Tannins extraction: A key point for their valorization and cleaner production
Pedro Luis de Hoyos-Martinez, Juliette Merle, Jalel Labidi, Fatima Charrier-El Bouhtoury

To cite this version:
Pedro Luis de Hoyos-Martinez, Juliette Merle, Jalel Labidi, Fatima Charrier-El Bouhtoury. Tannins extraction: A key point for their valorization and cleaner production. Journal of Cleaner Production, 2019, 206, pp.1138-1155. 10.1016/j.jclepro.2018.09.243. hal-01925978

HAL Id: hal-01925978
https://hal.science/hal-01925978
Submitted on 27 Nov 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Tannins extraction: a key point for their valorization and cleaner production

Pedro L. de Hoyos-Martínez1,2, Juliette Merle2, Jalel Labidi1, Fatima Charrier – El Bouhtoury2*

1 Chemical and environmental engineering department, University of the Basque Country, Plaza Europa, 1, 20018, Donostia-San sebastián, Spain.

2 CNRS/UPPA PAU & PAYS ADOUR/ E25 UPPA, Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), IUT des Pays de l’Adour, 371 Rue de Ruisseau, 40004 Mont de Marsan, France

*Corresponding author:
Fatima Charrier - El Bouhtoury: fatima.charrier@univ-pau.fr

Abstract:
Tannins are phenolic compounds with considerable abundance in nature. They have attracted significant attention lately owing to their huge variety of potential applications. Accordingly, the tannin-related activity in terms of research has undergone a great boost, especially as green feedstock for materials in several fields. Nevertheless, the extraction process remains as the main bottleneck for their valorization, due to their heterogeneous nature. In the present review, a comprehensive study of the main types of tannins extraction techniques was carried out based on the works from the last 20 years. The literature review was carried through analysis of an initial sample of works followed by snowballing process, obtaining the main extraction parameters of each method. Thereby, the different tannins extraction methods were assessed and their major strengths and weaknesses elucidated. Moreover, a direct comparison between the different techniques was done, leading to the main prospectives for the efficient and clean tannins extraction and production.

Keywords: tannin, polyphenols, novel extraction techniques, green production

Abbreviations: GA-gallic acid, HHDP-hexahydroxyphenic acid, EA-ellagic acid, SLE-Solid-liquid extraction, HWE-hot water extraction, SFE-supercritical fluid extraction, PWE-pressurized water extraction, MAE-microwave assisted extraction, UAE-ultrasound assisted extraction.

Highlights:
- The great potential of tannins is hindered by their extraction process
- A literature review was carried out assessing the main tannins extraction methods
- Novel extraction techniques represented a greener option for tannins production
- Combination of novel techniques is an interesting option for industrial scale up
1. INTRODUCTION

Tannins are the most abundant components extracted from biomass, after cellulose, hemicelluloses and lignin (Arbenz and Avérous, 2016). Besides, they represent the second most extensive source of phenolic compounds after lignins (Laurichesse and Avérous, 2014).

Among the vegetal kingdom, tannins are extensively well distributed in both terrestrial and aquatic environments (Barbehenn and Peter Constabel, 2011). Terrestrial tannins, can be found in tropical, arid and semi-arid areas but also in other regions, like Atlantic or Mediterranean ones (Balogun et al., 1998; Jackson et al., 1996). They are present in high concentrations in several species such as *Schinopsis balansae* (quebracho wood), *Acacia mearnsii* (black mimosa bark), *Pinus radiata* and *Pinus nigra* (pine species), *Quercus spp* (oak bark) and *Castanea sativa* (chestnut wood). They are also found in considerable amounts in various seeds (cocoa, guarana, kola, areca) and leaves (hamamelis, green tea) (Bele et al., 2010; Lochab et al., 2014). They are visibly present too in everyday life products like tea or wine (Mattivi et al., 2009). On the other hand, in aquatic environments tannins occur in smaller extent and prominently in non-vascular plants such as algae (Kirke et al., 2017).

Tannins major features are derived from their phenolic nature. For instance, their antioxidant capacity is linked to the phenolic rings present in their structure, which can act as electron scavenger to trap ions and radicals. Owing to this antioxidant nature, tannins are widely utilized in different areas such as the pharmaceutical, medical or food industry (Chen et al., 2016; Ismail et al., 2016; Park et al., 2014). Tannins phenolic character makes them a potential source of products in the chemical industry as well, as substituent in phenolic resins for several applications (Chupin et al., 2015; Jahanshaei et al., 2012; Ramires and Frollini, 2012).

This abundance in nature and variety of applications have encouraged a growing tendency in the tannins-related research in the last 20 years (figure 1).

Accordingly, they are considered an attractive family of compounds in terms of potential applications and environmental friendliness. However, one important aspect of tannins is their heterogeneous nature which makes impossible to settle a universal method for their extraction (Hagerman, 1988). The yield, purity and composition of the extracts rely normally on several parameters such as the vegetal source, technique employed, extraction time, temperature etc. (Bacelo et al., 2016). Thereby the extraction of tannins from vegetable residues is a process, which constitutes a crucial keypoint for their reuse, valorization and their sustainable production (Bacelo et al., 2017).

In the literature there have already been efforts towards the analysis of the phenolic compounds extraction from plants by different methods (Khoddami et al., 2013; Xu et al., 2017). However, plants polyphenols include a vast range of compound such as flavonoids, phenolic acids, tannins, stilbenes and lignans. For this reason, these works usually lack of specificity concerning the results given. This review was focus only on the extraction of tannins and therefore the results
were provided in terms of specific tannin amounts or tannin equivalents. Moreover, the discussion and evaluation of the different methods presented is exclusively oriented to the tannins cleaner production.

This study aims to describe the evolution of the existing methods for tannin extraction through a comprehensive critical literature review. A detailed comparison between the different techniques was carried out. The main strengths and weaknesses of each methodology are presented, providing a better understanding in the matter and the future lines for the tannins cleaner and more efficient manufacture.

The work structure is divided in several parts. After the introduction, section 2 is presented covering a brief state of the art on the field of tannins related to the tannin extraction. Then section 3, describes the methodology employed for carrying out this research. Section 4 displays the main results related to tannins extraction by the different methods, an in-depth comparison between them and a full discussion of the major advantages and disadvantages of each one. The study is concluded with the main outcomes and future perspectives.

2. BACKGROUND

2.1. Tannin definition

The “tannin” definition has its origin in the primary function of this group of compounds i.e. tanning. The tanning process has been important along history since it allowed the protection of animal skins turning them into leather by means of plant extracts. The first species reported for tanning leather was oak, which was actually designated with the name “tann” among the Celts (Arapitsas, 2012; Frutos et al., 2004).

One of the first tannins definitions was given by A. Seguin in 1796, who described them as substances in vegetable extracts used for converting animal skins into stable leather (Bele et al., 2010). Nevertheless, it was not until the early 1960s that a more accurate definition of tannin was introduced by Swain and Bate-Smith in 1962. They defined tannins as “naturally occurring water soluble polyphenolic compounds having a molecular weight between 500 and 3000, capable of precipitating alkaloids as well as gelatin and other proteins from aqueous solutions” (Bate-Smith and Swain, 1962). This definition is the one most frequently found and cited within the literature.

2.2. Tannin classification

The categorization of tannins based on their structural aspects and chemical characteristics is the most extended, since it offers a proper framework for further study. Traditionally, tannins were divided into two major classes namely condensed and hydrolysable tannins. However, currently two other types are also considered i.e. complex tannins and phlorotannins.

Chemically, condensed tannins are defined as polymeric flavonoids (Hagerman, 2002). However, they can appear as oligomers as well, when they are composed of two to ten monomeric units.
In the form of polymeric flavonoids they have limited to no solubility in water, whereas in oligomeric form they are water soluble (Bennick, 2002). Within the flavonoids group, condensed tannins are considered as flavanols, since they are composed of flavan-3-ol moieties (figure 2) (Dai and Mumper, 2010).

The flavan-3-ols units can display different structures depending on the type of A and B rings present. A ring can appear as a phloroglucinol or resorcinol moieties (McGraw, 1989), whereas B ring can be arranged as a catechol or pyrogallol units. These combinations lead to the formation of several monomers of condensed tannins (table 1).

The compounds showed in table 1 are the precursors of various types of condensed tannins. In this sense, the condensed tannins whose structure is exclusively composed of (epi)catechins are designated as procyanidins. These are the most abundant type present in plants (Hümmer and Schreier, 2008). On the other part, those tannins mainly formed by (epi)fisetinidol, (epi)robinetinidol and (epi)gallocatechin units, are labelled as profisetinidin, prorobinetidin and prodelphindin respectively.

Hydrolysable tannins are heteropolymers composed of polyphenolic acids and their derivatives, esterified to a polyol (Frutos et al., 2004). This polyol, generally a carbohydrate, forms a central core to which several polyphenolic acid units are attached via ester bonds (figure 3).

Gallic acid (GA) is the most basic block attached to the core of the monomeric units (Hernes and Hedges, 2004). Gallic acid moieties can yield other derivatives such as hexahydroxydiphenic acid units (HHDP), via oxidative coupling of two or more molecules (Hartzfeld et al., 2002). In turn, the HHDP units can spontaneously lactonize to ellagic acid (EA) moieties upon hydrolysis (Landete, 2011). In figure 4, the transformation between the different polyphenolic acids, which can be present in hydrolysable tannins structure are showed.

The distinctive property of hydrolysable tannins is their ability of being fractionated hydrolytically into their basic components. This is due to their ester bonds, which are susceptible to break via hydrolysis under acidic and basic conditions. Thererby, they are usually classified into two main subcategories i.e. gallotannins and ellagitannins.

Gallotannins: they represent the simplest kind of hydrolysable tannins and consist of galloyl or digalloyl units linked to a polyol core and therefore they have the ability to yield gallic acid from the hydrolysis reaction.

Ellagitannins: this kind of tannins are characterized by having one to several HHDP units attached to a polyol core. Upon hydrolysis, ellagitannins are able to produce HHDP free units, which spontaneously turn into the dilactone (ellagic acid).

