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optimisation of a hot-wall Chemical Vapour

Deposition reactor

Domenico Borzacchiello José V. Aguado
Francisco Chinesta

Abstract

This paper presents a reduced order computational strategy for multi-
physics simulation involving fluid flow, electrodynamics and heat transfer
in a hot-wall Chemical Vapour Deposition (CVD) reactor. The main goal
is to produce a multi-parametric solution for fast exploration of the design
space in order to perform numerical prototyping and process optimisation.
Different reduced order techniques are applied. In particular the Proper
Generalized Decomposition (PGD) is used to solve the parametrised heat
transfer equation in a five-dimensional space. The solution is provided
in a compact separated-variable format allowing a fast evaluation of the
process-specific quantities of interest that are involved in the optimisation
algorithm.

Reduced Order Modelling; Multi-physics; Process Optimisation; Numerical
Prototyping; Chemical Vapour Deposition; Proper Generalized Decomposition;
High Dimensional Parametric PDE

1 Introduction

1.1 Background

Numerical optimisation and prototyping emerge as attractive tools to manage
the design process in a variety of material forming applications. Before com-
mitting to produce a physical prototype, virtual models are useful to discern
unfeasible solutions from the ones of practical interest using the tools of numer-
ical simulation and automated design [1]. In most cases, it is impossible to set
up a global and exhaustive optimisation process at an early design stage, be-
cause some of the process variables may still not be defined. The main concern
is therefore to evaluate different alternatives as quickly as possible and define a
first concept that serves as a starting point for further optimisation. The perti-
nency of the physical model can be also assessed based on the virtual prototype
and refined if needed.
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Figure 1: Two-dimensional axisymmetric schematics of the hot wall CVD reac-
tor.

Optimisation is usually performed heuristically by human operators and is
mostly based on the level of acquired experience. In material forming industry,
optimisation of a new process often involves multi-physics and complex models.
How ever much simplified the assumed models are, these are often unsolvable
by sole intuition and experience. Numerical simulation-based design can offer a
valid alternative in this case.

In this paper we turn our attention to the design of a horizontal hot-wall
Chemical Vapour Deposition (CVD) reactor. This is used in many technologi-
cal areas, including microelectronics, protective and decorative coatings, semi-
conductor films and carbon nano-fibres [2, 3]. CVD technology involves the
formation of a thin solid film on a substrate material by a chemical reaction
of vapour-phase precursors. The deposition of the solid phase is controlled
through the temperature field on the substrate where the film is grown. A sim-
ple schematic drawing of a reactor is shown in Fig. 1. The substrate is placed
onto a hollow cylindrical graphite susceptor, which is inductively heated by an
AC flowing through a copper coil. The susceptor is coated by insulation, and
the whole chamber is enclosed in a quartz cylinder. The precursor gases that
react with the substrate are diluted in a carrier gas which, in turn, also removes
the by-products of the reaction.

1.2 Numerical simulation of Chemical Vapour Deposition

Numerical simulation of the CVD generally follows two approaches: the first is
based on Molecular Dynamics and Monte Carlo Simulation [4, 5, 6, 7, 8, 9, 10],
and is aimed to a microscopic description of chemical process responsible of the
surface coating and the film growth. The second possible approach is based
on Computational Fluid Dynamics (CFD) and describes the process in terms
of macroscopic quantities like the fluid density, specific momentum and spe-
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cific energy, as well as species concentrations in the fluid. Among the vast
literature available most of the models assume incompressible, laminar and ax-
isymmetric flow [11, 12, 13]. The flow simulation includes heat transfer and
advection-diffusion-reaction equations for the individual species. In [14] plasma
physics and electrodynamics are also simulated and compressibility effects taken
into account in the simulations of Plasma Enhanced CVD. In [15] the chemical
composition is assumed to have little influence on the thermal and mechanical
properties of the fluid, therefore the model only includes incompressible lami-
nar flow, heat transfer and electrodynamics since inductive heating is taken into
account.

Simulations are performed 2D axisymmetric flow and in 3D in order to ac-
count for buoyancy effects. In most of the works the objective of the design
optimisation is related to the temperature field uniformity on the substrate
where the film is grown [16, 15, 17] or, as in the case of multichannel structures,
to the flow repartition and thickness uniformity of the epitaxial film [18].

All the above mentioned models rely on nonlinear coupling between the
different physics in the sense that material parameters (mechanical and ther-
mal properties) are considered as nonlinear functions of the temperature. The
equations are discretised using Finite Volume or Finite Element techniques and
solutions are found through nonlinear iterative solvers. A lot of emphasis is
put on the necessity of integrating different existing codes into a single multi-
physics solver [11, 12, 15, 13]. This approach is generally time-consuming, and
therefore unfit for the purpose of quickly validating or discarding a proposed
solution, especially when screening numerous parameter combinations.

