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Advection-diffusion in porous media with low
scale separation: modelling via higher-order

asymptotic homogenisation

Pascale Royer

Abstract

Asymptotic multiple scale homogenisation allows to determine the effective
behaviour of a porous medium by starting from the pore-scale description, when
there is a large separation between the pore-scale and the macroscopic scale. When
the scale ratio is “small but not too small,” the standard approach based on first-
order homogenisation may break down since additional terms need to be taken
into account in order to obtain an accurate picture of the overall response of the
medium. The effect of low scale separation can be obtained by exploiting higher
order equations in the asymptotic homogenisation procedure. The aim of the
present study is to investigate higher-order terms up to the third order of the advective-
diffusive model to describe advection-diffusion in a macroscopically homogeneous
porous medium at low scale separation. The main result of the study is that the
low separation of scales induces dispersion effects. In particular, the second-order
model is similar to the most currently used phenomenological model of disper-
sion: it is characacterized by a dispersion tensor which can be decomposed into
a purely diffusive component and a mechanical dispersion part, whilst this prop-
erty is not verifed in the homogenised dispersion model (obtained at higher Péclet
number). The third-order description contains second and third concentration gra-
dient terms, with a fourth order tensor of diffusion and with a third-order and an
additional second-order tensors of dispersion. The analysis of the macroscopic
fluxes shows that the second and the third order macroscopic fluxes are distinct
from the volume means of the corresponding local fluxes and allows to determine
expressions of the non-local effects.

1 Introduction
Most studies in the theory of flow and transport in porous media are based on the ex-
ploitation of the continuum theory implying that the original heterogeneous medium
behaves like a homogeneous one characterized by macroscopic fluid flow and trans-
port equations with certain effective properties. Such an approach requires that the
condition of separation of scales be fulfilled: the microscopic size l of heterogeneities
must be essentially smaller than the macroscopic size L of the whole sample : l� L.

The multiple-scale asymptotic homogenisation method which can be traced to Sanchez-
Palencia (1980), Bensoussan et al. (1978), and Bakhvalov and Panasenko (1989) can
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be used as a systematic tool of averaging so as to derive such continumm models: first-
order models obtained by asymptotic homogenisation are thus accurate for media with
large scale separation between the pore scale and the macroscale dimension. But when
the ratio l/L is “small but not too small“, microstructural scale effects may occur which
result in specific non-local phenomena. Then, the “local action” assumption of clas-
sical continuum mechanics, which postulates that the current state of the medium at a
given point is only affected by its immediate neighbors and that there are no physical
mechanisms that produce action at a distance, is no longer satisfied. Consequently, ad-
ditional terms need to be taken into account in order to obtain an accurate picture of the
overall response of the medium, which cannot be predicted in the frame of first-order
homogenisation theory. Thus, the study of so-called higher order or non-local effects
in the overall behaviour of heterogeneous media is motivated by the need to account
for the scale effects observed in the behaviour of multiple-scale heterogeneous media
where the scales are separated widely but not “too widely”, and these scale effects can
be systematically analysed by considering higher-order correctors in the asymptotic
homogenisation method.

Mathematical aspects of higher-order homogenisation have been developed in (Smyshlyaev
and Cherednichenko, 2000; Cherednichenko and Smyshlyaev, 2004). The role of
higher order terms has been investigated for heat conduction in heterogeneous ma-
terials in (Boutin, 1995) and for elastic composite materials subjected to static loading
in (Gambin and Kroner, 1989; Boutin, 1996). In these studies, it is shown that the
heterogeneity of the medium causes non-local effects on a macrolevel: instead of the
homogenised equilibrium equations of continuum mechanics, new equilibrium equa-
tions are obtained that involve higher order spatial derivatives and thus represent the
influence of the microstructural heterogeneity on the macroscopic behaviour of the
material. In dynamic problems, application of higher order homogenisation provides
a long-wave approach valid in the low-frequency range (Boutin and Auriault, 1993;
Fish and Chen, 2001; Bakhvalov and Eglit, 2005; Chen and Fish, 200; Andrianov et
al., 2008). In (Boutin and Auriault, 1993), it is demonstrated that higher order terms
successively introduce effects of polarization, dispersion and attenuation.

Transport in porous media with low scale separation has thus far received relatively
little attention. However, two important works on fluid flow have been performed.
In (Goyeau et al., 1997, 1999), the authors investigate the permeability in a dendritic
mushy zone, which is generally a nonhomogeneous porous structure. They make use
of the volume averaging method to obtain corrector terms to Darcy’s law. In (Auriault
et al., 2005), the validity of Darcy’s law is investigated by higher-order asymptotic
homogenisation up to the third order.

The scope of the present paper is to derive higher-order models of advection-
diffusion. Homogenization of convection-diffusion equations on the pore scale leads to
three macroscopic transport models, accordingly to the order of magnitude of the Péclet
number (Auriault and Adler, 1995): i) a diffusion model; ii) an advection-diffusion
model; iii) an advection-dispersion model. Whilst the first two models are first-order
models, the dispersive model requires to account for the second-order corrector. The
purpose of the present work is to derive the second and third order homogenised models
in the case where the model of advection diffusion is obtained at the first order.

The paper is organized as follows. Section 2 presents the existing phenomenologi-
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cal and homogenized macro-models and their properties for describing solute transport
in rigid porous media. The input transport problem is formulated in Section 3: the
medium geometry is described in §3.1 and the pore-scale governing equations for fluid
flow and solute transport are then presented and nondimmensionalised in §3.2. The re-
sults from (Auriault et al., 2005) for higher-order homogenisation up the third order of
the fluid flow equations, and which are required for the developments that follow, are
briefly summarised in Section 4. Section 5 is devoted to higher-order homogenisation
up to the third order of solute transport equations in the advective-diffusive macro-
regime. The physical meaning of the volume means of local fluxes which arise with
the homogenisation procedure is analysed in Section 6 and the writing of the second
and third order homogenised models in terms of the macroscopic fluxes provides ex-
pressions of the non-local effects. Finally, Section 7, presents a summary of the main
theoretical results contained in this work and highlights conclusive remarks.

2 About phenomenological and homogenised models of
solute transport in porous media

2.1 Phenomenological macro-models
Let consider a rigid porous medium saturated by an incompressible Newtonian fluid.
When the fluid is at rest, transient solute transport within the medium is described by
the model of diffusion:

φ
∂C
∂ t
−−→∇ · ( ¯̄D

eff−→∇C) = 0, (2.1)

in which φ denotes the porosity, C represents the concentration and ¯̄D
eff

is the tensor of
effective diffusive. When the fluid is motion, solute transport may either be described
by the model of advection-diffusion

φ
∂C
∂ t
−−→∇ · ( ¯̄D

eff−→∇C−C−→V ) = 0, (2.2)

or by the model of advection-dispersion

φ
∂C
∂ t
−−→∇ · ( ¯̄D

disp−→∇C−C−→V ) = 0. (2.3)

In both models, −→V denotes the macroscopic fluid velocity and verifies:{ −→V =− ¯̄K
−→∇ P, (Darcy’s law) (2.4)

−→∇ ·−→V = 0, (2.5)

where ¯̄K denotes the tensor of permeability and P represents the fluid pressure. Tensor
¯̄D

disp
in model Eq. (2.3) is the tensor of hydrodynamic dispersion: it depends on the

fluid velocity. In the most currently used model of dispersion (Bear, 1972; Bear and
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Bachmat, 1990), the tensor of dispersion is decomposed into the sum of a diffusive
term and a term of mechanical dispersion which depends on the fluid velocity:

¯̄D
disp

= ¯̄D
eff
+ ¯̄D

mech disp
. (2.6)

Whilst the regime of advection-diffusion is rarely mentioned in the geosciences litera-
ture, it is of particular relevance for modelling electro-chemio-mechanical coupling in
swelling porous media (Moyne and Murad, 2006). Advection-diffusion is furthermore
the usual transport regime observed in biological tissues, e.g (Becker and Kuznetsov,
2013; Ambard and Swider, 2006; Swider et al., 2010; Lemaire and Naili, 2013).

2.2 Homogenised models
Homogenisation of the convection-diffusion equations on the pore scale allows to find
the three above-mentioned transport regimes (Auriault and Adler, 1995) and to give
their respective range of validity by means of the order of magnitude of the Péclet
number

Pe =
vcL
Dc

, (2.7)

where L denotes the characteristic macroscopic length, and where vc and Dc are char-
acteristic values of the local fluid velocity and of the coefficient of molecular diffusion.
The results of Auriault and Adler (1995) are the following:

Pe≤O(ε) : Regime of diffusion
Pe = O(ε0) Regime of advection-diffusion
Pe = O(ε−1) Regime of advection-dispersion
P≥ O(ε−2) No continuum macro-model,

where ε = l/L, with l being the pore-scale characteristic length, is the small parameter
of the asymptotic homogenisation method and where a parameter P is said to be of
order ε p, P= O(ε p), when

ε
p+1� P� ε

p−1. (2.8)

The homogenised models of diffusion and of advection-diffusion are first-order models
and are rigorously identical to models Eqs.(2.1)-(2.2). On the other hand however, the
homogenised model of advection-dispersion is different from the classical phenomeno-
logical model Eq.(2.3). It is a second-order model, which in particular implies that
Darcy’s law is no longer valid (Auriault et al., 2005). Furthermore, the homogenised
tensor of dispersion does not verify relationship Eq.(2.6) and is not symmetric (Au-
riault and Adler, 1995; Auriault et al., 2010). At high Péclet number, P ≥ O(ε−2),
the problem becomes dependent upon the macroscopic boundary-conditions. Conse-
quently, there exists no continuum macro-model to describe solute transport within this
regime.
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3 Problem statement for homogenisation of solute trans-
port within the advective-diffusive regime

3.1 Geometry
Consider a rigid porous medium with connected pores. We assume it to be periodic
with period Ω̂. The fluid occupies the pores Ω̂p, and Γ̂ represents the surface of the
solid matrix Ω̂s. We denote as l̂ and L̂ the characteristic length of the pores and the
macroscopic length (Fig. 1). We assume the scales to be separated and we define

ε =
l̂
L̂
� 1. (3.1)

Using the two characteristic lengths, l̂ and L̂, two dimensionless space variables are

(a) (b)

Ω̂s

Γ̂

Ω̂p

Figure 1: Periodic porous medium : (a) Macroscopic sample ; (b) Periodic cell Ω̂.

defined

−→y =

−→̂
X
l̂

which describes variations at the microscopic scale, (3.2)

−→x =

−→̂
X
L̂

which describes variations at the macroscopic scale, (3.3)

where
−→̂
X is the physical spatial variable. Invoking the differenciation rule of multiple

variables, the gradient operator with respect to
−→̂
X is written as

−→∇ X̂ =
1
l
−→∇ y +

1
L
−→∇ x, (3.4)

where
−→∇ y and

−→∇ x are the gradient operators with respect to −→y and −→x , respectively.
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3.2 Governing equations on the pore scale and estimates
The pores are saturated with a viscous, incompressible Newtonian fluid containing a
low concentration of solute ĉ. The fluid is in slow steady-state isothermal flow, so that
the solute is transported by diffusion and convection.