Another type of tannins out of the traditional tannin classification is complex tannins. This kind is characterized by the present of monomeric units of hydrolysable and condensed tannins (Hatano et al., 1991). They are composed of a gallotannin or ellagitannin moiety and a flavan-3-ol building
block connected through a carbon-carbon linkage. This type represents a minoritary group within
the tannins family. A typical example of this kind of compounds is accutisim A (figure 5).
The other type of tannins discovered in the recent years is phlorotannins. This group is
prominently found in brown algae and is composed of phloroglucinol units (1,3,5-
trihydroxybenzene). The research carried out lately on this group of tannins, has led to the
structural elucidation of more than 150 compounds with a large range of molar masses between
126-625000 g∙mol⁻¹ (Glombitza and Pauli, 2003; Lopes et al., 2012; Sathya et al., 2017).
Structurally phlorotannins form dehydro-oligomers and polymers of phloroglucinol moieties
linked via aryl-aryl (C-C) and diaryl ether bonds (C-O) (Koivikko et al., 2008).
Considering the previous information, it is clear tannins can display a variety of structures
resulting in diverse chemical compositions. This aspect, which discussed in the next point, is of
considerable importance, since it can have a direct impact over the extraction efficiency.

2.3. Tannins abundance and occurrence in nature
In nature, tannin content depends on several aspects such as the plant part and species considered.
Within the same species, the tannin content is reported to vary between the different parts with
special abundance in barks, leaves, seeds, roots and rhizomes (Bele et al., 2010). In addition, their
content can also vary with seasonal and environmental factors e.g. water availability, temperature,
light intensity and soil quality (Frutos et al., 2004). These points have a relevant importance, since
they can influence the results of the different extraction methods. In the literature, there are several
works assessing the effect of different species and plant parts on the tannin extraction results
(Geoffroy et al., 2017; Tabaraki et al., 2013). In this sense, it was reported by Cheng et al. (2012)
that the variety of the grape employed significantly influenced the amount of tannins quantified
in the extracts (Cheng et al., 2012). They found that the extracts of the variety Pinot Noir presented
higher amount of tannins (gallic acid equivalents) than Pinot Meunier. This was attributed to the
different viticultural practices and environmental conditions. Moreover, the amount of tannins
was higher in the seeds compared to skin and pomace. In another work, tannins from different
spices were extracted via microwave and ultrasound and significant differences regarded. Again,
the variety of spice was confirmed to have a major role. Thus, the extraction for Crocus sativus
resulted in a tannin amount thirty times higher than that of Coriandrum sativum (Gallo et al.,
2010). Besides, the spices were reported to provide higher tannin amounts in the extracts by means
of microwave assisted extraction than ultrasound.
Regarding tannin chemical composition, species have a direct influence as well. It has been
reported that different plants species display diverse physico-chemical properties, derived from
the distinct types of tannins present (Mangan, 1988). In the previous section, it was discussed that
the different type of tannins can lead to various chemical compositions, based on their structure.
Thus depending on the species, diverse types of tannins could be extracted and therefore the
tannin composition of the extracts would be different. A research carried out by Bianchi et al.
(2015), proved that the tannin composition of the extracts from different wood barks species
extracted under the same conditions showed several divergences (Bianchi et al., 2015). Thereby,
a predominant amount of prodefinidins was determined in Silver fir, whereas a higher amount of
procyanidins was found for European Larch. They reported too, that the tannins composition of
these species substantially differ from those of tropical species such as Mimosa and Quebracho.
This divergences were also displayed on another work on tannin extraction from the seeds of
different varieties of grapes (Mattivi et al., 2009). The results showed significant variations
between the major tannin monomers present in the different grape species.

3. METHODS AND RESEARCH DESIGN

In this section, the different steps followed for carrying out the bibliographic review are showed,
including the search, selection and analysis of articles and limitations.

In the preparation of this review, two bibliographic databases were selected: Scopus and Web of
science (all databases). Scopus is reported to cover more than 21500 journals from social, life,
health and physical sciences (Elsevier, 2016) whereas Web of science includes over 12000
different journals from science, arts and humanities (Thomson Reuters, 2013). For this reason,
these two directories were chosen since they are said to comprise the major part of the articles
related to the topic of tannins cleaner production. The selection of the published works was refine
by selecting different subjects of interest. A previous search based on the topics of tannin
definition, classification and distribution in nature was carried out to provide some background
on the field (section 2). Then, the main search linked to the major topic of this work i.e. extraction
of tannins was performed. First, general information was seeked about each technique to introduce
the main principles of the extraction methods. Afterwards, the results from each method (main
extraction parameters) were searched, aiming the comparison between the different techniques
and the assessment of their major strengths and weaknesses (section 4).

3.1. Choice of search terms and selection of articles

Regarding the major topic, a general bibliographic search was firstly made by using the search
string [tannin AND extraction]. This search produced approximately 4500 hits, from which the
main methods of tannin extraction and production were obtained. The selection of the different
methods was based on the search of keywords in the articles titles and abstracts (e.g. ultrasound
assisted extraction, solvent extraction, pressurized water extraction). Then, a narrower search
(based on these terms) was done focusing specifically on each extraction technique and giving a
considerable smaller number of hits. The parameters employed for this search are presented in
table 2. All the hits given in this table, were scanned by their titles, abstracts and keywords. Then
the most relevant articles were imported to the Mendeley© reference management system. From
this sample, the articles were sorted into eight different categories:
1. Conventional tannins extraction with organic solvents
2. Tannins extraction with hot water
3. Tannins extraction with ionic liquids
4. Tannins extraction with supercritical fluids
5. Tannins extraction with pressurized hot water or subcritical water
6. Tannins extraction assisted by microwave
7. Tannins extraction assisted by ultrasound
8. Comparison of tannins extraction with several extraction methods

The articles that did not belong to any category or that were duplicated in a previous category were removed. To this sample of selected and categorized articles, a semi structured snowballing approach followed (Wohlin and Claes, 2014). Thus, it was possible to add to our sample works that were not found in the previous search and categorization (figure 6).

3.2. Method of analysis and limitations of research

The final sample of articles was analysed by thoroughly examine their content (specially the results and discussion section). Thus, bibliometric information about the main extraction parameters was gathered and summarized for each article. These parameters include the plant species extracted, conditions of extraction (temperature, pressure and times), solvents involved, extraction yields and tannin content of the extract. The data collected was analysed to discuss the main results and tendencies and to compare the divergences between the extraction methods.

Regarding the limitations of the review, it was decided to focus mainly on peer-reviewed articles written in English. The period of time selected was comprising the last 20 years of research on the field (between 1997-2018).

4. RESULTS AND DISCUSSION

Within this section, the main parameters of the tannin extraction methods are presented and examined. A comprehensive comparison between the different techniques is intended as well.

4.1. Extraction parameters for each extraction process

Here the conditions used and the yields obtained for each extraction procedure are presented according to the sample of papers selected from the literature. The aim is the identification of the strengths and weaknesses of each method and the influence of the different parameters over the process.

4.1.1. Solid-liquid extraction (SLE)

This section is devoted to the extraction of tannins exclusively based on the contact between a solvent and a solid matter, without any further assisting mechanism. During this kind of extraction, the solvent penetrates into the cell wall of the feedstock containing the tannins. Then, they are dissolved and taken out in the form of extracts (Mailoa et al., 2013). This is the simplest
and most traditional method employed for tannins extraction. Within this part, several types of solvents are studied namely organic solvents, aqueous solutions, water and ionic liquids.

Concerning the use of organic solvents and their aqueous solutions, the extraction is commonly carried out by means of a soxhlet apparatus whose experimental extraction procedure has been described in several works (Jensen, 2007; Luque de Castro and Priego-Capote, 2010). However, other techniques are also employed and reported in the literature such as infusion or maceration. The extraction with water can be carried out under reflux or through simple maceration in flasks or vessels. At the industrial scale it is generally performed on wood barks by percolation or open diffusion (Ciesla, 1998; Myers, 1998).

The extraction with ionic liquids is an alternative based on the substitution of the traditional solvents with these new liquids, which are known for having unusual combination of properties such as negligible vapour pressure, high thermal stability and dissolution of a broad range of compounds present in plants (Olivier-Bourbigou et al., 2010).

In table 3 is presented a sample of works from the literature devoted to solid-liquid extraction with the previously commented solvents. In regards to these results, it is seen that a considerable percentage of recovery of extracts is achieved by this method. The content of tannins in the extracts is reported to be high as well and can reach even to yields of 96% (grams of reactive tannins per gram of extract) (Vázquez et al., 2001). However, the results presented are influenced by several parameters. Within these parameters, the nature of the solvent employed for the extraction is regarded to be of significant importance. It is reported that the extraction yields increase with the solvent polarity (Markom et al., 2007). Accordingly, high extraction yields are generally obtained using water or methanol as solvent whereas poor extraction efficiencies are achieved with hexane (Widyawati et al., 2014). The employment of water is normally preferred, especially at the industrial scale owing to environmental reasons. Nevertheless, the solution of tannins in water generally leads to acidic pHs (Vieira et al., 2011). Under these conditions, the formation of insoluble precipitates due to tannin self-condensation reactions is promoted, limiting the extraction efficiency (Sealy-Fisher and Pizzi, 1992). The addition of certain amounts of NaOH% is proposed as an alternative to overcome this problem, since it is capable of improving the extraction yields (Chupin et al., 2013). Similarly, the use of salts like sodium carbonate (Na$_2$CO$_3$) and sodium bisulfite (NaHSO$_3$) is able to increment the extraction efficiency and to lower the high viscosity of the extracts derived from the tannin self-condensation reactions (Panamgama, 2007). In both cases, the increment of extraction yields is related to the alteration of the pH. Alkaline pH values are reported to increase the percentage of extracts, owing to the partial break of pyran rings in phlobaphenes (tannin-derived compounds). It has been presented in a recent work, that even the change of pH from neutral to slightly alkaline values can lead to higher extraction yields (Lochab et al., 2014). Moreover, a relationship between the base concentrations and the extraction yields is observed. The use of higher percentages of these
components is proved to reach higher extraction yields compared to lower concentrations (Antwi-Boasiako and Animapauh, 2012; Inoue et al., 1998). Nevertheless, the increment of the concentrations can provide a lower tannin content in the extracts due to the raise of undesirable non-tannin components (Ping et al., 2011). For this reason, the indiscriminate increase of the alkaline compounds and salts concentrations is not desirable. Different works were found underlining the importance of employing moderate amount of these compounds (Aires et al., 2016; Vieira et al., 2011).