1.3 Reduced Order Modelling

Numerical optimisation requires fast reliable estimators rather than refined sim-
ulations. This implies that some approximations be accepted at this stage both
in the formulation of the mathematical models and the accuracy of the nu-
merical solutions. The former involves simplifying assumptions concerning the
geometry and the degree of coupling between the different physics involved,
while the latter requires numerical solvers that are capable to compute compact
and inexpensive approximations of multidimensional solutions. In this context,
Reduced Order Modelling (ROM) methods find an interesting and innovative
field of application.

ROM exploits the correlations that naturally exist between the degrees of
freedom of a numerical model and reduces the computational complexity of the
problem by giving a lower dimensional representation of the solution. Different
strategies are possible. A posteriori methods like Proper Orthogonal Decompo-
sition (POD) [19, 20] and Reduced Basis Method (RBM) [21, 22], need of train-
ing simulations to discover the true dimensionality of the problem. The reduced
model is then generally built using standard Galerkin projection techniques.
On the contrary, a priori methods, like the Proper Generalized Decomposition
(PGD) [23, 24, 25, 26], do not require any training simulation as they discover
the true dimensionality of the problem within the computation of the solution.
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Previous attempts to ROM simulation based design are found in [27] where
the a thermo-kinetics reduced model is built using POD, and in [28, 29], where
reactive, incompressible laminar flow models are reduced using POD for auto-
mated control of the CVD process.

1.4 Contributions

In this work a priori ROM is used. A multi-parametric solution is explicitly
obtained as a function of the gas flow rate, electrical input power and AC fre-
quency. These parameters are no longer regarded as inputs of the simulation
but are treated as extra-coordinates defining a higher dimensional computa-
tional domain. The use of separated representations ensures low computational
complexity and storage requirements.

We show how parametrised equations can be solved in an offline stage using
PGD (for the electrodynamics and heat transfer problems) and a hierarchi-
cal basis collocation method (for the flow problem). As the multi-parametric
description of the numerical prototype behaviour is available, we proceed to
illustrate how process optimisation can be efficiently performed in the online
stage without further computational effort.

The rest of this paper is structured as follows: in section 2 we present the
equations governing the physics of the problem. In section 3 the numerical
methods are briefly reviewed and results are presented, while further details on
the formulation and implementation are provided in Appendices A and B. In
section 4 we show how, with the proposed approach, optimisation can be consid-
ered as simple post-processing of the parametric solution. Finally conclusions
are drawn in section 5.

2 Governing equations

In this section we revisit a standard multi-physics modelling of the CVD reactor
from [15] which is used to build the reduced model in next sections. Since our
objective is to develop a simulation tool for evaluating the performance of nu-
merical prototypes, only the steady state regime must simulated. In addition,
the reactor is assumed to work near its set-point (1600 − 1700◦C). Therefore
material properties dependency on the temperature was neglected. As a conse-
quence, it will be shown that a weakly coupled multi-physics model is obtained.

All simulations are carried out in the 2D axisymmetric domain, which pro-
vided fairly good approximations when compared to 3D models, as demon-
strated in [15].

Remark 1. Differential operators such as the gradient or the Laplacian to
appear in this paper will refer to a cylindrical coordinate system, although no
distinct notation will be used. Cylindrical coordinates are denoted by (r, θ, z) and
their corresponding unit vectors as (er, eθ, ez). The 2D axisymmetric domain
is therefore defined in the (z, r) coordinates.
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In the following we synthetically review the equations governing the physics
of the magnetic, thermal and flow fields.

2.1 Magnetic Field Model

The AC current flowing in the copper coil creates an alternating magnetic field
which induces eddy currents in the electrically conductive parts of the reactor
(graphite susceptor, mainly). The equation for the magnetic vector potential A
is deduced from Maxwell equations for constant magnetic permeability, see [15]
for details:

1

µ0 µr
∇2A = iωσA− J, (1)

where µ0 is the magnetic permeability in vacuum, µr is the relative magnetic
permeability of the material, ω = 2π f is the pulsation associated to the AC
current frequency f , σ is the electrical conductivity and J is the current density
in the coil turns. The current density vector is oriented according to eθ direction:
J = Jθ eθ.

Remark 2. Since Jθ is the only non-zero component of the current density
vector, Eq. (1) can be reduced to a scalar equation involving the Aθ component
of the magnetic vector potential, A = Aθeθ, while Ar and Az vanish.

Materials are assumed homogeneous and temperature-independent, so that
the electrical resistivity of the coil and the electrical conductivity of the induced
parts, % and σ respectively, are constant and evaluated at the target temper-
ature. See Appendix in [15] for their respective constitutive relations. Once
A is known, the induced heating source (i.e. the right-hand side of the heat
equation) is computed from:

Q =
1

2
σω2|A|2 =

1

2
σω2

√
<(Aθ)2 + =(Aθ)2, (2)

where <(·) and =(·) denote the real and imaginary parts of a complex number,
respectively.

