   

       

= [

𝑙5 �̇�5 sin(𝑞5 − 𝑞7) + 𝑙6 �̇�6 sin (𝑞6 − 𝑞7)−𝑙2 �̇�2 sin (𝑞2 − 𝑞6)− 𝑙3 �̇�3 sin (𝑞3 − 𝑞6)

𝑙2 �̇�2 cos(𝑞2 − 𝑞7) − 𝑙7𝑎�̇�7 + 𝑙3 �̇�3 cos(𝑞3 − 𝑞7) − 𝑙5 �̇�5 cos(𝑞3 − 𝑞7) − 𝑙6 �̇�6 cos(𝑞6 − 𝑞7)

�̇�7

] 

 

 

 

 

Eq. 1-84 

(ii) Resultant force wrench 

To understand the force wrench distribution at the torso/leg interaction, see Fig. 1-5. Thus, the 

following relations can be expressed for each link starting from the trunk. 

Link (4) (trunk): 

�̅�∗ = �̅� + �̅�
𝐵𝑇2𝐵𝑇1𝐵4  Eq. 1-85 

with notations shown in Fig. 1-5.  

Link (5)( swing thigh):  

�̅�∗𝐵5 = �̅� − 𝑈𝐵4

 �̅�
𝐵𝑇2  

𝐵5𝐵5  Eq. 1-86 

with 

𝑼𝐵4

 𝐵5 = 𝑼𝑇
  

𝐵5 𝑼𝑇
 −1 = [

𝑹𝑇
𝐵5 [

0
0

]

−𝑙5 cos(𝑞5) −𝑙5 sin(𝑞5) 1
] 

𝐵4 [
𝑹𝑇

𝐵5 [
0
0

]

0 0 1
]   

             = [

𝑐𝑜𝑠(𝑞5) 𝑠𝑖𝑛(𝑞5) 0

−𝑠𝑖𝑛(𝑞5) 𝑐𝑜𝑠(𝑞5) 0

−𝑙5 cos(𝑞5) −𝑙5 sin(𝑞5) 1

] [
𝑐𝑜𝑠(𝑞4) −𝑠𝑖𝑛(𝑞4) 0

𝑠𝑖𝑛(𝑞4) 𝑐𝑜𝑠(𝑞4) 0
0 0 1

]                  

              = [

𝑐𝑜𝑠(𝑞5 − 𝑞4) 𝑠𝑖𝑛(𝑞5 − 𝑞4) 0

−𝑠𝑖𝑛(𝑞5 − 𝑞4) 𝑐𝑜𝑠(𝑞5 − 𝑞4) 0

−𝑙5 cos(𝑞5 − 𝑞4) −𝑙5 sin(𝑞5 − 𝑞4) 1

] 

 

 

 

 

 

Eq. 1-87 

Link (6) ( swing shank): 

�̅�∗𝐵6 = �̅� − 𝑼𝐵5

 �̅�
𝐵5  

𝐵6𝐵6  Eq. 1-88 
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with  

𝑼𝐵5

 𝐵6 = [
𝑹𝐵5

𝐵6 [
0
0

]

𝑙6 sin(𝑞5 − 𝑞6) 𝑙6 cos(𝑞5 − 𝑞6) 1
] 

             = [

𝑐𝑜𝑠(𝑞5 − 𝑞6) −𝑠𝑖𝑛(𝑞5 − 𝑞6) 0

𝑠𝑖𝑛(𝑞5 − 𝑞6) 𝑐𝑜𝑠(𝑞5 − 𝑞6) 0

𝑙6 sin(𝑞5 − 𝑞6) 𝑙6 cos(𝑞5 − 𝑞6) 1

] 

Eq. 1-89 

Link (7) (swing foot): 