Regarding the tannin content in the extracts, methanol and ethanol provide the best results (do Prado et al., 2014; Widyawati et al., 2014). For instance, it is stated in a work about anthocyanidins extraction from *Phyllantus niruri*, that methanol and ethanol are more suitable for performing the extraction compared to water (Kaur and Kaur, 2016). This is due to the fact that these organic solvents have more similar characteristics to anthocyanidins. The use of aqueous solutions of organic solvents has proved its efficiency as well, providing both considerable extraction yields and levels of tannins in the extracts (Vijayalaxmi et al., 2015; Widyawati et al., 2014). Besides, they present the advantage of being able to regulate the polarity of the solvent by adjusting the ratio of both components.

Compared to already mentioned solvents, ionic liquids represent a novel type still under development for tannins extraction. Despite this fact, they have already proved to achieve comparable or even better results than water (Chowdhury et al., 2010). Among this type of solvents, the imidazolium-based ionic liquids are said to be preferred and their concentrations have a direct influence on the results. It is reported that the increase of this parameter provides higher tannins extracted until certain point where not further improvement is regarded (Z. Liu et al., 2016; Lu et al., 2012). For this reason, the concentration of the ionic liquid is normally optimized. Another relevant factor in the tannins extraction with these solvents, is the alkyl chain length of the cation linked to the ionic liquid. It is presented that the increase of the alkyl chain length decrease the surface tension and increment the hydrophobic nature and viscosity (Čurko et al., 2017). Thus, the ionic liquid can have a stronger interaction with the tannins extracting higher amounts. Above butyl chains, this effect is reported to be the opposite. Consequently, the alkyl chain length of the cations is also further optimized within the different studies.

Apart from the solvents nature, other parameters are regarded to have a major influence over the results namely temperature of extraction, time of extraction and solid to liquid ratio.

Concerning the time of extraction, it is seen that the increment of this parameter provides a higher content of tannins extracted as presented in some of the works from literature (Baldosano et al., 2015; Chowdhury et al., 2010). This is due to the longer times the solute and the solvent are in contact, which favours the mass transfer between both components. Nevertheless, the increase of the extraction times beyond certain values is not desirable. It was discussed by Tan et al. (2013) that the amount of tannins extracted above 4.5h was dramatically decreasing towards a minimum.
This was explained by the fact that an equilibrium was reached between the tannins concentration in the plant matrix and the solvent (Fick’s law of diffusion), resulting in the slowdown of the extraction. Besides, at longer times the possibility of tannins degradation owing to the extraction conditions is enhanced.

The temperature of extraction is observed to increase the extraction yields as displayed in the results from table 3 (Kemppainen et al., 2014; Vázquez et al., 2001). This enhancement is due to the increase of the mass transfer coefficient at higher temperatures (Huang et al., 2016). Moreover the increment of the temperature results in the improvement of the solute solubility and diffusion coefficient and also decreases of solvent viscosity, which promotes the extraction (Al-Farsi and Lee, 2008). This parameter is normally regulated and optimized, since high temperatures can also lead to lower amount of tannins in the extracts as showed by Ramos et al. (2013) (Ramos et al., 2013). This was attributed to the denaturation of these compounds owing to the harsh conditions employed. The use of too high temperatures can also result in solvent evaporation. For this reason, in this kind of extraction the temperature is normally set up at the solvent boiling point.

Regarding ratio solid-liquid, it is showed that the decrease of this parameter provides higher extraction yields, since higher amounts of solvent are employed (Politi et al., 2011). Nevertheless, at low solid-liquid ratios, the differences between the extraction efficiencies are normally minimized and therefore this parameter is generally optimized at certain value.

To conclude, it can be remarked that the main general advantages of this method are its simplicity, efficiency and low cost. In the case of the extraction with hot water, it should be highlighted as well the fact that it can be successfully transferred to the industry, especially the extraction from wood barks (Amaral-Labat et al., 2013; Kemppainen et al., 2014). On the other hand, the major drawbacks of this method are the long times needed for the extraction, which can range from several hours to even several days, and the great amount of solvent normally employed. These disadvantages could be minimized by the use of ionic liquids, which display special properties favorable to the extraction (Hernández-Fernández et al., 2015). Nevertheless, the high prices of this novel solvents and the difficulty to recover the solute from the ionic liquid are still hindering their utilization.

4.1.2. Supercritical fluid extraction (SFE)

In this part, the extraction of tannins by using supercritical fluids is presented. The principle of this method is based on the concept of critical point, which is defined as the highest temperature and pressure at which a pure substance can exist in a vapour-liquid equilibrium (Ajila et al., 2011).

Above this point a fluid shares properties between a gas and a liquid, such as the typical weight of liquids with the penetration power of gases (Azmir et al., 2013). The works found in the literature related to this technique are presented in table 4. In regards to the presented results, various common characteristics are identified. The most widely employed solvent among all the works is carbon dioxide (CO₂). This is due to its desirable properties such as non toxicity, non-
flammability, non-corrosive nature, availability and low critical temperature and pressure (31°C and 7.28 MPa) (Palmer and Ting, 1995; Talmaciu et al., 2016). The range of pressures and temperatures used within the different works for this fluid is between 10-65.5MPa for the former parameter and between 40-88°C for the later.

Concerning the extraction yields and tannins extracted, the parameter with the greatest influence is the utilization of a co-solvent. Thus, poor extraction yields are achieved using supercritical CO₂ alone whereas considerable enhancements are reported after the addition of a co-solvent (Cavalcanti et al., 2012; Conde et al., 2013). This is due to the non-polar nature of CO₂ as solvent and the polar nature of most of tannin compounds. The addition of co-solvents of polar nature such as ethanol, methanol or aqueous mixtures help ameliorating the solvating power of CO₂ towards tannins and improves the extraction yields. The pressure employed also presents a major role in the extraction efficiency and amount of tannins extracted. It is observed that the increment of the pressure promotes the extraction of tannins (do Prado et al., 2014). The reason for that is that at higher pressures the fluid density is increased, decreasing the distance between the molecules and therefore improving the interactions fluid-matrix (Maran et al., 2015).

Regarding the temperature of extraction, low values are said to be preferred. This parameter do not show though a crucial influence over the process, since most of the works do not report big differences in terms of extraction yields and amount of tannins extracted. However, it has been presented that higher temperatures can lead to lower amounts of tannins in the extracts (Luengthanaphol et al., 2004).

The main advantages concerning this extraction method are the utilization of mild temperatures and a nontoxic solvent (CO₂) which can be easily removed and can avoid further oxidation reactions by creating an oxygen free environment. On the other side, one of the main drawbacks are the high investment costs, due to the high pressures needed for the extraction process (Perrut†, 2000). The other main problem concerning CO₂ is its non polar nature, which reduces the extraction power towards tannins (low solubility of polar compounds). Consequently, the addition of co-solvents such as methanol, ethanol, acetone or water, becomes an essential requirement.

4.1.3. Pressurized water extraction (PWE)

This extraction method is based on the use of water as solvent at high pressures and temperatures, generally at subcritical conditions i.e. between its atmospheric boiling point (100°C, 0.1 MPa) and its critical point (374°C, 22.1 MPa). Within this range water is maintained in the liquid state but properties such as the polarity, viscosity, surface tension and disassociation constant are considerably lowered compared to water at ambient conditions (Liang and Fan, 2013). The reduction of these parameters enhances the mass transfer of the tannins from the feedstock matrix (Vergara-Salinas et al., 2013). Besides, under these conditions the ability to extract different types of compounds from this family is improved (Rangsriwong et al., 2009). The main difference with traditional solid-liquid extraction using hot water, is that pressurized water extraction utilizes
temperatures above the boiling point and pressures above the atmospheric to maintain water in
liquid state.

The results related to this extraction method are presented in table 5. It is observed in most of the
works, that the extraction was carried out at subcritical conditions (0.1-22 MPa, 100-374°C).
Nevertheless, in some works pressures above the critical point are reported as well, to improve
the results. A significant characteristic of this method is the reduction of the extraction times
needed (5-60 minutes). Despite the short extraction times, high extraction yields are reported even
up to \(\approx 70\% \) (Erşan et al., 2018). Furthermore, by adjusting the pressure and temperature of the
solvent, its polarity can be modulated and a wide variety of tannins in significant amounts can be
extracted depending on the source. For this reason, both variables present a significant influence
in the extraction process.

The temperature plays a major role and its increment leads to higher extraction yields (Sousa et
al., 2016). This effect is attributed to the fact that at higher temperatures the solvent is more easily
diffused into the plant matrix. Moreover at higher temperatures the solute vapour pressure is
incremented and it is easier for the solute to free itself from the matrix (Markom et al., 2010a).
However, the employment of too severe temperatures was proved to have a negative effect,
particularly on the tannin content of the extracts (García-Marino et al., 2006; Rangsriwong et al.,
2009). This is associated to the possible degradation and denaturation of the different
polyphenolic compounds at harsh temperatures (Vergara-Salinas et al., 2013).
Concerning the pressure, the influence on the water properties is little as far as it stays as a liquid
(Plaza and Turner, 2015). For this reason, its effect on the results of extraction is normally lower.
Despite this fact, the increase of this parameter can result in slightly higher extraction yields and
tannin content in the extracts until certain pressure values (Aliakbariana et al., 2012). Above these
pressure values the solvent solubility is not further improve and accordingly the extraction yields
remain or even slightly decrease as well as the amount of tannin extracted (Markom et al., 2010a).
The main advantages of this method are the reduced handling time and solvent consumption and
the no utilisation of toxic organic solvents. Another advantage is the possibility to extract
selectively tannins of different polarities by the modification of the temperature, pressure or co-
solvent. On the other hand, the major disadvantages are related to the high temperatures and
pressures used (reduction of the extraction selectivity and possible degradation of the analytes)
and the expensive equipment required (solvent transporting pump, a pressure vessel and system
controller, and a collection device for the extract needed).

