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NON-LINEAR MODAL ANALYSIS APPLIED TO AN INDUSTRIAL STRUCTURE

A nonlinear modal analysis based on the concept of nonlinear modes is applied in the context of an aircraft landing gear s t u d y . Swept sine tests at constant force level have shown typical phenomena: frequency shifts at low level and jumps for higher ones. Clearances and friction give a physical reason for this behaviour as the system is composed of many components connected by complex joints. A nonlinear modal model is proposed to analyse experimental data. It consists in the expression of a dynamic nonlinear compliance composed of several nonlinear modes contributions. Identi cation is made on the basis of multi-level, multi-channel, up and down frequency responses, minimising a global error function between theory and test data using numerical methods. Mode shapes, modal mass, natural frequencies and damping ratios are functions of modal amplitudes. Results are in good agreament with all experimental data and are described by a reduced set of parameters. This nonlinear m o d a l data can be used in some application such as updating friction and clearance parameters of the landing gear nite element model.

Modal analysis for mechanical systems is widely used in numerical and experimental domains when a structure has to be dynamicaly characterised. The usefullness and e ciency of resulting products, namely natural frequencies, mode shapes and damping ratios, doesn't need to be demonstrated. Some applications are: prediction of responses, model reduction and component mode synthesis, model updating, . . . . Modal analysis is based on the assumption that the systems under study behaves like a linear one so that concepts of normal or complex modes could be successfully used 1] . Unfortunaltely, actual structures often exhibit non-linear behaviours which may a rise for example from non-linear material, large motions, friction . . . . Thus, the nonlinear t h e o ry can no longer be applied, so, we lost the opportunity o f having an experimental model because of nonlinearities. Moreover, the de nition of a non-linear p a rametric model can be very di cult especially for complex structures including several non-linearities. In particular, damping properties often have to be experimentaly determined. To overcome these problems, one could think about modal extended concepts for non-linear systems. In this paper, we present an applied nonlinear analysis of an industrial structure ( a landing gear ) b a s e d on the concept of non-linear modes 2] . After showing the necessity of non-linear analysis for this example by test results, we introduce a non-linear frequency response model based on nonlinear modes. Then, non-linear m o d a l p a rameters are identi ed by a curve-tting technic using measured data.

EXPERIMENTAL TESTS

The landing gear is rigidely xed using its three attachment points which are actually used to connect it to the plane's wing (see gure 1). An electrodynamic shaker applies an harmonic driving force on the structure, using di erent points of entry in order to have the rst "modes" exited separately. The force level is measured and is kept at a constant value by means of a control loop including the power ampli er shaker. The frequency is slowly increased from low to higher values (up swept sine) and then slowly decreased back to low frequencies (down swept sine). Several force levels are tested. About twenty accelerometers are spread on the structrure to have motion description in the three directions of space.

The system has shown two types of typical non-linear behaviours. First, at low level, some of the resonant pics are "sliding" toward low frequencies with distorsion (see gure 2)and then at higher level the frequency shift goes toward high frequecies and responses exhibit distorsion and jump phenomena (see gure 3). These types of behaviour, have been noticed in simulations results 3] by numerical dynamic models including friction and/or c l e a rance which are the most common non-linearities met in actual structures such as the landing gear w e studied. This type of frequency responses have been analysed for modal parameters but more often in a SDOF approach 4] . Our aim here is to have information on modal parameters such as damping ratios, natural frequency and also about mode shapes. In or- der to represent the non-linear behaviour of our structure, these modal parameters have to change with amplitude of motion.

THEORICAL TOOLS

Non-linear n o rmal modes

Our non-linear modal model will be based on non-linear n o rmal modes theory. This concept have been introduced by Rosenberg 5] 6] 7] 8] 9] and overviewed in 2] for so-called admissible discret conservative systems. Normal non-linear m o d e s a re an extension of their linear counterparts. In a general case, the normal oscillations are de ned as periodic motions where all coordinates reach the equilibrium point and their maximum values simultaneously in two distincts times and can be represented by curved modal relations expressing all coordinates as function of an arbitrarily choosen one in con guration space : 
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These properties are used in order to build normal modes trajectory equations to be solved in addition with boundary conditions this is called the geometrical method. An interesting feature is, as it is shown by Rosenberg, that resonance of forced vibration occurs in the neighbourhood of normal modes. This provides a usefull tool for studying non-linear systems even in non-linearisable cases. But, even if their exists some "integrable" cases, the general geometrical computing of normal modes seems to be di cult to apply in practical cases. To overcome this drawback, Szempli nska-Stupnika 10] developped non linear normal modes by means of Ritz-Galerkin approximation method for discret and continuous systems and showed the need of taking the mode shape variations into account, in order to have a good prediction of response for the case of lightly damped systems. Based on Ritz-Galerkin method 10] , approximated non-linear mode is de ned by its modal parameters !r(pr) and f (pr )gr which are functions of the magnitude of there modal non-linear c o o rdinate 10] pr.

