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Abstract We analyze the reliability of the Lagrangian stochastic micromixing8

method in predicting higher-order statistics of the passive scalar concentration in-9

duced by an elevated source (of varying diameter) placed in a turbulent boundary10

layer. To that purpose we analyze two different modelling approaches by testing11

their results against the wind-tunnel measurements discussed in Part I (Nironi12

et al., Boundary-Layer Meteorology, 2015, Vol.156, 415-446). The first is a prob-13

ability density function (PDF) micromixing model that simulates the effects of14

the molecular diffusivity on the concentration fluctuations by taking into account15

the background particles. The second is a new model, named VPΓ , conceived in16

order to minimize the computational costs. This is based on the volumetric par-17

ticle approach providing estimates of the first two concentration moments with18

no need for the simulation of the background particles. In this second approach,19

higher-order moments are computed based on the estimates of these two moments20

and under the assumption that the concentration PDF is a Gamma distribution.21

The comparisons concern the spatial distribution of the first four moments of the22

concentration and the evolution of the PDF along the plume centreline. The nov-23

elty of this work is twofold: i) we perform a systematic comparison of the results24

of micro-mixing Lagrangian models against experiments providing profiles of the25

first four moments of the concentration within an inhomogeneous and anisotropic26

turbulent flow, and ii) we show the reliability of the VPΓ model as an operational27

tool for the prediction of the PDF of the concentration.28
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1 Introduction31

Concentration fluctuations generated by the dispersion of a contaminant from a32

localized source in a turbulent flow characterize many biological and chemical33

processes. With fluctuations, we mean here the random behaviour observed for34

a dispersing scalar in space and time. The full statistical characterization of this35

random field requires a multi-point, multi-time probability density function (PDF)36

of the concentration (e.g. Monin and Yaglom, 1975). This is ultimately as complex37

as fully solving the turbulent flow and it is therefore not feasible. More practically,38

we may search for the full statistical characterization of the fluctuations in any39

point of the field, independently from any other point (in space and time), i.e.40

for the field of the one-point one-time concentration PDF (see e.g. Pope, 2000).41

Hereafter, we refer to the one-point one-time concentration PDF simply as the42

concentration PDF.43

Common dispersion models based on the Reynolds average concept attempt to44

characterize the first moment (i.e. the mean) of the concentration PDF only, where45

the mean is a fundamental property of the PDF. If a process (physical, chemical46

or biological) has a linear dependence on the concentration, the knowledge of the47

mean concentration is indeed sufficient to characterize the mean behaviour of this48

dependent process. However, non-linearity is observed in many cases of practi-49

cal interest. In such cases, the knowledge of the second and higher moments of50

the concentration PDF is needed. Particularly relevant cases are the accidental or51

intentional release of toxic and flammable substances. For example, Gant et al.52

(2011) relate the likelihood of ignition of a flammable substance to the integral of53

the concentration PDF between the upper and lower flammability limits at any54

point. Gant and Kelsey (2012) relate instead the toxic load directly to the integral55

of the n-th power of the concentration times the concentration PDF (here n is56

the toxic load exponent, which Gant and Kelsey (2012) consider equal to two for57

chlorine and to eight for carbon dioxide). More generally, the knowledge of the58

concentration PDF is necessary but not sufficient to define the toxic load, which59

may also require the additional formulation of a model for the correlated concen-60

tration time series (e.g. Du et al., 1999; Hilderman and Wilson, 1999; Cassiani61

et al., 2009). Nonetheless, a necessary starting point, and a significant modelling62

challenge, is the formulation of a model that is able to forecast the concentration63

PDF.64

To our knowledge, only two modelling methods can be used to directly fore-65

cast the concentration PDF at the high Reynolds number characterizing atmo-66

spheric flows. These are the transported Lagrangian or Eulerian PDF (micromix-67

ing) method (see e.g. Luhar and Sawford, 2005; Cassiani et al., 2005a,b,c, 2007;68

Garmory et al., 2006; Cassiani et al., 2010; Postma et al., 2011; Amicarelli et al.,69

2012) and the large-eddy simulation method (see e.g. Henn and Sykes, 1992; Xie70

et al., 2004). In the latter case, sub-grid-scale concentration fluctuations need to71

be modelled separately (Colucci et al., 1998) or simply neglected, otherwise the72

full turbulent flow field would be available at the expense of a formidable compu-73

tational cost.74

All other modelling approaches allow for a direct estimate of two moments of75

the concentrations only, and rely on assumptions about the form of the concentra-76

tion PDF. Among these modelling methods, there are the two-particle Lagrangian77

model (Durbin, 1980; Thomson, 1990; Franzese and Borgas, 2002), the meandering78
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plume approach (Gifford, 1959) and its extensions (Yee and Wilson, 2000; Cassiani79

and Giostra, 2002; Franzese, 2003; Marro et al., 2015), the Eulerian model solving80

balance equations for the second-order moment (e.g. Milliez and Carissimo, 2008;81

Yee, 2009), and heuristic Lagrangian methods based on single particle models, e.g.82

