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Abstract

Digital Image Correlation (DIC) and Localized Spectrum Analysis (LSA) are two techniques available
to extract displacement fields from images of deformed surfaces marked with contrasted patterns.
Both techniques consist in minimizing the optical residual. DIC performs this minimization iteratively
in the real domain on random patterns such as speckles. LSA performs this minimization nearly
straightforwardly in the Fourier domain on periodic patterns such as grids or checkerboards. The
particular case of local DIC performed pixelwise is considered here. In this case and regardless of
noise, local DIC and LSA both provide displacement fields equal to the actual one convolved by a
kernel known a priori. The kernel corresponds indeed to the Savitzky-Golay filter in local DIC, and to
the analysis window of the windowed Fourier transform used in LSA. Convolution reduces the noise
level, but it also causes actual details in displacement and strain maps to be returned with a damped
amplitude, thus with a systematic error. In this paper, a deconvolution method is proposed to retrieve
the actual displacement and strain fields from their counterparts given by local DIC or LSA. The
proposed algorithm can be considered as an extension of Van Cittert deconvolution, based on the
small strain assumption. It is demonstrated that it allows enhancing fine details in displacement and
strain maps, while improving the spatial resolution. Even though noise is amplified after deconvolution,
the present procedure can be considered as robust to noise, in the sense that off-the-shelf deconvolution
algorithms do not converge in the presence of classic levels of noise observed in strain maps. The sum
of the random and systematic errors is also lower after deconvolution, which means that the proposed
procedure improves the compromise between spatial resolution and measurement resolution. Numerical
and real examples considering deformed speckle images (for DIC) and checkerboard images (for LSA)
illustrate the efficiency of the proposed approach.
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M. Grédiac, B. Blaysat, F. Sur.
A robust-to-noise deconvolution algorithm to enhance displacement and strain
maps obtained with local DIC and LSA.
Experimental Mechanics, SEM & Springer, 2019.

DOI: 10.1007/s11340-018-00461-4

1



1 Introduction

Full-field measurement techniques are now widespread in the experimental mechanics com-
munity, mainly because they provide displacement and strain fields, which reveal local het-
erogeneities occurring when materials and structures are tested. Assessing the metrological
performance of such techniques is an active research field, as illustrated by numerous recent
papers on this subject, especially concerning digital image correlation (DIC). Systematic and
random errors affect such measurements, and both types of errors must be characterized.
Most recent papers in this field address the estimation of random error in displacement and
strain maps, see [1] for instance. For a given set of images, reducing the noise level is often
made by enlarging the zone over which the information is collected to obtain the displace-
ment and strain fields at a given pixel. In classic subset-based DIC, this noise reduction can
be achieved by enlarging the subset or by smoothing the displacement field obtained for a
given subset size. In addition to positively impacting the noise level in displacement and
strain maps, a direct but negative consequence of this type of procedure is to impair the abil-
ity of the measuring technique to distinguish small but true details in the maps since these
maps become more blurred. DIC practitioners indeed know that the subset size is the main
parameter, which enables them to adjust both the spatial resolution and the measurement
resolution, these quantities evolving in an opposite direction when the subset size changes.
In this paper, the problem raised by improving the spatial resolution (thus diminishing this
quantity) without impairing the measurement resolution in the same proportion is addressed.

Classic subset-based (or local) DIC and LSA are considered here. Both techniques resolve
the same problem, namely the minimization of the optical residual. The first one performs
this minimization iteratively in the real domain on random patterns such as speckles, whereas
the second one performs this minimization nearly straighforwardly in the Fourier domain on
periodic patterns such as grids or checkerboards. We consider here the particular case of
DIC performed pixelwise, in other words with a step size equal to one pixel. In this context,
LSA and DIC give blurred measurement fields and this blur induces a systematic error in the
measurements, which is all the higher as the frequencies involved in the true displacement
and strain are high. Indeed it can be shown that displacement and strain maps are equal
to their actual counterparts convolved by a kernel, which is known a priori. With DIC, this
convolution kernel is given by the Savitzky-Golay filter because matching functions used to
model the displacement in subsets are polynomials. This property is given and discussed in
[2], which relies on [3] to establish this result. With LSA, this kernel is the window used when
taking the windowed Fourier Transform of the images. This property is demonstrated in [4].
This kernel is generally a Gaussian function.

We propose here a deconvolution algorithm which enables us to eliminate, over a certain
frequency range, the systematic error discussed above for DIC and LSA. The paper is orga-
nized as follows. The basics of DIC and LSA are first briefly recalled. The procedure proposed
to deconvolve displacement and strain maps is then presented and discussed. The efficiency
of this procedure is assessed by processing synthetic speckle and checkerboard images with
DIC and LSA, respectively. Real images collected during a compression test performed on
wood specimens are finally considered to illustrate the advantage of the deconvolution tool
proposed here.
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2 Digital Image Correlation and Localized Spectrum Analysis:
a brief reminder

2.1 Problem statement

DIC and LSA are techniques that aim at measuring the displacement fields on material
surfaces. This surface is imaged before and after loading and images are then processed in
order to retrieve the underlying displacement field. Both DIC and LSA rely on the principle
of intensity conservation during testing. We assume here that the observed material surface is
perfectly flat and that the material undergoes in-plane displacements. Moreover, the optical
path and camera lens are supposed to follow the pinhole camera model, and the camera sensor
is perfectly parallel with the surface under study. Consequently, the principle of intensity
conservation can be written as follows at any pixel of coordinates x:

f(x) = g(x+ u(x)), (1)

where f is the reference image taken before loading, and g the current image. With DIC, the
displacement field is estimated by minimizing the optical residual over small zones, namely
the subsets. This minimization is performed with respect to the sought components of u.
The optical residual is, in its simplest form, the squared difference between f(x) and g(x+u)
integrated over the subset. Thanks to the Parseval’s theorem and as demonstrated in [5]
under mild assumptions, it can be shown that a unique solution of this minimization problem
can be found straightforwardly in the Fourier domain if the specimen surface is marked with a
periodic pattern. Consequently, DIC and LSA aim at determining an approximate value of the
actual displacement u by minimizing the same function, which is the optical residual. These
approximate values are denoted by ũDIC and ũLSA, respectively (in the following, symbol .̃
designates the estimate of any true quantity . measured by a given technique). Since DIC and
LSA resolve the same problem, they should theoretically lead to the same solution even though
they work in a different domain. Some differences in the quality of the obtained results are
however observed because the underlying algorithms, which process the images, are completely
different from one technique to another. The very nature of the images processed by these
techniques is also different (random patterns for DIC and periodic patterns for LSA). In the
next two sections, we briefly recall the main properties of DIC and LSA.

2.2 Digital Image Correlation

Full details on this technique can be found in [6], so we only propose here a brief reminder.
Determining the displacement solution of Equation (1) is an ill-posed problem. Regularization
is therefore needed, and we consider in the present study the commonly accepted classic
subset-based (or local) DIC. Square subsets of dimension h × h pixels are considered. The
well-known SSD (“Sum of Squared Difference”) criterion is chosen here. Other criteria are
presented and discussed in [7]. The main conclusion of the latter reference is that the choice
of the criterion influences the robustness of the method but does not change the solution at
convergence. First-degree matching functions are used here. Commercial DIC codes generally
rely on such matching functions, which enable rigid body motion and homogeneous strain to
be exactly described. The usual modified Gauss-Newton scheme [8] is implemented to solve
the optimization problem, with a convergence criterion defined with the value of the residual
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calculated at each iteration. Here the threshold value is set to 10−5 times the initial value of the
SSD. A step equal to 1 pixel between two consecutive subsets is chosen here because assessing
the ultimate metrological performance of DIC is the main objective. This choice is also
made in current comparative studies carried out within the framework of the DIC challenge
[9]. Consequently, a local minimization problem is written for each pixel. This increases
the overall computational cost but avoids additional interpolation in order to compute the
displacement field at each pixel location. Such an interpolation would inevitably negatively
impact the metrological performance, and would also lead the assumptions under which the
theoretical developments detailed in this paper not to be satisfied.

As discussed in [2] and regardless of noise, DIC may be considered as finding the best
projection of the true displacement field u on the matching functions. Since these functions
are in general polynomials, it can be shown that this projection is equivalent to a convolution of
the true displacement by a suitable kernel named Savitzky-Golay filter in the literature [2, 3].
This has been recently validated with synthetic data in [5]. The approximated displacement
ũDIC can therefore be considered as the convolution of the true one u with a Savitzky-Golay
kernel filter wSG. Thus

ũDIC ≈ wSG ∗ u, (2)

where symbol ∗ denotes bidimensional convolution.

