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Abstract

The performance of white-light full-field measurement methods strongly depends on
the nature of the pattern used to mark the surface on which displacements and strains
are measured. Finding optimized patterns is therefore a topical question. The aim of this
study is to examine the case of the checkerboard pattern. It is first shown that this periodic
pattern can be processed with a Fourier-based technique such as LSA. Experiments are
then carried out to compare the noise level in displacement and strain maps obtained by
processing classic 2D grid and checkerboard images. The conclusion is that the noise level
observed in displacement and strain maps is significantly lower with a checkerboard than
with a classic 2D grid. A notched specimen is finally tested to illustrate that very low
strain levels can be measured with checkerboard patterns.
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1 Introduction

Because of their versatility and ease of use compared to interferometric techniques, full-field
measurement systems based on white light illumination have rapidly spread in the experimen-
tal mechanics community. In particular, Digital Image Correlation (DIC), whose basic version
only requires minimal surface preparation such as the spray-painting of random speckles onto
the tested specimen, is now routinely employed in numerous cases for which displacement or
strain fields bring a real added value to characterize the behavior of materials and structures.
Another approach is to employ regular patterns instead of random ones, and to process such
patterns by using a Fourier-based method instead of classic DIC. As discussed recently in [1],
checkerboards constitute the optimal pattern in terms of sensor noise propagation if they are
correctly sampled. This is due to the fact that propagation of the sensor noise of the camera
to the final displacement and strain maps is minimized if the average image gradient is maxi-
mized, as predicted by the models available in the literature to describe this noise propagation
[2, 3, 4, 5] . Such a pattern is however not random but periodic. It is therefore not used in
practice in DIC because the underlying algorithms may converge to a local minimum. DIC is
nothing but a technique which minimizes iteratively the optical residual in the real domain.
In a recent paper aimed at comparing some of the metrological parameters characterizing
classic subset-based DIC used with speckles on the one hand, and a Fourier-based method
named Localized Spectrum Analysis (LSA) used with 2D grids on the other hand [6], it has
been shown that under mild assumptions, finding the displacement field that minimizes the
optical residual is quasi-direct in the Fourier domain if the texture is a periodic pattern like
a 2D grid. In this context, the objective of this study is to examine how to process another
type of periodic pattern, namely the checkerboard, with a Fourier-based technique in order to
extract displacement and strain fields. It is shown here that LSA can be used for this purpose.

The paper is organized as follows. The basics of LSA are first briefly recalled. It is then
explained how this technique can be used to extracted displacement and strain fields from
checkerboard images. The noise level in displacement and strain maps is then compared
with the noise level in their counterparts obtained with classic 2D grids. It is shown that
using checkerboards instead of 2D grids leads to lower noise levels in the measurement fields.
Finally, the determination of the strain field near a crack tip of a notched specimen illustrates
the efficiency of this technique in a real case.

2 A brief reminder on the Localized Spectrum Analysis

We present here briefly the fundamentals of LSA. LSA consists first in calculating the win-

dowed Fourier transform (WFT) of the image of the periodic pattern for a given frequency,

which is the nominal frequency of the periodic pattern. This frequency is denoted by f = —,
p

where p is the pitch of the pattern. For a periodic pattern aligned with the z and y axes, the
WET can be written as follows
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where s is the gray level distribution of the image, g is a window centered at the pixel of
coordinates (x,y) where 54(x,y,0) is calculated. The Gaussian window constitues the best



tradeoff between various constraints [7]. The function defining this Gaussian window is given

by the following equation:
1 - 202
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where o is the standard deviation of the Gaussian. ¢ can be considered as a handy parameter
which governs the apparent width of the window used in LSA, this quantity being equal to
60 according to the so-called “3 — o rule” [8]. 5, is calculated for two angles, namely § = 0

T
and —, to get the information along the x and y directions, respectively. Each of these two

calculations provides a distribution of complex numbers defined pixelwise. The displacements
along the z- and y-directions, denoted respectively by u, and wu,, are proportional to the
phase change between current (or deformed) and reference images [9, 10]. Thus

uz) = —2- (QC“T (z +u(z) — 2" (&)) : (3)
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where u denotes the displacement vector of components u, and u, in the (z,y) basis. ®“"
and ®"¢/ denote the current and reference phase vectors of components &5/ @;ef and P
5" in the (z,y) basis, respectively. u is involved in both parts of the equality. It is therefore
retrieved by using the fixed-point algorithm, which rapidly converges here. The main reason
is that the convergence of the algorithm is fast when the first derivatives of u are small, which
is the case here. In practice, only one iteration is required to reach convergence in the case
of small strains, as discussed in [11]. It is generally admitted that the phase distributions @,
and ®, of the reference and current images of the regular pattern are equal to the argument