Cassiani (2013).83

To our knowledge, the two-particle models are still limited to extremely ide-84

alized turbulence conditions, i.e. homogeneous and isotropic turbulence. Appli-85

cations of the meandering plume approach can be instead extended to the case86

of non-homogeneous and anisotropic turbulent flows. The meandering model has87

however two main limitations: i) it is not fully adapted to flows developing in88

complex geometries, and ii) it requires the setting of several model parameters,89

including the intensity of the in-plume concentration fluctuations and the func-90

tional form of the concentration PDF (e.g. Marro et al., 2015). In this context,91

second-order closure models have been shown to be more flexible and adapted in92

forecasting the second moment of concentration also in complex geometries (when93

the location of interest is not close to the pollutant source), such as those charac-94

terizing urban environments (e.g. Milliez and Carissimo, 2008; Yee, 2009). Lastly,95

recent studies have proposed to extend the use of single-particle Lagrangian mod-96

els (Thomson, 1987) in heuristic ways, to account for the evolution of the second97

moment of the concentration fluctuations (Cassiani, 2013; Manor, 2014; Kaplan,98

2014). This is the case of the volumetric particle approach (VPA) model that99

can be viewed as a simplification of a “traditional” Lagrangian PDF micromixing100

method (Cassiani, 2013). This model is computationally efficient, since it decouples101

the evolution of the dispersing plume from the background, adopting an approach102

similar to that used by Alessandrini and Ferrero (2009) for reactive plumes. Differ-103

ent to full Lagrangian PDF micromixing models, this approach requires simulating104

the trajectories of the marked particles originated at the source only.105

The assumptions on the functional form of the PDF (required by the above106

methods) rely on experimental investigation conducted both in the open field107

and wind tunnel (a review of these can be found in e.g. Wilson, 1995; Nironi108

et al., 2015; Oettl and Ferrero, 2017). Here we are particularly concerned with the109

results presented in Part I (Nironi et al., 2015) and supporting the existence of a110

universal function for the concentration PDF, as also previously suggested by, e.g.,111

Villermaux and Duplat (2003), Duplat and Villermaux (2008), Yee and Skvortsov112

(2011), Efthimiou et al. (2016). Nironi et al. (2015) show that the PDFs due to a113

point source in a turbulent boundary layer are modelled with good accuracy using114

a family of one-parameter Gamma distributions. Such distributions depend on a115

single parameter k, which is a function of the fluctuation intensity ic = σc/c (c and116

σc are the mean and the standard deviation of the concentration, respectively),117

p(χ) =
kk

Γ (k)
χk−1 exp(−kχ), (1)

where k = i−2
c , Γ (k) is the Gamma function, and χ ≡ c/c (c is the sample space118

variable).119

Herein we compare two micromixing modelling approaches, the transported120

Lagrangian PDF micromixing model (PMM), adopting an Interaction with the121

Conditional Mean (IECM) closure, and a new model, named VPΓ , based on as-122

suming that the concentration PDF is a Gamma distribution whose two first mo-123

ments are computed with the volume particle approach (Cassiani, 2013). To that124
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purpose we use as a benchmark the experimental data of Nironi et al. (2015),125

concerning the dispersion in a turbulent boundary layer of a fluctuating plume of126

passive scalar emitted by an elevated source with two different diameters. As far as127

we are aware, this represents the first systematic evaluation of this kind of model128

in the case of inhomogeneous anisotropic turbulence and up to the fourth-order129

concentration moment.130

2 Model Equations131

The formulation of both models considered here relies on a classical macro-mixing132

scheme. The temporal evolution of the velocity and position of an ensemble of in-133

dependent fluid particles is governed by the following stochastic differential equa-134

tions,135

dU ′

i = ai(X,U′, t)dt+ bij(X,U′, t)dξj , (2)

dXi = (ui + U ′

i)dt, (3)

where ai and bij are the deterministic drift and the stochastic diffusive terms,136

respectively, U ′

i is the Lagrangian velocity fluctuation, ui is the Eulerian mean137

velocity, dξj is an incremental Wiener process (Gardiner, 1983) with zero mean138

and variance dt, and Xi is the particle position.139

The deterministic acceleration term ai is a function of the turbulent statistics140

and its three-dimensional formulation is obtained by using the well-mixed con-141

dition (Thomson, 1987). With this condition, and assuming a Gaussian velocity142

PDF with negligible correlations between the different components, the drift term143

ai is given by144

ai = − U ′

i

TLi
+

1

2

∂σ2

ui

∂xi
+

U ′

i

2σ2

ui

(

Uj
∂σ2

ui

∂xj

)

, (4)

with i = 1, 2, 3, where σui represents the r.m.s. velocity of the three components145

of the Eulerian velocity, i.e. σu, σv, and σw, and TLi are the Lagrangian integral146

time scales. These represent the autocorrelation coefficients of the Lagrangian147

velocity and can be expressed as a function of the velocity variances σ2

ui, the148

mean turbulent kinetic energy dissipation rate ε, and the Kolmogorov constant149

C0 (Tennekes, 1982) as,150

TLi =
2σ2

ui

C0ε
. (5)

Although this latter relationship was originally obtained for Gaussian homoge-151

neous turbulence, it is widely used in non-homogeneous and even non-Gaussian152

turbulence conditions (e.g. Luhar and Britter, 1989; Cassiani et al., 2015).153

The stochastic diffusive term bij is defined from the Kolmogorov’s hypotheses154

of self-similarity and local isotropy in the inertial subrange (Obukhov, 1959; Monin155

and Yaglom, 1975, page 572; Pope, 1987) as,156

bij = δij
√
C0ε, (6)

where δij is the Kronecker delta.157
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2.1 PDF Micromixing Model (PMM)158