4.1.4. Microwave assisted extraction (MAE)

This method is based on the combination of the traditional solvents employed for tannins
extraction and the fast heating in the microwave field. In some cases, the extraction process is
ameliorated because both the solvent and the sample can be rapidly heated by direct interaction
with electromagnetic radiation (depending on their dielectric characteristics). Another possibility
is the heating of one of the components by interaction with the other, previously heated by the
microwave irradiation. The effect of heating on the solvent increases its solubility, whereas on
the material it improves porosity allowing an easier penetration of the solvent (Routray and Orsat,
2012). Thereby, in either case the extraction of tannins from the cell wall of the feedstock is eased.
Within this section, a sample of papers focused on the tannins extraction assisted by microwave
is displayed (table 6). From the previous results, it is remarked the short times needed for
extraction (1-20 minutes), which achieved a significant level of tannin extraction. Regarding the
solvent employed, the volume used for the extraction has a direct impact on the amount of tannins
extracted. Normally a larger amount of solvent is supposed to achieve a higher quantity of tannins
extracted, according to the principle of equilibrium between solvents and materials. In a work by
Wang et al., 2010 (Wang et al., 2010), it was found that the increase of the solvent volume led to
the enhancement of the tannins extracted until certain point (ratio 1:30) and then decreased. This
was attributed to the relatively large amount of solvent employed, which resulted in a dilution of
the amount of the tannins in the extracts (Guo et al., 2001; Xiao et al., 2008). The nature of the
solvent also plays a major role on the extraction as was already mentioned in section 4.1.1
Accordingly, the increase of the polarity of the solvent leads to higher amounts of tannins
extracted (Pan et al., 2010). The effect of the microwave power was discussed in several works
as well (Naima et al., 2015; Švarc-Gajić et al., 2013). It is proved that the increase of the power
leads to higher amounts of tannins extracted. This is due to the enhancement of the solvent
penetration into the matrix and the faster energy transfer to the solvent and material. However,
above high values of microwave irradiation, the amount of tannins extracted is observed to
decrease. Normally, this fact is due to the thermal degradation of the tannins, which results in a
lower content of these compounds in the extracts (Dahmoune et al., 2015). It has been showed as
well that too high microwave power can provide excess of energy to the solvent and material.
This superfluous energy can generate abnormal molecular interaction, which affect the extraction
yields of tannins (Jin et al., 2010). Consequently, this parameter is normally optimized in the
majority of the works to achieve the highest amount of tannins recovered.
The main advantages of this method are the employment of considerably short extraction times,
and lower amount of solvents compared to traditional solid-liquid extraction. Another advantage
is the agitation provided by the microwave irradiation, which can ameliorate the mass transfer
phenomenon (Jain et al., 2013). The main disadvantages are the great costs of the equipment
needed (specially at larger scale) and the possibility of thermal degradation of the feedstocks and
tannins, especially those with high number of hydroxyl groups (Xu et al., 2017).

4.1.5. Ultrasound assisted extraction (UAE)
The extraction of tannins by this technique is based on the formation, growth and collapse of
micro bubbles inside a liquid phase submitted to ultrasonic cavitation (Chemat et al., 2011). The
bubbles are induced by sound waves, with frequencies above 20 kHz, which cause mechanical
vibrations into the plant matrix. These mechanical vibrations, can rupture cell wall tissues ameliorating the penetration of the solvent into the matrix and achieving higher amounts of tannins extracted (Ali et al., 2018).

In this section, a sample of works related to the extraction of tannins assisted by ultrasound, is discussed (table 7). Within the works presented, the influence of several parameters on tannin extraction efficiency is observed. Again, the solvent employed has a prominent effect and therefore the use of more polar solvents leads to the improvement of the extraction yields. Nonetheless, it was reported that ethanol and methanol presented a higher selectivity to the polyphenolic compounds, providing higher amounts of tannins in the extracts (Dhanani et al., 2013; Tabaraki et al., 2013). Regarding the extraction times, not high values are needed to achieve good extraction yields (below 1 hour). The increment of this parameter can lead to higher extraction yields and amount of tannin in the extract (Ivanovic et al., 2014). However, when the extraction time is incremented above relatively high values, the extraction efficiency tends to decrease. A first work by Dalzell and Kerven, (1998) showed that sonication after 30 minutes decreased the tannins extraction efficiency from Leucaena spp. This result was attributed to the possible degradation of the procyanidins due to the increased temperature of the water bath, provided by the prolonged sonication time (Dalzell and Kerven, 1998). In another work, the decrease of the tannins extracted at high extraction times was associated to the prolonged interval of sonication and the possible degradation of the tannins as well but also to the lower concentration gradient of the solvent (Annegowda et al., 2012). A similar tendency is observed for the sonication power. Hence, the increase of this parameter provides higher amounts of tannins extracted until certain point and then began to decrease (Agarwal et al., 2018; Chavan and Singhal, 2013). This is due to the chemical decomposition of tannins extracted. Taking the previous phenomena into consideration, a further optimization of the conditions was carried out in most of the works presented.

The major advantages of this technique are the short extraction times employed and the fact that it is a simple and inexpensive extraction method (Khoddami et al., 2013). On the contrary, the main drawbacks are the lack of uniformity in the intensity of ultrasounds (maximum peak observed in the vicinity of radiating surface and decreasing with the distance to the source) and the reduction of the power with the time (Routray and Orsat, 2012).

4.2. Comparison of extraction methods

In this section, a sample of works devoted to the analysis and assessment of various extraction methods for tannins extraction is presented. A comprehensive and direct comparison between the different techniques is provided as well (table 8). In the majority of the studies, the most traditional tannin extraction method namely solid-liquid extraction, was contrasted with other modern techniques.
Considerable differences are regarded between SLE and SFE, especially when no co-solvent was used (Reátegui et al., 2014). SLE can achieve a higher amount of tannins extracted owing to the more polar nature of the solvent and the longer times employed. It is regarded though, that the addition of a more polar co-solvent or the use of simultaneous sonication highly ameliorates the results of SFE. Thereby, the amounts of tannins extracted are comparable to those of SLE but employing lower times. Concerning PWE, it is reported that the amount of tannins extracted compared to that of traditional method SLE is enhanced owing to the increased solvating power of water under subcritical conditions (Rangsriwong et al., 2009). Moreover, the extraction times are considerably lowered.

Other recent techniques such as MAE and UAE have been also compared to SLE within the literature (Aspé and Fernández, 2011; Belwal et al., 2017; Ghadage et al., 2017). Superior performance is displayed by MAE and UAE in terms of higher extraction yields and amount of tannins recovered. This is due to the acting mechanisms of both methods, which ameliorates the penetration power of the solvent and extraction efficiency of the tannins from the plant matrix. Furthermore, the extraction times can be dramatically decreased by more than a 95% in some of the cases and the amount of solvent used lowered. The use of ionic liquids also provides a great improvement in the extraction of tannins compared to the performance of conventional organic solvents in SLE (Ribeiro et al., 2013)

Within the presented results, a comparison between the modern tannin extraction techniques is observed as well. For example, it was presented that the SFE was able to obtained similar extraction yields to that of UAE. Nevertheless, it was reported to recovered substantially lower amounts of tannins (Pereira et al., 2017, 2016).

In regards to the results presented in table 8, MAE, UAE and PWE are the techniques with the best future perspectives for tannin extraction. Some works were found providing a further comparison between them and the conventional extraction methods (Veličković et al., 2017). In terms of extraction yields, PWE was able to achieve the highest values, followed by MAE and UAE. Nonetheless, concerning the amount of tannins extracted no considerable differences were observed. The main advantage of PWE compared to MAE and UAE, was the use water as solvent instead of organic compounds. MAE was able to provide the shortest extraction times (as seen in several works) compared to UAE and PWE (1-5 min for MAE in contrast to 15-30 min for UAE and PWE). Additionally, MAE and UAE can generally perform the extraction at lower pressure compared to PWE, which requires the use of subcritical conditions.

The combination of several of these modern techniques is also reported to provide synergistic effects and improved results (Lu et al., 2012). For example, the utilization of simultaneous microwave and ultrasound assisted extraction (UMAE) is proved to provide better results than these methods alone. Moreover, the substitution of the conventional organic solvents by ionic
liquid, shows highly ameliorated results and leads to a promising environmentally friendly option for tannins extraction.

4.2.1 Technical and costs comparison

The major economic and operational considerations in the different extraction methods are generally derived from the amount and nature of solvent employed, the extraction conditions, the recovery of the tannin extracts from the solvent and the equipment required for the process. Regarding these costs and technical characteristics, several differences can be observed. The industrial production of tannins at the moment, is generally performed using traditional solid-liquid extraction. In this regard, water as solvent is preferred in contrast to the organic solvents, owing to the lower emissions of VOC and costs (Lochab et al., 2014). However, there is current a tendency towards the switch of traditional tannin extraction methods by other more environmentally friendly. This is due to the long extraction times and the high amount of solvent required, which has to be evaporated afterwards, resulting in elevated energy costs (Selvamuthukumaran and Shi, 2017).

Consequently, in the majority of the works presented in this study it is showed that the modern extraction techniques are more favourable for future implementation in the industry. The implementation in larger scale of PWE for tannin extraction was assessed based on a study of the main economic factors by Veggi et al. (2011) (Veggi et al., 2011). Here, it was found that although the addition of a co-solvent can lead to an increment of the manufacturing costs (distillation step for the solvent), in the end the global manufacturing costs were lower owing to the improvement in the recovery of tannins. In addition to that, they reported for the process (design to run 7920h/year) manufacturing costs of 983$/Kg for the global yields. In contrast to that technique, Ravber et al (2015) carried out another research with a preliminary economic evaluation of the PWE for tannins extraction from larch wood (Ravber et al., 2015). After optimization of the process ($V_{extator}=350L$ and $T=300^\circ C$, process run 8016h/year), they presented operating costs of 223$/Kg, achieving an extraction yield of 21.60%. This can provide a more environmentally friendly and cheaper option compared to conventional solid-liquid extraction.