~ ~ ™ . .
of §4(x,y,0) and 54(x,y, =), up to a constant value. This constant value is the same for all

these phase distributions. Thus it disappears when calculating the phase change to obtain
the displacement with Equation 3. The measured phases are in fact equal to their true
counterparts convolved by g [11] but this effect is not considered here for the sake of simplicity.
In addition, this does not change the conclusion of this study.

Finally, it is shown in [12] that the standard deviation of the noise in the phase maps can
be predicted by using the following equation
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This noise is assumed to be homoscedastic in this calculation. In this equation, K is the

modulus of the WFT and 0jpqge the standard deviation of the noise impairing the images.
K is equal to [12]

~vA
77 (5)
where A is the amplitude of the periodic signal, « the contrast and |d;| the coefficient of the
first harmonic in the development in Fourier series of the periodic signal.

LSA was used so far to retrieve displacement and strain fields from 2D grid images, so let
us now examine how to adapt this technique to process checkerboard images.

K = |di|



3 Employing LSA to retrieve in-plane displacements from checker-
board images

The objective here is to examine how LSA can be used to process checkerboard images in
order to retrieve displacement and strain fields. Two procedures are proposed and studied in
this section.

3.1 Procedure 1

The first procedure is based on the following observation: when considering a checkerboard
along the £45 degree directions, two sets of perpendicular lines are clearly visible, forming each
a 1D grid along one of the bisectors of the x and y directions. The corresponding directions
are denoted z’ and y’. As an illustration, Figure 1-a and -b show a schematic view of these
two 1D grids. The border of the “lines” forming these two 1D grids is not straight since the
lines of these grids are made of diamonds placed side by side (see in Figure 1-c a closeup view
of Region A defined in Figure 1-b). These lines interlock, and the pitch of these 1D grids

2
is equal to p\g, where p is the pitch of the checkerboard along the x and y axes. Though

these lines do not have straight borders, they form along each of the x’ and 1/-directions a
periodic pattern similar to a 1D grid. As such, these patterns can be processed with LSA

2
applied along these two directions, with a frequency equal to —. The displacement along

the 2/ and y' directions is then derived from the phases, and the displacement along the x
and y directions is deduced by applying a mere change of basis.

3.2 Procedure 2

The second procedure consists of preprocessing the checkerboard to extract two perpendicular
1D grids along the x and y directions. LSA is then applied in order to extract the phases
along these two directions, and finally to deduce the displacement and strain fields directly in
the z-y basis from these phase fields.

Indeed, a 1D grid made of vertical lines can be created from a checkerboard by flipping the
sign of the gray level of each pixel of the checkerboard with respect to the mean value of the
gray level distribution. To obtain a vertical grid, this sign flip is applied one line out of every
two. This procedure is illustrated in Figure 2. The set of lines defining Domain D; remains
unchanged, while the pixels of the lines defining Domain D5 are affected by the sign flip. A
similar procedure can be applied along the columns instead of the lines to obtain a horizontal
grid. As a result, two perpendicular 1D grids can be deduced from any checkerboard. Each
of these two “virtual” 1D grids can then be processed by using LSA to extract the phase (and
thus the displacement) along the « and y directions. The sign flip applied here does not impact
the phase change between current and reference images, and the information concerning the
displacement is therefore unaffected. On the contrary, the sign flip increases the norm of the
WET since it is applied to a 1D grid. Indeed such a pattern is closer in shape to a pure sine
than a checkerboard. This leads the value of |d;| in Equation 5 to be higher for a 1D grid, and
so the modulus K. A higher modulus leads to a lower noise, as can be checked in Equation 4.

Figure 3 shows an example of a real checkerboard transformed in two 1D grids. These
two grids are visually very close to ideal 1D grids, which is very favorable for the Fourier
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Figure 1: 1D grids observed along the bisectors of a checkerboard. a- along the +45 deg
bisector. b- along the -45 deg bisector. c¢- closeup view of the diamond-like pattern observed
in Region A along the -45 direction. Lines and columns of diamonds are clearly visible.

Figure 2: From checkerboard to grid. a- Checkerboard. b- Vertical grid obtained by flipping
the sign over Dy and adding twice the mean gray value. A similar procedure can be used to

obtain an horizontal grid.



analysis performed with LSA, even more favorable than when 2D grids are processed. The
only apparent difference is the fact that the lines of these two 1D grids are not perfectly
continuous, but serrated. This is clearly visible by plotting the gray level distribution along
a dark and a bright column of pixels (columns 21 and 24 in Figure 3-b, respectively). This
phenomenon comes from the pixels being at the border between black and white boxes in
checkerboard images.
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Figure 3: a- Closeup view of a real checkerboard image. b- and ¢- Closeup view of the 1D
grids deduced from the checkerboard shown in a-. d- Vertical cross-section of the gray-level
distribution along two columns of pixels in subfigure b- Bright column x = 21 and dark
column x = 24. Dimensions in pixels.

3.3 Comments on Procedures 1 and 2

With Procedure 1, the border of the lines forming the inclined 1D grids is not straight, while
the 1D grids deduced from the checkerboard with Procedure 2 are very close to ideal 1D grids.
The modulus of the WFT, which reflects the “closeness” of a given periodic pattern to a pure
sine profile and governs sensor noise propagation (see Equation 4), is therefore expected to
be lower for Procedure 1 than for Procedure 2. The noise in final phase, displacement and



thus strain fields are inversely proportional to this modulus. This potentially leads the fields
obtained with Procedure 1 to be noisier than those obtained with Procedure 2. However, com-
pared to Procedure 1, the pitch of two 1D grids deduced from the checkerboard is v/2 times
greater for the 1D grids deduced from Procedure 2 than for the £45-degree 1D grids of
diamond-shaped patterns directly processed by Procedure 1. This feature negatively impacts
the spatial resolution of Procedure 2 compared to Procedure 1. However the global metrolog-
ical performance of a full-field measurement technique can advantageously be considered as
a tradeoff between measurement resolution and spatial resolution for a given bias [11]. It is
therefore difficult to guess which of the two techniques is the most efficient, and experiments
should therefore be carried out to investigate this point specifically. This is the aim of the
experiment described in the following section.

3.4 Procedure 1 or Procedure 2, which is the best?

Experiments were carried out to see which of the two procedures is the best in terms of noise
affecting the displacement and strain maps. A checkerboard was deposited on a specimen
using the technique described in [13]. The specimen was placed in a rigid metallic frame to
measure noise obtained in DIC. This frame is equipped with a specific device, with which a
horizontal translation can be applied to the specimen. This frame was placed on a marble slab
used for metrology purposes. A Sensicam CCD camera was stiffly attached on the same frame
to limit the relative displacement between specimen and camera. This is a 12-bit camera, but
it provides TIF images encoded on 16 bits. The distance between camera and specimen was
such that the pitch of the checkerboard, equal here to 200 microns (each black or white square
is 100 microns in size), was equal to 6 pixels in the images. It means that all the features
of these patterns, namely the black and the white squares forming the checkerboard, are on
average 3 pixels in size in these images. This value is recommended in [23] to sample speckle
dots in an optimal way with respect to aliasing in the case of DIC. Concerning checkerboards
processed by LSA, the objective is to sample the quasi-periodic signal in such a way that it
is as close as possible to a sine profile, and that it exhibits the maximum amplitude to have
the highest contrast in the images. The first constraint means that choosing too many pixels
should be avoided, the sampled profile tending to a rectangular profile as the number of pixels
increases since this is the actual one. In addition, increasing the number of pixels per period
reduces the size of the field of view in the same proportion. The second constraint means that
too small a number should also be avoided, the PSF combined with the averaging effect of
the gray levels at the scale of the pixels automatically reducing the amplitude of the signal.
3 pixels per square for the checkerboard seems a good choice in this case too since we are
sure to have always at least one pixel corresponding to the brightest zone (the darkest zone,
resp.) of the white squares (black squares, resp.). A smaller number could perhaps also be
considered, but this option has not been investigated here because Procedure 2 requires that
the squares of the checkerboard are sampled with a number of pixels close to an integer.