3.2.1 Fluid flow

The equations governing velocity −→̂v and pressure p̂ of an incompressible viscous fluid
of viscosity µ̂ in slow steady-state flow within the pores are the following:

- Stokes equation
µ̂∆X
−→̂v −−→∇ X̂ p̂ =

−→0 within Ω̂p, (3.5)

- the conservation of mass

−→∇ X̂ ·
−→̂v = 0 within Ω̂p, (3.6)

- the no-slip condition −→̂v =
−→0 over Γ̂. (3.7)

3.2.2 Solute transport

The transport of solute by diffusion-convection in the pore domain is described by
conservation of mass

∂ ĉ
∂ t̂
−−→∇ X̂ · (D̂0

−→∇ X̂ ĉ− ĉ−→̂v ) = 0 within Ω̂p, (3.8)

and the no-flux boundary condition

(D̂0
−→∇ X̂ ĉ− ĉ−→̂v ) ·−→n = (D̂0

−→∇ X̂ ĉ) ·−→n = 0 over Γ̂, (3.9)

where ĉ is the solute concentration (mass of solute per unit volume of fluid), t is the
time, D̂0 denotes the coefficient of molecular diffusion and −→n is the unit vector giving
the normal to Γ̂ exterior to Ω̂p.

3.2.3 Nondimensionalisation and estimates

Introducing into Eqs. (3.5)-(3.9)

−→∇ X̂ = 1/L
−→∇ , ∆X̂ = L2 ∆,

t̂ = tc t, ∂/∂ t̂ = 1/tc ∂/∂ t,
−→̂v = vc

−→v , p̂ = pc p, ĉ = cc c,

µ̂ = µc µ, D̂0 = Dc D0,
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we can write the microscopic description in dimensionless form as

F µ∆−→v −−→∇ p =
−→0 within Ωp, (3.10)

−→∇ ·−→v = 0 within Ωp, (3.11)

N
∂c
∂ t
−−→∇ · (D0

−→∇ c−Pe c−→v ) = 0 within Ωp, (3.12)

−→v =
−→0 over Γ, (3.13)

(D0
−→∇ c) ·−→n = 0 over Γ, (3.14)

with

F=
µcvc

Lpc
; N=

L2

tcDc
; Pe =

vcL
Dc

.

In the above writing, quantities with suscript c denote characteristic quantities, and the
dimensionless counterpart of any dimensional quantity Ψ̂ is Ψ = Ψ̂/Ψc. In particu-
lar, the characteristic time tc is the time over which we intend to describe the solute
transport: it is the characteristic time of the observation. We have arbitrarily chosen
the macroscopic length L̂ as the reference length for normalising the gradient opera-
tor. Consequently, according to Eq. (3.4), the corresponding dimensionless gradient
operator reads −→∇ = L

−→∇ X̂ = ε
−1−→∇ y +

−→∇ x. (3.15)

We may now estimate the three dimensionless parameters, F, N and the Péclet number
Pe, with respect to powers of the small parameter ε and for this purpose we shall apply
the rule defined by Eq.(2.8). Parameter F, which arises from Stokes equation (Eq.
3.10), is the ratio of the viscous term to the pressure gradient. We shall consider the
case where homogenisation of Stokes equations leads to Darcy’s law at the sample
scale. As shown in (Auriault, 1991), this happens when the local flow is balanced by a
macroscopic pressure gradient, which in an order-of-magnitude sense reads

µcvc

l2 = O
( pc

L

)
, (3.16)

and yields
F=

µcvc

Lpc
= O(ε2). (3.17)

The order-of-magnitude of the Péclet number Pe characterises the regime of solute
transport. Indeed, it is the ratio of characteristic times of diffusion and convection

Pe =
tdiff

tconv
, (3.18)

where 
tdiff =

L2

Dc
(macroscopic characteristic time of diffusion), (3.19)

tconv =
L
vc

(macroscopic characteristic time of convection). (3.20)
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We consider
Pe =

vcL
Dc

= O(ε0), (3.21)

which leads to the homogenised advective-diffusive model at the first order (Cf. §2.2).
The dimensionless number N is such that:

N=
tdiff
L

tc
. (3.22)

Since Pe = O(ε0) means that tdiff = tconv , we take tc = tdiff = tconv, which yields

N= O(ε0). (3.23)

Note that taking tc = tdiff = tconv ensures a macroscopic transient regime, while tc > tdiff

would lead to a macroscopic steady-state regime and that when tc < tdiff, the transport
mechanism is not sufficiently developped for its evolution be described by means of a
continuum model.

4 Higher-order homogenisation of fluid flow
Homogenisation of the fluid flow equations has been performed up to the third order
in (Auriault et al., 2005). Equations Eqs. (3.10)-(3.13) are considered with Eq. (3.17),
which leads to the following set of flow equations

ε
2
µ∆−→v −−→∇ p =

−→0 within Ωp, (4.1)
−→∇ ·−→v = 0 within Ωp, (4.2)
−→v =

−→0 over Γ, (4.3)

where −→∇ = ε
−1−→∇ y +

−→∇ x. (4.4)

The homogenisation procedure consists in looking for the pressure and the velocity in
the form of asymptotic expansions in powers of ε Bensoussan et al. (1978), Sanchez-
Palencia (1980):{

p(−→y ,−→x ) = p0(−→y ,−→x )+ ε p1(−→y ,−→x )+ ε p2(−→y ,−→x )+ ...
−→v (−→y ,−→x ) =−→v 0(−→y ,−→x )+ ε−→v 1(−→y ,−→x )+ ε

2−→v 2(−→y ,−→x )+ ...

For a macroscopically homogeneous medium, the results can be summarised as follows

∂

∂xi
(< vn

i >) = 0 (n = 0,1,2), (4.5)

with 

< v0
i >=−

Ki j

µ

∂ p0

∂x j
, (4.6)

< v1
i >=−

Ni jk

µ

∂ 2 p0

∂x j∂xk
−

Ki j

µ

∂ p̄1

∂x j
, (4.7)

< v2
i >=−

Pi jkl

µ

∂ 3P0

∂x j∂xk∂xl
−

Ni jk

µ

∂ 2 p̄1

∂x j∂xk
−

Ki j

µ

∂ p̄2

∂x j
, (4.8)
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where < . > denotes the volume average and is defined by

< . >=
1
|Ω |

∫
Ωp

. dΩ. (4.9)

The third order tensor Ni jk is symmetric with respect to its last two indices and anti-
symmetric with respect to its first two indices. Then, since Ni jk is symmetrical with
respect to its last two indices, it is equal to zero when the medium is isotropic.

Functions p0, p1 and p2 are such that

p0 = p0(−→x ), (4.10)

p1 =−a j(−→y )
∂ p0

∂x j
+ p̄1(−→x ), (4.11)

p2 =−d jk(−→y )
∂ 2 p0

∂x j∂xk
−a j(−→y )

∂ p̄1

∂x j
+ p̄2(−→x ). (4.12)

Combining Eq. (4.5) with the mean velocities, the second-gradient terms vanish as a
result of the antisymmetry of Ni jk. Thus, the following flow descriptions are obtained

(First order)
∂

∂xi
(Ki j

∂ p0

∂x j
) = 0, (4.13)

(Second order)
∂

∂xi
(Ki j

∂ p̄1

∂x j
) = 0, (4.14)

(Third order)
∂

∂xi
(Pi jkl

∂ 3 p0

∂x j∂xk∂xl
+Ki j

∂ p̄2

∂x j
) = 0. (4.15)

5 Higher-order homogenisation of solute transport in
the advective-diffusive regime

5.1 Local dimensionless description
We consider Eq.(3.12) with estimates Eq.(3.21) and Eq.(3.23), and boundary condi-
tions Eqs.(3.13)-(3.14). This leads to the following set of equations:

∂c
∂ t
−−→∇ · (D0

−→∇ c− c−→v ) = 0 within Ωp, (5.1)

−→v =
−→0 over Γ, (5.2)

(D0
−→∇ c) ·−→n = 0 over Γ. (5.3)

We look for solutions to the unknowns c and −→v of the form:{
c(−→y ,−→x ) = c0(−→y ,−→x )+ εc1(−→y ,−→x )+ ε

2c2(−→y ,−→x )+ ...
−→v (−→y ,−→x ) =−→v 0(−→y ,−→x )+ ε−→v 1(−→y ,−→x )+ ε

2−→v 2(−→y ,−→x )+ ...
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where functions cn(−→y ,−→x ) and−→v n(−→y ,−→x ) are Ω-periodic in−→y . Furthermore, because
of the two spatial variables −→x and −→y = ε−1−→x , the spatial derivation takes the form
Eq. (4.4). The homogenisation technique involves the introduction of these expansions
into the dimensionless equations Eqs.(5.1)-(5.3) and the identification of the powers of
ε .

5.2 First-order homogenisation
5.2.1 Boundary value problem for c0

At the first order, the boundary value problem Eqs.(5.1)-(5.3) leads to:

∂

∂yi

(
D0

∂c0

∂yi

)
= 0 in Ωp, (5.4)

D0
∂c0

∂yi
ni = 0 over Γ, (5.5)

c0 : periodic in −→y , (5.6)

from which it is clear that the concentration c0 is constant over the period

c0 = c0(−→x , t). (5.7)

5.2.2 Boundary value problem for c1

We now consider the second order of Eqs. (5.1)-(5.3). Noticing that Eq. (4.2) at the
first order gives

∂v0
i

∂yi
= 0, (5.8)

we obtain the following boundary value problem for c1:

∂

∂yi

[
D0(

∂c1

∂yi
+

∂c0

∂xi
)

]
= 0 within Ωp, (5.9)[

D0(
∂c1

∂yi
+

∂c0

∂xi
)

]
ni = 0 over Γ, (5.10)

c0 : periodic in −→y . (5.11)

By vertue of linearity, the solution reads:

c1 = χ j(−→y )
∂c0

∂x j
+ c̄1(−→x , t), (5.12)

where c̄1(−→x , t) is an arbitrary function. The exact definition of the vector−→χ is reported
in Appendix A.1. Note that, to render the solution unique, we impose that−→χ is average
to zero Bensoussan et al. (1978), Sanchez-Palencia (1980), Mei and Vernescu (2010):

<−→χ >=
1
|Ω |

∫
Ωp

−→
χ dΩ =

−→0 . (5.13)

Note further that, since we are considering a macroscopically homogeneous medium,
−→
χ doesn’t depend on variable −→x : −→χ =−→χ (−→y ).
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5.2.3 Derivation of the first-order macroscopic description

Let consider the boundary value problem Eqs.(5.1)-(5.3) at the third order:

∂c0

∂ t
− ∂

∂yi

[
D0(

∂c2

∂yi
+

∂c1

∂xi
)− c0v1

i − c1v0
i

]
− ∂

∂xi

[
D0(

∂c1

∂yi
+

∂c0

∂xi
)− c0v0

i

]
= 0 within Ωp, (5.14)

v0
i = v1

i = 0 over Γ, (5.15)[
D0(

∂c2

∂yi
+

∂c1

∂xi
)

]
ni = 0 over Γ. (5.16)

The homogenisation procedure consists now in integrating Eq. (5.14) over Ωp. This
leads to the so called compatibility condition, which is a necessary and sufficient con-
dition for the existence of solutions. Furthermore, it represents the first-order macro-
scopic description. Invoking Gauss’ theorem, the integration yields:

1
|Ω |

∫
Ωp

∂c0

∂ t
dΩ− 1

|Ω |

∫
δΩp

[
D0(

∂c2

∂yi
+

∂c1

∂xi
)− c0v1

i − c1v0
i

]
ni dS

− 1
|Ω |

∫
Ωp

∂

∂xi

[
D0(

∂c1

∂yi
+

∂c0

∂xi
)− c0v0

i

]
dΩ = 0,

(5.17)

where δΩp = Γ∪ (δΩ∩ δΩp) denotes the bounding surface of Ωp. The second term
of Eq.(5.17) is thus the sum of two surface integrals and it actually cancels out: the
integral over the surface Γ vanishes because of boundary conditions Eqs.(5.15)-(5.16),
while the integral over the cell boundary, δΩ∩ δΩp, vanishes by periodicity. Hence,
Eq.(5.17) reduces to

φ
∂c0

∂ t
− ∂

∂xi
< D0(

∂c1

∂yi
+

∂c0

∂xi
)− c0v0

i >= 0, (5.18)

where

φ =
|Ωp |
|Ω |

(5.19)

denotes the porosity. Using Eq.(5.12), we can write:

∂c1

∂yi
+

∂c0

∂xi
= γ

0
i j

∂c0

∂x j
, (5.20)

where

γ
0
i j =

∂ χ j

∂yi
+ Ii j. (5.21)

Taking Eq.(4.5) into account, Eq.(5.18) can be rewritten as follows:

φ
∂c0

∂ t
− ∂

∂xi
(Di j

∂c0

∂x j
)+< v0

i >
∂c0

∂xi
= 0, (5.22)
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where

Di j =
1
|Ω |

∫
Ωp

D0(
∂ χ j

∂yi
+ Ii j) dΩ =

1
|Ω |

∫
Ωp

D0γ
0
i j dΩ (5.23)

is the tensor of effective diffusion. It can be shown that the second-order tensor Di j is
positive and symmetric (Cf. Appendix A.2).
Defining the first-order macroscopic concentration and average fluid velocity by{

< c >=< c0 >+O(ε < c >), (5.24)
<−→v >=<−→v 0 >+O(ε <−→v >), (5.25)

the first-order macroscopic description thus reads

φ
∂ < c >

∂ t
− ∂

∂xi
(Di j

∂ < c >
∂x j

)+< vi >
∂ < c >

∂xi
= O(εφ

∂ < c >
∂ t

). (5.26)

In dimensional variables, it becomes

φ
∂ < ĉ >

∂ t̂
− ∂

∂ X̂i
(D̂diff

i j
∂ < ĉ >

∂ X̂ j
)+< v̂i >

∂ < ĉ >
∂ X̂i

= O(εφ
∂ < ĉ >

∂ t̂
), (5.27)

where
D̂diff

i j = Dc Di j (5.28)

is the tensor of effective diffusion. The fluid velocity verifies (Cf. Section 4):
< v̂i >=−

K̂eff
i j

µ̂

∂ < p̂ >

∂ X̂ j
+O(ε < v̂i >), (5.29)

∂ < v̂i >

∂ X̂i
= O(ε

∂ < v̂i >

∂ X̂i
). (5.30)

The first-order behaviour is thus described by the classical advection-diffusion trans-
port equation, in which the fluid velocity verifies Darcy’s law.

5.3 Second-order homogenisation
5.3.1 Boundary value problem for c2

The third-order boundary value given by Eqs. (5.14)-(5.16), can be transformed (Cf.
Appendix B.1) so as to obtain the following boundary value problem for c2:

∂

∂yi

[
D0(

∂c2

∂yi
+χ j

∂ 2c0

∂xi∂x j
+

∂ c̄1

∂xi
)

]
=

(
1
φ

Di j−D0γ
0
i j)

∂ 2c0

∂xi∂x j
+(v0

i γ
0
i j−

1
φ
< v0

j >)
∂c0

∂x j
within Ωp, (5.31)[

D0(
∂c2

∂yi
+χ j

∂ 2c0

∂xi∂x j
+

∂ c̄1

∂xi
)

]
ni = 0 over Γ. (5.32)
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We observe that the solution must depend on three forcing terms, which are associated
with ∂ 2c0/∂x j∂xk, ∂c0/∂x j and ∂ c̄1/∂x j, respectively. By vertue of linerarity, the
solution is a linear combination of particular solutions associated with each of the three
forcing terms. Note that the problem linked to ∂ c̄1/∂x j is identical to that observed at
the first order for ∂c0/∂x j in the boundary value problem which defines c1 (Eqs. (5.9)-
(5.10)). Therefore, the solution reads

c2 = η jk(−→y )
∂ 2c0

∂x j∂xk
+π j(−→y )

∂c0

∂x j
+χ j(−→y )

∂ c̄1

∂x j
+ c̄2(−→x , t), (5.33)

where c̄2(−→x , t) is an arbitrary function and where{
< η jk >= 0, (5.34)
< π j >= 0. (5.35)

The detailed definitions of η jk and π j are reported in Appendix B.2.

5.3.2 Derivation of the second-order corrector

At the fourth order, the boundary-value problem made of Eqs. (5.1)-(5.3) yields:

∂c1

∂ t
− ∂

∂yi

[
D0(

∂c3

∂yi
+

∂c2

∂xi
)− c0v2

i − c1v1
i − c2v0

i

]
− ∂

∂xi

[
D0(

∂c2

∂yi
+

∂c1

∂xi
)− c0v1

i − c1v0
i

]
= 0 within Ωp, (5.36)

v0
i = v1

i = v2
i = 0 over Γ, (5.37)[

D0(
∂c3

∂yi
+

∂c2

∂xi
)

]
ni = 0 over Γ. (5.38)

The second-order corrector of the macroscopic description is obtained by integrating
Eq. (5.36) over Ωp. This leads to

φ
∂ c̄1

∂ t
− ∂

∂xi
< D0(

∂c2

∂yi
+

∂c1

∂xi
)>+

∂

∂xi
< c0v1

i + c1v0
i >= 0. (5.39)

Using the expressions obtained for c1 and c2, Eqs. (5.12) and (5.33), we get

∂c2

∂yi
+

∂c1

∂xi
= γ

1
i jk

∂ 2c0

∂x j∂xk
+

∂π j

∂yi

∂c0

∂x j
+ γ

0
i j

∂ c̄1

∂x j
, (5.40)

with

γ
1
i jk =

∂η jk

∂yi
+χiI jk. (5.41)

Then, noticing that

∂

∂xi
< c0v1

i + c1v0
i >=< v1

i >
∂c0

∂xi
+

∂

∂xi

[
< v0

i χ j >
∂c0

∂x j

]
+< v0

i >
∂ c̄1

∂xi
, (5.42)
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Eq. (5.39) becomes:

φ
∂ c̄1

∂ t
− ∂

∂xi
(Ei jk

∂ 2c0

∂x j∂xk
+D′i j

∂c0

∂x j
+Di j

∂ c̄1

∂x j
)+< v1

i >
∂c0

∂xi
+< v0

i >
∂ c̄1

∂xi
= 0,

(5.43)
where 

Ei jk =< D0
∂η jk

∂yi
>, (5.44)

D′i j =< D0
∂π j

∂yi
− v0

i χ j > . (5.45)

The third-order tensor Ei jk is symmetric with respect its last two indices and antisym-
metric with respect its first two indices (Cf. Appendix B.3). As a result of this antisym-
metry property of ¯̄̄E, the second-order gradient term of Eq. (5.43) vanishes. Thus, the
second-order corrector finally reads:

φ
∂ c̄1

∂ t
− ∂

∂xi
(D′i j

∂c0

∂x j
+Di j

∂ c̄1

∂x j
)+< v1

i >
∂c0

∂xi
+< v0

i >
∂ c̄1

∂xi
= 0. (5.46)

From its definition Eq. (5.45), we see that the second-order tensor D′i j contains a con-
vective term: it is therefore a dispersion tensor. It is a non-symmetric tensor which can
be decomposed into a symmetric and an antisymmetric parts (Cf. Appendix B.4).

5.3.3 Second-order macroscopic description

Let add Eq. (5.22) to Eq. (5.46) multiplied by ε . We get:
φ

∂

∂ t
(c0 + ε c̄1)− ∂

∂xi

[
Di j

∂

∂x j
(c0 + ε c̄1)+ εD′i j

∂c0

∂x j

]
+(< v0

i >+ε < v1
i >)

∂c0

∂xi
+ ε < v0

i >
∂ c̄1

∂xi
= 0. (5.47)

Defining the second-order macroscopic concentration and average fluid velocity by{
< c >=< c0 >+ε c̄1 +O(ε2 < c >), (5.48)
<−→v >=<−→v 0 >+ε <−→v 1 >+O(ε2 <−→v >), (5.49)

the second-order macroscopic description is written as follows
φ

∂ < c >
∂ t

− ∂

∂xi

[
(Di j + εD′i j)

∂ < c >
∂x j

]
+< vi >

∂ < c >
∂xi

= O(ε2
φ

∂ < c >
∂ t

). (5.50)

When cast in dimensional variables, Eq. (5.50) becomes
φ

∂ < ĉ >
∂ t̂

− ∂

∂Xi

[
(D̂diff

i j + D̂′
eff

i j)
∂ < ĉ >

∂X j

]
+ < v̂i >

∂ < ĉ >
∂Xi

= O(ε2
φ

∂ < ĉ >
∂ t̂

), (5.51)
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where
D̂′

eff
i j = DcεD′i j. (5.52)

The second-order fluid velocity is such that (Cf. Section 4):
< v̂i >=−

N̂eff
i jk

µ̂

∂ 2 < p̂ >

∂ X̂ j∂ X̂k
−

K̂eff
i j

µ̂

∂ < p̂ >

∂ X̂ j
+O(ε2 < v̂i >), (5.53)

∂ < v̂i >

∂ X̂i
= O(ε2 ∂ < v̂i >

∂ X̂i
). (5.54)

Note that combining both above equations leads to:

∂

∂ X̂i
(

K̂eff
i j

µ̂

∂ < p̂ >

∂ X̂ j
) = O(ε2 ∂ < v̂i >

∂ X̂i
). (5.55)

Therefore, the second-order macroscopic transport description is a model of advection-
dispersion, in which the tensor of dispersion is non-symmetric and follows property
Eq.(2.6) of the phenomenological model of dispersion. The fluid velocity verifies a
second-order law Eq.(5.53), but which reduces to Darcy’s law in case of an isotropic
medium. In other words, the second-order macroscopic transport model is similar to
the phenomenological dispersion transport equation Eq. (2.3). When the medium is
isotropic, the whole model which comprises macroscopic solute transport and fluid
flow equations is rigorously identical to the phenomenological model.