2.2 Flow Model

The flow problem is modelled by incompressible steady state Navier-Stokes
equations:{

ρg u · ∇u− η∆u +∇ p = 0

∇ · u = 0
, (3)

where u is the velocity field and p is the pressure field. Both the gas density,
ρg, and the gas dynamic viscosity, η, are assumed constant and independent of
the temperature.
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2.3 Heat Transfer Model

Finally from the heat source Q defined by Eq. (2) and the velocity u given by
Eq. (3), the convection-diffusion heat equation can be written as follows:

ρCp u · ∇T − λ∇2T = Q, (4)

being ρ the density, Cp the specific heat, λ the thermal conductivity and T the
temperature field. These properties are considered homogeneous and indepen-
dent of the temperature.

It is worth to remark that in general, the heat source Q depends on the
temperature field through the magnetic potential A, as both the resistivity of
the coil and the electrical conductivity of the induced parts are sensible to the
temperature. Similarly, the velocity field u depends on the temperature through
gas density and viscosity. Since all these material properties have been consid-
ered independent of the temperature, Eq. (1) and Eq. (3) are weakly coupled
to Eq. (4), meaning that the temperature field depends on the velocity and
the heat source, but these do not depend on temperature. This simplification
is acceptable for preliminary design purposes. Further refinement of the model
can be introduced if needed in a subsequent stage.

3 Simulation of the parametrised multi-physics
model

As indicated in the previous section, a reduced order model of the reactor is
built in this section on the basis of the multi-physics modelling introduced in
section 2.

We consider as design parameters the AC frequency (in fact, its associated
the pulsation ω), the electrical input power P and the gas flow rate q. Therefore,
the parametric domain is denoted by:

Ξ := Ωω × ΩP × Ωq,

with the following ranges of variation: ω ∈ Ωω ≡ 2π [20, 70] kHz, P ∈ ΩP ≡
[2.3, 2.9] kW and q ∈ Ωq ≡ [0, 28.27] slm (equivalent to a Reynolds number in
the range [0, 100], as explained in subsection 3.2).

A priori reduced order modelling methods will be applied in next sections
in order to solve a parametrised multi-physics problem defined in a higher di-
mensional domain, Ω×Ξ ⊂ R5, where Ω is the 2D axisymmetric computational
domain to be defined in subsection 3.1. The proposed methods make use of
separated representations in order to ensure low storage requirements of the
multi-parametric solution and low computational complexity of the algorithms.

3.1 Geometry and Computational Domain

The physical domain is sketched in Fig. 2, as well as the different subdomains,
subdomain interfaces and domain boundaries. Subdomains are denoted by Ωi,
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with i = 1, . . . , 6, while subdomain interfaces and domain boundaries are de-
noted by Γi, with i = 1, . . . , 16. The whole physical domain is denoted by:

Ω :=

6⋃
i=1

Ωi.

Subdomain Ω2 was created in order to impose a far field condition for the
magnetic potential equation, as explained in subsection 3.3. Fig. 2 also shows
finite element mesh composed of 14, 908 triangular elements, generated using
GMSH [30]. The same mesh was used for solving the magnetic potential, fluid
flow and heat transfer problems.

3.2 Solution of the Flow Field Using Hierarchical Basis
Collocation

Considering the computational domain defined in Fig. 2, the dimensionless flow
problem is set up as follows:

ρgu · ∇u− η∆u +∇ p = 0 in Ω1 × Ωq

∇ · u = 0 in Ω1 × Ωq

u = 0 on Γwall × Ωq

u = uΓ2 on Γ2 × Ωq(
η
(
∇u +∇uT

)
− pI

)
· n = 0 on Γ6 × Ωq

u · n = 0 on Γ1 × Ωq(
η
(
∇u +∇uT

)
− pI

)
· n = 0 on Γ1 × Ωq

, (5)

where Γwall :=
⋃
i Γi with i = 8, 11, . . . , 15 and

uΓ2
(r, q) =

2(R2
in − r2)

πR4
in

q

describes a fully developed Poiseuille profile, with Rin the radius of the inlet
section. A separated variables representation of the velocity field is sought:

u =

Mu∑
m=1

αmψ
m with ψm(z, r, q) := ψms (z, r)ψmq (q) , (6)

where ψm are the approximation basis functions, expressed as the product of
vector space functions, ψms , and scalar parameter functions, ψmq , while αm are
the basis coefficients, which are uniquely determined for unit norm basis func-
tions.