Regarding MAE, moderate global capital costs and good performance at atmospheric conditions are reported as well as lower energy demands compared to traditional extraction method (Bouaoudia-Madi et al., 2017). In addition to that, MAE can be highly improved by the use of ionic liquids as solvent. Liu et al. (2016) pointed out the considerable lower energy requirements compared to conventional SLE (0.13 kWh MAE in contrast to 1.54kWh SLE) (Z. Liu et al., 2016). The employment of MAE has been also promoted in other the works from the literature. For instance, Belwal et al. (2017) presented the need of scaling up the MAE process from the laboratory scale to the industry to harness the potential of tannins (Belwal et al., 2017). In comparison to MAE, UAE has been presented as an alternative as well. In fact, Diouf et al. (2009) found that the energy requirements for UAE were slightly lower than MAE for the same amount
of material extracted (0.94kWh and 1.51kWh respectively) (Diouf et al., 2009). The UAE is also reported to save time, energy and costs compared to conventional SLE. Nevertheless, parameters should be optimized as excessive sonication can increase energy and operational costs (Agarwal et al., 2018).

5. Conclusions

After performing the literature review it was clear the interest on the topic of tannins extraction, taking into account the significant number of works found. Besides, a clear evolution was observed from the traditional extraction method towards the most novel methodologies. The modern tannin extraction methods show a similar or even better performance compared to the most traditional one, in terms of extraction yields and amount of tannins extracted. They also display several advantages concerning the environmental impact such as the reduction of the extraction times and amount of solvent needed, leading to a lower energy consumption. Despite these facts, the truth is that the current industrial tannin production still remains old-fashioned, since it is majorly carried out by solid-liquid extraction using large amounts of water. It has been clearly stated from the works presented here, that lately several efforts are being made towards modern ways of extract tannins. Nevertheless, they usually remain in the laboratory scale. For this reason, an inflection point has to be reached in the short-term to switch from this old-fashioned industrial tannin production system to a state-of-the-art one. With this aim, works should be carried in the following years specially focus on the scale up and the economic analysis of the process of tannins extraction.

Finally, it should be added as well that this change in the tannins extraction methods, not only can lead to a cleaner and more effective production but also can promote and spread tannins utilization in several fields of the industry. This is of major importance since they represent a renewable feedstock with numerous applications.
REFERENCES:

Dahmoune, F., Spigno, G., Moussi, K., Remini, H., Cherbal, A., Madani, K., 2014. Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Ind. Crops Prod. 61, 31–40. https://doi.org/10.1016/J.INDCROP.2014.06.035

Ramos, V., Bocalandro, C., Riquelme, S., Sanhueza, V., Aspé, E., Roeckel, M., Fernández, K., 2013. Effect of the bench scale extraction conditions on Pinus radiata bark extract yield, antioxidant properties and composition. Maderas. Cienc. y Tecnol. 15, 0–0. https://doi.org/10.4067/S0718-221X201305000003

Tabaraki, R., Safari, A., Yeganeh, F.A., 2013. Ultrasonic-assisted extraction of condensed tannin from

Tan, M., Tan, C., Ho, C., 2013. Effects of extraction solvent system, time and temperature on total phenolic content of henna (Lawsonia inermis) stems. Int. Food Res. J. 20, 3117–3123.

Thomson Reuters, 2013. Web of Science Factsheet.

LIST OF FIGURES:

Figure 1. Number of tannins-related publications per year in the period 1998-2017 indexed in Web-of-Science and Scopus.

Figure 2. Structure of Flavan-3-ol and its nomenclature.

Figure 3. Example of a hydrolysable tannin unit and the linkages present (e.g. pentagalloyl glucose structure linked via ester bonds).
Figure 4. Transformation between the main polyphenolic acids and derivatives present in the structure of hydrolysable tannins.

Figure 5. Acutissimin A typical complex tannins group.

Figure 6. Literature review process.
LIST OF TABLES:

Table 1. Structures of the most common flavan-3-ol monomers of condensed tannins

<table>
<thead>
<tr>
<th>A rings</th>
<th>B rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>catechol ring</td>
<td>fisetinidol epifisetinidol</td>
</tr>
<tr>
<td>pyrogallol ring</td>
<td>robinetinidol epirobinetinidol</td>
</tr>
<tr>
<td>resorcinol ring</td>
<td>catechin epicatechin</td>
</tr>
<tr>
<td>phloroglucinol ring</td>
<td>gallocatechin epigallocatechin</td>
</tr>
</tbody>
</table>

Table 2. Strings and number of results obtained for the individual search of each tannin extraction method

<table>
<thead>
<tr>
<th>SEARCH STRINGS</th>
<th>NUMBER OF RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>[organic solvent extraction AND tannin]</td>
<td>117</td>
</tr>
<tr>
<td>[hot water extraction AND tannin]</td>
<td>73</td>
</tr>
<tr>
<td>[ionic liquid extraction AND tannin]</td>
<td>9</td>
</tr>
<tr>
<td>[supercritical fluid extraction AND tannin]</td>
<td>31</td>
</tr>
<tr>
<td>[pressurized water extraction AND tannin]</td>
<td>13</td>
</tr>
<tr>
<td>[subcritical water extraction AND tannin]</td>
<td>7</td>
</tr>
<tr>
<td>[microwave assisted extraction AND tannin]</td>
<td>35</td>
</tr>
<tr>
<td>[ultrasound assisted extraction AND tannin]</td>
<td>36</td>
</tr>
</tbody>
</table>
Table 3. Results related to the tannins solid-liquid extraction with different solvents