5.4 Third-order homogenisation
5.4.1 Boundary value problem for c3

The fourth-order boundary value problem, Eqs. (5.36)-(5.38), can be transformed into
the following boundary value problem for c3 (Cf. Appendix C.1):

∂

∂yi

[
D0(

∂c3

∂yi
+η jk

∂ 3c0

∂xi∂x j∂xk
+π j

∂ 2c0

∂xi∂x j
+χ j

∂ 2c̄1

∂xi∂x j
+

∂ c̄2

∂xi
)

]
=

(
1
φ

χiD jk−D0γ
1
i jk)

∂ 3c0

∂xi∂x j∂xk

+(v0
i γ

1
i jk−D0

∂πk

∂y j
+

1
φ

D′jk−
1
φ

χ j < v0
k >)

∂ 2c0

∂x j∂xk

+(
1
φ

Di j−D0γ
0
i j)

∂ 2c̄1

∂xi∂x j

+(v0
i

∂π j

∂yi
+ v1

i γ
0
i j−

1
φ

χi
∂ < v0

j >

∂xi
− 1

φ
< v1

j >)
∂c0

∂x j

+(v0
i γ

0
i j−

1
φ
< v0

j >)
∂ c̄1

∂x j
in Ωp, (5.56)[

D0(
∂c3

∂yi
+η jk

∂ 3c0

∂xi∂x j∂xk
+π j

∂ 2c0

∂xi∂x j
+χ j

∂ 2c̄1

∂xi∂x j
+

∂ c̄2

∂xi
)

]
ni = 0

on Γ. (5.57)
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From the above boundary value problem and its variational formulation (Cf. Appendix
C.2 ), it can be seen that the solution must depend on the following forcing terms:
∂ 3c0/∂x j∂xk∂xl , ∂ 2c0/∂xk∂xl , ∂ 2c̄1/∂xk∂xl , ∂c0/∂x j, ∂ c̄1/∂x j and ∂ c̄2/∂x j. We
note that the problem linked to ∂ c̄2/∂x j is identical to that associated with ∂c0/∂x j
in the boundary value problem for c1 Eqs. (5.9)-(5.10). Furthermore, the problem
associated with ∂ c̄1/∂x j is identical to that linked to ∂c0/∂x j in the boundary value
problem for c2, Eqs. (5.31)-(5.32), and the problem linked to ∂ 2c̄1/∂xk∂xl is identical
to that obtained for ∂ 2c0/∂xk∂xl in the boundary value problem for c2. Consequently,
the solution reads:

c3 = ξ jkl(−→y )
∂ 3c0

∂x j∂xk∂xl
+ τkl(−→y )

∂ 2c0

∂xk∂xl
+ηkl(−→y )

∂ 2c̄1

∂xk∂xl

+θ j(−→y )
∂c0

∂x j
+π j(−→y )

∂ c̄1

∂x j
+χ j(−→y )

∂ c̄2

∂x j
+ c̄3(−→x , t),

(5.58)

where c̄3(−→x , t) is an arbitrary function, and where
< ξ jkl >= 0, (5.59)
< τkl >= 0, (5.60)
< θ j >= 0. (5.61)

The exact definitions of ξ jkl , τkl and θ j are reported in Appendices C.3, C.4 and C.5,
respectively. Let us recall that χ j is related to the definition of c1 Eq. (5.12), while η jk
and π j have been introduced in the definition of c2 Eq. (5.33). Note that in expression
Eq. (5.58), ξ jkl , η jk, χ j are only related to the diffusion mechanism, while τkl , θ j and
π j contain both diffusive and convective terms.

5.4.2 Derivation of the third-order corrector

Let now consider the boundary-value problem Eqs. (5.1)-(5.3) at the fifth order:

∂c2

∂ t
− ∂

∂yi

[
D0(

∂c4

∂yi
+

∂c3

∂xi
)− c0v3

i − c1v2
i − c2v1

i − c3v0
i

]
− ∂

∂xi

[
D0(

∂c3

∂yi
+

∂c2

∂xi
)− c0v2

i − c1v1
i − c2v0

i

]
= 0 within Ωp, (5.62)[

D0(
∂c4

∂yi
+

∂c3

∂xi
)

]
ni = 0 over Γ. (5.63)

Integrating Eq. (5.62) over Ωp, we get:

φ
∂ c̄2

∂ t
− ∂

∂xi
< D0(

∂c3

∂yi
+

∂c2

∂xi
)>+

∂

∂xi
< c0v2

i + c1v1
i + c2v0

i >= 0. (5.64)
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Using Eqs. (5.33) and (5.58), we deduce that

∂c3

∂yi
+

∂c2

∂xi
= γ

2
i jkl

∂ 3c0

∂x j∂xk∂xl

+(
∂τ jk

∂yi
+πiI jk)

∂ 2c0

∂x j∂xk
+ γ

1
i jk

∂ 2c̄1

∂x j∂xk
(5.65)

+
∂θ j

∂yi

∂c0

∂x j
+

∂π j

∂yi

∂ c̄1

∂x j
+ γ

0
i j

∂ c̄2

∂x j
,

where

γ
2
i jkl =

∂ξ jkl

∂yi
+ηi jδkl. (5.66)

Then, noticing that:

∂

∂xi
< c0v2

i + c1v1
i + c2v0

i >=

∂

∂xi

[
< v0

i η jk >
∂ 2c0

∂x j∂xk
+< v1

i χ j + v0
i π j >

∂c0

∂x j
+< v0

i χ j >
∂ c̄1

∂x j

]
(5.67)

+< v2
i >

∂c0

∂xi
+< v1

i >
∂ c̄1

∂xi
+< v0

i >
∂ c̄2

∂xi
,

Eq. (5.64) becomes:

φ
∂ c̄2

∂ t
− ∂

∂xi
[Fi jkl

∂ 3c0

∂x j∂xk∂xl
+E ′i jk

∂ 2c0

∂x j∂xk
+Ei jk

∂ 2c̄1

∂x j∂xk

+D′′i j
∂c0

∂x j
+D′i j

∂ c̄1

∂x j
+Di j

∂ c̄2

∂x j
] (5.68)

+< v2
i >

∂c0

∂xi
+< v1

i >
∂ c̄1

∂xi
+< v0

i >
∂ c̄2

∂xi
= 0,

where 

Fi jkl =< D0
∂ξ jkl

∂yi
>, (5.69)

E ′i jk =< D0
∂τ jk

∂yi
− v0

i η jk >, (5.70)

D′′i j =< D0
∂θ j

∂yi
− v1

i χ j− v0
i π j > . (5.71)

Tensor Fi jkl is a fourth-order tensor of diffusion. It can be calculated from vector −→χ
and tensor ¯̄η , without solving the boundary-value problem Eqs.(5.56)-(5.57) (Cf. Ap-
pendix C.6). The third-order tensor E ′i jk and the second-order tensor D′′i j are tensors of
dispersion. Since by construction Ei jk and E ′i jk are symmetric with respect to their last
two indices, they are equal to zero when the medium is isotropic (Cf. §B.3.1).
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5.4.3 Third-order macroscopic description

Let add Eq.(5.47) to Eq. (5.68) multiplied by ε2:

φ
∂

∂ t
(c0 + c̄1 + c̄2)

− ∂

∂xi
[Di j

∂

∂x j
(c0 + ε c̄1 + ε

2c̄2)+ εD′i j
∂

∂x j
(c0 + ε c̄1)+ ε

2D′′i j
∂c0

∂x j

+ε
2E ′i jk

∂ 2c0

∂x j∂xk
+ ε

2Fi jkl
∂ 3c0

∂x j∂xk∂xl
] (5.72)

+(< v0
i >+ε < v1

i >+ε
2 < v2

i >)
∂c0

∂xi

+ε(< v0
i >+ε < v1

i >)
∂ c̄1

∂xi
+ ε

2 < v0
i >

∂ c̄2

∂xi
= 0

Defining the third-order macroscopic concentration and fluid velocity by{
< c >=< c0 >+ε c̄1 + ε

2c̄2 +O(ε3 < c >), (5.73)
<~v >=<~v0 >+ε <~v1 >+ε

2 <~v2 >+O(ε3 <~v >), (5.74)

the third-order macroscopic description is written as follows

φ
∂ < c >

∂ t
− ∂

∂xi

[
(Di j + εD′i j + ε

2D′′i j)
∂ < c >

∂x j

]
− ∂

∂xi

[
ε

2E ′i jk
∂ 2 < c >
∂x j∂xk

+ ε
2Fi jkl

∂ 3 < c >
∂x j∂xk∂xl

]
(5.75)

+< vi >
∂ < c >

∂xi
= O(ε3

φ
∂ < c >

∂ t
).

In dimensional variables, we get:

φ
∂ < ĉ >

∂ t̂
− ∂

∂Xi

[
(D̂diff

i j + D̂
′disp
i j + D̂

′′disp
i j )

∂ < ĉ >
∂X j

]
− ∂

∂Xi

[
Ê
′disp

i jk
∂ 2 < ĉ >
∂X j∂Xk

+ F̂ diff
i jkl

∂ 3 < ĉ >
∂X j∂Xk∂Xl

]
(5.76)

+< v̂i >
∂ < ĉ >

∂Xi
= O(ε3

φ
∂ < ĉ >

∂ t̂
),

where 
D̂
′′disp
i j = Dcε

2D′′i j, (5.77)

Ê
′disp

i jk = εlDcE ′i jk, (5.78)

F̂ diff
i jkl = l2DcFi jkl . (5.79)
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The third-order fluid velocity verifies (Cf. Section 4):
< v̂i >=−

P̂eff
i jkl

µ̂

∂ 2 < p̂ >

∂ X̂ j∂ X̂k∂ X̂l
−

N̂eff
i jk

µ̂

∂ 2 < p̂ >

∂ X̂ j∂ X̂k
−

K̂eff
i j

µ̂

∂ < p̂ >

∂ X̂ j
+O(ε3 < v̂i >),(5.80)

∂ < v̂i >

∂ X̂i
= O(ε3 ∂ < v̂i >

∂ X̂i
). (5.81)

Note that when combining both above equations, the second-gradient term vanishes,
due the antisymmetry property of tensor N̂eff

i jk.

The third-order transport model Eq. (5.76) introduces a fourth-order tensor of dif-
fusion, and a third-order and an additional second-order tensors of dispersion. In case
of isotropy, the third-order tensors Ê

′eff
i jk and N̂eff

i jk are equal to zero as a result of their
symmetry properties.