�̅�∗𝐵7 = �̅� − 𝑼𝐵6

 �̅�
𝐵6  

𝐵7𝐵7  Eq. 1-90 

with  

𝑼𝐵6

 𝐵7 = [

𝑐𝑜𝑠(𝑞6 − 𝑞7) −𝑠𝑖𝑛(𝑞6 − 𝑞7) 0

𝑠𝑖𝑛(𝑞6 − 𝑞7) 𝑐𝑜𝑠(𝑞6 − 𝑞7) 0

𝑙6 sin(𝑞6 − 𝑞7) 𝑙6 cos(𝑞6 − 𝑞7) 1

] Eq. 1-91 

Link (3) (stance thigh): 

�̅�∗𝐵3 = �̅� − 𝑼𝐵4

 �̅�
𝐵𝑇1  

𝐵3𝐵3  Eq. 1-92 

with 

𝑈𝐵4

 𝐵3 = [

𝑐𝑜𝑠(𝑞3 − 𝑞4) 𝑠𝑖𝑛(𝑞3 − 𝑞4) 0

−𝑠𝑖𝑛(𝑞3 − 𝑞4) 𝑐𝑜𝑠(𝑞3 − 𝑞4) 0

−𝑙3 sin(𝑞3 − 𝑞4) 𝑙3 cos(𝑞3 − 𝑞4) 1

] Eq. 1-93 

Link (2)(stance shank): 

�̅�∗𝐵2 = �̅� − 𝑼𝐵3

 �̅�
𝐵3  

𝐵2𝐵2  Eq. 1-94 

with  

𝑼𝐵3

 𝐵2 = [

𝑐𝑜𝑠(𝑞3 − 𝑞2) −𝑠𝑖𝑛(𝑞3 − 𝑞2) 0

𝑠𝑖𝑛(𝑞3 − 𝑞2) 𝑐𝑜𝑠(𝑞3 − 𝑞2) 0

𝑙2 sin(𝑞3 − 𝑞2) 𝑙2 cos(𝑞3 − 𝑞2) 1

] Eq. 1-95 
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We note that we have 6 equations for six links(Eq. 1-85, Eq. 1-86, Eq. 1-88, Eq. 1-90, Eq. 1-92, 

Eq. 1-94), with 7 unknowns ( �̅�
𝐵𝑇1 , �̅�

𝐵𝑇2 , �̅�
𝐵5 , �̅�

𝐵6 , �̅�
𝐵7 , �̅�

𝐵3 , �̅�
𝐵2 ). Because the swing foot does not 

have force wrench at the frame {𝐵7}, so �̅�
𝐵7 = 𝟎. Thus, �̅�

𝐵6  can recursively be calculated from Eq. 

1-90 and so on.  

(iii) Actuating torques 

To simplify the analysis, let us assume temporarily that the target biped has direct drive joint 

systems (the dynamics of the joint could be included with the corresponding links [Zhu10, Spo89]) 

the left hand side of Eq. 1-63 is equal to zero. Consequently, the actuating torques can be calculated 

from the coupling effect of the neighbored link according to Eq. 1-63. 

Left shank, 𝜏𝑐1 = 𝒛𝑇 �̅�
𝐵2  Eq. 1-96 

Left knee, 𝜏𝑐2 = 𝒛𝑇 �̅�
 𝐵3  Eq. 1-97 

Left thigh/torso interaction, 𝜏𝑐3 = 𝒛𝑇 �̅�
 𝐵𝑇1  Eq. 1-98 

Right thigh/torso interaction, 𝜏𝑐4 = 𝒛𝑇 �̅�
 𝐵𝑇2  Eq. 1-99 

Right knee, 𝜏𝑐5 = 𝒛𝑇 �̅�
𝐵5  Eq. 

1-100 

Right shank, 𝜏𝑐6 = 𝒛𝑇 �̅�
 𝐵6  Eq. 

1-101 

1.2.2.2.2  The DSP1 

As mentioned earlier, the biped in this walking sub-phase, DSP1, has six actuators with 4 DOFs; 

therefore, two redundant actuators compromise the over-actuation problem. In the following, the 

details of velocity and force wrenches as well as determining the redundant actuating torques are 

investigated. 