2.3 Localized Spectrum Analysis

LSA processes periodic patterns. In practice this is the gray level distribution of the image
of a periodic pattern, and the quantity of interest is the phase of this periodic signal [10]. In
this case, the principle of intensity conservation leads to

Φf (x) =
2π

p
u(x) + Φg(x+ u(x)). (3)

We consider here the particular case for which the periodic pattern is a checkerboard.
Indeed, as discussed in a recent study [11], this pattern is optimal in terms of sensor noise
propagation if it is correctly sampled in the image. Various spectral techniques such as the
Geometric Phase Analysis (GPA) [12, 13], the windowed version of GPA (WGPA) [14, 15]
or the Localized Spectrum Analysis (LSA) [16] are potentially available to process images of
regular patterns like checkerboards in order to retrieve the phase maps of both the reference
and the current images, and to deduce the resulting displacement maps. In this study, we
only consider LSA. This technique relies on the windowed Fourier transform, which is also
widely used in the literature for processing fringes [17, 18]. LSA can be applied to process
checkerboard patterns, as discussed in [19] and briefly recalled in Appendix 1. The main
reason for which LSA is used here is that in the end, the phase returned by this method is
the true one convolved by a kernel wG known a priori and discussed hereafter. This property
has been demonstrated at the first order in [4]. Thus, we can write for any image I

Φ̃
LSA

I ≈ wG ∗ ΦI . (4)

Basically, LSA relies on the use of the windowed Fourier transform of the signal set to the
nominal frequency of the periodic pattern. Here, this frequency corresponds to

√
2/p, where
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p is the pitch of the checkerboard. It is shown in [20] that the Gaussian window represents
the best tradeoff between various constraints, so it is employed here. Note however that the
theoretical developments that follow remain correct with other types of windows as long as
they are continuous, symmetric, and integrate to one. The Gaussian window is defined by
the following equation

wG(x) =
1

2πσ2
e
−‖x‖2

2σ2 , (5)

where σ denotes the standard deviation of the Gaussian. The displacement field is then
deduced from the phases by using Equation 3, which leads to

u(x) = − p

2π

(
Φg(x+ u(x))− Φf (x)

)
(6)

The displacement is therefore known if the phases of both the current and reference images
are known. In practice however, these phases as well as the displacement are approximate
values, which means that Φf , Φg and u must be replaced by Φ̃f , Φ̃g and ũLSA, respectively.
Thus

ũLSA(x) = − p

2π

(
Φ̃
LSA

g (x+ ũLSA(x))− Φ̃
LSA

f (x)
)

(7)

= − p

2π
∆Φ̃

LSA
(8)

ũLSA is the solution of the above implicit equation, which is solved by using a fixed-
point algorithm discussed in [16]. Convergence is all the faster as the derivatives of the
sought quantity is small. This is the case here since we deal with small strains. In practice,
convergence is reached in one iteration, additional iterations bringing only negligible changes
in the retrieved displacement. This is the reason why the method can be considered as
“quasi-direct” and not “direct”.

2.4 Summary

Table 1 summarizes the properties that satisfy the displacement fields returned by DIC and
LSA. Both techniques rely on the same principle, namely the intensity conservation. While
DIC iteratively resolves the associated minimization problem in the real domain, LSA provides
a quasi-direct solution in the Fourier domain. Nevertheless, these two methods share the same
important property: their outputs are equal to the convolution of the true quantity (i.e. the
displacement for DIC and the phase for LSA, respectively), by a kernel which is specific to
each technique. This kernel is a Savitzky-Golay filter for DIC and a Gaussian function for
LSA.

The objective of the following section is to take advantage of the link existing between
measured and true quantities in order to retrieve the latter from the former. This link being a
convolution, we will apply a deconvolution procedure developed specifically for displacement
and phase fields. This procedure is described in the following section.
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DIC LSA

Intensity
conservation

in the
real domain

in the
Fourier domain

Suitable for random patterns periodic patterns

Regardless of
noise, link

between true and
measured
quantities

ũDIC ≈ wSG ∗ u
ũLSA = − p

2π
∆Φ̃

LSA

with
∆Φ̃

LSA
≈ wG ∗∆Φ

Filter involved in
the convolution

wSG: Savitzky-Golay filter of
width the subset size h and
of order the degree of the

matching function

wG: Gaussian window of
standard deviation σ

Table 1: Summary of both techniques discussed in this paper: DIC and LSA.

3 Deconvolving the maps returned by DIC and LSA

3.1 Notations

We focus here either on the displacement ũDIC provided by DIC or on the phase Φ̃
LSA

provided
by LSA (and subsequently the displacement ũLSA thanks to Equation 8). In the following,

both ũDIC and Φ̃
LSA

are denoted indifferently by q̃. q is the corresponding true quantity, i.e.
u for DIC and Φ for LSA. The convolution kernel associated to each technique is denoted by
w. w is a Savitzky-Golay filter wSG for DIC or a Gaussian filter wG for LSA. According to
the conclusion of the preceding section, q and q̃ are linked through the following equation

q̃ = w ∗ q, with

{
q̃ = ũDIC , q = u and w = wSG for DIC

q̃ = Φ̃
LSA

, q = Φ and w = wG for LSA
. (9)

By definition, this convolution can also be written as follows

q̃(x1, x2) =

∫∫
(η1,η2)∈<2

w(x1 − η1, x2 − η2)q(η1, η2) dη1 dη2 (10)

=

∫∫
(η1,η2)∈<2

w(η1, η2) q(x1 − η1, x2 − η2) dη1 dη2. (11)

Since DIC and LSA provide quantities q̃ systematically corrupted by a convolution kernel
w, the question is to know whether q can be deduced from q̃, in other words if q̃ can be
deconvolved.
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In the absence of noise, the solution of this problem is trivial since

q = F−1
( F(q̃)

F(w)

)
(12)

where F denotes the Fourier transform and F−1 its inverse. Applying this equation to find q is
called “direct deconvolution” in the following. Noise makes however deconvolution an ill-posed
problem [21, 22]. This has led to various dedicated tools, since the specificities of the problem
at hand are generally taken into account in some way in its resolution. Concerning strain
maps, it has been shown in [23] that off-the-shelf deconvolution tools such as the Richardson-
Lucy algorithm or the Wiener filter could only be applied to deconvolve displacement and
strain maps if the signal-to-noise ratio was sufficiently high, which makes these tools difficult
to use in real situations where displacement and strain values hardly emerge from the noise
floor. The objective of the following section is to propose a robust procedure which can be
applied efficiently to deconvolve q̃. The proposed algorithm is dedicated to displacement and
strain map deconvolution. It goes beyond standard restoration procedures used in image
processing. Its originality is to be based on the small strain assumption.

3.2 Principle

Contrary to the gray level distributions observed in most of real images, the quantities involved
in the present problem such as the displacements and the phases generally only smoothly
change throughout the surface under investigation. This enables us to consider the second-
order Taylor expansion of q to be a reliable approximation of q in the neighborhood of any
point of coordinates (x1, x2). Denoting by η the vector of components η1 and η2, we have

q(x1 − η1, x2 − η2) = q(x1, x2)

−
∑

i={u,v}

(
∇(q · ei)(x1, x2) · η

)
ei

+
1

2

∑
i={u,v}

(
ηtH(q · ei)(x1, x2)η

)
ei + o(‖η‖2), (13)

where “·” denotes the scalar product between two vectors. (eu, ev) is the basis where the
components of q are given. This basis depends on the technique (DIC or LSA) and may be
different from (e1, e2) (see Appendix 1 for LSA). The components of q in the (eu, ev) basis are
denoted by qu and qv. The derivation operators used here are defined as follows

∇(y) is the gradient of y, i.e. [∇(y)]i =
∂y

∂xi
= y,i, with i ∈ {1, 2}

H(y) is the Hessian matrix of y, i.e.
[
H(y)

]
ij

=
∂2y

∂xi∂xj
= y,ij , with (i, j) ∈ {1, 2}2

,

(14)

7



where y is twice continuously differentiable. Thanks to this Taylor expansion, Equation 11
can be approximated and q̃ can be written as follows:

q̃(x1, x2) ≈ q(x1, x2)
∫∫

(η1,η2)∈<2

w(η1, η2) dη1 dη2

−
∑

i={u,v}

(
∇(qi) ·

∫∫
(η1,η2)∈<2

w(η1, η2) η dη1 dη2

)
ei

+
1

2

∑
i={u,v}

 2∑
k,l=1

qi,kl

∫∫
(η1,η2)∈<2

w(η1, η2) ηkηl dη1 dη2

 ei. (15)

The above equation simplifies because w integrates to one and
∫∫

w(η1, η2)η dη1 dη2 = 0
for reasons of symmetry. Hence q̃ satisfies

q̃(x1, x2) ≈ q(x1, x2) + δq(x1, x2), (16)

where δq can be seen as a correction term defined by

δq(x1, x2) =
1

2

∑
i={u,v}

2∑
k,l=1

qi,kl Ikl ei. (17)

Ikl is defined by the following second-order moment

Ikl =

∫∫
(η1,η2)∈<2

w(η1, η2)ηkηl dη1 dη2. (18)

For DIC, w is a Savitzky-Golay kernel. It is discrete by definition. We stick here with
a continuous formulation of the problem for the sake of generality, but it can easily be
adapted to the discrete case. (Ikl)(k,l)={1,2}2 must be integrated numerically for DIC. For
LSA, (Ikl)(k,l)={1,2}2 relies on closed-form expressions which can be integrated analytically.
This gives I11 = I22 = σ2 and I12 = I21 = 0 if a Gaussian window is used, which is the case
here. Thus we have

δΦLSA(x1, x2) =
σ2

2

 ∑
i={u,v}

(Φi,11 + Φi,22) ei

 . (19)

In both cases, the calculation of the correction term δq involves the true quantity q, which
is unknown. In practice, this issue is tackled by using a fixed-point algorithm. Starting by
replacing the true quantity q by the measured quantity q̃, the correction terms is iteratively
updated by replacing, in its expression defined in Equation 17, the true value q by its estimate
found at the preceding iteration. Thus

q̃0 = q̃

q̃it+1 = q̃ − δq̃it

with δq̃it =
1

2

∑
i={u,v}

2∑
k,l=1

q̃iti,kl Ikl ei.