The PDF micromixing model (PMM) aims to solve a transport equation for the159

concentration PDF explicitly accounting for the dissipative effects of the molec-160

ular diffusivity (Pope, 1998). This approach simulates explicitly the micromixing161

process as given by a mass exchange between polluted fluid particles and ‘clean’162

particles of ambient air, whose trajectories have therefore to be simulated within163

the whole domain. For this reason, this approach requires a very large amount of164

computational resources in order to provide accurate solutions.165

The simulation of the higher-order moments of the concentration field requires166

then the introduction of a Markovian state variable C representing the particle167

concentration,168

dC

dt
= φ(C,X,U′, t), (7)

where the drift coefficient φ is responsible for the dissipation of the scalar variance.169

The IECM model (Pope, 1998) assumes the following parametrization,170

dC

dt
= −C − C|X,U

τm
, (8)

where C|X,U is the mean scalar concentration conditioned on the local posi-171

tion and velocity and τm represents the time scale of the local mixing, which is172

driven by relative dispersion, and is defined as a function of local velocity variance,173

mean turbulent kinetic energy dissipation rate, source size, and particle flight time174

(Cassiani et al., 2005a). The formulation of the micromixing time scale is briefly175

reported in the Appendix. This model has the desirable property of leaving unal-176

tered the mean concentration field (Fox, 1996; Pope, 1998; Sawford, 2004) and it177

has been used to simulate the concentration PDF due to atmospheric dispersion178

from localized sources (e.g. Cassiani et al., 2005a; Postma et al., 2011).179

2.2 The VPΓ Model180

This modelling approach is based on the use of the VPA model and the assumption181

that the concentration PDF is given by a Gamma distribution. The VPA model182

was developed by Cassiani (2013) in order to compute the first two moments183

of the concentration field (mean and variance) without taking into account the184

background particles. This approach substantially simplifies the representation185

of the mixing phenomenon and it requires to simulate explicitly only the plume186

particles. As a consequence, a considerable saving in the computational resources187

is achieved (see e.g. Fig. 2), and to that purpose, the micromixing process is188

simulated as a change in a fictitious volume Vp associated with the plume particles.189

The dissipation variance, induced by the molecular diffusivity and driven by the190

turbulent eddies, is then related to dilution of the marked particles, i.e. an increase191

of Vp. To define the volume Vp we introduce the mass of tracer mp carried by a192

particle, and for a non-reactive scalar this mass is conserved (dmp/dt = 0) so that193

Vp = mp/C. The temporal evolution of the volume Vp is then computed as194

Vp(t+ dt) = Vp(t)
C(t)

C(t+ dt)
, (9)
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where the concentration C is modelled through Eq. 7, by implementing the Inter-195

action by Exchange with the Mean (IEM) model (i.e. with Eq. 8 but adopting a196

unique velocity class, e.g. Pope, 2000),197

dC

dt
= −C − C(X)

τm
, (10)

where C(X) = c is the mean concentration in the space domain and τm has the198

same significance and formulation of that discussed in Sect. 2.1 for the IECM199

model (see Eq. 8 and the Appendix). The computation of c requires the spatial200

discretization of the computational domain and depends on the global mass Mc201

in each space element,202

c =
Mc

Vc
=

1

Vc

Nc
∑

i=1

mpi
=

Nc
∑

i=1

Ci
Vpi

Vc
, (11)

where Nc is the particle number held in the generic cell of volume Vc. It is worth203

noting that the use of the IEM model in Eq. 11 does not alter the mean concen-204

tration field in the VPA framework (Cassiani, 2013).205

The term Vpi
/Vc can be seen as the probability that the particle i takes the206

concentration Ci, and the second-order moment c2 is computed as,207

c2 =
Nc
∑

i=1

C2

i
Vpi

Vc
. (12)

The approximations introduced in the VPA model provide reliable estimates of208

the first- and second-order statistics, but precludes the accuracy in the estimate of209

higher-order ones (Cassiani, 2013); for this reason, the VPA model cannot describe210

the correct evolution of the full concentration PDF.211

The computation of the higher-order concentration moments (> 2) relies here212

on the experimental finding by Nironi et al. (2015) about the form of the one-213

point concentration PDFs, which was shown to be reliably modelled by a family214

of one-parameter Gamma distributions (Eq. 1). Assuming a Gamma distribution,215

the higher-order statistics can then be computed, based on the estimates of the216

two first moments provided by the VPA model (Eqs. 11 and 12).217

3 Numerical Code218

The Lagrangian stochastic model (Eqs. 2 and 3) and the micromixing models PMM219

and VPA are implemented in a numerical code using a dynamical expanding grid220

to minimize the computational resources while maintaining a good accuracy of221

the numerical solutions (Cassiani et al., 2005a). This approach consists in initially222

generating a structured grid around the source. During the simulation the grid is223

advected by the mean field, and expands around the plume as the plume grows.224

The cell-size expansion is determined by the vertical and transverse plume spreads,225

while the following boundary conditions are imposed:226

– at the top and lateral boundaries, the particle velocity and position are elasti-227

cally reflected and the concentration is absorbed;228
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– at the ground, the particles are elastically reflected and they conserve their229

concentration.230

The elastic reflection of the particles is able to ensure the well-mixed condition231