When one has a mathematical model, these are found by solving a non-linear eigen-problem of the following form 10] : K(prf (pr )gr )]f (pr )gr = ! 2 r (pr ) M]f (pr )gr (1)

This can be achieved using a continuation method 11] taking pr as the parameter, with a zero order predictor and a Newton-Raphson corrector. We will use in addition, the non-linear modal mass de ned by: mr(pr) = f (pr )g T r M]f (pr )gr :

(2)

Forced response

In order to introduce forced response we will need to de ne non-linear modal viscous or hysteretic e ective damping by: cr(pr) = f (pr )g T r C]f (pr )gr [START_REF] Rosenberg | On Nonlinear Vibration of Systems with Many Degrees of Freedom[END_REF] hr(pr) = f (pr )g T r H]f (pr )gr [START_REF] Tomlinson | Frequency response characteristics of structures with single and multiple clearancetype non-linearity[END_REF] which makes appear that e ective damping may be non-linear even if damping is linear in nature. The response of the structure under harmonic load is expressed using a non-linear complexe modal coordinate which is implicitely de ned (for hysteretic damping) by: pr = f (pr )g T r fF g mr(pr)( ! 2 r (pr ) ; 2 ) + i h(pr) :

(

In few words, the response of the mechanical non-linear lightly damped system in principal resonance condition !r(pr), i s near the following form :

U(t)] = Re(prf (pr )gr e i t ) (6) 
This assumption is the basis of the "single non-linear normal mode method" 10] used to an approximated solution of forced resonance.

MODAL PARAMETER EXTRACTION METHODS

Step by step frequency domain method

Few methods exit which can allow modal parameters extraction for non-linear systems for MDOF systems. S etio and J ez equel 12] developped a "step by s t e p frequency domain" extraction method which needs the knowledge of a linear eigenvector set in order to represent non-linear modal shapes. This can be obtained experimentaly by means of very low f o rce level tests and standard modal parameter extraction. We will recall the fondamental of this method as a basis to introduce a di erent technic which could be named "global frequency domain tting".

The expression of the analytical non-linear dynamic compliance for a viscous damped system will be expressed as a linear combination of single mode contributions 12] :

A jk ( fpg) = m X r=1 jr(pr) kr (pr ) mr( ! 2 r (pr ) ; 2 ) + i cr : The non-linear mode shape f (pr )gr will be expressed by m e a n s of some participation coe cients b rl (pr ) :

f (pr )gr = m X l=1 b rl (pr ) l (8) 
with the normalisation condition : brr= 1 :

(9) so that equation 7 can be re-writed : A jk ( fpg) = m X r=1 ::: P m l=1 P m u=1 b rl (pr )br u(pr) jl ku P m l=1 b rl (pr ) 2 ( ! 2 r (pr ) ; 2 ) + i P m l=1 b rl (pr ) 2 c l [START_REF] Rosenberg | Nonsimilar n o rmal mode vibration of nonlinear systems having two degrees of freedom[END_REF] Then, the parameters to be identi ed are the !r(pr)'s and the b rl 's. This is done by minimising an error function between 10 and corresponding measured data. To do so, we use Newton-Raphson algorithm which is initiated with linear modal parameters for a i far from resonance. For each frequency step

i+1 = i +
we take the previous estimation ! i r and b i rl as a starting point to nd ! i+1 r and b i+1 rl with the minimisation procedure. After the whole frequency band has been "swept", the values ! i r and b i rl are associated with their corresponding modal amplitudes p i r for i = 1 : : : N determined approximatively from 6 as follows: p i r = fU X g i f g i r [START_REF] Szempli Nska-Stupnika | The Behaviour of Non-Linear Vibrating Systems[END_REF] or using pseudo-inverse :

fpg i = i ]
+ fU X g i (12) This method has the advantage of simplicity and easyness of programming but involves only one test at a time, given for a speci ed single force level.