Space functions are approximated in Ω1 using Crouzeix-Raviart finite ele-
ments [31], which are second order accurate for the velocity field. The para-
metric space Ωq is discretised using a hierarchical collocation approach. The
collocation points are chosen as the Gauss-Chebyshev-Lobatto (GCL) abscis-
sae. This set of points enjoys the nesting property and allows the definition of
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Figure 2: Two-dimensional axisymmetric computational domain of the CVD
reactor: geometry (left half) and finite element mesh (right half). Subdo-
mains definition: reactor chamber (Ω1), void space around the quartz tube
(Ω2), graphite susceptor block (Ω3), insulation coating block (Ω4), quartz tube
(Ω5) and copper coil turns (Ω6). Boundaries and interfaces between subdo-
mains: axis of symmetry (Γ1), gas inlet/outlet (Γ2/Γ6), quartz tube lateral
boundaries (Γ3,Γ5), quartz tube external wall (Γ7), quartz tube internal wall Γ8,
quartz-insulation interface (Γ9), coil turns boundary (Γ10), chamber-insulation
interfaces (Γ11,Γ15), chamber-graphite interfaces (Γ12,Γ13,Γ14) and insulation-
graphite interface (Γ16).
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Figure 3: Streamlines of the flow field in the CVD reactor chamber for Re = 0
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9



a hierarchical basis with built-in error estimation capabilities. By consequence,
the functions ψmq (q) are the hierarchical Lagrangian polynomials defined on
the hierarchy of GCL points. The problem is solved using a greedy strategy
consisting in recursively expanding the approximation space spanned by the
polynomial functions by adding all the polynomials of a new hierarchy level and
using collocation to determine the corresponding “surplus” functions ψms (z, r).
One advantage of the collocation approach is that it uses a standard finite ele-
ment solver to compute flow solutions corresponding to particular values of the
parameter. Therefore, incompressibility can be straightforwardly enforced for
parametric solutions. A more detailed illustration of the methodology is given
in Appendix A, while a generalisation of the proposed strategy for the multi-
parametric case can be obtained using the Sparse Grid approach to circumvent
the curse of dimensionality [32, 33, 34].

The adopted nonlinear solver for the Navier-Stokes equation is based on
Picard iteration. Note that even though the solver outputs both velocity and
pressure fields, only velocity is needed to couple the flow and heat transfer
models. Convergence is reached when the solution residuals are less than 10−10,
while the enrichment loop is terminated when the maximum norm of the hier-
archical surpluses falls below 10−8. With this values the overall convergence is
reached within 6 hierarchy levels, or equivalently, Mu = 33 terms. Further com-
pression of the solution is achieved by using the Singular Value Decomposition
(SVD) over the set of hierarchical surpluses functions, reducing the number of
terms to Mu = 25. The scalar coefficients obtained from the projection of the
hierarchical surpluses onto this new orthonormal basis are used to recombine
the functions ψmq (q). Although inexpensive, this post-processing step is only
relevant for the sake of compactness of the solution.

The dimensionless velocity field, defined as

v =
πD2u

4q
,

where D is the diameter of the smallest section of the reactor, is visualised
in Fig. 3. The streamlines corresponding to different values of the Reynolds
number, Re =

4ρgq
πDη , are shown. It is worth to remark that these solutions are

obtained by performing an inexpensive evaluation of the parametric solution,
Eq. (6), since the velocity field is explicitly available as function of the gas flow
rate.

3.3 Solution of the Magnetic Field using PGD

In this section, the heat source induced in the graphite susceptor is computed in
terms of two parameters: the AC frequency and the electrical input power. Since
the heat source depends linearly on the electrical input power, the magnetic
potential only needs to be computed in terms of the AC frequency for a unit
electrical input power. Therefore, Eq. (1) is extended to the parametric domain
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as follows:
1

µ0 µr
∇2Aθ = iωσAθ − Jθ in Ω× Ωω

Aθ = 0 on

6⋃
i=2

Γi × Ωω.

(7)

PGD seeks an approximation of the magnetic potential Aθ in a space-frequency
separated representation:

Aθ =

MA∑
m=1

βmφ
m with φm(z, r, ω) := φms (z, r)φmω (ω), (8)

where φm are the complex-valued basis functions, expressed as the product of
space functions, φms , and parameter functions, φmω . Both space and parameter
functions are considered as complex-valued1. On the other hand, βm are real-
valued basis coefficients, which are uniquely determined for unit norm basis
functions. The PGD algorithm is based on a greedy enrichment algorithm which
builds the separated representation Eq. (8) by adding one term at a time.
Each new term is computed by solving a sequence of 2D and 1D problems to
compute space and frequency functions, φms and φmω respectively. Therefore,
the method avoids the exponential complexity scaling characteristic of mesh-
based approaches to discretise the parametric domain. Details on the PGD
formulation and implementation are given in Appendix B in order to keep the
exposition of the results as clear as possible.