(Thomson, 1987) if the turbulence is Gaussian and homogeneous. No simple re-232

flection scheme satisfies the well-mixed condition where the PDF for the normal233

velocity is asymmetric or locally inhomogeneous (Wilson and Flesch, 1993; Wilson234

and Sawford, 1996). A general treatment of boundaries ensuring the well-mixed235

condition is discussed in Thomson and Montgomery (1994). According to Wilson236

and Flesch (1993), an elastic reflection is acceptable in wall-bounded Gaussian237

inhomogeneous turbulence, e.g. neutral surface-layer flow.238

The micromixing time scales required in the IECM model and IEM model239

(Eqs. 8 and 10) are estimated during a pre-processing step, computing the tra-240

jectories of a smaller ensemble of particles released at the source location, while241

the mean concentrations are computed on-line during the calculations thus allow-242

ing for the straightforward inclusion of chemical reactions (Cassiani et al., 2005a;243

Cassiani, 2013).244

4 Model Parameters245

The PMM and VPA models require the setting of some free parameters, whose246

values are generally obtained by fitting the numerical estimates of the first- and247

second-order concentration moments to the relative values provided by the exper-248

iments (e.g. Postma et al., 2011). These parameters are the Kolmogorov constant249

C0 that influences the Lagrangian integral time scales (and therefore the mean250

concentration), the initial source distribution σ0, which depends on the source251

diameter ds, the Richardson-Obukhov constant Cr and the micromixing constant252

µt, which affect the micromixing time (and therefore the concentration variance)253

The values adopted in the simulations are summarized in Table 1. The difference

C0 σ0 Cr µt,PMM µt,V PA

4.5
√

2/3ds 0.3 0.9 0.54

Table 1 Model parameter values adopted in the simulations

254

in the empirical constants of the micromixing time scale - µt,PMM and µt,V PA255

- is due to the approximation of the mixing process adopted in the VPA model256

(Cassiani, 2013). The timestep ∆t is defined as the minimum among a small frac-257

tion of the Lagrangian time scale, the micromixing time scale τm, and the time258

scale given by the ratio between grid cell size and σw, the standard deviation of259

the vertical component of the velocity.260

The number of velocity classes used in the PMM model is 529 (23 for each261

of the two spatial directions). In the PMM model the source is represented by262

marking the particles with a normally distributed scalar concentration Csrc,263

Csrc,PMM =
Q

2πσ2

0
ux

exp

(

− r2

2σ2

0

)

, (13)
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where Q is the source mass flow, ux is the longitudinal Eulerian mean velocity at264

the source location (xs, ys, zs), and r2 = (y−ys)
2+(z−zs)

2 is the distance between265

the particle and the source in the yz-plane. We use here the Gaussian source in266

the PPM model to be consistent with earlier work (Cassiani et al., 2005a; Postma267

et al., 2011). In the VPA model the source is approximated by a cylindrical top-hat268

distribution of size
√
12σ0,269

Csrc,V PA =
Q

π
4
(12σ2

0
)ux

, (14)

where the size
√
12σ0 imposed in Eq. 14 is set in order to be consistent with the270

standard deviation of the Gaussian distribution in Eq. 13.271

The choice for a different source condition in the VPA model is due to the need272

of this latter model of having a well-defined initial source volume to bound the273

initial particles distribution and define the initial particle volume. As discussed in274

Cassiani (2013), this volume is related to the source section and the mean flow.275

5 Results276

ux/u∞

z/
δ

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1a)

σu,v,w/u∗

z/
δ

σu
σv
σw

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1
b)

εδ/u3
∗

z/
δ

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1c)

Fig. 1 Vertical profiles of the velocity field imposed in the numerical simulations: a) mean
longitudinal velocity ux, b) standard deviations of the three components of the velocity σu, σv ,
and σw, c) turbulent kinetic energy dissipation rate ε. The velocity statistics are normalized
using two different velocity scales: the free stream velocity u∞ and the friction velocity u∗.
The ratio between the two is u∗/u∞ = 0.037

We simulated the dispersion of a passive scalar fluctuating plume in the neutral277

boundary layer and compared the numerical results provided by the two micromix-278

ing models - PMM and VPΓ - with the wind-tunnel measurements of Nironi et al.279

(2015). We simulated the continuous releases emitted from an elevated source280

(zs/δ = 0.19) of varying diameter ds: 1) ES3 (ds = 3 mm, i.e. ds = 0.00375δ), and281

2) ES6 (ds = 6 mm, i.e. ds = 0.0075δ), where δ is the boundary layer thickness282

(equal to 0.8 m).283

The statistics of the velocity field required as input data for the Lagrangian284

stochastic models are: the mean longitudinal velocity (Fig. 1a), the standard de-285

viation of the velocity components (Fig. 1b), and the turbulent kinetic energy286

dissipation rate (Fig. 1c).287
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5.1 Profiles of Concentration Statistics288

Firstly, the reliability of the model is evaluated by focusing on the first four mo-289

ments of the concentration PDF. We consider the same statistics used in Nironi290

et al. (2015) and Marro et al. (2015), i.e. the non-dimensional mean concentration291

c and the second-, third-, fourth-order moments around the mean,292

m∗

i =





1

Nc

Nc
∑

p=1

(Cp − c)i





1/i

u∞δ2

Q
, (15)

with i = 2, 3, 4, and where Nc is the number of particles in a control volume and293