 Velocity wrench. It has exactly the same relations described in previous subsection, Eq. 

1-67 to Eq. 1-84 with replacing the word (swing) by (front), the word (stance) to (rear), and 

𝑙7𝑎 by (𝑙7 − 𝑙7𝑎) for the last link. 

 Force wrench. It has also the same force wrenches showed in Eq. 1-85 to Eq. 1-95. 

 Actuating torques. We have three significant problems resulting from the variable 

configurations of the biped which include: (a) redundancy of the actuators, (b) the passive 
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joint on the front foot (see Fig. 1-6) which enforces the torque to be 𝜏𝑐𝑓
= 0, and (c) the 

discontinuity of the actuating torques. Four solutions are considered below with focus on 

solutions 3 and 4 which can be ranked best among the rest. 

 

Fig. 1-6: Biped robot during the DSP1 

(i) Procedure 1-releasing and optimizing the internal forces  

This strategy assumes that the biped resembles two cooperating manipulators (two legs) holding 

one object (the trunk of the biped robot). Thus, the two interaction force wrenches, �̅�
𝐵𝑇1  and �̅�

𝐵𝑇2  

can be expressed as [Zhu10] 

�̅�
𝐵𝑇1 = ℴ �̅�∗ + 𝜼

𝐵4  Eq. 

1-102 

�̅�
𝐵𝑇2 = (1 − ℴ) �̅�∗ − 𝜼

𝐵4  Eq. 

1-103 

with 𝜼 ∈ ℝ3  denotes the internal force wrench and  

ℴ is a scalar value bounded by 0 and 1 (0 ≤ ℴ ≤ 1). 

Then, describing the actuating torques in terms of the design variables (𝜼). 
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𝝉 = 𝑩1𝜼 + 𝒃1 Eq. 

1-104 

with the constraint of passive joint 

𝜏𝑐𝑓
= 0 = 𝓪1

𝑇𝜼 + 𝒶2 Eq. 

1-105 

By defining the objective function  

𝜎 =
1

2
 𝝉𝑇𝓦𝝉 Eq. 

1-106 

where 𝓦 ∈ ℝ6×6
 is a symmetric weighting matrix; it is assumed as an identity matrix in our 

solution.  

Substituting Eq. 1-104 into Eq. 1-106 and incorporating the constraint of Eq. 4-105 to get 

𝜎 =
1

2
(𝑩1𝜼 + 𝒃1)𝑇𝓦(𝑩1𝜼 + 𝒃1) + 𝒢(𝓪1

𝑇𝜼 + 𝒶2) Eq. 

1-107 

Differentiating Eq. 1-107 with respect to 𝜼 and setting it to zero 

𝜼 = −(𝑩1
𝑇

𝓦𝑩1)−1𝑩1
𝑇

𝓦𝒃1 − (𝑩1
𝑇

𝓦𝑩1)−1𝓪1 𝒢 Eq. 

1-108 

Substituting Eq. 1-108 into Eq. 1-105 to yield 

𝒢 =
𝒶2 − 𝓪1

𝑇(𝑩1
𝑇

𝓦𝑩1)−1𝑩1
𝑇

𝓦𝒃1

𝓪1
𝑇(𝑩1

𝑇
𝓦𝑩1)−1𝓪1

 Eq. 

1-109 

Substituting Eq. 1-109 into Eq. 1-108 to get the internal force wrench 

𝜼 = −(𝑩1
𝑇

𝓦𝑩1)−1𝑩1
𝑇

𝓦𝒃1

− (𝑩1
𝑇

𝓦𝑩1)−1𝓪1 (
𝒶2 − 𝓪1

𝑇(𝑩1
𝑇

𝓦𝑩1)−1𝑩1
𝑇

𝓦𝒃1

𝓪1
𝑇(𝑩1

𝑇
𝓦𝑩1)−1𝓪1

) 

Eq. 

1-110 

Thus, the force wrench at the torso can be determined from Eq. 1-85, and sequentially finding the 

rest force wrenches and the required torques via the following Eq. 1-86, Eq. 1-88, Eq. 1-90,Eq. 