(20)
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This procedure can be seen as an iterative deconvolution procedure suitable for displace-
ments obtained with DIC and for phases obtained with LSA.

3.3 Remarks

Several remarks can be drawn at this stage:

• This procedure is a post-processing step of local DIC (applied pixelwise) and LSA. It
can therefore be used separately from DIC and LSA themselves. The sole ingredients
to be known before starting this post-processing procedure are the size h of the subset
and the degree of the matching functions for DIC, and the standard deviation σ of the
Gaussian kernel for LSA.

• No proof of convergence of this fixed-point scheme is proposed here. Its convergence
will thus be studied with numerical simulations in the following section.

• This procedure is proposed under some assumptions. In particular, we perform in
Equation 13 a Taylor expansion of q(x1 − η1, x2 − η2) in the neighborhood of (x1, x2).
This approximation is all the more valid as η1 and η2, which are dummy coordinates
involved in the calculation of the corrective term in Equation 17, are small quantities.
The magnitude of η1 and η2 in the calculation of the correction term is governed by the
size of the domain of integration, thus by the subset size h for DIC and by the size of
the Gaussian window for LSA. The latter depends on the standard deviation σ of the
Gaussian function. Hence we can expect that the greater the value of h and σ, the less
accurate the procedure. The simulations discussed below show that reality is however
more subtle.

• Orders strictly higher than 2 can be considered in the Taylor expansion. Odd orders
lead however to moments of the analysis window which are null for reasons of symme-
try. Higher even order terms can also be considered, but it has been checked through
numerical simulations (not shown here) that the influence of additional terms such as
the fourth-order ones is negligible.

• Interestingly, we can predict that a second-degree matching function instead of a first-
degree one leads to a null corrective term, so the deconvolution procedure as defined
here does not work in this case. Indeed, by definition, a Savitzky-Golay filter of degree
d returns the value of a polynomial interpolation of degree d of the underlying signal
at the center of the window. Since quadratic functions are perfectly fitted as soon as
d > 1, and since second-order moments correspond to the value of the SG filter at the
origin of a quadratic function equal to 0 at this point, these moments are null in this
case, and so the correction term. Additional terms in the Taylor development should
be accounted for to see if deconvolution could be applied with second-degree matching
function, but this issue is out of the scope of the present paper.

• The second derivatives involved in Equation 20 are performed here by convolution. The
derivative kernel is a “Mexican hat” function, i.e. the second derivative of a Gaussian
function. Its standard deviation is denoted by σH in the following.
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• q is obtained with experimental data which are corrupted by noise, and so the dis-
placement and strain components. Hence it is necessary to test the robustness of the
procedure described in Equation 20 to see to which extent the benefit brought about by
deconvolution in terms of spatial resolution is counterbalanced by a higher noise in the
deconvolved maps.

As a more general remark and concerning the originality of the proposed deconvolution
algorithm compared to other algorithms already available in the literature, it can be said that
the procedure proposed here can be seen as an extension of Van Cittert deconvolution [24].
When seeking for q linked to q̃ by q̃ = w ∗ q, the Van Cittert iterative algorithm is defined by:{

q̃0 = q̃

q̃it+1 = q̃ −
(
w ∗ q̃it − q̃it

) . (21)

Indeed, if the series q̃it converges to q∞, the limit q∞ is a solution of q̃ = w ∗ q∞.
It is important to note that the Van Cittert algorithm does not always converge. Indeed

the Fourier transform being linear, we can write:

F(q̃it+1) = F(q̃) +
(
F(q̃it)−F(w)F(q̃it)

)
. (22)

Thus,

F(q̃it) =
it∑
k=0

(1−F(w))kF(q̃) (23)

for any it > 0.
This geometric series converges for a given frequency ξ if and only if |1−F(w)(ξ)| < 1. In

this case, since
∑+∞

k=0(1 − F(w)(ξ))k = 1/F(w)(ξ), F(q̃it)(ξ) converges to F(q̃)(ξ)/F(w)(ξ),
which corresponds to the direct deconvolution defined by Equation 12. The Fourier transform
of any symmetric window w being a real function, this means that if the transfer function F(w)
takes non-positive values or values larger than 2, then the Van Cittert algorithm does not give
a correct solution. In some situations, deconvolution is performed on frequency ranges for
which the transfer function satisfies the above requirement which ensures convergence. This
leads to the so-called soft deconvolution in the literature on fluid mechanics [25]. We shall
come back on this in Section 5.2.

Since the Van Cittert algorithm is equivalent to direct deconvolution when it converges,
it is not robust to noise. In practice it must be stopped after a few iterations. In contrast to
this approach, the proposed algorithm consists in replacing w ∗ q̃it by its second-order Taylor

expansion, which means that only second derivatives of q̃it are involved in w ∗ q̃it− q̃it. These
derivatives being numerically estimated through a convolution with a Mexican hat function
derived from a Gaussian function of standard deviation σH, they are robust to noise if σH is
large enough with respect to noise amplitude. In this study, σH = 2.1 pixels has been observed
to be the optimal value. We can therefore conclude that the proposed iterative algorithm is a
robust-to-noise extension of Van Cittert deconvolution, based on the small strain assumption.

Let us now check the efficiency of the proposed deconvolution algorithm. We present first
the synthetic data used for these simulations. The results obtained with these data are then
presented and discussed in turn for DIC and LSA.
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4 Definition of the synthetic data and assessment of the per-
formance

4.1 Definition of the synthetic displacement field

The synthetic displacement field used here has already been introduced in [23], and then used
in [16, 19] to test and compare the metrological performance of various full-fields measuring
techniques. It is also currently used by the SEM DIC challenge to generate reference displace-
ment fields, which are used for testing various DIC packages [9]. The horizontal displacement
is null, i.e. u = u2e2. A simple harmonic function is chosen for the vertical displacement
(see Figure 1). It is such that the mid-height is a horizontal axis of symmetry along which
the displacement is constant. Thus

u2(x1, x2) = 0.5 cos

(
2π

pwave(x1)
(x2 −H/2)

)
, (24)

where H is the height of the image. The period pwave is such that it gently and linearly
changes along direction 1:

pwave = pminiwave +
pmaxiwave − pminiwave

L
x1, (25)

where L is the length of the image. pminiwave and pmaxiwave are the minimum and maximum values of
the period of the sinusoidal displacement, respectively. The different parameters chosen here
are L = 2000 pixels, H=501 pixels, pminiwave=10 pixels and pmaxiwave=150 pixels.

The amplitude of the vertical displacement is equal to 0.5 pixel in order to minimize the
influence of image interpolation for DIC when it reaches its minimum and maximum values,
in particular along the horizontal axis of symmetry ∆ defined above. Indeed it is worth
remembering that DIC relies on image interpolation. This introduces an extra bias in the
displacement, which is called interpolation error in the DIC literature. This bias is however
null in the case of integer displacement or, for reasons of symmetry, for a displacement equal to
0.5 pixel. This justifies our choice of an amplitude of the displacement equal to 0.5 pixel. The
frequency of the wave decreases from the left to the right. Hence considering in the following
the cross-section of the maps q̃ for different techniques along the horizontal axis of symmetry
provides valuable information on the loss of amplitude as a function of the frequency of the
displacement, and on its enhancement obtained by employing the proposed deconvolution
procedure.
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Fig. 1: Vertical reference displacement u2

4.2 Image generation

The synthetic displacement u defined above was used to generate several pairs of synthetic
images.

Concerning DIC, the images of the DIC challenge considered here (one reference and one
deformed synthetic speckles) were generated by using the speckle pattern generator proposed
in [26]. Its main feature is that no interpolation is performed while rendering the deformed
speckle patterns. This is a positive point because interpolation potentially induces errors.
The parameters driving the speckle pattern generator program are chosen to mimic at best a
real speckle (see [26, 9] for more details). A closeup view of one of these speckle patterns is
shown in Figure 2-a.

Concerning LSA, synthetic checkerboard images are defined as a product of two sine
functions of pitch p, whose phases are modulated by using the same displacement as that used
for DIC (see Equations 24). A Gauss integration scheme was implemented in order to mimic
intensity integration. As for the speckles, no interpolation is required, the values at integer
coordinates in the deformed coordinate system being obtained by applying Equations 24 at
points of non-integer coordinates, which are the preimages of the integer coordinate points
under u. The coordinates of these preimages are obtained with a Newton-Raphson algorithm.
Finally, the pitch of the checkerboard is set to p = 6 pixels in the synthetic checkerboard
images. Each feature of the pattern (here each square of the checkerboard) is therefore
encoded with 3 pixels, which is the quantity suggested in [27] to fulfill the Nyquist-Shannon
good sampling condition for speckles. A closeup view of a typical synthetic checkerboard is
shown in Figure 2-b.

