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We study pairs of consecutive odd numbers through a straightforward indexing. We focus in particular on twin primes and their distribution. With a counting argument, we calculate the limit of an alternating sum that is equal to 1 which means there are few twin primes. Finally, we show how to find the possible congruences for these prime numbers.
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Introduction

With the exception of the pair , pairs of twin primes are of the form . This condition is obviously not sufficient to characterize them, and we propose to study here the distribution of pairs of composite numbers among them.

I-Preliminaries

Let us recall here some of the notations from [START_REF] Wolf Marc | Representation theorem of composite odd numbers indices[END_REF] and [START_REF] Wolf Marc | On the distribution of composite odd numbers[END_REF]:

1. is the set of odd integers greater than 1, i.e.:

with the index of an odd number . We note that is a multiple of 3 if and only if is;

2. is the set of odd prime numbers, primes will also be enumerated in ascending order , with their respective indiceswe also note the set of indices of prime numbers. Apart from , none of the is a multiple of 3, which means that for , is not a multiple of 3; To avoid confusion, we reserve uppercase Latin letters for sets of odd numbers or indices of these numbers. Sets of pairs of numbers will be referred to with uppercase Greek letters.

II-Pair of indices of the form II.1 The set and its remarkable subsets , and

We define as the set of pairs of consecutive indices of non-multiples of 3:

Property 2.1: .

Proof: Since the remarkable index that is the largest element of is never of the form , we deduce that if and only if . has therefore as many numbers congruent to as to modulo . We note (respectively ) the numbers that are congruent to (respectively ) modulo .

It is thus clear that . Moreover, any element is necessarily of the form , so there is a bijection: which proves the property.

Definition 2.1.2: We define , et as follows:

These three sets clearly form a partition of . corresponds to pairs of twin primes less than with the exception of . corresponds to the pairs of consecutive odd composite numbers, while corresponds to the mixed pairs.

II.2 A counting result

We show here a property linking the cardinal of the different sets defined previously.

Property 2.2:

We have the following equality:

Proof: The partition of (See definition 2.1.2) allows us to write the following equality:

Moreover, using the same arguments as in the proof of property 2.1, we have:

We deduce that , and thus the desired result.

III-Counting of ( ), ( ) and ( )

The previous property establishes a relation on the number of pairs of twin primes. We will now expand on the cardinals of the sets involved in this relation.

III.1 Counting of ( ) and ( )

The property 3.1 of [START_REF] Wolf Marc | On the distribution of composite odd numbers[END_REF] gives us that for all :

In particular:

The following result is an immediate consequence.

Property 3.1:

In particular:

Let us also remind the results of [START_REF] Wolf Marc | On the distribution of composite odd numbers[END_REF] on the cardinal of . If we denote by the number of primes less than x, the number of indices of odd primes less than i.e. , and , the property 3.2.3 of [START_REF] Wolf Marc | On the distribution of composite odd numbers[END_REF] expresses in two different ways:

The property 3.2.4 of [START_REF] Wolf Marc | On the distribution of composite odd numbers[END_REF] also gives the asymptotic expansion of :

III.2 Counting of ( )

III.2.1 The inclusion-exclusion principle

Let . Thus , and is a composite number, so it admits at least one odd prime factor between and . It's the same for his successor . We deduce the existence of two indices of prime numbers and , with , such as and . We can notice that and are necessarily distinct: in fact, two consecutive odd numbers are necessarily coprime, and therefore and cannot admit a common prime divisor. Furthermore, we may involve more prime numbers without changing the result. We deduce that more generally:

The inclusion-exclusion principle allows us to calculate the cardinal of this union:

This result suggests to calculate, for all , the cardinal of . So let us consider a subset of , and analyze the properties of a pair .

Necessarily:    Let and also . If , then from the first point we deduce that divides both and that is not possible, therefore necessarily . Provided that this condition is verified, we can rewrite the equations above as a system of Diophantine equations on :     Insofar as the above congruences involve distinct two-by-two prime numbers, we can deduce (according to the Chinese theorem) the existence of a unique solution between 1 and , such that every other solution in , and especially , is of the form , for . Conversely, it is easy to check that the conditions are sufficient provided that and are composite numbers, so that two cases are distinguished: Case 1: If or is prime, then the first pair is excluded and necessarily:

In this case, the first coordinate of the smallest element is: . Case 2: Otherwise, all the solutions of the Diophantine equation are suitable:

In this case, the first coordinate of the smallest element is: .