6 Macroscopic fluxes

6.1 Volume vs surface averages
With the homogenisation averaging procedure, macroscopic descriptions are expressed
in terms of variables which are systematically defined as volume means. Specifying
the meaning of the macroscopic variables, i.e. determining whether the use of volume
means is appropriate or not is thus an important issue (Hassanizadeh, 1979), (Costanzo
et al., 2005), (Hill, 1972). In the particular context of solute transport in porous media,
since a solute flux is physically defined over a specific area, macroscopic fluxes should
thus be defined as surface means.

6.2 Writing of local and homogenised equations in terms of fluxes
In order to address the above described issue, we may rewrite the local and the ho-
mogenised equations in terms of fluxes. We shall thus rewrite Eq. (5.1) as follows

∂c
∂ t

+
−→∇ ·−→q = 0 within Ωp, (6.1)

where the local flux −→q is defined by

−→q =−D0
−→∇ c+ c−→v . (6.2)

The no-flux boundary condition now reads

−→q ·−→n = 0 over Γ. (6.3)

Flux −→q is looked for in the form of the following asymptotic expansion in powers of ε

−→q =−→q 0(−→y ,−→x )+ ε−→q 1(−→y ,−→x )+ ε
2−→q 2(−→y ,−→x )+ ... (6.4)

19



This leads to the following perturbations equations for Eqs. (6.1)-(6.2) at the successive
orders of powers of ε:

−→q 0 =−D0(
−→∇ yc1 +

−→∇ xc0)+ c0−→v 0 (6.5)
−→q 1 =−D0(

−→∇ yc2 +
−→∇ xc1)+ c0−→v 1 + c1−→v 0 (6.6)

−→q 2 =−D0(
−→∇ yc3 +

−→∇ xc2)+ c0−→v 2 + c1−→v 1 + c2−→v 0 (6.7)

and for Eq. (6.2) 

−→∇ y ·−→q 0 = 0 (6.8)

∂c0

∂ t
+
−→∇ y ·−→q 1 +

−→∇ x ·−→q 0 = 0 (6.9)

∂c1

∂ t
+
−→∇ y ·−→q 2 +

−→∇ x ·−→q 1 = 0 (6.10)

As for the homogenised equations at the first three orders, Eqs. (5.18), (5.46) and
(5.68), they are reexpressed as follows

First-order 
φ

∂c0

∂ t
+

∂ < q0
i >

∂xi
= 0 (6.11)

< q0
i >=−Di j

∂c0

∂x j
+ c0 < v0

i > (6.12)

Second-order corrector
φ

∂ c̄1

∂ t
+

∂ < q1
i >

∂xi
= 0 (6.13)

< q1
i >=−Ei jk

∂ 2c0

∂x j∂xk
−D′i j

∂c0

∂x j
−Di j

∂ c̄1

∂x j
+ c0 < v1

i >+c̄1 < v0
i > (6.14)

Third-order corrector

φ
∂ c̄2

∂ t
+

∂ < q2
i >

∂xi
= 0 (6.15)

< q2
i >=−Fi jkl

∂ 3c0

∂x j∂xk∂xl
−E ′i jk

∂ 2c0

∂x j∂xk
−Ei jk

∂ 2c̄1

∂x j∂xk

−D′′i j
∂c0

∂x j
−D′i j

∂ c̄1

∂x j
−Di j

∂ c̄2

∂x j
+ c0 < v2

i >+c1 < v1
i >+c2 < v0

i > (6.16)

To analyse whether volume means of local fluxes have the properties of macroscopic
fluxes, we consider the following identity to transform volume means into surface
means

∂

∂yi
(y jqi)≡ y j

∂qi

∂yi
+q j (6.17)
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6.3 First-order macroscopic flux
Let take qi = q0

i in Eq. (6.17) and then integrate over Ωp. Since by Eq. (6.8) q0
i is

solenoidal according to −→y , it reduces to

1
|Ω |

∫
Ωp

∂

∂yi
(y jq0

i ) dΩ =< q0
j > . (6.18)

Applying the divergence theorem and the no-flux boundary condition Eq. (6.3) of order
ε0, leads to:

1
|Ω |

∫
δΩp∩δΩ

y jq0
i ni dS =< q0

j > . (6.19)

Let li be the dimensionless length of the period along the yi axis. We denote by Σ0
i and

~n

l2

l1

y1

Σp1
Σ0

p1

y2

Σ2

Ωs

ΩpΓ

Figure 2: Two-dimensional periodic cell Ω.

Σi the cross-sections of the period at y= 0 and yi = liei, respectively. Σ0
pi

and Σpi are the
fluid parts of Σ0

i and Σi, respectively (Cf. Fig.2). We firstly note that y jq0
i is Ω-periodic

in the yk(k 6= j) direction. Consequently, only integrals over boundaries Σ0
j and Σ j

(where the normal unit vectors are ±e j) remain, the others cancel out. Furthermore,
y jq0

i = 0 for y j = 0. Therefore, the integral over Σ0
j is zero. We are left with

1
|Ω |

∫
δΩp∩δΩ

y jq0
i ni dS =

1
|Ω |

∫
Σp j

l jq0
i dS =

1
| Σ j |

∫
Σp j

q0
j dS, (6.20)

(without summation over j), and we define

< q0
j >Σi=

1
| Σ j |

∫
Σp j

q0
j dS. (6.21)
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Hence, we have
< q0

j >=< q0
j >Σ j , (6.22)

which means that the volume mean of q0
j is equal to a surface mean. Therefore, < q0

j >
has the properties of a macroscopic flux. As a consequence, from the expression of
−→q 0, Eq. (6.5), we deduce that

< v0
j >=< v0

j >Σ j , (6.23)

which means that the volume mean of −→v 0 has the properties of a Darcy’s velocity.
Note that the equalities betwen volume means and surface means of q0

j and v0
j are

consequences of the solenoidal character of −→q 0 and −→v 0, according to variable −→y .
Therefore, Eqs. (6.11)-(6.12) can be rewritten as

φ
∂c0

∂ t
+

∂ < q0
i >Σpi

∂xi
= 0, (6.24)

< q0
i >Σpi

=−Di j
∂c0

∂x j
+< c >< v0

i >Σpi
, (6.25)

and the first-order macroscopic description Eq. (5.26) can be expressed as
φ

∂ < c >
∂ t

+
∂ < qi >Σpi

∂xi
= O(εφ

∂ < c >
∂ t

), (6.26)

< qi >Σpi
=−Di j

∂ < c >
∂x j

+< c >< v0
i >Σpi

+O(ε < qi >Σpi
), (6.27)

where the first-order macroscopic solute flux and fluid velocity are defined by{
< qi >Σpi

=< q0
i >Σpi

+O(ε < qi >Σpi
), (6.28)

< v0
i >Σpi

=< v0
i >Σpi

+O(ε < vi >Σpi
). (6.29)

Finally, in dimensional variables the first-order transport model read
φ

∂ < ĉ >
∂ t̂

+
∂ < q̂i >Σ̂pi

∂ X̂i
= O(εφ

∂ < ĉ >
∂ t̂

), (6.30)

< q̂i >Σ̂pi
=−D̂diff

i j
∂ < ĉ >

∂ X̂ j
+< ĉ >< v̂0

i >Σ̂pi
+O(ε < q̂i >Σ̂pi

). (6.31)

6.4 Second-order macroscopic flux
To analyse the volume mean of −→q 1, let consider identity Eq. (6.17) with qi = q1

i and
integrate over Ωp. This yields

< q1
i >Σpi

=< yi
∂q1

j

∂y j
>+< q1

i > . (6.32)
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Now, by Eq. (6.9), we get that −→q 1 is non-solenoidal

∂q1
j

∂y j
=−

∂q0
j

∂x j
− ∂c0

∂ t
. (6.33)

Consequently, the volume average of −→q 1 is not equal to its surface average

< q1
i >Σpi

6=< q1
i >, (6.34)

which means that <−→q 1 > is not a macroscopic flux.
By starting from Eq. (6.32) and then using Eq. (6.33) to get the term < yi∂q1

j/∂y j >,
we obtain the following expression for <−→q 1 >Σpi

(Cf. Appendix D.1):

< q1
i >Σpi

=−(Ei jk−EΣ
i jk)

∂ 2c0

∂x j∂xk

−(D′i j−D′Σi j)
∂c0

∂x j
−Di j

∂ c̄1

∂x j
(6.35)

+c0 < v1
i >Σpi

+c̄1 < v0
i >Σpi

,

where 
EΣ

i jk =< D0yiγ
0
jk−

1
φ

yiD jk >, (6.36)

D′Σi j =< yi(
1
φ
< v0

j >−v0
j)> . (6.37)

Using Eq. (6.32), the second-order corrector of the macroscopic description, Eq.
(6.13), can be rewritten in terms of the second-order macroscopic flux as follows:

φ
∂ c̄1

∂ t
+

∂

∂xi
(< q1

i >Σpi
) =

∂

∂xi
(< yi

∂q1
j

∂y j
>). (6.38)

Then, using Eqs. (D.4), (D.9), (6.36), (6.37), it becomes
φ

∂ c̄1

∂ t
+

∂

∂xi
(< q1

i >Σpi
) =

∂

∂xi
[EΣ

i jk
∂ 2c0

∂x j∂xk
+D

′Σ
i j

∂c0

∂x j
− c0(< v1

i >−< v1
i >Σpi

)]. (6.39)

Now, in order to obtain the corresponding second-order macroscopic description, let
firstly add Eq. (6.24) to Eq. (6.39) multiplied by ε . We get

φ
∂ < c >

∂ t
+

∂ < qi >Σpi

∂xi
=

∂

∂xi

[
εEΣ

i jk
∂ 2 < c >
∂x j∂xk

+ εD
′Σ
i j

∂ < c >
∂x j

−< c > (< vi >−< vi >Σpi
)

]
(6.40)

+O(ε2
φ

∂ < c >
∂ t

).
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Next, we add Eq. (6.25) to Eq. (6.35) multiplied ε , and we obtain
< qi >Σpi

=−ε(Ei jk−EΣ
i jk)

∂ 2 < c >
∂x jxk

−(Di j + εD′i j− εD
′Σ
i j )

∂ < c >
∂x j

(6.41)

+< c >< vi >Σpi
+O(ε2 < qi >Σpi

).