Space functions φms are approximated using P1 triangular finite elements.
Frequency-functions φmω are approximated using linear 1D finite elements based
on a discretisation of 101 equally spaced nodes in Ωω. The current density
vector is also written as a space-frequency separated representation, consisting
of a single functional pair:{

Jθ = Js(z, r)Jω(ω) in Ω6 × Ωω,

Jθ = 0 in (Ω \ Ω6)× Ωω,

with the following definition of the current density space-frequency functions:

Js =
1

Acoil

√
P and Jω =

1√
R
,

with R =
rcoilN

D

√
2%ωµ0,

where Acoil is the cross section area of the copper conductor, P is the electrical
input power and R is the resistance which depends on the AC frequency due
to the skin effect. Other magnitudes are: the coil radius, rcoil, the number of
turns, N , and the copper electrical resistivity, %.

1Notice that it is also possible to consider complex-valued space functions and real-valued
parameter functions, and vice versa.
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The solution of the problem converged in MA = 18 terms, for a prescribed
residual reduction of 10−8. The heat source could be then computed by per-
forming a simple post-processing of the magnetic potential, as indicated in Eq.
(2):

Q =

MQ∑
m=1

γmζ
m with ζm(z, r, ω) := ζms (r, s)ζmω (ω), (9)

where ζm are the basis functions expressed as the product of space functions,
ζms , and parameter functions, ζmω , while γm are the basis coefficients, which
are uniquely determined for unit norm basis functions. Eq. (9) was obtained
with MQ = 8 basis functions, for a prescribed error of 10−8 using SVD. ΩP is
discretised using linear 1D finite elements with 101 equally spaced nodes. Since
the heat source depends linearly on the electrical input power2, it is possible to
include its dependency straightforwardly by simply redefining the heat source
basis functions:

ζm(z, r, ω, P ) := ζms (r, s) ζmω (ω) ζmP (P ) for 1 ≤ m ≤MQ, (10)

since electrical input power functions are known beforehand: ζmP (P ) ≡ P , for
1 ≤ m ≤MQ.

Remark 3. Even if the heat source dependence on the electrical input power is
trivial, the temperature field is not linear in this parameter because of the non
homogeneous boundary conditions in the heat transfer problem, as defined in
subsection 3.4.

Fig. 4 shows the magnetic potential field lines in the central part of the
reactor, for three different AC frequencies. The figure also shows the heat source
induced in the graphite inductor. It can be observed that higher AC frequencies
led to a less uniform heat source distribution inside the inductor, which tended
to concentrate in the corners of the external boundary due to skin effect.

3.4 Solution of Heat Transfer Problem using PGD

This section describes the solution of the multi-parametric heat transfer model
in terms of the AC frequency, the flow rate and the electrical input power. Eq.
(4) is extended to the parametric domain:

ρCpu · ∇T − λ∇2T = Q in ΩT × Ξ

−∇T · n = ς
(
T 4 − T 4

0

)
on Γrad × Ξ

−∇T · n = 0 on Γh × Ξ

T = T0 on Γ2 × Ξ

(11)

2The heat source is proportional to the square of the magnetic potential magnitude, which
in turn is proportional to the square root of P through the current density. Therefore, Q is
proportional to P .
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where

ΩT =
⋃
i∈IT

Ωi, Γrad =
⋃

i∈Irad

Γi and Γh =
⋃
i∈Ih

Γi

with IT = (1, 3, 4, 5), Irad = (7, 11, 12, 13, 14, 15) and Ih = (1, 3, 5). The Stefan-
Boltzmann constant is denoted by ς = 5.67 · 10−8 W/m2K4, while T0 = 298 K
is the ambient temperature.

PGD is applied in order to compute a separated representation of the tem-
perature field:

T =

MT∑
m=1

κmϕ
m,

with ϕm(z, r, ω, q, P ) : = ϕms (z, r)ϕmω (ω)ϕmq (q)ϕmP (P ),

(12)

where ϕm are basis functions expressed as the product of space functions, ϕms ,
frequency functions, ϕmω , gas flow rate functions, ϕmq , and electrical input power
functions, ϕmP . On the other hand, κm are the basis coefficients, which are
uniquely determined for unit norm basis functions. The procedure used to
compute Eq. (12) is conceptually similar to the one adopted for the solution of
the magnetic potential equation, discussed in Appendix B.

However, the nonlinearity introduced by the radiation term needs a par-
ticular treatment. Newton-Raphson (NR) algorithm is used to linearise the
problem. At each nonlinear step, the associated Jacobian system is solved using
PGD. Since the linearisation of the radiation term would involve the evaluation
of 4T 3, assembling the corresponding Jacobian matrix would lead to a separated
representation with up to (MT )3 operators. To overcome this difficulty, an ap-
proximated Jacobian using only M ′T < MT terms is implemented. In practice,
we consider M ′T = 3, which allows writing the Jacobian with 27 operators.

The resulting quasi-Newton algorithm converged in 8 iterations. The final
solution consists of MT = 75 for a residual reduction of 10−5. The storage
requirements of the separated variables representation are 8685 times lower than
the ones corresponding to a full solution representation obtained by meshing the
parametric space Ξ with the equivalent resolution.