1-92,Eq. 1-94, Eq. 1-96 to Eq. 1-101. The disadvantages of this procedure is that ℴ is a free 

parameter; it has not been considered as design variable, and there is also no guarantee to satisfy 

continuous dynamic response related to actuating torques.  
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(ii) Procedure 2- direct optimization of the torso/leg force wrench 

Instead of releasing internal force wrench, the actuating torques can directly be expressed in terms 

of �̅�
𝐵𝑇1  or �̅�

𝐵𝑇2 . Thus, we can get the same equations above but in terms of �̅�
𝐵𝑇1  as follows. 

�̅�
𝐵𝑇1 = −(𝑩1

𝑇
𝓦𝑩1)−1𝑩1

𝑇
𝓦𝒃1

− (𝑩1
𝑇

𝓦𝑩1)−1𝓪𝟏 (
𝑎2 − 𝓪𝟏

𝑇(𝑩1
𝑇

𝓦𝑩1)−1𝑩1
𝑇

𝓦𝒃1

𝓪𝟏
𝑇(𝑩1

𝑇
𝓦𝑩1)−1𝓪𝟏

) 
Eq.1-111 

and completing the same steps as of the procedure 1. However, the discontinuity problem has not 

been resolved in the above two procedures.  

(iii) Procedure 3- tracking desired ground reaction forces.  

Considering Assumption 1-4 and assuming the desired reaction force, see Eq. 1-41, as a constraint 

to yield 

�̅� = [
𝝀

𝜏𝑐𝑓

]
𝐵7 = �̆� �̅�

 𝐵𝑇1 + �̆� Eq.1-112 

with �̆� ∈ ℝ3×3
 and  �̆� ∈ ℝ3.  

The left hand side of Eq.1-112 is known from the desired walking trajectories, so the problems of 

over-actuating and discontinuity are solved using the last equation without need of optimization. 

Remark  1-11. If the number of constraints is equal to the design variables, no optimization of the 

system is necessary because the solution of equality constraints are the only candidates for the 

optimum design [Aro12]. 

(iv)  Procedure 4- tracking desired ground reaction forces with optimization 

In this procedure, we will come back to procedure 1 representing the trunk/leg interaction force 

wrench in terms of the internal force wrench and 𝛼 parameter. Thus, constraint Eq.1-112 can be 

expressed as follows 

�̅� = [
𝝀

𝜏𝑐𝑓

]
𝐵7 = 𝑩2𝜼 + 𝒃2ℴ + 𝒃3 Eq. 

1-113 

with  𝑩2 ∈ ℝ3×3 , 𝒃2 ∈ ℝ3 and 𝒃3 ∈ ℝ3. Re-arranging Eq. 1-113 and using the pseudo-inverse 

definition 
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[
𝜼
ℴ̅

] = [𝑩2 𝒃2]≠( �̅�
𝐵7 − 𝒃3) Eq.1-114 

where ℴ̅ denotes the candidate optimal solution. Because of the bounded limits of ℴ, the following 

procedure is proposed: 

If 0 ≤ ℴ̅ ≤ 1, then   ℴ = ℴ̅.  

If ℴ̅ ≥ 1, then ℴ = 1. 

If ℴ̅ ≤ 0, then ℴ = 0. 

Eq.1-115 

After finding the internal force wrench and 𝛼 parameter, it is easy to find the actuating torques in 

a similar way described previously (see procedure 1). 

1.2.2.2.3 The DSP2 

In this walking sub-phase, the biped robot has two redundant actuators with a slightly different 

configuration of that of DSP1 (see Fig. 1-7). Here, the front foot is flat on the ground with 

negligible dynamics while the rear foot rotates about its front tip. In similar manner to DSP1, the 

velocity wrench of each link can be determined as made in Subsection 1.2.2.2.1, whereas, the force 

wrench can be calculated successfully using procedure 1 described in the previous subsection. 