Finally, noise was added to all these synthetic images, which were registered as 8-bit im-
ages. In real cameras, sensor noise is heteroscedastic, which means that its standard deviation
σimage(x, y) depends on the gray level s(x, y). A popular model is to make the variance linearly
dependent on the gray level, the standard deviation being written at any pixel as follows:

σimage(x, y) =
√
as(x1, x2) + b, (26)

where a and b are parameters which depend of the camera. In the DIC-challenge images used
here for DIC, a = 0.0342, b = 0.2679, so these values were also used to add noise in the
checkerboard images.
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(a) Speckle reference image
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(b) Checkerboard reference image

Fig. 2: Closeup view of the artificial reference speckle image (a) and the reference checker-
board image (b) used in this study. The artificial speckle image is obtained by using the
procedure described in [26].

4.3 Estimation of the metrological performance

Several parameters enable us to characterize the metrological performance of the two full-field
measurements studied here. The parameters considered here are the bias, the displacement
resolution, the spatial resolution and the metrological performance efficiency indicator. The
latter is obtained by multiplying the displacement resolution by the spatial resolution, so it
enables us to assess if the improvement (thus a decrease) of the spatial resolution during
the deconvolution procedure is counterbalanced by an impairment (thus an increase) of the
displacement resolution. The definition if these parameters and the corresponding notations
is given in Appendix 2. The corresponding notations are recalled in Table 2. The procedure
used to estimate the first three parameters is explained in the following section.

5 Minimization of the optical residual in the real domain:
speckle and DIC

5.1 Improvement of the tradeoff between spatial resolution and measure-
ment resolution

Classic subset-based DIC is applied on the pair of reference and deformed speckle patterns.
We choose a subset size h=21 pixels for this first calculation. This choice is arbitrary but
the influence of the size of the subset is discussed below. Figure 3 shows the cross-section
along the horizontal axis of symmetry ∆ of the displacement field retrieved after different
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Parameter Definition Notation SI

Measurement
resolution

Standard deviation of the
noise-induced displacement

fluctuations
σu [pixel]

Bias Relative loss of amplitude λ (%) [-]

Spatial resolution
Cutoff displacement wave
length for a given bias λ

`λ [pixel]

Metrological
performance efficiency

indicator

Product between the
measurement resolution and

the spatial resolution
αλ [pixel]2

Table 2: Parameters and notations used to characterize the metrological performance. More
details are given in Appendix 2

iterations of the deconvolution procedure applied on the displacement field returned by DIC.
The period of the sine wave pwave used to model the displacement is directly reported on the
horizontal axis, this quantity being then useful to determine the spatial resolution (the affine
link between x1 and pwave is given in Equation 25). Bold lines represent the curves obtained
for the first and last (hence the twentieth) iterations.
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Fig. 3: Displacement obtained with speckle and DIC. Cross-section along ∆ of the displace-
ment map returned by the deconvolution procedure during the first 20 iterations. The color
of the lines turns from green to mauve as the iteration number increases.

Several remarks can be drawn from the curves depicted in this figure.
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• The most striking point is that the positive effect of the deconvolution procedure is
clearly visible. Indeed the curves rapidly tend to the reference value (u2 = 0.5 pixels)
up to a certain value of the period pwave equal to the inverse of the cutoff frequency
characterizing the procedure. During the iterative procedure, this is reflected by a
decrease (thus an improvement) of the spatial resolution `DIC

λ as defined in Appendix 2.
This value is found here by calculating numerically the period pwave for which the
amplitude of the displacement returned after deconvolution is equal to 0.5(1− λ). The
displacement fields being noisy, the curves are locally smoothed to find this value. A
mere sliding averaging window of width 200 pixels is applied for this purpose. ”Non-
noisy” images can also directly be used but similar results are obtained.

• The curves of the successive iterations progressively draw near and overlay each other
after about 6 iterations, which illustrates that the procedure converges here. In the
following calculations, we will therefore systematically perform 10 iterations at most.
A lower number of iterations is needed to converge with subset sizes smaller than h =
21 pixels, so choosing 10 iterations is conservative.
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Fig. 4: αDIC
λ and `DIC

λ during the first 10 iterations for h ∈ {15, 21} and λ ∈ {10%, 20%}.

• The images processed here are deliberately noisy and this noise propagates up to the
displacement field. An important point, which can be seen to the naked eye, is that
the shape of the features observed along the curves are reproduced throughout the
deconvolution procedure, and with an increasing amplitude. The noise level is quantified
by the displacement resolution as defined in Appendix 2. This quantity is determined
here by subtracting a first displacement map obtained with a pair of noisy images, and
a second one obtained with “non-noisy” images. The equivalent standard deviation
σDIC
u over the displacement map is then calculated and considered to be equal to the

displacement resolution. The question is now to know if the total error (the sum of the
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systematic and random errors) is not greater after deconvolution. It can be seen that the
curve after 10 iterations is globally closer to the reference one than the curve obtained
with classic DIC (named “iteration 0” in the figure), which illustrates the fact that the
total error is smaller after deconvolution. The root-mean-square error could quantify this
difference, but for the sake of consistency with other recent studies [16, 5], we prefer
here to settle this question by considering the metrological efficiency parameter αDIC

λ

(see Table 2), and estimating its change throughout the iterative procedure. Figure 4-a
represents αDIC

10 and αDIC
20 for two different values of the subset size, namely h = 15 and

h=21 pixels. Noise is filtered by applying a low-pass filter in the Fourier domain, as
justified and explained in Section 5.2. The main conclusion which can be drawn from
these curves is that the value of αDIC

λ regularly decreases and rapidly stabilizes. This
proves that the deconvolution procedure really improves the metrological performance
of DIC in terms of tradeoff between spatial resolution and measurement resolution. λ
is fixed arbitrarily in turn to 10% and 20% but it can be seen that the same conclusion
can be drawn for both values of λ.

• Two other interesting points can be noted in Figure 4-a. First it can be seen that for
classic DIC (“iteration=0”) and for a given value of λ, the values of αDIC

λ obtained for
two different values of the subset size are nearly the same, which confirms that αDIC

λ can
be considered as an intrinsic parameter characterizing a given technique, as rigorously
demonstrated in the particular case of LSA [16, 28]. The second point is that for a given
value of λ, αDIC

λ obtained with the greatest subset size of the two cases studied here
(h = 21 pixels), is significantly lower (thus better) than αDIC

λ obtained with the smallest
subset size (h = 15 pixels). The reason is given in Figure 4-b, where the spatial resolution
`DIC
λ is plotted throughout the iterative procedure. As expected, the spatial resolution for

classic DIC (“iteration=0”) is smaller for the smallest subset size h. However, the value
of `DIC

λ in the case h=21 pixels becomes close to that obtained in the case h=15 pixels
after deconvolution. Since at the same time, the noise level is always lower for the
greatest window (this result is quite obvious, so it is not illustrated here), the product
between the two quantities, which defines parameter αDIC

λ , is lower for h = 21 pixels than
for h = 15 pixels at the end of the iterative procedure. This result tends to show that the
highest subset size gives the best results in terms of tradeoff between spatial resolution
and displacement resolution. This result must however be tempered by the fact that
the procedure progressively diverges when the subset size increases, which means that
some features of the noisy profile of the curve progressively significantly emerge, and
can no longer be considered as a noise with an amplitude regularly distributed along
the curve. Figure 5 illustrates this phenomenon in the case h=23 pixels. In this figure,
it can be seen that the procedure diverges for pwave ≈32 pixels.
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Fig. 5: Displacement obtained with speckle and DIC. Illustration of the divergence of the
deconvolution procedure for h=23 pixels. The color of the lines turns from green to mauve
as the iteration number increases. The procedure diverges for
pwave ≈32 pixels

Investigating all the curves obtained with all odd values of h lower than 41 pixels does
not permit to frankly see a value for h which could be considered as a threshold, with
convergence under this threshold and divergence above. h = 21 pixels is the highest value
without divergence with this example, but it seems to be dependent of the irregularities
that impair the curve (some of them seem to be due to the effect of the random marking
of the surface [29]). We will see in the following section that this effect can be attenuated
for suitably filtering the effect of the deconvolution procedure in the Fourier domain.

5.2 Correcting the bias induced by the Savitzky-Golay filter by threshold-
ing the frequency during deconvolution

As recalled in Section 2.2, the displacement returned by DIC performed pixelwise is, regardless
of noise, equal to the actual and sought displacement convolved by a Savitzky-Golay filter,
which is characterized by the subset size h and the degree of the matching function. However
the Savitzky-Golay filter exhibits a specific feature. For a first-degree matching function and
from a certain value of the subset size on, the transfer function of this filter becomes negative
for the highest frequencies involved in the reference displacement considered here. It means
that for displacements corresponding to a pure sine of high-frequency (or small pwave), such
as in the left-hand side of the synthetic displacement field, DIC returns a displacement which
is not only lower in amplitude, but also has the wrong sign. This property is illustrated and
discussed in Ref. [5] (see Figure 3-b-c-e in this reference) and illustrated here in Figure 6,
where it can be seen that this phenomenon occurs from h = 11 pixels on. In this figure,
we show the result along the axis of symmetry ∆ of the map showing the convolution of
the reference displacement in Figure 1 by a Savitzky-Golay filter of increasing width h. It
can be seen that since we deconvolve the displacement field returned by DIC, the negative
displacements obtained for the highest frequencies in Figure 5 are caused by the negative
value of the transfer function of the Savitzky-Golay filter.
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Fig. 6: Cross-section along the horizontal axis of symmetry ∆ of the reference displacement
in Figure 1 convolved by a Savitzky-Golay filter of increasing width h. The color of the lines
turns from green to mauve as the subset size h increases.

This issue is addressed here by applying the deconvolution procedure only for the fre-
quencies lower than a certain threshold value denoted by fmax. This is possible because the
operations involved in the deconvolution procedure are performed in the Fourier domain. In
this domain, one can easily perform deconvolution only within a window whose size depends
on the threshold value fmax. It is interesting to note that such an approach has been used
in fluid mechanics for instance, and is known as soft deconvolution [25]. Figure 7-a shows the
effect of this thresholding on the displacement returned by DIC along ∆ for various values
of fmax. It can be seen that only the part of the curve concerned by the frequencies lower
than fmax are impacted by deconvolution. The arrow designates the particular case char-
acterized by fmax = 1/40 [pixel]−1. It can be observed that the part of the curve defined
by pwave < 40 pixels is not affected by deconvolution, while the other part is. Considering
a rectangular window in the Fourier domain may potentially lead a Gibbs effect to appear,
which manifests itself by ringing artefacts in the resulting strain map. This phenomenon can
be avoided by using a smoother window (as a Tukey window) instead of a rectangular one
in the Fourier domain, with a width equal to the width of the rectangular window. A Tukey
window is characterized by a dimensionless parameter r lying between 0 and 1. This window
becomes a rectangular window with r = 0 and a Hann window with r = 1. Various prelim-
inary tests (not detailed here) led us to choose r = 0.2 throughout this study, in particular
when plotting the curves shown in Figure 4 above.
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a- by using a rectangular window in the Fourier domain
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b- by using a Tukey window (r = 0.2) in the Fourier domain

20 40 60 80 100 120 140
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fmax = 1/pwave = 1/40 [pixel]
�1

Fig. 7: Displacement obtained with speckle and DIC. Cross-section of the displacement along
∆ obtained with the deconvolution procedure for h = 23 pixels applied only for the frequencies
lower than a variable threshold value fmax. The color of the lines turns from green to mauve
as fmax decreases. Illustration of the particular case fmax = 1/40 pixel−1: on the left-hand
side of pwave = 1/fmax=40 pixels, the curves obtained with and without deconvolution are
the same. They become different under this threshold value because deconvolution impacts
only the frequencies lower than fmax, thus the periods pwave greater than 1/fmax. Applying
a Tukey window in the Fourier domain prevents from possible Gibbs effect. This slightly
decreases the threshold value of the frequency under which deconvolution is applied, as can
be seen in Figure 7-b.

The idea is therefore to adjust the threshold value for the frequency in such a way that
only the part of the curve characterized by a positive displacement is affected by deconvo-
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lution. This procedure is expected to avoid the magnification of the errors obtained for the
highest frequencies, when the sign returned by DIC is wrong. The value of pwave zeroing
the displacement for a given subset size h can be found numerically (this is the intersection
between the horizontal axis and the representative curve of h in Figure 6). Ref. [30] gives
approximate values of the nominal normalized cutoff frequency (3 dB down), but it seems
that no such expression is available to find the frequency zeroing the displacement in the

present application. Interestingly, we empirically found that
1

h
was a good approximation

of this quantity. This threshold value being found, it is then used to define, in the Fourier
domain, the size of the window within which the deconvolution procedure is applied. The
result obtained by applying this procedure is shown in Figure 8 for the same value of h as
that used in Figure 5 to see the improvement brought about by this procedure.
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Fig. 8: Displacement obtained with speckle and DIC, for a subset size h = 23 pixels. Cross-
section along ∆ of the displacement obtained with the deconvolution procedure applied only

for the frequencies lower than a threshold value fmax =
1

h
. The color of the lines turns from

green to mauve as the iteration number increases.

It can be seen that applying this thresholding now not only keeps the displacement field
unchanged above a certain frequency (thus on the left-hand side of the figure) but also strongly
limits the significant fluctuations observed in Figure 5, and thus causes now the procedure
to converge in this case, while the procedure diverges without thresholding. This illustrates
that this thresholding step should be used systematically when applying the deconvolution
procedure with DIC. As in the preceding section, it is however difficult to precisely determine
a value of the subset size h beyond which deconvolution applied only for the frequencies

lower than
1

h
converges. It can only be said that this threshold value for h is greater with

thresholding than without thresholding.

5.3 Remark on the deconvolution of strain components

We only discussed so far about the deconvolution of displacement or phase maps. It is however
important to mention that strain maps obtained by differentiating displacement fields affected
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by convolution are also equal to their true counterparts convolved by the same kernel as
that affecting the displacement. Indeed, since for any function f and kernel w, we have
(w ∗ f)′ = w ∗ f ′, where symbol ’ denotes derivation, we can deduce

ε̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
=

1

2

(
∂(w ∗ ui)
∂xj

+
∂(w ∗ uj)
∂xi

)
= w ∗ εij

. (27)

.
It means that calculating the strains from deconvolved displacements also leads to de-

convolved strains, and that the enhancement of the displacement maps discussed above also
concerns the strain fields obtained by differentiation of the deconvolved displacement fields. In
addition, strain fields being generally “less smooth” than displacement fields, higher frequen-
cies are involved in their signature in the Fourier domain. Consequently, deconvolution should
theoretically have a greater impact on strain maps than on displacement maps. Examples of
deconvolution applied on strain maps are given in the last section of the paper.

5.4 Conclusion

In conclusion of this section, it can be said that:

• the deconvolution procedure proposed here improves the metrological performance of
DIC in terms of tradeoff between spatial resolution and measurement resolution;

• a limitation of the procedure is that it progressively diverges as the subset size h increases
beyond a certain threshold value, which is however difficult to clearly define;

• the latter effect is attenuated by applying the deconvolution procedure only for frequen-
cies lower than a threshold value of the frequency equal to the inverse of the subset size
h.

6 Minimization of the optical residual in the Fourier domain:
checkerboard and LSA

The objective here is the same as that of the preceding section, but now with LSA applied on
checkerboards. The first point is to observe the positive effect of deconvolution. This is made
by considering σ = p = 6 pixels for the standard deviation of the Gaussian window used in
LSA (see Equation 29 in Appendix 1). The Hessian components of the phases are obtained by
differentiating the actual phases by convolution, by using the same settings as those adopted
for DIC. Figure 9 shows the cross-section along the horizontal axis of symmetry ∆ of the
displacement field returned by LSA. Up to 20 iterations are applied in the deconvolution
procedure. It is worth remembering that the artificial checkerboard images considered here
are affected by the same type of noise as that affecting the artificial speckle images considered
above for DIC.
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Fig. 9: Displacement obtained with checkerboard and LSA. Checkerboard images are affected
by the same type of noise as that impairing the speckle pattern in Section 5. Cross-section
along ∆ of the displacement map returned by the deconvolution procedure during the first 20
iterations. The color of the lines turns from green to mauve as the iteration number increases.

Several remarks can be drawn from the curves depicted in this figure.

• As for DIC, the positive impact of the deconvolution procedure is clearly visible since
the curves rapidly tend to the reference displacement (u2 = 0.5 pixels) up to a certain
value of the period pwave. In the following, we will therefore systematically perform 10
iterations. Less iterations are needed to converge with lower values of σ, so this number
is conservative.

• The strong fluctuations on the right of the curves are caused by edge effects, where both
the phases and the displacements are not correctly estimated.