In the above equations, the second-order macroscopic solute flux and fluid velocity are
defined by {

< qi >Σpi
=< q0

i >Σpi
+ε < q1

i >Σpi
+O(ε2 < qi >Σpi

), (6.42)

< vi >Σpi
=< v0

i >Σpi
+ε < v1

i >Σpi
+O(ε2 < vi >Σpi

), (6.43)

respectively. In dimensional variables, Eqs. (6.40) and (6.41) read

φ
∂ < ĉ >

∂ t̂
+

∂ < q̂i >Σ̂pi

∂ X̂i
=

∂

∂ X̂i

[
ÊΣ

i jk
∂ 2 < ĉ >

∂̂X j∂Xk
+ D̂

′Σ
i j

∂ < ĉ >
∂ X̂ j

−< ĉ > (< v̂i >−< v̂i >Σ̂pi

]

+O(ε2
φ

∂ < ĉ >
∂ t̂

), (6.44)

< q̂i >Σpi
=−(Êdiff

i jk− ÊΣ
i jk)

∂ 2 < ĉ >
∂X jXk

− (D̂diff
i j + D̂

′disp
i j − D̂

′Σ
i j )

∂ < ĉ >
∂X j

+< ĉ >< v̂i >Σpi
+O(ε2 < q̂i >Σpi

), (6.45)

where 
Êdiff

i jk = lDcEi jk, (6.46)

ÊΣ
i jk = lDcEΣ

i jk, (6.47)

D̂
′Σ
i j = εDcD

′Σ
i j . (6.48)

6.5 Third-order macroscopic flux
Proceeding in the same manner as in §6.4, we also conclude that

<−→q 2 >6=<−→q 2 >Σpi
, (6.49)
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and we show that in dimensional variables, the third-order transport model expressed
in terms of the macroscopic flux reads (Cf. Appendix D.2):

φ
∂ < ĉ >

∂ t̂
+

∂

∂Xi
(< qi >Σpi

) =

∂

∂Xi

[
F̂Σ

i jkl
∂ 3 < c >

∂X j∂Xk∂Xl
+(ÊΣ

i jk + Ê
′Σ
i jk)

∂ 2 < c >
∂X j∂Xk

+(D̂
′Σ
i j + D̂

′′Σ
i j )

∂ < c >
∂X j

+< c > (< vi >−< vi >Σpi
)

]
+O(ε3

φ
∂ < ĉ >

∂ t̂
). (6.50)

< q̂i >Σpi
=−(F̂ diff

i jkl− F̂Σ
i jk)

∂ 3 < c >
∂X j∂Xk∂Xl

−(Êdiff
i jk− ÊΣ

i jk + Ê ′i jk− Ê
′Σ
i jk)

∂ 2 < c >
∂X j∂Xk

−(D̂i j + D̂′i j− D̂
′Σ
i j + D̂

′′
i j− D̂

′′Σ
i j )

∂ < c >
∂X j

+< ĉ >< v̂i >Σpi
+O(ε3 < q̂i >Σpi

) (6.51)

where (Cf. Appendix D.2) 
F̂Σ

i jkl = l2DcFΣ
i jkl , (6.52)

Ê
′Σ
i jk = εlDcE

′Σ
i jk, (6.53)

D̂
′′Σ
i j = ε

2DcD
′′Σ
i j . (6.54)

6.6 Comments
Since < q̂i >Σpi

has the properties of a macroscopic flux, the right-hand-sides of the
mass-balance equations, Eq. (6.44) and Eq. (6.50), represent source terms, which are
actually expressions of the second-order and third-order non-local effects, respectively.
When the medium is macroscopically isotropic, the third-order tensors Êdiff

i jk, ÊΣ
i jk and

Ê
′Σ
i jk are equal to zero and, furthermore, < v̂i >=< v̂i >Σpi

in the second-order model
Eq. (6.44) (Auriault et al., 2005).

7 Conclusions
In the present paper, higher-order asymptotic homogenisation up to the third order of
solute transport in the advective-diffusive regime is performed. The main result of the
study is that low scale separation induces dispersion effects. At the second order, the
transport model is similar to the classical model of dispersion : the dispersion tensor is
the sum of the diffusion tensor and a mechanical dispersion tensor, while this property
is not verifed in the homogenised dispersion model obtained at higher Péclet number.
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The velocity is governed by a second-order law which reduces to Darcy’s law in case of
isotropy. Indeed, the second-order model of advection-diffusion is rigorously identical
to the phenomenological model of dispersion when the medium is macroscopically
isotropic. The third-order description contains second and third concentration gradient
terms, with a fourth order tensor of diffusion and with a third-order and an additional
second-order tensors of dispersion. The analysis of the macroscopic fluxes shows that
the second and the third order macroscopic fluxes are distinct from the volume means of
the corresponding local fluxes. From the writing of the second and third order models in
terms of the macroscopic fluxes arise expressions of the non-local effects. These results
show that isotropy always reduces the influence of scale effects. All theses results are
valid for macroscopically homogeneous media and macroscopic heterogeneity would
lead to stronger non-local effects.

The results at Péclet number O(ε) can quite easily be deduced from the above
analysis. This leads to the model of diffusion at the first order, the model of advection-
diffusion at the second order and dispersion effects appear at the third order. Eventually,
we may conclude that scale separation is a crucial issue whenever the fluid is in mo-
tion, since low scale separation induces a modification of the apparent transport regime
Royer (2018).

Appendices

A First-order homogenisation

A.1 Definition of vector χ j

Let multiply the local problem defined by Eqs.(5.9)-(5.10) by a test function α satisfy-
ing the condition of having zero mean, and then, let integrate over Ωp. We obtain the
following variational formulation∫

Ωp
D0

∂α

∂yi

∂c1

∂yi
dΩ =−

∫
Ωp

D0
∂α

∂yi
dΩ

∂c0

∂xi
. (A.1)

Vector χ j is the solution for c1 when ∂c0/∂xi = δi j. Therefore, the variational formu-
lation associated with χ j is∫

Ωp
D0

∂α

∂yi

∂ χ j

∂yi
dΩ =−

∫
Ωp

D0
∂α

∂y j
dΩ, (A.2)

and χ j must satisfy 

∂

∂yi

[
D0(

∂ χ j

∂yi
+ Ii j)

]
= 0 in Ωp,[

D0(
∂ χ j

∂yi
+ Ii j)

]
ni = 0 on Γ,

< χ j >= 0,
−→
χ : periodic in −→y .

(A.3)
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A.2 Symmetry of tensor Di j

To demonstrate the symmetry of Di j, we firstly take α = χq,

c1 = χp,
∂c0

∂xi
= δip,

(A.4)

into Eq. (A.1). This leads to:∫
Ωp

D0
∂ χq

∂yi

∂ χp

∂yi
dΩ =−

∫
Ωp

D0
∂ χq

∂yp
dΩ. (A.5)

Next, we consider  α = χp,

c1 = χq,
∂c0

∂xi
= δiq,

(A.6)

into Eq. (A.1), which leads to:∫
Ωp

D0
∂ χp

∂yi

∂ χq

∂yi
dΩ =−

∫
Ωp

D0
∂ χp

∂yq
dΩ. (A.7)

By Eqs. (A.5) and (A.7), we deduce that:∫
Ωp

∂ χq

∂yp
dΩ =

∫
Ωp

∂ χp

∂yq
dΩ, (A.8)

Consequently, we have:
Dqp = Dpq, (A.9)

which proves the symmetry of ¯̄D.

B Second-order homogenisation

B.1 Boundary value problem for c2

The third-order boundary value given by Eqs. (5.14) and (5.16) can be written as
follows: 

∂

∂yi

[
D0(

∂c2

∂yi
+

∂c1

∂xi
)

]
− ∂

∂yi
(c0v1

i )−
∂

∂yi
(c1v0

i ) =

∂c0

∂ t
− ∂

∂xi

[
D0(

∂c1

∂yi
+

∂c0

∂xi
)

]
+

∂

∂xi
(c0v0

i ) within Ωp, (B.1)[
D0(

∂c2

∂yi
+

∂c1

∂xi
)

]
ni = 0 over Γ. (B.2)

Now, using Eq. (5.8), and the second order of Eq. (4.2)

∂v1
i

∂yi
+

∂v0
i

∂xi
= 0, (B.3)
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while bearing in mind Eq. (5.7), the second and the third terms of the left hand side of
Eq. (B.1) can be transformed as follows:

∂

∂yi
(c0v1

i ) =−c0 ∂v0
i

∂xi
, (B.4)

∂

∂yi
(c1v0

i ) = v0
i

∂c1

∂yi
. (B.5)

Next, using Eq. (5.22) we get

∂c0

∂ t
=

1
φ

Di j
∂ 2c0

∂xi∂x j
− 1

φ
< v0

i >
∂c0

∂xi
, (B.6)

and from Eq. (5.12), we obtain

∂c1

∂xi
= χ j

∂ 2c0

∂xi∂x j
+

∂ c̄1

∂xi
. (B.7)

Substituting Eqs. (B.4) to (B.7) into Eqs. (B.1)-(B.2), and then using the expression
Eq. (5.20), we get the boundary value problem Eqs. (5.31)-(5.32).

B.2 Definitions of tensor η jk and vector π j

By multiplying the local problem Eqs. (5.31)-(5.32) by a test function α of zero mean,
and then integrating over Ωp, we obtain its variational formulation:

∫
Ωp

∂α

∂yi
[D0(

∂c2

∂yi
+χ j

∂ 2c0

∂xi∂x j
+

∂ c̄1

∂xi
)] dΩ =

∫
Ωp

αD0 γ
0
i j

∂ 2c0

∂xi∂x j
dΩ−

∫
Ωp

αv0
i γ

0
i j

∂c0

∂x j
dΩ.

(B.8)

nlm is the particular solution for c2 when
∂ 2c0

∂xi∂x j
= IilI jm,

∂c0

∂xi
=

∂ c̄1

∂xi
= 0.

Therefore, the variational formulation associated with n jk reads∫
Ωp

∂α

∂yi
D0(

∂nlm

∂yi
+χm δil) dΩ =

∫
Ωp

αD0 γ
0
lm dΩ, (B.9)
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and n jk must satisfy

∂

∂yi
(D0(

∂ηlm

∂yi
+χmIil)) =

1
φ

Dlm−D0γ
0
lm within Ωp,

(D0(
∂ηlm

∂yi
+χmIil))ni = 0 over Γ,

< ηlm >= 0,

ηlm: Ω-periodic in variable −→y .

(B.10)

From its definition, we see that ηlm is a parameter related to the diffusion mechanism.

πk is the solution for c2 when 
∂c0

∂x j
= I jk,

∂ c̄1

∂xi
=

∂ 2c0

∂xi∂x j
= 0.

The variational formulation associated with πk is thus∫
Ωp

∂α

∂yi
D0

∂πk

∂yi
dΩ =−

∫
Ωp

αv0
i γ

0
ik dΩ, (B.11)

and πk must satisfy

∂

∂yi
(D0

∂πk

∂yi
) = γ

0
ikv0

i −
1
φ
< v0

k > within Ωp,

(D0
∂πk

∂yi
)ni = 0 over Γ,

< πk >= 0,

πk: Ω-periodic in variable −→y .

(B.12)

From the above definition it is clear that vector −→π depends on both the diffusive and
the convective phenomena, which characterizes the presence of dispersive effects.

B.3 Properties of the third-order tensor Ei jk

B.3.1 Symmetry by construction of a third-order tensor with respect to its last
two indices

By construction, Ei jk is symmetric with respect its last two indices:

Ei jk
∂ 2c0

∂x j∂xk
= Ei jk

∂ 2c0

∂xk∂x j
= Eik j

∂ 2c0

∂xk∂x j
= Eik j

∂ 2c0

∂x j∂xk
. (B.13)

Consequently:
Ei jk = Eik j. (B.14)
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In case of isotropy, third-order tensors are scalar multiples of the permutation tensor

Ei jk = E εi jk εi jk : permutation tensor. (B.15)

Since εi jk =−εik j, Eq. (B.14) induces that: E = 0. Thus, any third-order tensor which
is symmetric with respect to its last two indices is equal to zero in case of istropy.

B.3.2 Antisymmetry with respect to the first two indices

Let take α = ηlm in the variational formulation associated with functions χ j Eq. (A.2).
We obtain ∫

Ωp
D0

∂ηlm

∂yi

∂ χ j

∂yi
dΩ =−

∫
Ωp

D0
∂ηlm

∂y j
dΩ. (B.16)

Let now take α = χ j in the variational formulation associated with ηlm Eq. (B.9). We
get ∫

Ωp
D0

∂ηlm

∂yi

∂ χ j

∂yi
dΩ =

−
∫

Ωp
D0χm

∂ χ j

∂yl
dΩ+

∫
Ωp

D0χ j
∂ χm

∂yl
dΩ.

(B.17)

From Eqs. (B.16) and (B.17), we deduce∫
Ωp

D0(
∂ηlm

∂y j
+χ jIlm) dΩ =

∫
Ωp

D0χm
∂ χ j

∂yl
−
∫

Ωp
D0χ j

∂ χm

∂yl
dΩ. (B.18)

Thus, from the definition of E jlm Eq. (5.44), we have

E jlm =
1
|Ω |

∫
Ωp

D0χm
∂ χ j

∂yl
dΩ− 1

|Ω |

∫
Ωp

D0χ j
∂ χm

∂yl
dΩ, (B.19)

and

El jm =
1
|Ω |

∫
Ωp

D0χm
∂ χl

∂y j
dΩ− 1

|Ω |

∫
Ωp

D0χl
∂ χm

∂y j
dΩ =

1
|Ω |

∫
Ωp

D0χ j
∂ χm

∂yl
dΩ− 1

|Ω |

∫
Ωp

D0χm
∂ χ j

∂yl
dΩ.

(B.20)

Therefore
E jlm =−El jm. (B.21)

Since the medium is macroscopically homogeneous, Ei jk does not depend on the macro-
scopic variable −→x . Consequently, the antisymmetry with respect the two first indices
implies that

∂

∂xi
(Ei jk

∂ 2c0

∂x j∂xk
) = 0. (B.22)
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B.4 Properties of tensor D′i j

Let take c2 = πk and α = χl in the variational formulation of the second-order local
problem Eq. (B.8). We obtain∫

Ωp

∂ χl

∂yi
D0

∂πk

∂yi
dΩ =−

∫
Ωp

χl
∂ χk

∂yi
v0

i dΩ−
∫

Ωp
χlv0

k dΩ. (B.23)

Now, by taking c1 = χl and α = πk in the variational formulation of the first-order
problem Eq. (A.1), we get∫

Ωp

∂πk

∂yi
D0

∂ χl

∂yi
dΩ =−

∫
Ωp

D0
∂πk

∂yl
dΩ. (B.24)

From Eqs. (B.23) and (B.24), we deduce∫
Ωp

D0
∂πk

∂yl
dΩ =

∫
Ωp

χl
∂ χk

∂yi
v0

i dΩ+
∫

Ωp
χlv0

k dΩ. (B.25)

Now, by considering the definition of ¯̄D
′
Eq. (5.45) with the above expression, it comes

D′lk =< D0
∂πk

∂yl
− v0

l χk >=< χlv0
k >+< χl

∂ χk

∂yi
v0

i >−< χkv0
l >, (B.26)

from which we deduce

D′lk−D′kl = 2(< χlv0
k >−< χkv0

l >) 6= 0. (B.27)

Therefore, ¯̄D
′

is not symmetric:
D′lk 6= D′kl . (B.28)

From Eq. (B.26), tensor ¯̄D
′

can be decomposed as

D′lk =
sD′lk + aD′lk, (B.29)

where
sD′lk =< χl

∂ χk

∂yi
v0

i > (B.30)

is symmetric and where

aD′lk =< χlv0
k >−< χkv0

l > (B.31)

is antisymmetric.
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C Third order homogenisation

C.1 Boundary value problem for c3

From Eqs. (5.36)-(5.38), we get the following boundary value problem for c3:

∂

∂yi

[
D0(

∂c3

∂yi
+

∂c2

∂xi
)

]
− ∂

∂yi
(c0v2

i )−
∂

∂yi
(c1v1

i )−
∂

∂yi
(c2v0

i ) =

∂c1

∂ t
− ∂

∂xi

[
D0(

∂c2

∂yi
+

∂c1

∂xi
)

]
+

∂

∂xi
(c0v1

i )+
∂

∂xi
(c1v0

i ) in Ωp, (C.1)[
D0(

∂c3

∂yi
+

∂c2

∂xi
)

]
ni = 0 over Γ. (C.2)

Using Eq. (5.8) and Eq. (B.3), and Eq. (4.2) at the third order

∂v2
i

∂yi
+

∂v1
i

∂xi
= 0, (C.3)

we deduce that 

∂

∂yi
(c0v2

i ) =−c0 ∂v1
i

∂xi
, (C.4)

∂

∂yi
(c1v1

i ) =−c1 ∂v0
i

∂xi
+

∂c1

∂yi
v1

i , (C.5)

∂

∂yi
(c2v0

i ) =
∂c2

∂yi
v0

i , (C.6)

∂

∂xi
(c0v1

i ) = c0 ∂v1
i

∂xi
+

∂c0

∂xi
v1

i , (C.7)

∂

∂xi
(c1v0

i ) = c1 ∂v0
i

∂xi
+

∂c1

∂xi
v0

i . (C.8)

Then, substituting Eqs. (C.4)-(C.8) into Eq. (C.1), while using Eqs. (5.20) and (5.40)
yields 

∂

∂yi

[
D0(

∂c3

∂yi
+

∂c2

∂xi
)

]
=−D0γ

1
i jk

∂ 3c0

∂xi∂x j∂xk

+(v0
i γ

1
i jk−D0

∂πk

∂y j
)

∂ 2c0

∂x j∂xk
−D0γ

0
i j

∂ 2c̄1

∂xi∂x j
(C.9)

+(v0
i

∂π j

∂yi
+ v1

i γ
0
i j)

∂c0

∂x j
+ v0

i γ
0
i j

∂ c̄1

∂x j
+

∂c1

∂ t
.

We may now determine an expression for ∂c1/∂ t. From the definition of c1 (Eq. 5.12),
we have

∂c1

∂ t
= χi

∂

∂ t
(

∂c0

∂xi
)+

∂ c̄1

∂ t
= χi

∂

∂xi
(

∂c0

∂ t
)+

∂ c̄1

∂ t
. (C.10)
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Now, using the expression of ∂c0/∂ t (Eq. B.6) and deducing ∂ c̄1/∂ t from Eq. (5.46),
the above equation finally becomes

∂c1

∂ t
=

1
φ

χiD jk
∂ 3c0

∂xi∂x j∂xk

+
1
φ
(D′i j−χi < v0

j >)
∂ 2c0

∂xi∂x j
+

1
φ

Di j
∂ 2c̄1

∂xi∂x j
(C.11)

− 1
φ
(χi

∂ < v0
j >

∂xi
+< v1

j >)
∂c0

∂x j
− 1

φ
< v0

i >
∂ c̄1

∂xi
.

Then, from the expression obtained for c2 Eq. (5.33), we get

∂c2

∂xi
= η jk

∂ 3c0

∂xi∂x j∂xk
+π j

∂ 2c0

∂xi∂x j
+χ j

∂ 2c̄1

∂xi∂x j
+

∂ c̄2

∂xi
. (C.12)

Finally, substituting Eqs. (C.11) and (C.12) into Eq. (C.9), we get Eq. (5.56), and the
boundary condition Eq. (C.2) over Γ becomes Eq. (5.57).

C.2 Variational formulation of the local boundary value problem
The variational formulation of the the local problem defined by Eqs. (5.56) and (5.57)
is obtained by multiplying both equations by a test function α of zero mean and by
integrating over Ωp:

∫
Ωp

∂α

∂yi
[D0(

∂c3

∂yi
+η jk

∂ 3c0

∂xi∂x j∂xk
+π j

∂ 2c0

∂xi∂x j
+χ j

∂ 2c̄1

∂xi∂x j
+

∂ c̄2

∂xi
)] dΩ =

−
∫

Ωp

α(
1
φ

χiD jk−D0γ
1
i jk) dΩ

∂ 3c0

∂xi∂x j∂xk

−
∫

Ωp

α(v0
i γ

1
i jk−D0

∂πk

∂y j
− 1

φ
χ j < v0

k >) dΩ
∂ 2c0

∂x j∂xk

+
∫

Ωp

αD0γ
0
i j dΩ

∂ 2c̄1

∂xi∂x j
(C.13)

−
∫

Ωp

α(v0
i

∂π j

∂yi
+ v1

i γ
0
i j−

1
φ

χi
∂ < v0

j >

∂xi
) dΩ

∂c0

∂x j

−
∫

Ωp

αv0
i γ

0
i j dΩ

∂ c̄1

∂x j
.

C.3 Definition of the third-order tensor ξlmp

ξlmp is the solution for c3 when

∂ 3c0

∂xi∂x j∂xk
= IilI jmIkp,
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while the other forcing terms are set to zero. Thus, ξlmp must satisfy

∂

∂yi

[
D0(

∂ξlmp

∂yi
+ηmpIil)

]
=

1
φ

χlDmp−D0γ
1
lmp within Ωp,[

D0(
∂ξlmp

∂yi
+ηmpIil)

]
ni = 0 over Γ,

< ξlmp >= 0,

¯̄̄
ξ : Ω-periodic.

(C.14)

From Eq. (C.13), we deduce the corresponding variational formulation:∫
Ωp

∂α

∂yi

[
D0(

∂ξlmp

∂yi
+ηmpIil)

]
dΩ =−

∫
Ωp

α(
1
φ

χlDmp−D0γ
1
lmp) dΩ. (C.15)

C.4 Definition of the second-order tensor τlm

τlm is the solution for c3 when

∂ 2c0

∂xi∂x j
= IilI jm.

Thus, it is the solution to

∂

∂yi

[
D0(

∂τlm

∂yi
+πmIil)

]
=

v0
i γ1

ilm−D0
∂πm

∂yl
+

1
φ

D′lm−
1
φ

χl < v0
m > within Ωp,[

D0(
∂τlm

∂yi
+πmIil)

]
ni = 0 over Γ,

< τlm >= 0,

¯̄τ: Ω-periodic,

(C.16)

and the associated variational formulation reads∫
Ωp

∂α

∂yi

[
D0(

∂τlm

∂yi
+πmIil)

]
dΩ =−

∫
Ωp

α(v0
i γ

1
ilm−D0

∂πm

∂yl
− 1

φ
χl < v0

m >) dΩ.

(C.17)

C.5 Definition of vector θk

θk is the solution for c3 when
∂c0

∂x j
= I jk.
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Therefore, it must satisfy

∂

∂yi
(D0

∂θk

∂yi
) = v0

i
∂πk

∂yi
+ v1

i γ
0
ik−

1
φ

χi
∂ < v0

k >

∂xi
− 1

φ
< v1

k > within Ωp,

(D0
∂θk

∂yi
) ni = 0 over Γ,

< θk >= 0,
−→
η : Ω-periodic.

(C.18)
The corresponding variational formulation is∫

Ωp

∂α

∂yi
D0

θk

∂yi
dΩ =−

∫
Ωp

α(v0
i

∂πk

∂yi
+ v1

i γ
0
ik−

1
φ

χi
∂ < v0

k >

∂xi
) dΩ. (C.19)

C.6 Properties of the fourth-order tensor Fjlmp

Let firstly take α = ξlmp in the variational formulation associated with −→χ Eq. (A.2):∫
Ωp

D0
∂ξlmp

yi

∂ χ j

∂yi
dΩ =−

∫
Ωp

D0
∂ξlmp

∂y j
dΩ. (C.20)

Next, by considering α = χ j in the variational formulation associated with
¯̄̄
ξ Eq.

(C.15), we get:∫
Ωp

D0
∂ξlmp

yi

∂ χ j

∂yi
dΩ =−

∫
Ωp

D0
∂ χ j

∂yi
ηmpIil dΩ− 1

φ

∫
Ωp

Dmpχ jχl dΩ+
∫

Ωp
χ jγ

1
lmp dΩ.

(C.21)
From the above two relationships, we deduce that:

Fjlmp =< D0ηmp
∂ χl

∂y j
>−< D0χ j

∂ηmp

∂yl
>+

1
φ

D0 < χ jχl ><
∂ χp

∂ym
>, (C.22)

which shows that Fjlmp is determined from −→χ and ¯̄η .

D Macroscopic fluxes

D.1 Derivation of < q1
i >Σpi

To determine < q1
i >Σpi

, we see from Eq. (6.32), that the term < yi∂q1
j/∂y j > must

be determined. This can be done by starting from Eq. (6.33). By Eq. (6.5), we firtsly
deduce that

∂q0
j

∂x j
=−D0γ

0
jk

∂ 2c0

∂x j∂xk
+ v0

j
∂c0

∂x j
+ c0 ∂v0

j

∂x j
, (D.1)
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and then from Eq. (5.18), we get

∂c0

∂ t
=

1
φ

D jk
∂ 2c0

∂x j∂xk
− 1

φ
< v0

j >
∂c0

∂x j
. (D.2)

Reporting expressions Eqs.(D.1) and (D.2) into Eq. (6.33), we get:

∂q1
j

∂y j
= (D0γ

0
jk−

1
φ

D jk)
∂ 2c0

∂x j∂xk
− (v0

j −
1
φ
< v0

j >)
∂c0

∂x j
− c0 ∂v0

j

∂x j
, (D.3)

from which we deduce

< yi
∂q1

j

∂y j
>=<D0yiγ

0
jk−

1
φ

yiD jk >
∂ 2c0

∂x j∂xk
−< yi(v0

j−
1
φ
< v0

j >)>
∂c0

∂x j
−c0 < yi

∂v0
j

∂x j
> .

(D.4)
Now, reporting the above expression together with Eq. (6.14) into Eq. (6.32), we obtain
the following expression for the surface mean of q1

i :

< q1
i >Σpi

=−(Ei jk−< D0yiγ
0
jk−

1
φ

yiD jk >)
∂ 2c0

∂x j∂xk

−(D′i j−< yi(
1
φ
< v0

j >−v0
j >)

∂c0

∂x j
−Di j

∂ c̄1

∂x j
(D.5)

−c0 < yi
∂v0

j

∂x j
>+c0 < v1

i >+c̄1 < v0
i > .

To be physically meaningful, the macroscopic fluid velociy must also be defined by a
surface mean. In order to determine < v1

i >Σpi
, let consider the identity

∂

∂y j
(yiv1

j) = yi
∂v1

j

∂y j
+ v1

j . (D.6)

Integrating over Ωp, we get

< v1
i >Σpi

=< yi
∂v1

j

∂y j
>+< v1

i > . (D.7)

Now, since by Eq. (4.2) at O(ε0)

∂v1
j

∂y j
=−

∂v0
j

∂x j
, (D.8)

we deduce that

< v1
i >Σpi

=−< yi
∂v0

j

∂x j
>+< v1

i > . (D.9)

Substituting Eq. (D.9) into Eq. (D.5) and bearing in mind Eq. (6.23), we finally get
Eq. (6.35) with Eqs. (6.36)-(6.37).
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D.2 Derivation of < q2
i >Σpi

Let consider identity Eq. (6.17) with qi = q2
i and integrate over Ωp:

< q2
i >Σpi

=< yi
∂q2

j

∂y j
>+< q2

i > . (D.10)

From Eq. (6.10), we get
∂q2

j

∂y j
=−

∂q1
j

∂x j
− ∂c1

∂ t
. (D.11)

Using the definition of −→q 1 Eq. (6.6), we deduce:
∂q1

j

∂x j
=−D0γ

1
jkl

∂ 3c0

∂x j∂xk∂xl
− (D0

∂πk

∂y j
− v0

j χk)
∂ 2c0

∂x j∂xk

−D0γ
0
jk

∂ 2c̄1

∂x j∂xk
+ c0 ∂v1

j

∂x j
+ v1

j
∂c0

∂x j
+ c̄1 ∂v0

j

∂x j
+ v0

j
∂ c̄1

∂x j
, (D.12)

and by Eq. (5.46), we get

∂ c̄1

∂ t
=

1
φ

D′jk
∂ 2c0

∂x j∂xk
+

1
φ

D jk
∂ 2c̄1

∂x j∂xk
− 1

φ
< v1

j >
∂c0

∂x j
− 1

φ
< v0

j >
∂ c̄1

∂x j
. (D.13)

Using Eqs. (D.11)-(D.13), we deduce

< yi
∂q2

j

∂y j
>=< D0yiγ

1
jkl >

∂ 3c0

∂x j∂xk∂xl

+< D0yi
∂πk

∂y j
− yiv0

j χk−
1
φ

yiD′jk >
∂ 2c0

∂x j∂xk

+< D0yiγ
0
jk−

1
φ

yiD jk >
∂ 2c̄1

∂x j∂xk

−< yi(v1
j −

1
φ
< v1

j >)>
∂c0

∂x j

−< yi(v0
j −

1
φ
< v0

j >)>
∂ c̄1

∂x j
(D.14)

−c0 < yi
∂v1

j

∂x j
>−c̄1 < yi

∂v0
j

∂x j
> .

Using identity (6.17) successively for qi = v1
i and qi = v2

i , and integrating both resulting
equations over Ωp, we can easily show that

−c̄1 < yi
∂v0

j

∂x j
>= c̄1(< v1

i >Σpi
−< v1

i >, (D.15)

−c0 < yi
∂v1

j

∂x j
>= c0(< v2

i >Σpi
−< v2

i > . (D.16)
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By Eqs. (D.10) and (D.14), and using both above equations, together with the expres-
sion of < q2

i > Eq. (6.16), yields



< q2
i >Σpi

=−(Fi jkl−FΣ
i jkl)

∂ 3c0

∂x j∂xk∂xl

−(E ′i jk−E
′Σ
i jk)

∂ 2c0

∂x j∂xk

−(Ei jk−EΣ
i jk)

∂ 2c̄1

∂x j∂xk

−(D′′i j−D
′′Σ
i j )

∂c0

∂x j
(D.17)

−(D′i j−D
′Σ
i j )

∂ c̄1

∂x j

−Di j
∂ c̄2

∂x j

+c0 < v2
i >Σpi

+c̄1 < v1
i >Σpi

+c̄2 < v0
i >Σpi

,

in which 

FΣ
i jkl =< D0yiγ

1
jkl >, (D.18)

E
′Σ
i jk =< D0yi

∂πk

∂y j
− yiv0

j χk−
1
φ

yiD′jk >, (D.19)

D
′′Σ
i j =< yi(

1
φ
< v1

j >−v1
j)> . (D.20)

From Eqs. (5.68) and (D.10), we get the following writing for the third-order corrector
of the macroscopic mass-balance equation

φ
∂ c̄2

∂ t
+

∂

∂xi
< q2

i >Σpi
=

∂

∂xi
(< yi

∂q2
j

∂y j
>) (D.21)

Then, using the expression of < yi
∂q2

j

∂y j
> Eq. (D.14), it becomes



φ
∂ c̄2

∂ t
+

∂

∂xi
< q2

i >Σpi
=

∂

∂xi
[FΣ

i jkl
∂ 3c0

∂x j∂xk∂xl
+E

′Σ
i jk

∂ 2c0

∂x j∂xk
+EΣ

i jk
∂ 2c̄1

∂x j∂xk
]

+
∂

∂xi
[D
′′Σ
i j

∂c0

∂x j
+D

′Σ
i j

∂ c̄1

∂x j
] (D.22)

− ∂

∂xi
[c0(< v2

i >−< v2
i >Σpi

+c1(< v1
i >−< v1

i >Σpi
).
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To obtain the expression of the third-order macroscopic description with respect to the
macroscopic flux, let firstly add Eq. (6.12) to Eq. (6.39) multiplied by ε and to Eq.
(D.22) multiplied by ε2:

φ
∂ < c >

∂ t
+

∂

∂xi
(< qi >Σpi

) =

∂

∂xi

[
ε

2FΣ
i jkl

∂ 3 < c >
∂x j∂xk∂xl

+(εEΣ
i jk + ε

2E
′Σ
i jk)

∂ 2 < c >
∂x j∂xk

+ (εD
′Σ
i j + ε

2D
′′Σ
i j )

∂ < c >
∂x j

−< c > (< vi >−< vi >Σpi
)

]
(D.23)

+O(ε3)(φ
∂ < c >

∂ t
),

and then let add Eq. (6.12) to Eq. (6.35) multiplied ε and to Eq. (D.17) multiplied by
ε2 

< qi >Σpi
=−ε

2(Fi jkl−FΣ
i jkl)

∂ 3 < c >
∂x j∂xk∂xl

−[ε(Ei jk−EΣ
i jk)+ ε

2(E ′i jk−E
′Σ
i jk)]

∂ 2 < c >
∂x j∂xk

−[Di j + ε(D′i j−D
′Σ
i j )+ ε

2(D
′′
i j−D

′′Σ
i j )]

∂ < c >
∂x j

(D.24)

+< c >< vi >Σpi
+O(ε3 < qi >Σpi

),

where{
< qi >Σpi

=< q0
i >Σpi

+ε < q1
i >Σpi

+ε
2 < q2

i >Σpi
+O(ε3 < qi >Σpi

),(D.25)

< vi >Σpi
=< v0

i >Σpi
+ε < v1

i >Σpi
+ε

2 < v2
i >Σpi

+O(ε3 < vi >Σpi
).(D.26)
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