Fig. 5 shows the temperature field corresponding to specific points of the
parametric space Ξ, evidencing the effect of the process parameters ω, q and P
on the temperature distribution inside the reactor.

4 Process optimisation

One of the notable advantages of explicitly computing parametric solutions of
PDEs is that many applications such as control, inverse identification and op-
timisation can be performed very easily, because function evaluations are fairly
inexpensive and can be obtained at the cost of a simple post-processing opera-
tions needed for the particularisation of the parametric solution.
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For this reason, ROM and in particular PGD have been widely used in the
context of parameter optimisation in material processing techniques [35].

For CVD, optimisation often involves two main objectives. The first is the
average temperature on the substrate where the film is grown, which should be
as close as possible to the optimal chemical reaction temperature, Tt, while the
other is the uniformity of the temperature distribution on the substrate, which
directly affects the quality of the film. These two can be expressed through the
following objective functions:

f1 (ω, q, P ) =

∣∣∣∣1− 〈T 〉Tt
∣∣∣∣ and f2 (ω, q, P ) =

√〈
(T − 〈T 〉)2

〉
〈T 〉

. (13)

In Eq. (13), the operator 〈·〉 defines the average over a specified target surface
of area St:

〈T 〉 =
1

St

∫
Γ13

T (z, r, ω, q, P ) dz, (14)

where the target surface corresponds to the chamber-graphite horizontal wall.
The Pareto front generated by these two objective functions is represented in
Fig. (6). Each point in the grey shaded area is associated to a point in the
parametric space Ξ and therefore to a particular solution of the multi-physics
problem. The Pareto front is simply generated by a cloud of one million points
spanning the parametric space, since objective functions f1 and f2 are extremely
cheap to evaluate once the parametrised solution is known. This construction,
which may be very expensive when using standard simulation techniques, is
carried out here in few seconds because any possible scenario has been computed
offline.

Other objectives include for example the attainment of a specific flow rate
qt, which is dictated by the chemical reaction characteristic time, and the min-
imisation of the input power P , which obeys to an economical criterion. All
these can be combined into a single multi-objective function:

C (ω, q, P ) = c1

∣∣∣∣1− 〈T 〉Tt
∣∣∣∣+ c2

1

〈T 〉

√〈
(T − 〈T 〉)2

〉
+

+ c3
|qt − q|
qmax − qt

+ c4
P − Pmin

Pmax − Pmin
. (15)

The coefficients ci, i = 1, . . . , 4 are the weights of the multi-objective optimisa-
tion.

We emphasise that the choice of the multi-objective function and its weights
depend on the specific application and may vary from user to user and even
evolve in time, whereas the parametric solution T (z, r, ω, q, P ), describing the
physical behaviour of the system, is invariant and may be reused if a new op-
timisation problem arises. Eq. (15) is a rather academic example that is only
presented here to show the viability of the proposed approach, which essentially
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Figure 6: Pareto front. Objective 1 is related to the average temperature on
the graphite susceptor with a target T = 1700◦C and Objective 2 is related to
the uniformity of the temperature distribution.
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Frequency : 70 kHz
Flow Rate : 6.29 slm
Power : 2.66 kW

Figure 7: Plane slices visualisation of the objective function C(ω, q, P ) corre-
sponding to the coordinates of the optimal design point.

keeps the same complexity and structure even when more sophisticated and
realistic objective functions are considered.

Given the weights c1 = 0.1089, c2 = 0.8890, c3 = 0.0012, c4 = 8.12 · 10−4,
the target temperature Tt = 1700◦C and the target flow rate of qt = 8 slm,
the function C(ω, q, P ) is represented in figure 7. Two-dimensional slices corre-
sponding to the planes ω/2π = 70 kHz, q = 6.29 slm and P = 2.66 kW are also
shown. This coordinates correspond to the position of the optimal point. The
minimisation of the multi-objective function C(ω, q, P ) was performed through
a simple gradient-based optimisation procedure. This can be performed practi-
cally in real time using MATLAB R© routines. Note that there is no restriction
in the choice of the optimisation algorithm that can be selected based on the
particular application at hand.

Finally, the optimal solution is displayed in Fig. 8 showing the magnetic
potential, flow and temperature fields.

5 Conclusions

In this paper we showed a computational strategy to produce reduced order
solutions of the parametrised multi-physics equations governing the heat trans-
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Figure 8: Magnetic potential field outside the reactor and flow and temperature
fields inside the reactor, for the optimal parameter choice according to multi-
objective optimisation function C(ω, q, P ).
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fer in a hot-wall CVD reactor. Process parameters were optimised to obtain
the most favourable process conditions. The approach that was followed in-
volves two stages: the “off-line” computation of the parametric solution and the
“on-line” optimisation. In the off-line stage the solution is computed using two
different ROM techniques, PGD and hierarchical basis collocation, both pro-
viding a solution in a separated variables representation. This format provides
advantages in terms of both storage requirements of the solution and easiness
of manipulation. Indeed, once the solution is known, evaluating a quantity of
interest and its gradient with respect to the parameters at any point of the
parametric space becomes inexpensive and allows for fast optimisation. Further
developments based on the strategy proposed in this paper include the possibil-
ity of performing sensitivity analysis and uncertainty quantification on the input
parameters in order to assess the practical viability and the risks of the param-
eter combination that is find through optimisation. These two operations also
benefit from the use of separated variables representations. The same formula-
tion can include not only material and process parameters but also geometry
and boundary conditions. These two ideas constitute part of the ongoing work
and will be object of a future publication.