The primality of is possible only if which also implies that must be reduced to one element. In the same way, the primality of implies and is only possible when is a singleton. These are not sufficient conditions, but imply that case 1 occurs only for relatively low values of , that is to say of the same order of magnitude as the prime numbers chosen for counting. only depends on and . Subsequently, when necessary, this dependency will be explicitly shown using the notation ; and similarly for the first coordinate of the smallest element of : Property 3.2.1: We have the equality . Therefore, case 1 cannot occur for both and . Proof:

is the only solution of a system of Diophantine equations between and , just check that is the solution of these same equations. We have: hence we deduce: Moreover, , as a multiple of , cannot be equal to , that is to say that is also between 0 and , and therefore coincides with . Finally, assuming that is prime, this implies that it is equal to , and that divides . Therefore, using that and :

, multiple strict of , cannot be prime, and similarly his successor cannot either. Similar inequalities can also be written in the case where is prime. To build an index of the sum above uniquely, it suffices to choose for each element a non-empty subset of so that . Thus:

III.2.2 Calculation of the cardinal of ( )

Using the binomial expansion, we get:

Thus . This yields the result for , as in this case the condition is equivalent to . For any greater value of , the principle of inclusion-exclusion yields:

With one more binomial expansion, this leads to the expected resultthe observation on positive parts is a simple consequence of the previous remark.

Remark: The sum in contains much fewer terms than in : the former has the order of against for the latter! Grouping terms and of equal size, it can be rewritten as an double alternating sum, while becomes a (simple) alternating sum.

The corollary below focuses on the case where the condition is dropped: Corollary 3.2.2.2: Let . We have the following inequality:

with:

Moreover, is increasing in and in . Proof: This is a generalization of the previous results, counting instead of . Clearly as more elements lay in the latter union and clearly as well as is increasing, hence is increasing in both and . Remark: Similarly, if we define the set of multiples of at least one of , , we get:

We will reuse sets and in the last part of this article.

III.2.3 Asymptotic expansion of | ( )|

As we have seen in [START_REF] Wolf Marc | On the distribution of composite odd numbers[END_REF], the prime number theorem implies that:

Moreover, as we have seen that two pairs of twin primes (greater than 3) cannot have a common value:

The twin prime numbers infinity remains a conjecture to this day, in particular we do not know an equivalent to .

Property 3.2.3:

We have the following asymptotic expansion:

Proof: According to property 2.2, we have and so

. The asymptotic expansions of and allows us to conclude.

III.3 A special alternate sum in the equivalent of | |

In this section we focus on another equivalent of . A naive manipulation of the formula: consists in summing the equivalents of each term of the sum, which gives: However, we must be careful that, as the sum has more and more terms, this approach is not mathematically valid. However, corollary 3.2.2.2 allows us to manipulate finite sums. Proof: allows us to assert that for , . But for all , hence, dividing by and taking the limit, , that is, the sequence is increasing.

Moreover, so by using the asymptotic expansion of we also deduce the inequality .

Property 3.3.2: The alternating sum converges to 1:

Proof: The previous property already shows that converges to a limit not greater than 1. To obtain the desired result, we observe that the terms of the sum depend only on the disjoint union and that terms can be grouped accordingly:

In the equations above, we used the convergence of the infinite products and towards 0, which is a consequence of the divergence of the sum of the reciprocals of the primes (See [START_REF] Tenenbaum | Les nombres premiers[END_REF]).

III.4 The Möbius approximation

In the spirit of [START_REF] Wolf Marc | On the distribution of composite odd numbers[END_REF], we have obtained a Euler approximation of the proportion of pairs of composite odd numbers among the pairs of the form , namely . It is also legitimate to study the Möbius approximation:

An empirical study of this sum suggests its convergence, as shown in the graph below, made for ranging from 1 to 20 000.

In addition to the Möbius function (see [START_REF] Tenenbaum | Les nombres premiers[END_REF]), let us introduce the following three arithmetic functions, with :

Thus, coincides with on odd numbers non-multiple of 3.