Global frequency domain tting method

In order to take more data into account simultaneously: different frequency points, force levels, sweeping directions (up, down), and di erent sensors, we will try a more global approach based on frequency curve tting. Then, for given modal parameter functions, we need to generate theorical responses in order to t them with measured ones. As this is a rather easy task in linear case, it can be see from 5 that computing non-linear modal coordinate for a given frequency is an implicite nonlinear p roblem which must be solved numericaly. Here, in order to have a fast synthesis routine, we do not solve 5 for e a c h but we rather seek for the frequency the corresponding modal coordinate pr. This is done by "inverting" 5 and one obtains in the case of hysteretic damping (a little more complicated expression is obtained from viscous damping which can be expressed in the same maneer) the following: = s ! 2 r (pr ) 1 mr(pr) r j fr(pr) j 2 j pr j 2 ; h 2 r (pr ) and where the symbol is used to make distinction between different solutions when they are found before or after maximum magnitude which has to be found rst by solving numericaly :

j p r j= r fr hr (p r ) (15) 
Thus by solving only 3 non-linear p roblems : 15 and 5 for = 1 and = N , which leads respectively to p r ,p 1 r and p N r , and taking discretised pj's in interval min(p 1 r p N r ) p r ], one is able to draw the non-linear response in ; pr by means of equation 13.

Once the synthetized compliances have been computed , one has to de ne a cost function to be minimized in order to nd modal parameters which will obtained directly as functions of their modal coordinate. The general cost function could be :

= N X i=1 N f X l=1 down X u=up N X j=1 j A jk ( i) ; X jk ( i) j l u (16) 
Given that theorical responses can be multi-valued because of jumps, "unstable branches" have to be removed in order to built analog curves as these obtained experimentally by up and down frequency sweeping.

Application test

In order to apply this theory to measured data on the landing gear, we have change for a slightly di erent version of equation 10. First, in the vinicity of a particular resonance mode, only one non-linear contribution is taken, e ect of other modes being approximated by mass and sti ness terms 1] . Second, as the damping can be suspected to be non-linear in nature, an independant e ective (hysteretic) damping term is introduced: 

Modal parameter results

We show n o w results of identi cation for our test plant. Figure 4 represents the evolution of natural frequencies for the rst three modes of the structure with respect to modal amplitude.

Figures 5 and6 show the comparison between measured responses and synthetized ones using identi ed modal parameters for t wo di erent sensors locations.

Figure 7 gives us three of the components of the mode shape of the rst identi ed non-linear mode versus its modal amplitude.

Each of these modal parameter need no more than 3 or 5 parameters to be de ned using polynomial or rational fractions. 

CONCLUSION

A non-linear modal model have been identi ed using frequency responses an application context of an actual complexe structure. The result shows correct agreement between measured resonance responses and synthetized ones which are de ned on the basis of modal functions with few parameters. The identi ed modal model allows reproducting most of the dynamic features of the actuel system, especially jumps, frequency shifts on several space-points of the structure and amplitude dependancy of mode shape of vibration. This work his being followed by further improvements and developpements: First, experimental setup should be improved to have more accurate datas, especially for keeping constant force level with better precision.

Second, further technics in the identi cation procedure could be tried , in regard of modelling functions of modal parameters and de nition of the cost function. About the later point, an alternative for e x p ression 16, based on the comparison procedure illustrated by gure 8 seemed to be more e cient than function 16 wich can exhibit irregularities because of jumps when parameters are continuously varied. Here, (see gure 8), we can de ne error quantities of the form ij = j uj ; ui j + j j ; i j using amplitudes and also corresponding frequencies between "analoguous" points on two responses to be compared. The analoguous points are for exemple the maxima and some regulary spaced other points from the maxima.

Finally, further aspects to be examinated are validation of the modal model in prediction of un-measured responses with respect to force entry point for example improvement of the method in order to t responses with closed resonances, and parametric updating of non-linear nite element models by means of the identi ed modal data.
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 1 Figure 1: Experimental setup for landing gear testing.
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 2 Figure 2: "Softening type" responses, amplitude versus normalised frequency
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 3 Figure 3: "Hardening type" responses, amplitude versus normalised frequency

  P m u=1 b rl (pr )br u(pr) jl ku P m l=1 b 2 rl ( ! 2 r (pr ) ; 2 ) + i h(pr) + K jk(17) Unkown modal parameter functions can be represented as polynomial or piecewise polynomial function (spline functions) . Now, parameters optimisation needs an initial guess: mode shape is initialised by linear one, the frequency !r(pr) is approximated by just picking values at resonances and expressed as function of pr using 11. Then e ective damping is estimated to have correct magnitude at resonance and is also expressed versus pr.
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 4 Figure 4: Non-linear identi ed natural frequencies for rst three modes.
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 56 Figure 5: Non-linear resonance curves tting (sensor 15).
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