• The checkerboard images are noisy and this noise propagates up to the displacement
field. As for DIC, the same features are reproduced throughout the profile of the curves
when considering results given by classic LSA (labelled “0 iteration” in this figure) and
when applying the deconvolution procedure. σLSAu and `LSAλ being obtained with the
same procedure as for DIC, we can deduce αLSA

λ as the product between these two
quantities. Figure 10-a represents αLSA

10 and αLSA
20 throughout the iterative procedure

for two values of σ, namely σ = p = 6 and σ = p/
√

2 = 4.26 pixels. The former
is the pitch along the natural axes of symmetry x1 and x2 of the checkerboard, while
p is the pitch along the bisectors of the checkerboard. As in the case of DIC, αLSA

10

and αLSA
20 regularly decrease and rapidly stabilize. This proves that the deconvolution

procedure really improves the metrological performance of LSA in terms of trade-off
between spatial resolution and measurement resolution. λ is fixed arbitrarily in turn to
10% and 20% but it can be seen that the same conclusion can be drawn for these two
values of λ.
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• In Figure 10-a, it can be seen that for classic LSA (“0 iteration”) and for a given
value of λ, the values of αLSA

λ obtained for σ = p = 6 and σ = p/
√

2 = 4.26 pixels
are the same, which confirms again that αLSA

λ is a constant parameter independent of
σ [4, 28, 16]. Second, it can be seen that for a given value of λ, αLSA

λ in the case σ = p
gives results which are significantly better than in the case σ = p/

√
2. The spatial

resolution `LSAλ throughout the iterative procedure, plotted in Figure 10-b, gives the
reason. The phenomenon observed for DIC is amplified here, since the spatial resolution
`LSAλ becomes lower (thus better) for the greatest window of the two (in Figure 10-b,
the curves for σ = p/

√
2 and σ = p intersect). Since at the same time, the noise level

is always lower for the greatest window, the product between the two quantities, which
defines parameter αLSA

λ , is lower for the greatest value of σ at the end of the iterative
procedure. It means that in practice, a window of standard deviation σ = p should
systematically be chosen when the procedure is used since one has at the same time
the lowest noise level, the lowest spatial resolution, and a bias which is almost null for
frequencies of the signal lower than a certain threshold value. This value has been found
here by seeking `LSA1 (which means that 1% error is permitted on the amplitude of the
signal returned by the technique) and taking its inverse. We found `LSA1 =52.1 pixels for
σ = p/

√
2, and `LSA1 =29.9 pixels for σ = p. Interestingly, the latter quantity is slightly

lower than the apparent size of the Gaussian window according to the “3-σ rule” [31].
This rough estimate of the size is equal to 2× 3× p = 2× 3× 6 = 36 pixels. It means
that all components of the signal, whose period is slightly lower than the apparent size
of the window, are progressively lost, which seems logical. A good point is that, on the
contrary, the components of the signal whose period is greater than a threshold value
slightly lower than the size of the window, are returned without any systematic error.
This illustrates the strength of the method.
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Fig. 10: αLSA
λ and `LSAλ during the first 10 iterations for σ ∈ {p/

√
2, p} and λ ∈ {10%, 20%}.

• Contrary to what happens with DIC, the sign of the displacement returned by LSA does
not change for the highest frequencies (see the left-hand side of the curves in Figure 9).
The same remark holds whatever the value of σ. This is due to the fact that the Fourier
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transform (and thus the transfer function) of the Gaussian function used in LSA is also
a Gaussian function. It is therefore always positive. No thresholding of the frequency
is therefore applied in the simulations presented here. However, we will see in Section 7
below that thresholding the frequency during deconvolution enables us to reduce the
noise level in the strain maps obtained with LSA. The price to pay is that the actual
details are also smoothened in proportion.

• Finally, we investigate the influence of the value of σ on the convergence of the decon-
volution procedure. Figure 11 shows the displacement along ∆ for various values of σ.
It can be seen that the procedure converges for values of σ lower or equal to the pitch
p of the checkerboard and diverges for greater values. Indeed divergence is observed for
the lowest pitches pwave of the sinusoidal displacement, thus for the highest frequencies.
This confirms that σ = p is certainly the best choice when processing the images with
LSA and applying the deconvolution procedure.

Fig. 11: Displacement obtained with checkerboard and LSA. Cross-section along ∆ of the
displacement map returned by the deconvolution procedure after 10 iterations and for various
values of σ. The color of the lines turns from green to mauve as σ increases.

In conclusion of the two preceding sections, we show in Figure 12 the displacement fields
retrieved after applying DIC and LSA followed or not by the deconvolution procedure. The
optimized conditions defined above are used for each technique. Hence, we have h = 21 pixels
for DIC and σ = p = 6 pixels for LSA. 10 iterations are performed in each case. The
phenomena discussed above are clearly visible. On the very left, the signal is lost because
the frequency of the displacement is too high. Then the effect of deconvolution reaches its
maximum. Finally, when going to the right, thus to the lowest frequencies of the displacement,
the effect of deconvolution progressively vanishes. Indeed the quantity to be added to the
displacement fields obtained without deconvolution becomes smaller to get rid of the bias
since the frequency of the signal diminishes.
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(a) Reference displacement field
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(b) Reference displacement field
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(c) DIC, 0 iteration
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(d) LSA, 0 iteration
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(f) LSA, 10 iterations
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(g) DIC, difference between 10 and 0 iterations
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Fig. 12: Effect of deconvolution on the displacement field. DIC performed with h = 21 pixels,
LSA with σ = 6 pixels.

7 Application to a real case

The deconvolution procedure is now applied on real data. We choose here a case for which
significant strain gradients occur in the map. This example deals with wood, as shown in
Figure 13 where the specimens used with DIC and LSA are represented. They are made of
pine and cut is such a way that the annual rings due to earlywood and latewood appear on
the front face of the specimens. The dimensions of the specimens are 50 × 35 × 15 mm3.
A speckle is spray-painted on the first specimen for DIC. For LSA, a checkerboard of pitch
p=0.2 mm is deposited on the front face of the second specimen using the procedure described
in [32]. A 12-bit CCD Sensicam camera featuring 1376 × 1040 pixels is used to capture the
images of the front face of both specimens during a compression test applied along the vertical
(x2) direction. In the checkerboard image, the pitch is equal to 5.77 pixels. It is close to the
optimal value p=6 pixels (see Section 4.2). The principal axes of the checkerboard are slightly
rotated with respect to the rows of pixels of the camera in order to avoid the effect of aliasing
in the strain maps, as proposed in [33]. These specimens were subjected to a compression test.
The objective here is to examine the effect of the deconvolution procedure on one of the strain
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maps obtained with each of the two techniques (DIC and LSA). The strain level is higher in
the map chosen to illustrate deconvolution with DIC, the sensitivity to noise being expected
to be higher with this technique according to the results found in the preceding sections.

Specimen	6	

Specimen	17	a- Front face before marking

x1

x2

b- Front face after marking
+ closeup view of the pattern

5 10 15 20 25 30 35 40 45 50 55 60

10

20

30

40

50

60

x1

x2

Fig. 13: Wood specimens used for the compression test. Top: specimen marked with a
speckle pattern for DIC. Bottom: specimen marked with a checkerboard pattern for LSA (the
closeup views are not to scale)

7.1 Results: specimen marked with a speckle

We show in Figure 14-a a typical example of ε22 strain map obtained during this test. A
subset size h = 21 pixels is used here in DIC. Applying the deconvolution procedure with
10 iterations gives the map shown in Figure 14-b. Deconvolution is applied on a bigger map
in order to avoid edge effects, which are due to the fact that the second derivatives along
a certain direction cannot be determined along the border of the specimen if this border is
not parallel to this direction. This bigger map is artificially created from the initial one by
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copying and pasting, by symmetry along the edges, a portion of the first map. Hence the edge
effect impairs this big map during deconvolution, not the small one from which it is defined
and which is located at the center.

Figure 14-c shows the difference between the ε22 maps obtained before and after decon-
volution. It can be seen that the amplitude of the wave in the maps due to the presence
of earlywood and latewood really increases after deconvolution, which illustrates the positive
impact of deconvolution. The diameter of the red circles superimposed on these figure is
equal to the spatial resolution. Its reduction (thus its improvement) after deconvolution is
noticeable. Another point is that Figure 14-c is rather smooth. It means that the highest
frequencies of the noise are the same before and after deconvolution. This is logical since
we applied here the deconvolution procedure only for the frequencies lower than the cutoff

frequency
1

h
, as justified in Section 5.2. The highest frequencies impairing the strain map in

Figure 14-a are therefore kept unchanged in Figure 14-b. A consequence is that the sharpest

details in the strain map (those described by frequencies greater than
1

h
) are not enhanced

by the deconvolution procedure.
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a- ε22, 0 iteration b- ε22, 10 iterations
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c- ∆ε22 × 10−3
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Fig. 14: Typical strain maps obtained with speckle and DIC during the compression test.
Blue square: subset size. Diameter of the red circle: equal to the spatial resolution `λ for a
bias λ = 10%. a- DIC without deconvolution (“0 iteration”). b- DIC after deconvolution (“10
iterations”). c- difference.

7.2 Results: specimen marked with a checkerboard

The same discussion is proposed here for LSA. A typical example of ε22 strain map given by
classic LSA is shown in Figure 15-a. The value of σ is σ = p in this case. 10 iterations are
used in the deconvolution procedure.