Cp is the Lagrangian particle concentration. Note that, in what follows, the second294

order is referred to as σ∗

c=m∗

2.

x/δ

m
∗ 4
/c

∗

Np = 2× 108

Np = 8× 108

0.2

0 1 2 3 4 5
0

2

4

6

8

10a)

x/δ

i c

Np = 8× 106

Np = 2× 107

0 1 2 3 4 5
0

1

2

3b)

Fig. 2 Influence of the number of particles on the high-order statistics of the concentration
vs x/δ for ES3 at the plume centreline: a) PMM m∗

4
/c∗, b) VPA ic

295

For the PMM model we performed two simulations with varying number of296

particles Np, 2×108 and 8×108, in order to investigate the influence of Np on the297

accuracy of the numerical solutions. In Fig. 2a we report the longitudinal evolution298

of the fourth-order moment for the smaller source (ES3). When increasing Np, the299

general tendencies of the numerical solutions as a function of the distance from300

the source do not vary, even though the profiles become smoother. All the PMM301

results presented herein were computed using 8 × 108 particles. The sensitivity302

of the VPA model to the particle number is significantly reduced compared to303

the PMM model (see Fig. 2b), and very smooth solutions were obtained with304

Np = 2 × 107. Note that the third- and the fourth-order moments are obtained305

from the lower moments through the use of the Gamma PDF. Therefore, their306

longitudinal profiles are as smooth as those of the lower moments.307

In order to study the global behaviour of the two models, we focus on the308

longitudinal profiles of the first four moments of the concentration at the source309

height zs and at y = 0. We also focus on the crosswind profiles at two different310

distances from the source: 1) x/δ = 0.625, corresponding to the absolute maxi-311

mum of the concentration fluctuations, and 2) x/δ = 3.75, the position where all312

concentration statistics become independent of the source size (see Fig. 3).313
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5.1.1 PMM Model314

x/δ
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400f)

Fig. 3 Results of the PMM model: longitudinal evolution of the concentration statistics: a)
normalized mean concentration c∗, b) fluctuation intensity ic, c) third-order moment m∗

3
/c∗,

d) fourth-order moment m∗

4
/c∗, e) skewness Sk, f) kurtosis Ku

The experimental data show that the mean concentration is independent of the315

source diameter (slight differences can only be detected close to the source location,316

see Fig. 3a), which instead has a major influence on higher-order moments (Fackrell317
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Fig. 4 Results of the PMM model: transverse profiles of the concentration statistics at the
source height and x/δ = 0.625: a) c∗, b) σ∗
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and Robins, 1982; Nironi et al., 2015) up to a distance of approximately x/δ = 3.75318

from the source (Figs. 3b-d). The comparison between the measurements and the319

numerical results along the plume centreline in the x-direction shows three main320

features. First, the PMM model is able to compute very accurate solutions for the321

mean concentration (Fig. 3a). Second, the agreement between experimental and322

numerical profiles of ic is very satisfactory in all the domain, despite some small323

differences for the ES3 source at x/δ = 1.25 (Fig. 3b). Here, the evaluation of σ∗

c324

is accurate for the ES6 source, whereas the peak of fluctuations induced by the325

smallest source is underestimated. Third, even though the values of the m3 and326

m4 are reliably simulated in the near field, the model fails in the far field. Here the327

model significantly overestimates the experimental values and predicts a spurious328

influence of the source size on m3 and m4 (Figs. 3c and d).329

In Figs. 3e and f we also plot the longitudinal evolution of the skewness Sk and330

the kurtosis Ku of the concentration, providing information about the asymmetry331

and the tails of the PDF. Both parameters are significantly overestimated by the332

PMM model, which predicts almost constant values in the far field and is not able333

to reproduce the general tendency given by the experimental data (this aspect will334

be further investigated in Sect. 5.2).335

The experiments show that both Sk and Ku slightly decrease in the far field,336

as the PDF concentration seems to slowly tend to a Gaussian distribution. Note337
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however that at x/δ = 5 the experimental centreline concentration PDF is char-338

acterized by Sk = (m∗

3/σ
∗

c )
3 ≈ 1.7 and Ku = (m∗

4/σ
∗

c )
4 ≈ 10. This shows that,339

at the end of our domain, the PDF is far from being a Gaussian (which is char-340

acterized by Sk = 0 and Ku = 3). The transverse profiles at x/δ = 0.625 show
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341

that in the near field the PMM model provides reliable predictions of the first four342

concentration moments for both sources (Fig. 4). In particular, the accordance for343

the largest source is very satisfactory, while only a slight overestimate of m∗

3 and344

m∗

4 is visible for the ES3 source.345

As shown by the experiments, at x/δ = 3.75, the concentration PDF becomes346

independent on the source size. This behaviour is correctly reproduced by the347

model for c∗ and σ∗

c , whose profiles are in very good agreement with the experi-348

mental data (Figs. 5a and b). As already enlightened by the longitudinal profiles349