<table>
<thead>
<tr>
<th>Species</th>
<th>Plant part</th>
<th>Solvent</th>
<th>Extraction conditions</th>
<th>Extraction Yield (% w/w)</th>
<th>Tannin content (mg/g dw)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus radiata</td>
<td>Bark</td>
<td>Water</td>
<td>1:20, 2h 100ºC</td>
<td>19.60</td>
<td>887.00</td>
<td>(Inoue et al., 1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water + 1% NaOH</td>
<td></td>
<td>30.50</td>
<td>828.00</td>
<td></td>
</tr>
<tr>
<td>Pinus pinaster</td>
<td>Bark</td>
<td>Water + 2.5% NaOH</td>
<td>1:10, 0.5h 70ºC</td>
<td>16.5</td>
<td>965.00</td>
<td>(Vázquez et al., 2001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water + 5% NaOH</td>
<td>1:10, 0.5h 90ºC</td>
<td>18.9</td>
<td>875.00</td>
<td></td>
</tr>
<tr>
<td>Mangifera indica</td>
<td>Peels</td>
<td>Acetone (80%)</td>
<td>1:20, 3h</td>
<td>---</td>
<td>1.4d</td>
<td>(Berardini et al., 2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peels</td>
<td></td>
<td></td>
<td>0.2d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pulp</td>
<td></td>
<td></td>
<td>15.5d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kernel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia mearnsii</td>
<td>Bark</td>
<td>Ethanol</td>
<td>1:10, 24h</td>
<td>---</td>
<td>237.00</td>
<td>(Pansera et al., 2004)</td>
</tr>
<tr>
<td>Phyllanthus niruri</td>
<td>Stem and aerial parts</td>
<td>Water</td>
<td>1:30, 3h b.p.</td>
<td>26.2</td>
<td>215.90</td>
<td>(Markom et al., 2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethanol (50%)</td>
<td></td>
<td>22.50</td>
<td>149.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethanol (70%)</td>
<td></td>
<td>20.80</td>
<td>91.10</td>
<td></td>
</tr>
<tr>
<td>Acacia catechu</td>
<td>Whole plant</td>
<td>N,N-dimethylammonium N',N'-dimethylcarbamate (DIMCARB) (15%)</td>
<td>1:5, 25ºC 1h</td>
<td>30</td>
<td>---</td>
<td>(Chowdhury et al., 2010)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1:5, 25ºC 2h</td>
<td>60</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1:5, 25ºC 16h</td>
<td>85</td>
<td>61.50</td>
<td></td>
</tr>
<tr>
<td>Pinus radiata</td>
<td>Bark</td>
<td>Acetone (70%)</td>
<td>1:10, 1-6h</td>
<td>12.00</td>
<td>62.10f</td>
<td>(Aspé and Fernández, 2011)</td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>Pomace</td>
<td>Water + 10% NaOH</td>
<td>1:8, 2h 120ºC</td>
<td>45.20</td>
<td>550.00</td>
<td>(Ping et al., 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water + 20% NaOH</td>
<td></td>
<td>71.10</td>
<td>490.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water + 30% NaOH</td>
<td></td>
<td>88.40</td>
<td>390.00</td>
<td></td>
</tr>
<tr>
<td>Endopleura uchi</td>
<td>Bark</td>
<td>Water</td>
<td>1:20</td>
<td>9.70</td>
<td>226.60g</td>
<td>(Politi et al., 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:10</td>
<td>8.85</td>
<td>260.60g</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:5</td>
<td>8.53</td>
<td>120.80g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus ocarpa</td>
<td>Bark</td>
<td>Water</td>
<td>1:15, 2h b.p.</td>
<td>24.84</td>
<td>655.60</td>
<td>(Vieira et al., 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water + 1% Na₂CO₃</td>
<td>30.94</td>
<td>857.20f</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water + 5% Na₂CO₃</td>
<td>35.74</td>
<td>890.70f</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water + 1% NaHSO₃</td>
<td>19.86</td>
<td>846.40f</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water + 5% NaHSO₃</td>
<td>26.70</td>
<td>722.80f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T.tetraperta</td>
<td>Bark</td>
<td>Water</td>
<td>1:5, 6h b.p.</td>
<td>14.02</td>
<td>884.49c</td>
<td>(Antwi-Boasiako and Animapauh, 2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water + 1% NaOH</td>
<td>75.29</td>
<td>374.60c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galla chinensis</td>
<td>Whole plant</td>
<td>1-butyl-3-methylimidazole bromide [C4mim]Br 0.5M</td>
<td>1:15, 1min UMAE: Microwave 400W Ultrasound 50W</td>
<td>---</td>
<td>380.00d</td>
<td>(Lu et al., 2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-butyl-3-methylimidazole bromide [C4mim]Br 1.5M</td>
<td></td>
<td></td>
<td>555.00d</td>
<td></td>
</tr>
<tr>
<td>Plant</td>
<td>Compounds/Extraction Method</td>
<td>Yield (%)</td>
<td>Rf</td>
<td>Diameter (mm)</td>
<td>(Saad et al., 2012)</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------------------------</td>
<td>-----------</td>
<td>-------</td>
<td>---------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>Punica granatum Peels</td>
<td>Methanol 1:20, 6h</td>
<td>3.10</td>
<td>504.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus pinaster Bark</td>
<td>Water + 1% NaOH + 0.25% Na$_2$SO$_3$ + 0.25% NaHSO$_3$ 1:9, 2h 80°C</td>
<td>22.06</td>
<td>489.70</td>
<td></td>
<td>(Chupin et al., 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water + 5% NaOH + 0.25% Na$_2$SO$_3$ + 0.25% NaHSO$_3$ 1:9, 2h 80°C</td>
<td>31.30</td>
<td>179.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus radiata Bark</td>
<td>Acetone (25%) 1:20, 2h 40°C</td>
<td>3.50</td>
<td>350.00</td>
<td></td>
<td>(Ramos et al., 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol (25%) 1:20, 2h 40°C</td>
<td>3.00</td>
<td>310.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acetone (25%) 1:20, 2h 120°C</td>
<td>11.00</td>
<td>220.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol (25%) 1:20, 2h 120°C</td>
<td>10.10</td>
<td>250.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carya illinoinsensis Shells</td>
<td>Water 1:50, 0.5h 98°C</td>
<td>32.12</td>
<td>36.94</td>
<td></td>
<td>(do Prado et al., 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol 1:50, 1h 25°C</td>
<td>32.09</td>
<td>412.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osbeckia parvifolia Whole plant</td>
<td>Hexane 1:5, 24h</td>
<td>3.40</td>
<td>7.31</td>
<td></td>
<td>(Murugan and Parimelazhagan, 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethyl acetate 1:5, 24h</td>
<td>4.80</td>
<td>10.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methanol 1:5, 24h</td>
<td>9.20</td>
<td>20.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol 1:5, 24h</td>
<td>1.60</td>
<td>10.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picea abies Bark</td>
<td>Water + 2% NaHSO$_3$ + 0.5% Na$_2$CO$_3$ 1:20, 2h 90°C</td>
<td>16.10</td>
<td>330.00</td>
<td></td>
<td>(Kemppainen et al., 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:20, 2h 90°C</td>
<td>20.90</td>
<td>480.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mimosa hamata Whole plant</td>
<td>Methanol (80%) 1:6, 48h</td>
<td>24.20</td>
<td>264.40</td>
<td></td>
<td>(Saxena et al., 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol (95%) 1:6, 48h</td>
<td>34.74</td>
<td>287.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pluchea indica Leaves</td>
<td>Water 3h b.p</td>
<td>40.65</td>
<td>81.30</td>
<td></td>
<td>(Widyawati et al., 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methanol 3h b.p</td>
<td>38.07</td>
<td>911.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethyl acetate 3h b.p</td>
<td>32.97</td>
<td>93.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol 3h b.p</td>
<td>31.09</td>
<td>7.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexane 3h b.p</td>
<td>29.46</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spondias purpurea Bark</td>
<td>Ethanol (95%) 1:30 4h</td>
<td>31.80</td>
<td>31.80</td>
<td></td>
<td>(Baldosano et al., 2015)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6h</td>
<td>73.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8h</td>
<td>181.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saccharum officinarum Bagasse</td>
<td>Methanol (50%) 1:10, 72h</td>
<td>6.20</td>
<td>381.80</td>
<td></td>
<td>(Vijayalaxmi et al., 2015)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol (50%) 1:10, 72h</td>
<td>4.50</td>
<td>316.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant</td>
<td>Material</td>
<td>Solvent</td>
<td>Extraction Conditions</td>
<td>Tannin Content (mg/g)</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Castanea sativa</td>
<td>Peels</td>
<td>Water</td>
<td>1:4, 4h 85°C</td>
<td>7.03</td>
<td>(Aires et al., 2016)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water + 1% Na₂SO₃</td>
<td></td>
<td>7.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water + 4% Na₂SO₃</td>
<td></td>
<td>8.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water + 1% NaOH</td>
<td></td>
<td>11.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water + 4% NaOH</td>
<td></td>
<td>66.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucaliptus globulus</td>
<td>Leaves</td>
<td>1-butyl-3-</td>
<td>1:30, 0.33h MAE 385W</td>
<td>3.40</td>
<td>(C. Liu et al., 2016)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>methylimidazole</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bromide [C₄mim]Br 0.6M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phyllantus niruri</td>
<td>Whole plant</td>
<td>Ethanol</td>
<td>1:2, 24h</td>
<td>2.50</td>
<td>(Kaur and Kaur, 2016)</td>
<td></td>
</tr>
<tr>
<td>(Pattiala region)</td>
<td></td>
<td>Methanol</td>
<td></td>
<td>16.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>Skins</td>
<td>1-butyl-3-</td>
<td></td>
<td></td>
<td>(Ćurko et al., 2017)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>methylimidazolium</td>
<td></td>
<td>60.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bromide [C₄mim]Br 0.5M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-pentyl-3-</td>
<td></td>
<td>41.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>methylimidazolium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bromide [C₅mim]Br 0.5M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-heptyl-3-</td>
<td>1:10, 4h 25°C</td>
<td>38.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>methylimidazolium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bromide [C₇mim]Br 0.5M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-decyl-3-</td>
<td></td>
<td>6.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>methylimidazolium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bromide [C₁₀mim]Br 0.5M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Results expressed in mg of tannins per gram of dry matter.
*Extraction yield expressed in grams of extracts per grams of material.
*DE= dry extract.
*Tannin content in extracts expressed in mg of reactive tannins/g dry extract (Stiasny number).
*Tannin content in extracts expressed in gallic acid equivalents (GAE).
*Tannin content in extracts expressed in tannic acid equivalents (TAE).
*Hydrolysable tannin content in the extracts (HTC).
*b.p= boiling point.
*Content of extracts expressed in catechin equivalents (CE).
*Tannin content in extracts expressed in cyaniding equivalents (CYE).
*Condensed tannin content in the extracts (CTC).
*Tannin content in extracts expressed in quercetin equivalents (QE).
Table 4. Results related to the extraction of tannins via fluid at supercritical conditions

<table>
<thead>
<tr>
<th>Species</th>
<th>Plant part</th>
<th>Fluid</th>
<th>Co-solvent</th>
<th>Tº (°C)</th>
<th>P (MPa)</th>
<th>Extraction yield (% w/w)</th>
<th>Tannin content (mg/g DEb)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamarindus indica</td>
<td>Seed</td>
<td>Ethanol</td>
<td>(10%)</td>
<td>40</td>
<td>30.00</td>
<td><1</td>
<td>0.06c</td>
<td>(Luengthanaphol et al., 2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td>30.00</td>
<td></td>
<td>0.05c</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethanol</td>
<td>(30%)</td>
<td>60</td>
<td>25.00</td>
<td>---</td>
<td>95.00d</td>
<td>(Pansera et al., 2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethanol</td>
<td>(35%)</td>
<td>80</td>
<td>65.50</td>
<td>---</td>
<td>720.00e</td>
<td>(Ashraf-Khorassani and Taylor, 2004)</td>
</tr>
<tr>
<td>Acacia mearnsi</td>
<td>Bark</td>
<td>Water</td>
<td></td>
<td>60</td>
<td>25.00</td>
<td>---</td>
<td>135.00d</td>
<td></td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>Seed</td>
<td>Methanol</td>
<td>(30%)</td>
<td>80</td>
<td>65.50</td>
<td>---</td>
<td>600.00e</td>
<td>(Ashraf-Khorassani and Taylor, 2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methanol</td>
<td>(50%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methanol</td>
<td>(70%)</td>
<td></td>
<td></td>
<td></td>
<td>770.00e</td>
<td></td>
</tr>
<tr>
<td>Phyllantus niruri</td>
<td>Stem and aerial</td>
<td>CO₂</td>
<td></td>
<td>60</td>
<td>20.00</td>
<td>17.78</td>
<td>93.80f</td>
<td>(Markom et al., 2010b)</td>
</tr>
<tr>
<td></td>
<td>parts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punica granatum</td>
<td>Leaves</td>
<td>Ethanol</td>
<td>(50%)</td>
<td>60</td>
<td>20.00</td>
<td>19.83</td>
<td>93.60f</td>
<td>(Cavalcanti et al., 2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethanol</td>
<td>(70%)</td>
<td></td>
<td></td>
<td>8.50</td>
<td>92.10f</td>
<td></td>
</tr>
<tr>
<td>Pinus pinaster</td>
<td>Sapwood and knotwood</td>
<td>Ethanol</td>
<td>(10%)</td>
<td>50</td>
<td>25.00</td>
<td>1.60</td>
<td>19.38g</td>
<td>(Conde et al., 2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethanol</td>
<td>(10%)</td>
<td>50</td>
<td>20.00</td>
<td>4.10</td>
<td>75.61g</td>
<td></td>
</tr>
<tr>
<td>Carya illinoiensis</td>
<td>Shells</td>
<td>Ethanol</td>
<td>(10%)</td>
<td>50</td>
<td>10.00</td>
<td>0.83</td>
<td>0.48h</td>
<td>(do Prado et al., 2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethanol</td>
<td>(10%)</td>
<td>20.00</td>
<td>8.40</td>
<td>20.00</td>
<td>29.00h</td>
<td></td>
</tr>
<tr>
<td>Camellia sinensis</td>
<td>Leaves</td>
<td>Ethanol</td>
<td></td>
<td>50</td>
<td>18.80</td>
<td>---</td>
<td>499.90d</td>
<td>(Maran et al., 2015)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethanol</td>
<td>(70%)</td>
<td>40</td>
<td>10.00</td>
<td>22.5</td>
<td>26.38d</td>
<td>(Talmaciu et al., 2016)</td>
</tr>
</tbody>
</table>

a Extraction yield expressed in grams of extracts per grams of material.

b DE = dry extract.

c Amount of epicatechin recovered in the extracts.

d Tannin content in extracts expressed in tannic acid equivalents (TAE).

e Amount of catechin recovered in the extracts.

f Total ellagitannin content in the extracts.

g Tannin content in extracts expressed in gallic acid equivalents (GAE).

h Tannin content in extracts expressed in catechin equivalents (CE).
Table 5. Results related to the extraction of tannins using water at high pressures and temperatures