The specimen was illuminated with two LED light sources placed symmetrically, near the
camera and along the two sides of the specimen. The specimen was fixed in such a way that
the lines and columns of pixels were aligned with the rows of pixels of the camera. This makes
easier the application of the preprocessing step described above for Procedure 2. Figure 4
shows the experimental setup.

200 pictures were taken in the reference configuration and 200 others after applying a
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Figure 4: Setup used for the translation test

slight horizontal translation to the specimen. This stack of images enables us to calculate,
for each of the two procedures described above, 200 displacement and strain maps. These
maps can then be used for comparison purposes between both procedures. Figure 5 shows
the histograms of the standard deviation calculated pixelwise from the stack of images, and
by applying in turn Procedures 1 and 2 to process them. The equivalent standard deviation
for the displacement, defined by

N
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is calculated and displayed in each case. This quantity reflects the average noise level in
displacement maps. The same quantity is introduced for the strain components. It must
be emphasized that performing reliable experiments is tricky, any tiny movement between
camera and specimen influencing the estimation of the standard deviation of the displacement
along time (strains are not concerned by such rigid-motion like movements). Though all
the components of the measuring device were stiffly attached to the metallic frame, a tiny
rigid-body like micro-movement was detected in the displacement maps. Consequently, the
average displacement was subtracted from each displacement map to get rid of this parasitic
movement.

The main remark, which can be drawn from the histograms shown in Figure 5, is that both
procedures give nearly the same results. Since Procedure 1 is nearly two times faster because
no pre-processing step is needed, it should be used instead of Procedure 2 when processing
checkerboard images. It can also be seen that the histograms for the displacement feature
some irregularities. This is likely a consequence of aliasing in the images. This phenomenon
manifests itself by slight low-frequency parasitic fringes in the maps [14], but the location of
the fringes slightly changes from one image to another in the stack, thus inducing temporal
fluctuations of the displacement, which are not only due to the camera sensor noise. This
is confirmed by the fact that the histograms for the strains shown in Figure 6 are smoother
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Figure 5: Histograms for the standard deviation of the u, and u, distributions, calculated
pixelwise as a function of time. Dimension: pixel, thus the quantities reported along the
horizontal axis shall be multiplied by 200/6 to have results in microns

than those for the displacements shown in Figure 5. Indeed aliasing causes very low-frequency
spatial fluctuations in the displacement maps, so their influence when spatially differentiating
to retrieve the strains is negligible. Removing the consequence of aliasing in the displacement
and strain maps is obtained by rotating the checkerboard, as in [14]. In this case, the flipping
procedure used in Procedure 2 becomes much more complex compared to the one used in
the present experiment where the checkerboard is aligned with the camera sensor. It would
also certainly be less accurate because interpolations should be made, and even slower. This
is an equally important reason to choose Procedure 1 instead of Procedure 2. Finally, it is
worth noting that the order of magnitude of the standard deviation measured here for the
displacement is 4E-03 pixel, which is equal to 200/6 x 4E-03=0.133 micron. This order of
magnitude underlines the fact that reliably estimating such a noise level needs, among others,
that every component of the device is stiffly attached. The conclusion of this first experiment
is that only Procedure 1 will be used hereafter for comparison purpose with classic 2D grids
but aliasing in the images should be carefully controlled.

4 Comparing sensor noise propagations obtained for checker-
boards and classic 2D grids

The aim here is to assess experimentally the improvement brought about by using checker-
boards instead of classic 2D grids used in many examples of in-plane displacement and strain
measurements [15, 16, 17, 18, 19, 20, 21] for instance. This comparison is performed here in
terms of sensor noise propagation for a given size of window g defined by Equation 2 above.
This noise was estimated in each case from displacement and strain maps deduced from a
stack of 200 images taken during a translation test [22], as in the preceding experiment.

4.1 Experimental conditions

Two different specimens were prepared for this experiment, the first one with a checkerboard
and the second one with a 2D grid. Both types of regular patterns were deposited with the
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procedure described in [13]. They were slightly inclined to avoid aliasing in the corresponding
images, as justified in [14] and illustrated in Figure 7. As in the preceding case, the distance
between camera and specimens was adjusted in such a way that 6 pixels were used to sample
one grid and checkerboard period. The two specimens were fixed in turn in a grip and a
translation was applied to each of them according to the procedure described in Section 3.4
above. The light intensity was adjusted in such a way that the highest dynamic range of
the camera sensor was used, but without saturating any pixel. Interestingly, the optimal
lighting conditions are not the same for the two types of specimens. Indeed the bright spots
in a 2D grid image are darker than their counterparts in a checkerboard image if exactly the
same lighting conditions and camera settings (aperture, shutter time) are used in both cases,
although the size of these spots is exactly the same. This is probably a consequence of the
point spread function (PSF) of the lens of the camera. Indeed, white boxes are completely
surrounded by black lines in 2D grid images, which is not the case for the checkerboard. The
aperture of the lens was therefore changed and the distance between specimen and lighting
sources was adjusted from one case to each other, in order to have a gray level distribution,
which covers the widest range without reaching saturation at any pixel.