Figure 15-b shows the strain maps obtained after applying the deconvolution procedure.
In this first example, we keep the edge effect to illustrate its visual impacts on the results if it is
not removed. The difference between deconvolved and initial maps is represented in Figure 15-
d. It confirms that the strain bands are sharper after deconvolution. As expected, noise is
slightly amplified after deconvolution. This effect can be attenuated by applying the same
pre-filtering procedure as that described for DIC in Section 5.2. In this case, deconvolution is
applied only for frequencies lower to the cutoff frequency considered when applying the pre-
filtering stage. The convolution kernel is, however, now a Gaussian function and no longer a
Savitzky-Gollay filter, so the cutoff frequency is no longer the frequency for which a change of
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sign is observed in the displacement field discussed in Section 4. The displacement returned
by LSA keeps indeed the same sign for any value of the frequency of the signal. The curves
in Figure 9 show that the value of this cutoff frequency can reasonably be chosen as equal to
fmax = 1/10 pixel−1 in the case of LSA, this technique being unable to return any reliable
information above this frequency. Figure 15-c shows the strain maps obtained by applying
this procedure. The edge effect has also been suppressed by applying the same procedure as
that described above for DIC. It can be seen that the noise in the strain map is lover than
that observed in Figure 15-b. This is confirmed by considering in Figure 15-e the difference
between deconvolved and initial strain fields.

Figure 16 shows the correction due to deconvolution expressed as a percentage of the
initial strain value at any pixel. The two cases discussed above are considered here, namely
by applying the deconvolution procedure i- without any thresholding of the frequencies (Fig-
ure 16-a) and it- only for the frequencies lower than fmax = 1/10 pixel−1 (Figure 16-b). It
can be seen that the map is noisier on the left but the contrast is slightly lower on the right.

This difference between deconvolved and initial strain maps is clearer when plotting a
vertical cross-section of these strain maps (see Figure 17-a). It is worth noting that only 3 or
4 iterations are needed to reach convergence in this example, no visible improvement being
detected in this figure for higher numbers of iterations.

In such materials, an important point is to observe the difference in stiffness between
earlywood and latewood. This difference in stiffness is reflected here by the difference in
strain amplitude, which gives the peaks and valleys in Figure 17-a. It is clear that these peaks
and valleys become shaper after deconvolution. In the closeup view shown in Figure 17-b,
the difference in strain between a typical peak (point A) and valley (point B) is equal to

∆ε
(0)
22 = 2.82E − 03 before deconvolution and ∆ε

(15)
22 = 3.88E − 03 after deconvolution,

which is non negligible (+38%) if the objective is to assess the contrast in stiffness between
earlywood and latewood. Applying the convolution procedure only for frequencies lower than
fmax = 1/10 pixel−1 gives the strain distribution shown in Figure 17-c, which is a cross-
section of Figure 15-c along a vertical line. The strain map in Figure 15-c is slightly smoother
than in Figure 15-b, but Figure 17-c shows the consequence, since the difference in strain

between point A and point B is now equal to ∆ε
(10)
22 = 3.37E − 03 after deconvolution

(+19.5%), which is lower than in the preceding case where deconvolution was applied for all
the frequencies. Additional investigations are needed to elaborate the best strategy to get
the most reliable strain distribution with the lowest noise. In particular, it is not sure that
applying the deconvolution procedure only for the frequencies lower than a certain threshold
value is the best choice. This leads to a lower noise but this also induces a loss of real
information. If the goal is to identify material properties, applying for instance the Virtual
Fields Method [34] leads to spatially average out the noise, and thus applying deconvolution
without thresholding the frequency is perhaps better in this case. This should however be
investigated with a dedicated study.

In conclusion, the results presented here illustrate in both cases the benefit brought about
by deconvolution when measuring strain in case of high and localized strain gradients.
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a- ε22, 0 iteration
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b- ε22, 10 iterations without c- ε22, 10 iterations with
thresholding in the Fourier domain thresholding in the Fourier domain
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d- ∆ε22 × 10−3 without e- ∆ε22 × 10−3 with
thresholding in the Fourier domain thresholding in the Fourier domain

and with edge effect and without edge effect
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Fig. 15: Typical strain maps obtained with checkerboard and LSA during the compression
test. Blue circle: size of the Gaussian window used in the WFT according to the 3−σ rule [31].
Diameter of the red circle: equal to the spatial resolution `λ for a bias λ = 10%. Left-hand
column: with edge effect due to deconvolution and without thresholding. Right-hand column:
edge effect due to deconvolution removed and with thresholding, fmax = 1/10 pixel−1

30



a- ∆ε22/ε22 × 100, without thresholding b- ∆ε22/ε22 × 100, fmax = 1/10 pixel−1
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Fig. 16: Correction of the initial strain map as a percentage of the strain obtained before
deconvolution. a- without thresholding b- with thresholding. Results given in %
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a- cross-section of the ε22 distribution obtained during the iterative procedure without filtering.
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b- closeup view between x1=270 pixels and x1=420 pixels. Without filtering
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c- closeup view between x1=270 pixels and x1=420 pixels. With filtering
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Fig. 17: Cross-section of the ε22 distribution during the iterative deconvolution procedure,
x1=500 pixels.
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7.3 Computation time

The computational cost of deconvolution is briefly investigated here. It is worth remembering
that deconvolution is a post-processing procedure, which is applied after using classic DIC or
LSA. As a consequence, since only the definition of the kernel changes from one technique to
another, the computational cost is nearly the same for both techniques for a given size of map
to be deconvolved. The quantity which is deconvolved is however different for DIC and LSA
since this is directly the displacement for LSA and the phase for LSA. The displacement is
then deduced from differences between phases in the latter case, as explained in Section 2.3.
It means that the number of maps to be deconvolved to obtain a displacement or strain
map is theoretically twice higher for LSA than for DIC, and so the calculation time. The
fixed-point algorithm used to obtain the displacement (see Equation 6) being non-linear, one
cannot directly deconvolve the displacement field for LSA. This is possible only if the phases
are directly subtracted, but the movement between the reference and current images is not
compensated in this case, which is not recommended. To give an idea of the computation
times, we consider as an example the case of the wood specimens discussed in Sections 7.1
and 7.2 above. Each iteration lasts about 1.48 second for strain maps obtained with DIC (the
maps contain 989,857 pixels in this case), and 3.37 seconds for strain maps obtained with
LSA (the maps contain 1,130,582 pixels in this case). The desktop computer used for these
calculations is equipped with a 2×8-core Intel Xeon CPU E5-2620 v4 @ 2.10GHz and 64 Gb
memory. The deconvolution algorithm was programmed in Matlab.

7.4 Comparison with strain maps deconvolved with the Richardson-Lucy
algorithm

The reader may wonder which result would be obtained with an off-the-shelf deconvolution
procedure. We propose here to answer this question by showing the results given by one of
the most popular deconvolution algorithms in image processing, namely the Richardson-Lucy
(RL) algorithm [35, 36]. This algorithm is iterative. It was developed for natural images,
and the signal to be processed is necessarily positive since the denoised image is retrieved as
a maximum likelihood estimation under a Poisson noise assumption. Although strain fields
do not satisfy this assumption, it has been shown in [23] that this very simple procedure
gives deconvolved strain fields that show equivalent or less spurious artifacts than methods
relying on an accurate noise model such as Wiener filters. However the classic deconvolution
algorithms, which are tested in [23], give reliable results only with a favorable signal-to-
noise ratio. As an example, with the noise level in the images obtained with the camera
used in [23], the strain components had an order of magnitude of several percents to have a
successful deconvolution with the RL algorithm.

For the sake of comparison, let us observe what happens with the RL algorithm applied to
the example discussed above. Since we deal here with strain components which can potentially
be negative (this is the case here), the strain map obtained by classic LSA to be deconvolved
must first be transformed to become strictly positive, for instance by adding a constant value
greater to the absolute value of the minimum value of the strain reached throughout the
map, or by taking the exponential of the strain distribution, deconvolving it and taking the
logarithm of the result. Both strategies lead to the same conclusion. The result obtained with
the second strategy is given in Figure 18. Figure 18-a is a closeup view of the cross-section

33



of the strain maps in the same region as in Figure 17-b for different numbers of iterations, so
the results of both the proposed procedure and the RL algorithm can be compared. A regular
sharpening of the details is observed, but without convergence, even after 50 iterations. Some
fake details also appear since some lobes progressively emerge from zones, which are very
smooth in the initial map, see for instance on the left-hand side of Figure 18-a.

a- closeup view between x1=270 pixels and x1=420 pixels
for various iteration values (increment between two dashed lines: 10 iterations)

280 300 320 340 360 380 400 420
x2 [pixel]

-8

-7

-6

-5

-4

-3

-2

-1

0

1

" 2
2

[-
]

#10-3

LSA, 0 iteration
LSA, Richardson-Lucy 50 iterations

b- ε22, 10 iterations c- ∆ε22, 10 iterations

200 400 600 800 1000 1200
x1 [pixel]

100

200

300

400

500

600

700

800

x
2

[p
ix

el
]

-8

-7

-6

-5

-4

-3

-2

-1

0

1

#10-3 200 400 600 800 1000 1200
x1 [pixel]

100

200

300

400

500

600

700

800

x
2

[p
ix

el
]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

d- ε22, 50 iterations e- ∆ε22, 50 iterations

200 400 600 800 1000 1200
x1 [pixel]

100

200

300

400

500

600

700

800

x
2

[p
ix

el
]

-8

-7

-6

-5

-4

-3

-2

-1

0

1

#10-3 200 400 600 800 1000 1200
x1 [pixel]

100

200

300

400

500

600

700

800

x
2

[p
ix

el
]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 18: ε22 distribution during the RL deconvolution procedure, x1=500 pixels, σ = p
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Figures 18b to 18e show various deconvolved strain maps (on the left) along with the
difference between deconvolved and initial strain maps (on the right). It can be seen that the
details are enhanced after ten iterations, but the problem is to have a criterion in order to fix
the maximum number of iterations, with which the final result can be given. Indeed, it can be
seen in Figures 18-d-e that noise continues to increase between 10 to 50 iterations. The actual
details are therefore progressively lost in the noise. This illustrates that the RL algorithm
does not converge for noisy strain maps, as discussed in [23]. Hence apart from saying that
the map is pleasant to the eye, there is no criterion that can be used to say that the result
obtained by applying the RL algorithm with a certain number of iterations is acceptable or
not. By contrast, the deconvolution procedure proposed in the present paper to deconvolve
this strain map rapidly converges, as discussed in the preceding section, so the number of
iterations can be bounded.