A Separated representations based on Hierar-
chical Basis Collocation

A separated representation of the parametric velocity field, as in Eq. (6) can be
obtained to an arbitrary accuracy and in a non-intrusive way, using the concept
of hierarchical basis. According to the collocation approach the scalar parame-
ter functions ψmq (q) are given a priori, while the vector space functions ψms (z, r)
are to be determined by solving Eq. (5) in appropriate points of the parametric
space named collocation points. The choice of using the same scalar parametric
functions for both velocity components ensures that incompressibility is auto-
matically enforced for any choice of the parameter, since vector space functions
are divergence-free. The key of separated representation approximation based
on collocation is the use of hierarchical basis.

There are many ways to define a hierarchical basis. In the following, polyno-
mial interpolation is used. This guarantees high order accuracy provided that
the function u (z, r, q) is sufficiently regular with the parameter q, which is the
case for low Reynolds laminar flow. The collocation points are naturally chosen
as the GCL points,

Pn = {q0, q1, . . . , qn} , (16)

comprising the extrema of the n-th order Chebyshev polynomial of the first
kind, Tn (q), defined in Ωq ≡ [qmin, qmax], plus the ending points: q0 = qmin
and qn = qmax. GCL points have the important property of being “nested”, in
the sense that:

· · · ⊂ P2(k−1) ⊂ P2k ⊂ P2(k+1) ⊂ . . . for k ∈ N. (17)
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The 0-th level of the grid hierarchy only includes the ending points of the
parametric space allowing for a linear approximation. Therefore:

ψ1
s (z, r) ≡ u (z, r; qmin) , ψ1

q (q) =
qmin − q

qmin − qmax
,

ψ2
s (z, r) ≡ u (z, r; qmax) , ψ2

q (q) =
qmax − q

qmax − qmin
.

Each subsequent level k of the hierarchy is constructed using the following pro-
cedure:

• The parametric functions ψmq (q) are identified with the Lagrangian poly-
nomials:

L k
i (q) =

∏
j 6=i

(q − qj)∏
j 6=i

(qi − qj)
, (18)

with

qi ∈ P2k \ P2(k−1) and qj ∈ P2k. (19)

• The corresponding surplus functions are determined as the difference be-
tween the solution computed for the new collocation points, qi, and the
approximation given by the interpolation from the previous hierarchical
level, uk−1. Hence:

ψms (z, r) = u (z, r; qi)− uk−1 (z, r, qi) . (20)

This implies that the functions ψms (z, r) are not simply the solution of Navier-
Stokes equations at the specified flow rate, qi, but represent the difference be-
tween two consecutive hierarchical levels. These hierarchical surplus functions
also offer a natural way to assess the convergence of the hierarchical enrichment
procedure, which is stopped when the norm of all the newly added ψms (z, r)
functions in a level is smaller than a desired tolerance. Theoretical error bounds
can be found in [36].

When the problem has more than one parameter, the same strategy can be
paired with Smolyak’s technique to generate Sparse Grids (SG) from the tensor
product of one dimensional grids without incurring in the curse of dimensional-
ity. This method retains the same convergence rate up to a logarithmic factor
provided that the function has smooth high order mixed derivatives [37]. More
sophisticated variants include the possibility of dimensional adaptiveness [38]
and local refinement [39] for a more efficient handling of high dimensional prob-
lems.

A concurrent but similar approach is represented by the Reduced Basis
Method (RBM) [22, 40, 41]. The substantial difference is that RBM is an
“off-line” strategy that produces a reduced order model that can be efficiently
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solved “on-line” for a given choice of the model parameters, whereas the SG
approaches produce a fully parametric solution that only needs to be particu-
larised for the parameters of choice using interpolation. Another difference is
the way these techniques handle nonlinearity which is completely straightfor-
ward in the case SG, whereas it needs a careful treatment for RBM by means,
for instance, of the Empirical Interpolation Method [42]. Thus, even if for a
given order RBM produces more accurate solutions, SG has the advantage of
its inherent offline/online nature. By considering a higher order approximation
in the offline stage, the online evaluation of the solution could have the same
accuracy that the one obtained by RBM based on lower order approximations.