(Fig. 3), the numerical estimates of the third- and fourth-order moments show in-350

stead two main problems: i) a significant overestimate of the experimental values,351

and ii) a persistent influence of the source diameter (Figs. 5c and d).352

We can therefore conclude that the PMM model provides very accurate predic-353

tions of the concentration PDFs in the near field. In the far field the PMM model354

is instead able to reliably simulate the first two moments of the concentration only,355
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and fails in reproducing the higher-order moments. Cassiani et al. (2005a) under-356

line that a likely reason for this behaviour is the inability of the IECM (and IEM)357

deterministic models to correctly relax the concentration PDF in the absence of a358

mean scalar gradient.359

This behaviour is in agreement with what recently observed by Amicarelli360

et al. (2017) in analyzing the dispersion from a point source in grid turbulence.361

By comparing the results of an IECM model with experimental data collected at362

a single downwind position, they found that, despite an optimal matching of the363

intensity of concentration fluctuations, the skewness and kurtosis were significantly364

overestimated by the model. As a possible solution to improve the accuracy of these365

estimates, Amicarelli et al. (2017) suggest increasing the mixing by lowering the366

value of the micromixing time scale. This implies a slight worsening of the accuracy367

of the estimate of the concentration fluctuation intensity, while improving that of368

skewness and kurtosis.369

5.1.2 VPΓ Model370

As specified in Sect. 2.2, this approach is based on the VPA model to compute the371

spatial distribution of the first two moments of the concentration field, i.e. c∗ and372

σ∗

c , and on the assumption that the concentration PDF is a Gamma distribution,373

i.e. that the third- and the fourth- order moments are given by374

m∗

3 = (2ic)
1/3 σ∗

c , (16)

m∗

4 =
(

6i2c + 3
)

1/4
σ∗

c . (17)

375

Figure 6 shows the longitudinal evolution of the first four-order statistics of376

the concentration at the plume centreline. The model is able to simulate c∗ and377

ic in all the domain with good accuracy (Figs. 6a and b), and provides reliable378

estimates of the higher-order statistics (Figs. 6c and d). In doing this, the VPΓ379

model is able to reproduce correctly the effects of the source size, including its380

vanishing influence in the far field. As a consequence the model predicts well also381

the evolution of both skewness and kurtosis (Figs. 6e and f). Despite this general382

good agreement between the simulated and measured values, it is still possible to383

detect some discrepancies between the two. For ES3, the numerical solutions of ic384

slightly underestimate the experiments in the near field, at x/δ = 0.625, and in385

the intermediate field, at x/δ = 1.25.386

In the intermediate field, i.e. at x/δ = 1.25, the concentration field induced by387

the ES6 source is very well-reproduced by the model. The computed higher-order388

moments (m∗

3 and m∗

4) of the ES3 source underestimate instead the experimental389

values. However, the relative error is limited (about 15% on the centreline). Note390

also that in the intermediate field the VPΓ model tends to slightly underestimate391

the influence of the source size on the second and the higher-order moments. In392

the far field, at x/δ = 3.75 and x/δ = 5, the model values are marginally larger393

than the experimental ones.394

To further investigate these aspects, we focus on the transverse profiles at395

varying distances from the source. At x/δ = 0.625, the numerical profiles of all396

the moments present a general good agreement with the measurements for both397

sources (Figs. 7a-d). Only small differences can be found at the peaks of σ∗

c , m
∗

3,398
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Fig. 6 Results of the VPΓ model: longitudinal evolution of the concentration statistics: a)
normalized mean concentration c∗, b) fluctuation intensity ic, c) third-order moment m∗

3
/c∗,

d) fourth-order moment m∗

4
/c∗, e) skewness Sk, f) kurtosis Ku

and m∗

4 produced by ES3 source (we recall that Figs. 7a and b represent the399

output of the VPA model, whereas Figs. 7c and d were obtained assuming that400

the PDF is a Gamma distribution). At x/δ = 3.75 the experimental data show401

that the concentration PDFs are independent of the source diameter (Fig. 8). This402

behaviour is well reproduced by the model. Although the numerical simulations403

do not give exactly the same values for the two sources, the differences between404
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the two profiles are very small. Furthermore, the estimates of the concentration405

statistics are in good agreement with the experiments.406

5.2 One-Point Concentration PDF407

Finally, we turn to the analysis of the concentration PDFs. For the PMM model,408

the computation of the PDFs are obtained in the classical way: we collect the409

concentration values carried by a large number of particles in a small control410

volume and we organize them according to their frequency. For the VPΓ model,411

the shape of the PDF is imposed to be that of a Gamma distribution, completely412

determined by c and σc (see Eq. 1). The PDFs are evaluated at y = 0, z = zs413

and at varying distances from the release point. The PDFs are normalized with414

the local mean concentration and they are plotted in both linear and logarithmic415

scale: the linear scale highlights the changes in the PDF shape occurring in the416

near and the far field (Figs. 9a and b), whereas the logarithmic scale emphasizes417

how the low frequency values of the sample space variable affect the higher-order418

moments, namely the skewness and the kurtosis (Figs. 9c and d).419

Note that the fluctuating plume considered here is characterized by a large420

intermittency in the near field, where the dispersion process is dominated by the421
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meandering (Nironi et al., 2015). In particular, instantaneous concentration mea-422

surements show a majority of values very close to zero and few values marked423

by very high concentration. This implies that the concentration PDF assumes424

an exponential-like shape (Fig. 9a), that both the models are able to reproduce.425