The gray level distributions for these different specimens and lighting conditions for each of
these specimens are shown in Figure 8. It can be seen that these distributions are completely
different, but they span the widest possible dynamic range of the sensor since the right-hand
tail is close to 216 — 1.

10
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Figure 8: Histogram of the gray level distribution for 2D grid and the checkerboard.
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This difference in gray level distribution that is observed in these histograms also means
that on average, the noise level is not the same in the images of these two types of patterns
because camera sensor noise is heteroscedastic [24, 25, 26, 27|, so the higher the brightness in
the patterns, the higher the noise impairing the images. As shown in Equation 4, noise in the
displacement and strain maps obtained with LSA is inversely proportional to the modulus of
the Windowed Fourier Transform, but it is not easy to guess a priori if this modulus is greater
for a checkerboard or for a 2D grid. In addition, the noise level in the maps is proportional to
the noise in the image, and the latter is greater in checkerboard images than in 2D grid images.
The combination of these two effects (amplitude of the WEFT in the one hand, noise in the
images in the other hand) should be considered when comparing these two types of patterns.
Experiments are therefore necessary in order to more completely study the combined effects
of these two phenomena.

4.1.1 Displacement resolution

Figure 9 shows the histograms of the empirical standard deviation deduced pixelwise from
the stack of 200 u, and u, maps. The equivalent standard deviation for the noise calculated
from these standard deviation distributions is reported in each subfigure.
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Figure 9: Normalized histogram of the noise in displacement maps obtained with the 2D grid
and the checkerboard

The main conclusion is that the theoretical expectations discussed above are experimen-
tally verified: the noise level in displacement maps obtained with the 2D grid is greater than
the noise level in displacement maps obtained with checkerboard. The relative difference is
equal to 32% for the z-direction and 41% for the y-direction. The difference in amplitude
between the two directions is probably due to the effect of some micro-movements, which are
less efficiently eliminated along the vertical direction.

4.1.2 Strain resolution

Strain components are deduced by direct differentiation of the displacement fields, which is
possible here since the displacements are obtained pixelwise. The histograms for the noise in

12



the strain maps are shown in Figure 10.
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Figure 10: Normalized histogram of the noise in strain maps obtained with the 2D grid and
the checkerboard

The ranking between the two techniques remains obviously unchanged. As expected,
the equivalent standard deviation for the xy strain component is about v/2 lower than the
equivalent standard deviations for the za and yy components. As for the displacement, the
noise affecting the strain maps is lower with a checkerboard than with a 2D grid.

5 Strain field near a notch

Previous experiments were mere translations applied on 2D grids and checkerboard, thus
without any actual gradient in the strain maps to be measured. Here we propose to show
that checkerboards and LSA can be used in real situations of material testing, by considering
here as an example a tensile test carried out on a notched rectangular specimen. The objective
is to measure high strain gradients at the very beginning of the test, thus in the case of low
strain level. The information only barely emerges from the noise floor, so retrieving the actual
details in the strain distribution is challenging. In this case, it is tempting to enlarge the size of
the window used in the WF'T to average out the noise, but this also induces a systematic error,
which is all the higher as the strain gradient is high. The specimen tested here is rectangular
(dimensions: 200 mm x 40 mm x 2 mm). A notch (dimensions: 20 mm x 1 mm) was
machined before the test at mid-height with a saw, perpendicularly to the loading direction.
A schematic of the tested specimen and a closeup view of the surface under investigation are
shown in Figure 11.