<table>
<thead>
<tr>
<th>Species</th>
<th>Plant part</th>
<th>Time (min)</th>
<th>Tª (°C)</th>
<th>P (MPa)</th>
<th>Extraction yield (% w/w)a</th>
<th>Tannin content (mg/gDEb)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitis vinifera</td>
<td>Seeds</td>
<td>30</td>
<td>50</td>
<td>10.34</td>
<td>4.20</td>
<td>615.47c</td>
<td>(Garcia-Marino et al., 2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>12.40</td>
<td>405.67c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>37.70</td>
<td>505.44c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminalia chebula</td>
<td>Fruits</td>
<td>37.50</td>
<td>120</td>
<td>4</td>
<td>---</td>
<td>15.57**</td>
<td>(Rangsriwong et al., 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180</td>
<td>4</td>
<td>---</td>
<td>21.43**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>220</td>
<td>4</td>
<td>---</td>
<td>3.95**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punica granatum</td>
<td>Peels</td>
<td>5</td>
<td>40</td>
<td>10.34</td>
<td>43.30</td>
<td>21.94c</td>
<td>(Çam and Hışıl, 2010)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>610.39c</td>
<td></td>
</tr>
<tr>
<td>Phyllantus niruri</td>
<td>Stem and aerial parts</td>
<td>60</td>
<td>100</td>
<td>5</td>
<td>21.50</td>
<td>100.46d</td>
<td>(Markom et al., 2010a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>23.21</td>
<td>102.11d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>24.50</td>
<td>95.92d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>23.35</td>
<td>90.36d</td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>Leaves</td>
<td>20</td>
<td>200</td>
<td>10.34</td>
<td>14.80</td>
<td>188.48f</td>
<td>(Plaza et al., 2010)</td>
</tr>
<tr>
<td>Thymus vulgaris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.00</td>
<td>81.14f</td>
<td></td>
</tr>
<tr>
<td>Verbena officinalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>Pomace</td>
<td>30</td>
<td>120</td>
<td>8</td>
<td>12.29c</td>
<td>14.35c</td>
<td>(Aliakbariana et al., 2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.50</td>
<td>14.35c</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.52c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>Pomace</td>
<td>5</td>
<td>100</td>
<td>10.34</td>
<td>---</td>
<td>52.90c</td>
<td>(Vergara-Salinas et al., 2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>---</td>
<td>18.30c</td>
<td></td>
</tr>
<tr>
<td>Larix europaea</td>
<td>Barks</td>
<td>30</td>
<td>100</td>
<td>2</td>
<td>10.50</td>
<td>381.90c</td>
<td>(Ravber et al., 2015)</td>
</tr>
<tr>
<td>Phyllantus amarus</td>
<td>Aerial parts</td>
<td>15</td>
<td>107.60</td>
<td>---</td>
<td>0.54*</td>
<td>3.15*</td>
<td>(Sousa et al., 2016)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150.00</td>
<td>---</td>
<td>4.14*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viola × witteckiana</td>
<td>Flowers</td>
<td>15</td>
<td>250</td>
<td>---</td>
<td>---</td>
<td>93.86**</td>
<td>(Fernandes et al., 2017)</td>
</tr>
<tr>
<td>Ficus carica</td>
<td>Industry fermented byproducts</td>
<td>30</td>
<td>---</td>
<td>0.1</td>
<td>5.32</td>
<td>0.46*</td>
<td>(Alexandre et al., 2017)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300</td>
<td>6.61</td>
<td>0.53*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>600</td>
<td>7.13</td>
<td>0.49*</td>
<td></td>
</tr>
<tr>
<td>Pistacia vera</td>
<td>Hulls</td>
<td>50</td>
<td>110</td>
<td>6.9</td>
<td>59.10</td>
<td>41.46g</td>
<td>(Erşan et al., 2018)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>70.90</td>
<td>45.84g</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>190</td>
<td>65.30</td>
<td>31.24g</td>
<td></td>
</tr>
</tbody>
</table>

*Results expressed in mg of tannins per gram of dry matter.

†Extraction yield expressed in grams of extracts per grams of material.

DE= dry extract.

‡Tannin content in extracts expressed in catechin equivalents (CE).

§Hydrolysable tannin content in extracts (gallotannins+ellagitannins+coraligin).

∥Tannin content in extracts expressed in tannic acid equivalents (TAE)

*‡Tannin content in extracts expressed in gallic acid equivalents (GAE)

‡Tannin content in extracts obtained by HPLC
Table 6. Results devoted to the extraction of tannins assisted by microwave

<table>
<thead>
<tr>
<th>Species</th>
<th>Plant part</th>
<th>Extraction conditions</th>
<th>Extraction Yield (% w/w)</th>
<th>Tannin content (mg/g)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitis vinifera</td>
<td>Seed</td>
<td>Methanol (90%)</td>
<td>1:15 73 3.33 30 15.12</td>
<td>429.00*</td>
<td>(Hong et al., 2001)</td>
</tr>
<tr>
<td>Radix puerariae</td>
<td>Whole plant</td>
<td>Ethanol (70%)</td>
<td>1:20 1:30 1:40 --- 6.50 255 ---</td>
<td>5.75d 8.00d 6.25d</td>
<td>(Wang et al., 2010)</td>
</tr>
<tr>
<td>Cinnamomum zeylanicu</td>
<td>Leaves</td>
<td>Ethanol (70%)</td>
<td>---</td>
<td>16.79e</td>
<td></td>
</tr>
<tr>
<td>Crocus sativus</td>
<td>Powder</td>
<td>Ethanol (50%)</td>
<td>1:20 50 18.00 200</td>
<td>29.39e</td>
<td>(Gallo et al., 2010)</td>
</tr>
<tr>
<td>Coriandrum sativum</td>
<td>Seeds</td>
<td>Ethanol (50%)</td>
<td>1:20 50 18.00 200</td>
<td>0.82e</td>
<td></td>
</tr>
<tr>
<td>Cuminum cyminum</td>
<td>Stems and roots</td>
<td>Acetone</td>
<td>1:35 30 15.00 300 500 700 ---</td>
<td>11.59e 99.95e 128.65e 107.00e</td>
<td></td>
</tr>
<tr>
<td>Agrimonia pilosa</td>
<td>Seeds</td>
<td>Ethanol (70%)</td>
<td>1:40 60 2.00 125 16.40</td>
<td>528.05e</td>
<td>(Li et al., 2011)</td>
</tr>
<tr>
<td>Pinus radiata</td>
<td>Bark</td>
<td>Acetone (70%)</td>
<td>1:10 25 3.00 900 ---</td>
<td>523.69*</td>
<td>(Aspé and Fernández, 2011)</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>Leaves</td>
<td>Methanol (70%)</td>
<td>1:5 70 5.00 180 320 800 ---</td>
<td>3.48d 3.90d 3.25d</td>
<td>(Švarc-Gajić et al., 2013)</td>
</tr>
<tr>
<td>Pinus pinaster</td>
<td>Bark</td>
<td>Acetone (80%)</td>
<td>1:20 3.00 100 13.60 48.98*</td>
<td></td>
<td>(Chupin et al., 2015)</td>
</tr>
<tr>
<td>Myrtus communis</td>
<td>Leaves</td>
<td>Ethanol (42%)</td>
<td>1:32 --- 1.04 500 ---</td>
<td>32.65*</td>
<td>(Dahmoune et al., 2015)</td>
</tr>
<tr>
<td>Acacia mollissima</td>
<td>Bark</td>
<td>Water Ethanol</td>
<td>1:20 5.00 150 30.29b 0.03c</td>
<td></td>
<td>(Naima et al., 2015)</td>
</tr>
<tr>
<td>Eucalyptus globulus</td>
<td>Leaves</td>
<td>Ethanol (45%)</td>
<td>1:30 --- 4.50 340 ---</td>
<td>4.11f</td>
<td>(Huma et al., 2018)</td>
</tr>
</tbody>
</table>

*Results expressed in mg of tannins per gram of dry extract.

Extraction yield expressed in grams of extracts per grams of material.

DM = dry matter.

*Tannin content in extracts expressed in tannic acid equivalents (TAE).

Rutin content in the extracts (RC).

*Tannin content in extracts expressed in gallic acid equivalents (GAE).

*Tannin content in extracts expressed in catechin equivalents (CE).

CAmount of condensed tannins precipitated from extracts (CTP).

*Tannin content in extracts expressed in cyaniding equivalents (CyE).
Table 7. Results related to the extraction of tannins assisted by ultrasound

<table>
<thead>
<tr>
<th>Species</th>
<th>Plant part</th>
<th>Extraction conditions</th>
<th>Extraction Yield (% w/w)</th>
<th>Tannin content (mg/g DM)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucaena spp</td>
<td>Leaves</td>
<td>Acetone 70%</td>
<td>1:50</td>
<td>25 20 30 15 --- --- ---</td>
<td>86.10^a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Dalzell and Kerven, 1998)</td>
</tr>
<tr>
<td>Betula alleghaniensis</td>
<td>Foliage</td>
<td>Ethanol (95%)</td>
<td>---</td>
<td>20 30 750 14.80</td>
<td>43.00^b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Diouf et al., 2009)</td>
</tr>
<tr>
<td>Averrhoa carambola</td>
<td>Fruit</td>
<td>Methanol</td>
<td>1:10</td>
<td>25 30 135 4.80 11.70</td>
<td>11.20^b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Annegowda et al., 2012)</td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>Full berry</td>
<td>Ethanol (50%)</td>
<td>1:10</td>
<td>10 6 200 4.80 11.70</td>
<td>6.00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Carrera et al., 2012)</td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>Seeds</td>
<td>Methanol</td>
<td>1:10</td>
<td>30 15 150 4.80 11.70</td>
<td>61.80e</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Da Porto et al., 2013)</td>
</tr>
<tr>
<td>Areca catechu</td>
<td>Nuts</td>
<td>Acetone (80%)</td>
<td>1:10</td>
<td>37.50 10 30 4.30 10.90</td>
<td>44.53^c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Chavan and Singhal, 2013)</td>
</tr>
<tr>
<td>Withania somnifera</td>
<td>Roots</td>
<td>Ethanol (10%)</td>
<td>1:10</td>
<td>25 20 480 3.17 9.08</td>
<td>22.12^e</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Dhanani et al., 2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water</td>
<td>1:10</td>
<td>25 20 480 3.17 9.08</td>
<td>22.12^e</td>
</tr>
<tr>
<td>Quercus brantii</td>
<td>Leaves</td>
<td>Methanol (50%)</td>
<td>1:20</td>
<td>60 45 140 21.10 104.50</td>
<td>104.50^b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methanol (90%)</td>
<td>1:20</td>
<td>60 45 140 21.10 104.50</td>
<td>104.50^b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Tabaraki et al., 2013)</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
<td>Leaves</td>
<td>Ethanol (40%)</td>
<td>1:50</td>
<td>15 130 35.94e</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Dahmoune et al., 2014)</td>
</tr>
<tr>
<td>Rubus fruticosus</td>
<td>Fruits</td>
<td>Ethanol</td>
<td>1:2.50</td>
<td>25 60 5.30 5.09^d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Ivanovic et al., 2014)</td>
</tr>
<tr>
<td>Phyllantus amarus</td>
<td>Aerial parts</td>
<td>Deionized water</td>
<td>---</td>
<td>25 7 301 27.23d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Sousa et al., 2016)</td>
</tr>
<tr>
<td>Cannabis sativa</td>
<td>Flowers, leaves</td>
<td>Methanol (80%)</td>
<td>1:25</td>
<td>15 90 8.75 31.44d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and seed husks</td>
<td></td>
<td></td>
<td></td>
<td>(Agarwal et al., 2018)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piper betle</td>
<td>Leaves</td>
<td>Ethanol (78.74%)</td>
<td>1:21.85</td>
<td>51.60 30 400 13.71 21.5^i</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Ali et al., 2018)</td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>Pomace</td>
<td>Ethanol (44%)</td>
<td>1:5</td>
<td>50 3 500 86.67f</td>
<td></td>
</tr>
<tr>
<td>(Tempranillo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Poveda et al., 2018)</td>
</tr>
</tbody>
</table>