Increasing the distance from the source, the influence of the meandering process426

becomes negligible, the intermittency at the plume centreline reduces and the form427

of the PDF shifts to a log-normal-like distribution. Fig. 9b shows that, at x/δ = 5,428

both the PMM and VPΓ model simulate correctly the experimental data, at least429

qualitatively.430

Further insight into the accuracy of the two micromixing models can be ob-431

tained by plotting the concentration PDFs on a logarithmic scale plots (Figs. 9c432

and d). This helps in evidencing the discrepancies between experimental and mod-433

elling results both for low and large values of concentrations. A main indication434

about the accuracy in the estimates of the PDF is given by the ability to repro-435

duce the values of skewness and kurtosis, providing information about the tails of436

the PDF (e.g. Heinz, 2003). In order to quantify it, we also compute the following437



17

χ

p

ES6 exp

ES6 PMM

ES6 VPΓ

0 1 2 3 4 5

0
0.1

0

0.5

1

1.5

2a)

χ

p

ES6 exp

ES6 PMM

ES6 VPΓ

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1b)

χ

p

ES6 exp

ES6 PMM

ES6 VPΓ

0.6

10−2 10−1 100 101 102

10−4

10−3

10−2

10−1

100

101c)

χ

p

ES6 exp

ES6 PMM

ES6 VPΓ

10−2 10−1 100 101 102

10−4

10−3

10−2

10−1

100

101d)
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relative errors,438

RESk
=

∣

∣

∣

∣

∣

Skmod
− Skexp

Skexp

∣

∣

∣

∣

∣

, (18)

REKu
=

∣

∣

∣

∣

Kumod
−Kuexp

Kuexp

∣

∣

∣

∣

, (19)

where Skexp
and Kuexp

are the experimental values of skewness and kurtosis, re-439

spectively, and Skmod
and Kumod

are those estimated numerically.440

In Fig. 9c we can observe the three PDFs at x/δ = 0.625 in more detail. For441

low values of χ we observe some differences between the experimental PDF and442

that evaluated with the PMM model. Note however that this disagreement does443

not preclude the model to correctly estimate both the mean and the variance of444

the PDF (Figs. 3a and b). The relative errors for Sk and Ku are lower than 21%445

(RESk,PMM = 0.206 and REKu,PMM = 0.143, respectively Figs. 10a and b). A446

similar behaviour is observed for the results of the VPΓ model, where RESk,V PΓ =447

0.208 and REKu,V PΓ = 0.457, even the the relative error of the kurtosis is slight448

larger than that of the PMM model. The very low relative errors ReKu
reveal449

that in the near field, despite the differences observed in Fig. 9c, both models450
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Fig. 10 Longitudinal evolution of the relative error of the skewness and kurtosis at the plume
centreline: a) Sk, b) Ku

reproduces accurately the complete experimental PDF, including the behaviour of451

the tails of the distributions.452

In the far field the PMM and VPΓ behave differently (Fig. 9d, see also Sect.453

5.1.1 and Sect. 5.1.2). The form of the PDF computed with the PMM model454

suggests that, with respect to the experimental data, the large values of χ are455

overestimated and the low values are underestimated. The differences existing456

between the VPΓ solutions and the measurements are small and the reliability of457

the model is satisfactory. The magnitude of the relative errors indicates that, for458

the larger source, the VPΓ relative errors are lower than 30% (RESk,V PΓ = 0.062459

and REKu,V PΓ = 0.282), whereas the PMM model exceed 300% for the skewness460

and 900% for the kurtosis (RESk,PMM = 3.262 and REKu,PMM = 9.343, see also461

Figs. 10 a and b).462

The persistence of the influence of the source size on m3 and m4 in the far463

field is an aspect of the PMM model that deserves to be discussed. The experi-464

ments show that the two sources - ES3 and ES6 - induce the same concentration465

field at distances larger than x/δ = 3.75 from the release location. The VPΓ466

model reproduces this feature with good approximation (Fig. 6), whereas the so-467

lutions computed by the PMM model exhibit noticeable differences until x/δ = 5.0468

(Fig. 3).469

In Fig. 11 we show the PDFs of the concentration field induced by the two470

sources (with different size) at x/δ = 5.0, as estimated by the experiments and471

the VPΓ model and PMM model simulations. Negligible differences between the472

sources can be detected for both the experimental data and the VPΓ model sim-473

ulations (Figs. 11a and b). On the contrary, for the PMM results we observe that474

the tails of the concentration PDF are quite different for the two source sizes475

(Fig. 11c). Although the values of the normalized concentration, χ, close to 10 are476

characterized by very low frequencies (≤ 10−3), they are responsible for the large477

discrepancies previously observed between ES6 and ES3 in the computation of m3478

and m4 (see Figs. 3b and c).479
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Fig. 11 Concentration PDFs produced by ES6 and ES3 sources at y = 0, z/δ = zs/δ,
x/δ = 5.0, a) experiments b) VPΓ model, c) PMM model

6 Discussion and Conclusions480

We have tested two micromixing model formulations, the PDF micromixing model481

(PMM) and the VPΓ model and we have investigated their ability in estimating482

the concentration statistics of a passive scalar emitted within a turbulent boundary483

layer. The PDF micromixing model (PMM) is a Lagrangian model implementing484

the IECM closure, for simulating the diffusive mass exchanges between particles.485

The VPΓ model consists in using the volume particle approach (Cassiani, 2013)486

to compute the first two moments of the concentration and in assuming that the487