The checkerboard pattern was deposited using the procedure described in [13]. It was
inclined by about 10 degrees with respect to the pixel grid of the sensor to avoid aliasing,
as justified in [14] in the similar case of 2D grids. Localized defects of the periodic pattern
are deliberately kept in this example so that the reader can see their impact on the final
strain maps shown in the next figure. We employed here a camera with a sensor greater in
size compared to the one used in the preceding example (PCO 2000 with a 4Mpixel CCD
sensor). The number of pixels per period used to sample the signal was therefore higher than
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Figure 11: Notched specimen. Schematic, front view around the notch and close-up view of
the zone near of the notch. The checkerboard is inclined to avoid aliasing in the images, as
justified in [14] for classic 2D grids. Dimensions in pixels. The size of each black or white
square of the pattern is 0.1 mm

in the preceding example, namely 9 pixels per period along the natural axes of symmetry of
the checkerboard instead of 6 in the preceding examples. Hence lower noise in the maps was
obtained since the integral involved in the WF'T is discretized over a greater number of points.
The standard deviation of the Gaussian window used to process the images is equal to 7 pixels,

2
which is slightly greater that the minimum value after [7] (equal to 9 x \2[ ~ 6.36 pixels).

To reduce the noise level in the final strain maps, the initial phase distribution ®,..; involved
in Equation 3 was obtained by averaging the phase distributions found with 100 successive
frames. This is a simple way to systematically reduce the noise floor in strain maps. A slight
movement was observed while taking these 100 images. It was removed in the corresponding
phase distributions by subtracting the mean phase value. It is worth remembering that
averaging 100 images and extracting then the corresponding phases is probably the most
intuitive procedure, but the micro-movements occurring while taking the 100 images cause
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the resulting average image to a be a biased estimator of the noiseless image, as discussed
in [28].

The notched specimen was fixed in the grips of a Zwick-Roell tensile machine and subjected
to a tensile test along the y-direction. The cross-head speed was 0.005 mm/s. Images were
regularly taken during the test with a shutter time equal to 6 ms to avoid any blur in the
checkerboard images. Typical strain maps are shown in Figure 12. As justified above, they
are obtained at the very beginning of the test.
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Figure 12: Typical strain maps obtained at the beginning of the tensile test. Case 1: without
any time averaging. Case 2: with the initial phase distribution averaged with 100 successive
phase maps. Standard deviation of the Gaussian window o = 7 pixels, pitch of the checker-
board: p = 9 pixels. Blue circle: size of the Gaussian window used in the WFT according to
the 3 — o rule [8]. All dimensions along = and y are in pixels (1 pixel=22.2 microns on the
specimen).

The visual impact of the averaging procedure of the phase maps over 100 frames (case #2)
can be seen by comparing the corresponding strain maps with their counterparts obtained
without averaging (case #1). The defects in the pattern also propagate up to the final strain
maps, “blobs” being observed at the location of these defects in the strain maps. Smaller
“blobs” corrupt the three strain maps (the reader is invited to zoom in on the strain maps on
the pdf file to observe them). They are due to sensor noise propagation, which manifests itself

15



as a spatially correlated noise in the strain maps. These small “blobs” are elongated along
the y-direction for e,,, elongated along the z-direction for €, but globally isotropic for e4,.
These properties are justified in [11] for 2D grids but the explanations remain the same here
for checkerboards. The diameter of the blue circle is 6 x o. It represents the conventional
width of the Gaussian envelope used in LSA according to the classic 3 — o rule [8], and thus
the size of the optical displacement and strain gages available at any pixel. The main point
here is that strain of small amplitude (some hundreds of microstrains) are measured at any
pixel near the crack tip and over very small zone represented by the blue circle, which is
1.2 mm in size.

6 Conclusion

In this paper, it is shown that checkerboard images can be used to measure displacement and
strain fields on flat deformed surfaces. A checkerboard is however a periodic marking, and the
images were therefore not processed by DIC, but by using a Fourier-based method, namely
the Localized Spectrum Analysis (LSA). Two procedures based on LSA were proposed, but
the one which was finally used consists of applying LSA along the bisectors of the principal
directions of symmetry of the checkerboard. Experiments show that displacement and strain
maps obtained with a checkerboard are less noisy than their counterparts obtained with
classic 2D grids. Checkerboards should therefore be used preferentially in place of 2D grids
for displacement and strain measurement. Finally, strain maps obtained with a tensile test
performed on a notched specimen show that such a pattern can be used in practice to measure
strain distributions of low amplitude, but with high gradients. The proposed method is
restricted to 2D measurements, so its extension to out-of plane measurements should also be
investigated.
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