^*Results expressed in mg of tannins per gram of dry extract.*
^*Extraction yield expressed in grams of extracts per grams of material.*
^*DM= dry matter.*
^*Tannin content in extracts expressed in L. leucocephale proanthocyanidin-equivalents (LPAE).*
^*Tannin content in extracts expressed in quercetin equivalents (QE).*
^*Tannin content in extracts expressed in catechin equivalents.*
Total content of condensed tannins in extracts (TCT).
Tannin content in extracts expressed in gallic acid equivalents (GAE).
Total tannin content in extracts (TTC).
Tannin content in extracts expressed in rutin equivalents (RE).
Table 8. Results devoted to the assessment and comparison of the different tannins extraction methods

<table>
<thead>
<tr>
<th>Species</th>
<th>Plant part</th>
<th>Extraction technique</th>
<th>Extraction conditions</th>
<th>Extraction yield (% w/w)</th>
<th>Tannin content (mg/g DEb)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pistachia Vera</td>
<td>Hulls</td>
<td>SLE</td>
<td>Methanol-1:4 25°C, 6h</td>
<td>32.80d</td>
<td>6.55d</td>
<td>(Goli et al., 2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SFE</td>
<td>SCCO₂-c co-solvent-15%Methanol 45°C-15 min. 35.46MPa</td>
<td>---</td>
<td>6.55d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UAE</td>
<td>Methanol-1:8 45 min.</td>
<td>32.80d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminalia chebula</td>
<td>Fruit</td>
<td>SLE</td>
<td>Ethanol-1:15 78.3°C, 240 min</td>
<td>9.92e</td>
<td>15.96e</td>
<td>(Rangsriwong et al., 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SLE</td>
<td>Water-1:15 100°C, 120 min</td>
<td>9.92e</td>
<td>15.96e</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PWE</td>
<td>Water 180°C, 37.5 min 4MPa</td>
<td>---</td>
<td>21.43e</td>
<td></td>
</tr>
<tr>
<td>Pinus radiata</td>
<td>Bark</td>
<td>SLE</td>
<td>Acetone (70%)-1:10 82°C, 180 min.</td>
<td>12.00</td>
<td>62.10f</td>
<td>(Aspé and Fernández, 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UAE</td>
<td>Acetone (70%)-1:10 25°C, 6 min. 85W</td>
<td>9.50</td>
<td>47.2f</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAE</td>
<td>Acetone (70%)-1:10 25°C, 3 min. 900W</td>
<td>10.40</td>
<td>55.4f</td>
<td></td>
</tr>
<tr>
<td>Galla chinensis</td>
<td>Whole plant</td>
<td>EtOH+UAE+MAE</td>
<td>Ethanol-1:15 Microwave 400W+ Ultrasound 50W 1 min</td>
<td>543.50g*</td>
<td></td>
<td>(Lu et al., 2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL+UAE+MAE</td>
<td>1-butyl-3-methylimidazole bromide [C4mim]Br-1:15 Microwave 400W+ Ultrasound 50W 1 min</td>
<td>---</td>
<td>630.20g*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAE</td>
<td>Ethanol-1:15 400W 1 min</td>
<td>528.50g*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UAE</td>
<td>Ethanol-1:15 50W 1 min</td>
<td>491.20g*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camellia sinensis</td>
<td>Leaves and aerial parts</td>
<td>SLE</td>
<td>Ethanol (30%)-1:10 40°C, 2h</td>
<td>---</td>
<td>180g*</td>
<td>(Ribeiro et al., 2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ILE</td>
<td>1-ethyl-3-methylimidazolium chloride [C2min]Cl (50%) 40°C, 2h, 1:10</td>
<td>---</td>
<td>300g*</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Part</td>
<td>Extraction Method</td>
<td>Solvent/Condition</td>
<td>Yield (g)</td>
<td>% Yield</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------</td>
<td>-------------------</td>
<td>------------------------------------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Rubus sp.</td>
<td>Bagasse</td>
<td>SLE</td>
<td>Ethanol-1:31.60 50°C, 6-8h</td>
<td>14.58</td>
<td>4.25%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SFE</td>
<td>SCCO$_2^c$ no cosolvent, 15MPa 120 min.</td>
<td>6.84</td>
<td>4.07%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SFE+UAE</td>
<td>SCCO$_2^c$ no cosolvent, 15 MPa 400W, 57 min.</td>
<td>7.94</td>
<td>3.53%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SCCO$_2^c$ cosolvent-10%Ethanol, 15MPa 200W, 57 min</td>
<td>18.25</td>
<td>12.73%</td>
<td></td>
</tr>
<tr>
<td>Solidago canadensis</td>
<td>Bark</td>
<td>SLE</td>
<td>Ethanol (50%)-1:20 25°C, 30 min.</td>
<td>---</td>
<td>26.29%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UAE</td>
<td>Ethanol (50%)-1:20 30 min</td>
<td>---</td>
<td>30.15%</td>
<td></td>
</tr>
<tr>
<td>Myrtus communis</td>
<td>Leaves</td>
<td>UAE</td>
<td>Ethanol (96%)-1:5.4 30 min. 320W</td>
<td>10.81</td>
<td>324.34%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SFE</td>
<td>SCCO$_2^c$ co-solvent-Ethanol 45°C, 700 min. 23MPa</td>
<td>10.80</td>
<td>47.28%-94.56%</td>
<td></td>
</tr>
<tr>
<td>Berberis jaeschkeana</td>
<td>Fruits</td>
<td>SLE</td>
<td>Methanol 80%-1:70 70°C-15 min.</td>
<td>---</td>
<td>21.41d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UAE</td>
<td>Methanol 80%-1:70 70°C-15 min.</td>
<td>---</td>
<td>32.41d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAE</td>
<td>Methanol 80%-1:40 5 min. 670W</td>
<td>---</td>
<td>24.04d</td>
<td></td>
</tr>
<tr>
<td>Myrtus communis</td>
<td>Leaves</td>
<td>SLE</td>
<td>Ethanol 42%-1:50 120 min.</td>
<td>---</td>
<td>36.01f</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAE</td>
<td>Ethanol 42%-1:30 1 min 500W</td>
<td>---</td>
<td>34.50f</td>
<td></td>
</tr>
<tr>
<td>Salacia chinensis</td>
<td>Roots</td>
<td>SLE</td>
<td>Methanol-1:10 25°C, 360 min.</td>
<td>---</td>
<td>43.37d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UAE</td>
<td>Methanol-1:10 25°C, 10 min.</td>
<td>---</td>
<td>41.29d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAE</td>
<td>Methanol-1:10 25°C, 5 min. 180W</td>
<td>---</td>
<td>43.54d</td>
<td></td>
</tr>
<tr>
<td>Erica carnea</td>
<td>Aerial parts</td>
<td>SLE</td>
<td>Ethanol 96%-1:30 22°C (maceration)</td>
<td>15.30</td>
<td>57.19g</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UAE</td>
<td>Ethanol 96%-1:20 30 min 216W</td>
<td>18.33</td>
<td>60.65g</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>Extractant</td>
<td>Temperature</td>
<td>Time</td>
<td>Power</td>
<td>Tannins (mg/g DM)</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------</td>
<td>-------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>MAE</td>
<td>Ethanol 96%-1:20 30 min 600W</td>
<td>30.65</td>
<td>61.70*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWE</td>
<td>Water-1:20 140°C, 30 min. 4MPa</td>
<td>42.66</td>
<td>62.53*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Extractant</th>
<th>Temperature</th>
<th>Time</th>
<th>Power</th>
<th>Tannins (mg/g DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLE</td>
<td>Ethanol 96%-1:30 22°C, 8h</td>
<td>---</td>
<td>65.61*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UAE</td>
<td>Ethanol 96%-1:20 30 min 216W</td>
<td>---</td>
<td>71.78*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAE</td>
<td>Ethanol 96%-1:20 30 min 600W</td>
<td>71.15*</td>
<td>(Mašković et al., 2018)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWE</td>
<td>Water-1:20 140°C, 30 min. 4MPa</td>
<td>72.23*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Results expressed in mg of tannins per gram of dry matter.
*Extraction yield expressed in grams of extracts per grams of material.
*DE= dry extract.
*SCCO$_2$= carbon dioxide at supercritical conditions.
*Tannin content in extracts expressed in tannic acid equivalents (TAE).
*Hydrolysable tannin content in extracts (HTC)
*Tannin content in extracts expressed in catechin equivalents (CE).
*Tannin content in extracts expressed in gallic acid equivalents (GAE).
*Total tannin content in the extracts (TTC).