PDF is a Gamma distributions, i.e completely defined by the first two moments488

(Villermaux and Duplat, 2003; Duplat and Villermaux, 2008; Yee and Skvortsov,489

2011; Nironi et al., 2015). The PMM and VPA model were implemented in a490

Lagrangian stochastic model, using a dynamical expanding grid (Cassiani et al.,491

2005a).492

We simulated the dispersion of a fluctuating plume produced by a continuous493

release from two point sources of different diameter and we compared the numer-494

ical results with the experimental data-set reported in Nironi et al. (2015). The495

numerical solutions show that the PMM model is able to correctly simulate the496

concentration statistics in the near field, reproducing effects of the source size on497

the higher-order moments. In the far field, the numerical and experimental values498
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of the mean and standard deviation are in good agreement. Conversely, the values499

of the modelled third- and fourth-order moments, when compared to the exper-500

imental data, show two main limitations of the PMM model. Firstly, the PMM501

model clearly tends to overestimate the measurements; secondly, the numerical502

profiles of m3 and m4 are still sensitive to the size of the source. This is markedly503

different from what is observed in the experiments (where the source size effects504

vanishes for x ≥ 3.75δ). This behaviour can be reasonably attributed to the in-505

ability of the the IECM deterministic model to correctly relax the concentration506

PDF form towards that of a Gaussian distribution in the absence of a relevant507

mean scalar gradient (see e.g. Pope, 2000, page 550). Thus overestimating the oc-508

currence of concentration values that are larger than the mean where the mean509

concentration gradients are weak.510

These limitations may be overcome by computing the high-order statistics us-511

ing the mean and variance, both reliably modelled by the PMM, and assuming512

that the PDF is a Gamma distribution. We stress that the Gamma distribution513

hypothesis could be applied to any model providing accurate estimates of the first514

two moments of the concentration, including e.g. the PMM model, VPA model,515

higher-order RANS models, etc. Here we chose to calculate the first two concen-516

tration moments with the VPA model requiring a number of particles which is517

significantly smaller than that needed by the PMM model, with a significant sav-518

ing of memory and computing time. The latter simulation approach, referred to519

here as the VPΓ model, is then suitable for the simulation of dispersion phenomena520

for operational purposes.521
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Appendix526

We report here the formulation of the micromixing time scale τm presented in527

Cassiani et al. (2005a). In isotropic turbulence τm is assumed as depending on the528

time scale τr of the relative dispersion, i.e. the spreading of the plume around its529

centre of mass,530

τm = µtτr = µt
σr

σur
(20)

where µt is an empirical constant to be set, σr is the relative plume spread around531

the plume’s centroid, and σur =
√

u2
r is the r.m.s of the relative velocity fluctu-532

ations. The term ur represents the difference between a turbulent velocity com-533

ponent and the corresponding velocity component of the instantaneous centre of534

mass (meandering process). We model σr as,535

σ2

ur = σ2

u

(σr

L

)

2/3
(21)
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where σ2
u is the variance of the turbulent velocity, and L represents the Eulerian536

integral length scale parametrized assuming the stationarity of the energy cascade537

(Sawford and Stapountzis, 1986),538

L =

(

3σ2
u/2

)3/2

ε
(22)

When σr = L the meandering process becomes negligible with respect to the539

relative dispersion and all the energy contributes to the expansion. For this reason,540

we imposed the constraint σur = σu, if σr > L. We parametrized σr as follows,541

σ2

r =
d2r

1 + (d2r − σ2

0
) / (σ2

0
+ 2σ2

uTLt)
, (23)

d2r = Crε(t0 + t)3, (24)

where t0 =
(

σ2

0

Crε

)1/3
is the inertial formulation for a dispersion from a finite542

source size (Franzese, 2003), σ0 is the source size, and TL =
2σ2

u

C0ε
is the Lagrangian543

time scale. Following Cassiani et al. (2005a) the formulation of the micromixing544

time scale in non-homogeneous and non-isotropic turbulence requires to define the545

local variance σ2
u as the average of the variances of the three velocity components.546

Equation 24 is discretized in time as follows,547

d2r(t+∆t) = d2r(t) + 3Crε(t0 + t)2∆t (25)

d2r(t = 0) = σ2

0 (26)

where it is worth noting that a Lagrangian stochastic model associated with these548

micromixing models (PMM and VPA) requires three parameters to be set: µt,549

Cr, and C0. The term C0 influences the averaged dispersion and its value has to550

be fixed irrespectively of the used micromixing model (if the micromixing model551

respects the criterion of not altering the mean concentration field, e.g. Pope, 1998;552

Sawford, 2004). For this reason, we evaluate C0 as the best-fit between the nu-553

merical and experimental values of c and we found C0 = 4.5. This value is in the554

range generally accepted in the literature, 2 ≤ C0 ≤ 8 (Du et al., 1995; Lien and555

D’Asaro, 2002; Rizza et al., 2006).556

The evaluation of Cr is performed by comparing the numerical solutions of the557

concentration variance with the corresponding experimental values. As reported558

in Table 1, the best-fit is obtained with Cr = 0.3. According to Franzese and559

Cassiani (2007), Cr should be equal to C0/11. Since C0 = 4.5, the value Cr = 0.3560

is therefore close to the former theoretical prediction. Finally, µt is an empirical561

constant.562
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