 Velocity wrench. It is exactly determined in the same manner used in the SSP and DSP1; 

therefore, we will list only the final results of each link without details. 

Link (1) (rear foot): 

�̅�
𝐵1 = [

0
0
�̇�1

] Eq.1-116 

Link (2) (rear shank): 

�̅�
𝐵2 = [

−𝑙1𝑎 �̇�1 sin (𝑞1 − 𝑞2)
𝑙1𝑎 �̇�1 cos (𝑞1 − 𝑞2)

�̇�2

] Eq.1-117 

Link (3) (rear thigh): 
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�̅�
𝐵3 = [

−𝑙1�̇�2 sin(𝑞2 − 𝑞3) − 𝑙1𝑎 �̇�1 sin (𝑞1 − 𝑞3)

𝑙1�̇�2 cos(𝑞2 − 𝑞3) + 𝑙1𝑎 �̇�1 cos (𝑞1 − 𝑞3)
�̇�3

] Eq.1-118 

 

Fig. 1-7: Biped robot during the DSP2 

Link (4) (trunk): 

�̅�
𝐵4 = [

−𝑙1�̇�2 sin(𝑞2 − 𝑞4) − 𝑙2�̇�3 sin(𝑞3 − 𝑞4) − 𝑙1𝑎 �̇�1 sin (𝑞1 − 𝑞4)

𝑙1�̇�2 cos(𝑞2 − 𝑞4) + 𝑙2�̇�3 cos(𝑞3 − 𝑞4) + 𝑙1𝑎 �̇�1 cos (𝑞1 − 𝑞4)
�̇�4

] Eq.1-119 

Link (5) (front thigh): 

�̅�
𝐵5

= [

−𝑙1�̇�2 sin(𝑞2 − 𝑞5) − 𝑙2�̇�3 sin(𝑞3 − 𝑞5) − 𝑙1𝑎 �̇�1 sin (𝑞1 − 𝑞5)

𝑙1�̇�2 cos(𝑞2 − 𝑞5) − 𝑙4�̇�5 + 𝑙2�̇�3 cos(𝑞3 − 𝑞5) + 𝑙1𝑎 �̇�1 cos (𝑞1 − 𝑞5)
�̇�5

] 
Eq.1-120 

Link (6) (front shank): 
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�̅�
𝐵6 = [

𝑣x
𝐵6

𝑣y
𝐵6

𝑤z
𝐵6

] 

with 

𝑣x
𝐵6 = −𝑙4�̇�5 sin(𝑞5 − 𝑞6) − 𝑙2�̇�3 sin(𝑞3 − 𝑞6) − 𝑙1�̇�2 sin(𝑞2 − 𝑞6)

− 𝑙1𝑎 �̇�1 sin (𝑞1 − 𝑞6) 

𝑣y
𝐵6 = 𝑙1�̇�2 cos(𝑞2 − 𝑞6) − 𝑙5�̇�6 + 𝑙2�̇�3 cos(𝑞3 − 𝑞6) − 𝑙4�̇�5cos (𝑞5 − 𝑞6)

+ 𝑙1𝑎 �̇�1 cos (𝑞1 − 𝑞6) 

𝑤z
𝐵6 = �̇�6 

 

 

 

Eq.1-121 

 Force wrench. The same relationships of Eq. 1-85  to Eq. 1-95 hold . 

 Actuating torques. Procedure 3 or 4 can be used to solve the problem of over-actuation and 

discontinuity during this walking sub-phase. After finding the internal force wrench and 𝛼 

parameter as described in Eq. 1-113 to Eq.1-115, the actuating torques can be determined 

by Eq. 1-96 to Eq. 1-101.  

2 Conclusions and future work 

In this work, we have modeled two selected walking patterns of biped robot using Lagrangian and 

virtual decomposition-based N-E formulation. The problem of discontinuity is solved using linear 

transition ground reaction forces without impact-contact event. Lagrangian formulation, unless 

simplified, could require more computational complexity than that of virtual decomposition-based 

N-E formulation. 
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