B PGD formulation of the magnetic potential
problem

Consider the weighted residual formulation of Eq. (7):

a (Aθ, A
∗
θ) + b (Aθ, A

∗
θ) = ` (A∗θ) , (21)

where A∗θ is a test function chosen in the appropriate functional space. Bilinear
and linear forms are defined as follows:

a (Aθ, A
∗
θ) :=

∫
Ω×Ωω

iωσĀ∗θAθ rdzdrdω,

b (Aθ, A
∗
θ) :=

∫
Ω×Ωω

1

µ0 µr
∇Ā∗θ · ∇Aθ rdzdrdω and

` (A∗θ) :=

∫
Ω×Ωω

Ā∗θJθ rdzdrdω,

where we denote the complex conjugate of v ∈ C by v̄ in order to define an
appropriate complex inner product. PGD builds the space-frequency separated
representation of the magnetic potential field, Eq. (8), by adding one basis
function at a time. Suppose that k− 1 < MA terms are already known and the
k-th wants to be computed:

Aθ =

k−1∑
m=1

βmφ
m + φ. (22)

When the computation of φ converges (it involves a nonlinear problem as ex-
plained below), we set βk = ‖φ‖ and φk = φ/βk. Introducing Eq. (22) into Eq.
(21):

a(φ, φ∗) + b(φ, φ∗) = rk−1(φ∗), (23)

where rk−1 denotes the residual corresponding to the magnetic potential ap-
proximation with k − 1 terms. Hence:

rk−1(φ∗) := `(φ∗)−
k−1∑
m=1

βm [a(φm, φ∗) + b(φm, φ∗)]. (24)
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PGD seeks a separated variables representation of φ, meaning that:

φ(z, r, ω) := φs(z, r)φω(ω). (25)

Observe that the computation of both φs and φω involves solving a nonlin-
ear problem, as both unknowns multiply each other. This is classically solved
by using an alternating directions strategy, meaning that both functions are
sequentially updated until convergence.

1. Suppose that φω is known (in practice, it is initialised randomly). As a
consequence, the only possible variation is in the space function, which
allows writing the test function as follows: φ∗ = φ∗sφω. Substituting in
Eq. (23):

a(φsφω, φ
∗
sφω) + b(φsφω, φ

∗
sφω) = rk−1(φ∗sφω).

Then, it is possible to update φs by solving a space problem defined in
the 2D axisymmetric domain:

υω as(φs, φ
∗
s) + τω bs(φs, φ

∗
s) = rk−1

s (φ∗s), (26)

with the following definition of the right-hand side:

rk−1
s (φ∗s) := ϑω `s(φ

∗
s)−

−
k−1∑
m=1

βm [υmω as(φ
m
s , φ

∗
s) + τmω bs(φ

m
s , φ

∗
s)].

(27)

Linear and bilinear forms have been split into their space and frequency
parts according to the following definitions:

as(φs, φ
∗
s) :=

∫
Ω

iσφ̄∗sφs rdzdr, aω(φω, φω) :=

∫
Ωω

ωφ̄ωφω dω,

bs(φs, φ
∗
s) :=

∫
Ω

1

µ0 µr
∇φ̄∗s · ∇φs rdzdr, bω(φω, φω) :=

∫
Ωω

φ̄ωφω dω,

`s(φ
∗
s) :=

∫
Ω

φ̄∗sJs rdzdr, `ω(φω) :=

∫
Ωω

φ̄ωJω dω.

(28)

Using the previous definitions, scalar coefficients introduced in Eq.(26)
and Eq. (27) are computed as follows:

υω = aω(φω, φω), τω = bω(φω, φω), ϑω = `ω(φω),

υmω = aω(φmω , φω), τmω = bω(φmω , φω), 1 ≤ m ≤ k − 1.

2. From φs just computed using Eq. (26), the frequency function φω can
be updated. The test function writes in this case as follows: φ∗ = φsφ

∗
ω.
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Substituting and operating, it is possible to update φω by solving a 1D
problem defined in the frequency domain:

υs aω(φω, φ
∗
ω) + τs bω(φω, φ

∗
ω) = rk−1

ω (φ∗ω), (29)

with the following definition of the right-hand side:

rk−1
ω (φ∗ω) := ϑs `ω(φ∗ω)−

−
k−1∑
m=1

βm [υms aω(φmω , φ
∗
ω) + τms bω(φmω , φ

∗
ω)],

(30)

where linear and bilinear forms already defined in Eq. (28) have been
used. Scalar coefficients introduced in Eq.(29) and Eq. (30) are computed
as follows:

υs = as(φs, φs), τs = bs(φs, φs), ϑs = `s(φs),

υms = as(φ
m
s , φs), τms = bs(φ

m
s , φs), 1 ≤ m ≤ k − 1.

A stagnation criterion is implemented in order to evaluate the convergence of
the pair φsφω. The number of basis functions to be added to the approximation
defined by Eq. (22) is determined using a measure of the residual reduction or
an appropriate error estimator for separated representations [43].
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