8 Conclusion

A simple algorithm aimed at deconvolving maps obtained by minimizing the optical residual
in the real domain with DIC, and in the Fourier domain with LSA, is proposed in this paper.
It can be considered as a robust-to-noise extension of Van Cittert deconvolution, which relies
on the small strain assumption. The data to be deconvolved are the displacements with DIC
and the phases with LSA. The type of kernel changes from one technique to another since
a Savitzky-Golay filter is used for DIC and a Gaussian function for LSA. The procedure
converges even in the presence of noise if the size of the subset for DIC, and the size of the
window for LSA, remain lower than a certain value. This value is the pitch of the checkerboard
with the latter technique. The procedure can also be applied below a threshold frequency in
order to reduce the noise in the final result. This also increases the value of the maximum
subset size beyond which the procedure diverges for DIC.

The proposed algorithm is iterative. However it converges with a reasonable number of
iterations since we chose 10 iterations at most in all the examples discussed in the paper, and
this number is observed to be conservative.

The main conclusion of this work is that deconvolution cancels out the systematic error
caused by convolution. This positive effect is obtained below a cutoff frequency, which depends
on the subset size in DIC and on the apparent size of the Gaussian function used in LSA.
Another positive consequence is that the procedure diminishes the value of the spatial reso-
lution (thus improves it). The drawback is that the noise level impairing the measurements
increases, but not in the same proportion as the decrease of the spatial resolution. Hence the
compromise between measurement resolution and spatial resolution is significantly improved,
which makes this deconvolution procedure potentially useful in situations for which localized
strain gradients occur. The main limitation of this deconvolution procedure is that it does
not converge if too high values for the subset size in DIC, or for the standard deviation of the
Gaussian function in LSA, are employed. It is also worth noting that deconvolution is applied
for displacement maps obtained pixelwise, without any interpolation between remote points
such as centers of subsets in classic DIC. This is a limitation for DIC in terms of computation
time, not really for LSA which provides by essence measurements defined pixelwise. Numer-
ical simulations carried out on various synthetic deformed speckle and checkerboard images
illustrate the efficiency of the deconvolution algorithm proposed in this paper. The procedure
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is also applied on experimental data. Finally, it is worth noting that we presented here in
parallel results obtained with DIC and LSA to show that the same deconvolution procedure
could be applied for both techniques, but we did not compare these two techniques. This
comparison will be presented in a separate document.
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Appendix 1: Localized Spectrum Analysis applied to checker-
board images

This section is a brief reminder on the Localized Spectrum Analysis applied to checkerboard
images in order to retrieve displacement fields. Full detail can be found in [19]. The first
step of LSA consists in calculating the Windowed Fourier Transform (WFT) of the image.
This calculation is performed in a particular case since the frequency is set to the value of the
nominal frequency of the quasi-periodic marking. This leads to the following expression for
the WFT, which is defined, for any (x1, x2) ∈ R2 and θ ∈ [0, 2π], by:

Ψ(x1, x2, θ) =

∫∫
R2

s(η1, η2)w(x1 − η1, x2 − η2)e−2iπf(η1 cos(θ)+η2 sin(θ)) dη1 dη2, (28)

where w is a 2D window function. We use here a Gaussian window characterized by its
standard deviation σ:

w(x1, x2) =
1

2πσ2
e
−(x21+x

2
2)

2σ2 . (29)

It has been shown in [20] that σ should be greater or equal to the pitch p of the quasi-
periodic pattern to process correctly the images. In this study, we consider patterns which are
optimal in terms of sensor propagation, namely checkerboards [11, 46]. A typical checkerboard
is shown in Figure 19. For checkerboards, it is shown in [19] that Ψ shall be calculated along
the diagonals x′′1, x

′′
2 of the natural symmetry axes x′1, x

′
2 of the checkerboard (see the axes

shown in Figure 19), thus for θ = α +
π

4
and θ = α +

3π

4
in Equation 28. x1, x2 correspond

to the natural coordinate system of the camera sensor. It is different from x′1, x
′
2 because

images of regular patterns may be prone to aliasing problems if these two coordinate systems
((x1, x2) and (x′1, x

′
2)) are aligned [33]. The WFT being applied twice: once along direction x′′1

and once along direction x′′2, two complex numbers are available at each pixel of coordinates

(x1, x2): Ψ(x1, x2, α+
π

4
) and Ψ(x1, x2, α+

3π

4
).
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Fig. 19: Checkerboard and different coordinate systems.

The second step of the method consists in extracting and unwrapping the two phases of
both the reference and the deformed images along the x′′1- and x′′2-directions. These quantities

are generally considered to be equal to the arguments of the WFT (here Ψ(x1, x2, α+
π

4
) and

Ψ(x1, x2, α+
3π

4
)), [47, 48, 16]. They are then expressed in the x1, x2 coordinate system by a

change of basis, and the sought displacements along the natural symmetry axes of the camera
sensor x1, x2 are given by

u(x1, x2) = − p

2π

(
Φg(x+ u)− Φf (x)

)
. (30)

u is the displacement at any point of coordinates x. Φg and Φf are the phases of the
periodic pattern of the current (or deformed) and reference images, respectively. The unknown
displacement is involved in both parts of Equation 30, so it can be found by using a fixed-
point algorithm, which generally converges after one iteration only [16]. It has been recently
demonstrated in [4] that this result is only an approximation. Indeed, regardless of noise,
the arguments of the WFTs discussed above are equal to the sought phases convolved by the
window w used in the WFT.

Appendix 2: definition of the metrological parameters used in
this study

Three metrological parameters are first discussed in this paper, namely the measurement
resolution, the bias and the spatial resolution. A fourth one named metrological efficiency
indicator is also introduced. It is defined by the product of the first and last quantities. All
these parameters are throughly defined in [5]. Their definitions are recalled below:

Measurement resolution: in Ref. [37], the measurement resolution is defined by the small-
est change in a quantity being measured that causes a perceptible change in the corresponding
indication. More precisely, it is proposed in [38] to define it as the change in quantity being
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measured that causes a change in the corresponding indication greater than one standard de-
viation of the measurement noise, which enables us to quantify the measurement resolution.
This definition is quite arbitrary, any other (reasonable) multiple of the standard deviation
being also potentially acceptable, but the idea is that the resolution quantifies the smallest
change not likely to be caused by measurement noise [38].

Bias: there are several causes for the systematic error observed with full-field measurement
techniques. We consider here the so-called matching bias, which concerns both DIC and LSA.
A classic way to assess it is to consider a synthetic reference sine function with a given
amplitude, and to consider that the relative loss of amplitude quantifies this bias, as in
Ref. [39, 40, 41] for DIC or in [42, 23] for LSA. The bias is denoted by λ. The systematic error
due to the interpolation function used to have both the reference and the deformed images in
the same coordinate system [43, 44, 45] is not considered here because it concerns only DIC
and not LSA [16].

Spatial resolution: the spatial resolution denoted ` is defined here by the lowest period of a
sinusoidal deformation that the technique is able to reproduce before losing a certain percentage
of amplitude, in other words before the bias reaches a certain value, this quantity being chosen
a priori [40]. The advantage of this definition is that it is not based on an arbitrary value
for the subset size in DIC or for the window used while processing a periodic pattern with
LSA. This makes it possible to compare the spatial resolution between these two techniques,
whose principle is totally different. This definition of the spatial resolution holds here for
the phase, and consequently for the displacement. It also holds for the phase derivatives and
the strain components if no smoothing is performed before differentiating the phases and the
displacements. Otherwise the spatial resolution is all the more impaired as the width of the
filter increases.

Metrological efficiency indicator : For LSA, it has been proven that if the noise impairing
the images is homoscedastic, the product between the displacement resolution and the spatial
resolution is constant whatever the value of the size of the Gaussian window used to find the
displacement [16, 5]. This quantity is defined for a value of the bias λ and denoted by αλ.
It is observed that considering a more representative heteroscedastic noise makes αλ nearly
constant. Simulations also show that αλ as defined here is nearly constant for DIC whatever
the choice of the subset size. In conclusion, αλ represents an indicator of the metrological
performance of the measurement system, which is independent of the choice of the size of the
window with LSA and of the subset with DIC.
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