The proof of [START_REF] Wolf Marc | On the distribution of composite odd numbers[END_REF] relating to Möbius approximation is difficult to adapt because it is based on a convergence result equivalent to the prime number theorem, and which requires analysis tools that are outside the scope of this article.

We can nevertheless show some interesting results on generalized the Möbius function :

Property 3.4.1: The following identities are true for all :

Proof: Let's consider . Then:

The second equality is obvious for . Suppose first that n is the strict power of a prime number:

. Then:

Let's go back to the general case . We observe that: Proof: It is a simple manipulation of sums:

In the penultimate equality, we made a change of index and in the last equality we used the property 3.4.1.

Corollary 3.4.2:

is bounded by 2.

Proof: According to property 3.4.2 applied for , we have:

Moreover, for any between and :

We then deduce:

Finally:

For the last equation, the values of and calculated using the property 3.2.1 have been used.

Thus

This represents an isolated pair of twin primes, of indices , and 15 congruences modulo 105 for the indices that correspond to the pairs previously found.

Conclusion

Through simple counting of finite sets of indices of pairs of consecutive composite odd numbers, we have highlighted existence of an alternating sum convergent to , which reflects the fact that there are few twin primes. However, we leave open the question of the convergence of the Möbius approximation, as we could only prove its boundedness. Finally, we have developed a method which gives in particular 15 possibilities modulo 210 for the pairs of twin primes except and .

  Introduction .............................................................................................................................. I-Preliminaries ......................................................................................................................... II-Pair of indices of the form .................................................................... II.1 The set and its remarkable subsets , and ............................................................ II.2 A counting result .............................................................................................................. III-Counting of ( ), ( ) and ( ) ........................................................................................ III.1 Counting of ( ) and ( ) ............................................................................................... III.2 Counting of ( ) ............................................................................................................ III.2.1 The inclusion-exclusion principle ............................................................................ III.2.2 Calculation of the cardinal of ( ) .......................................................................... III.2.3 Asymptotic expansion of | ( )| ............................................................................III.3 A special alternate sum in the equivalent of | | .......................................................... III.4 The Möbius approximation .......................................................................................... III.5 Fifteen possible congruences for twin primes .............................................................. Conclusion ............................................................................................................................... References: ..............................................................................................................................

Property 3 . 4 . 2 :

 342 to conclude. We immediately deduce: For all :

This allows us to conclude.

Remark: This corollary can be generalized for . For , is always positive, and it is easy to observe that diverges knowing that the sum of reciprocals of prime numbers diverges.

We end with a last generalization of the result that shows that is bounded: where represents the number of prime divisors of not dividing . We then deduce that , and in particular is bounded. By fixing , it is easy to deduce that is bounded.

We thus leave the convergence of in the state of conjecture, and more generally that of the (bounded) series of the form, for :

III.5 Fifteen possible congruences for twin primes

We have already seen that any prime number is written or , with the exception of and . The pairs of twin primes are therefore necessarily of the form , apart from .

Going further in congruences, we will generalize and demonstrate that there are possible congruences modulo for pairs of twin primes different from and pairs. None, of course, guarantees the primality of any of the two numbers. Indeed, consider a pair of twin primes such that is different from and (and therefore from and since is prime). In particular, and so and are prime with -that is, they are prime with .

A sieve method quickly eliminates all multiples of 2, 3, 5 and 7 between 0 and 209: The method is not specific to prime numbers chosen in the above: for any family of prime numbers , we can identify the congruences eligible for two twin prime numbers modulo . We observe that and will always be prime with , which ensures that there is always a solution. The symmetry of the table above is explained by the fact that, if and are prime with , the same is true for and . In particular, since is the only fixed point of this symmetry, there is always an odd number of possible congruences.

We can simply prove that no congruence can guarantee the prime property of the two numbers: indeed, whatever , is congruent to modulo , and is however clearly not prime ! The counting methods of the preceding sections also make it possible to predict the number of possible congruences. Indeed, consider such that is of the form . A counting can be made using the notation of corollary 3.2.2.2 for , thus restricting to the multiplicity by 3, 5 and 7. The pairs obtained are therefore the "twin primes-candidates", ie the set of pairs whose two coordinates are prime with 2, 3, 5 and 7:

According to property 3.1, we have: