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In this work we extend the theory of the classical Hardy space H 1 to the rational Dunkl setting. Specifically, let ∆ be the Dunkl Laplacian on a Euclidean space R N . On the half-space R + ×R N , we consider systems of conjugate (∂ 2 t +∆ x )-harmonic functions satisfying an appropriate uniform L 1 condition. We prove that the boundary values of such harmonic functions, which constitute the real Hardy space H 1 ∆ , can be characterized in several different ways, namely by means of atoms, Riesz transforms, maximal functions or Littlewood-Paley square functions.

Introduction

Real Hardy spaces on R N have their origin in the study of holomorphic functions of one variable in the upper half-plane R 2 + = {z = x + iy ∈ C : y > 0}. The theorem of Burkholder, Gundy, and Silverstein [START_REF] Burkholder | A maximal function characterisation of the class H p[END_REF] asserts that a real-valued harmonic function u on R 2 + is the real part of a holomorphic function F (z) = u(z) + iv(z) satisfying the L p condition sup y>0 R |F (x + iy)| p dx < ∞, 0 < p < ∞, if and only if the nontangential maximal function u * (x) = sup |x-x ′ |<y |u(x ′ + iy)| belongs to L p (R). Here 0 < p < ∞. The N-dimensional theory was then developed in Stein and Weiss [START_REF] Stein | On the theory of harmonic functions of several variables I (the theory of H p -spaces)[END_REF] and Fefferman and Stein [START_REF] Fefferman | H p spaces of several variables[END_REF], where the notion of holomorphy was replaced by conjugate harmonic functions. To be more precise, a system of C 2 functions u(x 0 , x 1 , . . . , x N ) = (u 0 (x 0 , x 1 , . . . , x N ), u 1 (x 0 , x 1 , . . . , x N ), . . . , u N (x 0 , x 1 , . . . , x N )), where x 0 > 0, satisfies the generalized Cauchy-Riemann equations if (1.1) ∂u j ∂x i = ∂u i ∂x j ∀ 0 ≤ i = j ≤ N and N j=0 ∂u j ∂x j = 0.

One says that u has the L p property if (1.2) sup

x 0 >0 R N |u(x 0 , x 1 , . . . , x N )| p dx 1 . . . dx N < ∞.

As in the case N = 1, if 1-1 N < p < ∞ and u 0 (x 0 , x 1 , . . . , x N ) is a harmonic function, there is a system u = (u 0 , u 1 , . . . , u N ) of C 2 functions satisfying (1.1) and (1.2) if and only if

u * 0 (x) = sup x-x ′ <x 0 |u 0 (x 0 , x ′ )|
belongs to L p (R N ). Here x = (x 1 , . . . , x N ) ∈ R N and similarly x ′ = (x ′ 1 , . . . , x ′ N ). Then u 0 has a limit f 0 in the sense of distributions, as x 0 ց 0, and u 0 is the Poisson integral of f 0 . It turns out that the set of all distributions obtained in this way, which form the so-called real Hardy space H p (R N ), can be equivalently characterized in terms of real analysis (see [START_REF] Fefferman | H p spaces of several variables[END_REF]), namely by means of various maximal functions, square functions or Riesz transforms. Another important contribution to this theory lies in the atomic decomposition introduced by Coifman [START_REF] Coifman | A real variable characterization of H p[END_REF] and extended to spaces of homogeneous type by Coifman and Weiss [START_REF] Coifman | Extensions of Hardy spaces and their use in analysis[END_REF].

The goal of this paper is to study harmonic functions, conjugate harmonic functions, and related Hardy space H 1 for the Dunkl Laplacian ∆ (see Section 2). We shall prove that these objects have properties analogous to the classical ones. In particular, the related real Hardy space H 1 ∆ , which can be defined as the set of boundary values of (∂ 2 t + ∆ x )-harmonic functions satisfying a relevant L 1 property, can be characterized by appropriate maximal functions, square functions, Riesz transforms or atomic decompositions. Apart from the square function characterization, this was achieved previously in [START_REF] Anker | The Hardy space H 1 in the rational Dunkl setting[END_REF] and [START_REF] Dziubański | Riesz transforms characterizations of Hardy spaces H 1 for the rational Dunkl setting and multidimensional Bessel operators[END_REF] in the one-dimensional case, as well as in the product case.

Hardy spaces associated with semigroups of linear operators have a long history. Let us present a small and selected part of it. Muckenhoupt and Stein [START_REF] Muckenhoupt | Classical expansions and their relation to conjugate harmonic functions[END_REF] introduced a notion of conjugacy for the one-dimensional Bessel operator, which initiated a study of Hardy spaces in the Bessel setting, continued subsequently in [START_REF] Betancor | On Hardy spaces associated with Bessel operators[END_REF]. In [START_REF] Folland | Hardy spaces on homogeneous groups[END_REF] and [START_REF] Christ | Singular integral characterizations of Hardy spaces on homogeneous groups[END_REF], the authors developed a theory of real Hardy spaces H p on homogeneous nilpotent Lie groups, associated either with a sublaplacian (if the group is stratified) or with a Rockland operator (if the group is graded). Another important contribution is the theory of local Hardy spaces in [START_REF] Goldberg | A local version of real Hardy spaces[END_REF], which has several applications, e.g., in the study of Hardy spaces associated with the twisted laplacian [START_REF] Mauceri | A Hardy space associated with twisted convolution[END_REF] or with Schrödinger operators with certain (large) potentials [START_REF] Dziubański | Hardy space H 1 associated to Schrödinger operator with potential satisfying reverse Hölder inequality[END_REF]. Hardy spaces associated with semigroups whose kernels satisfy Gaussian bounds were studied in [START_REF] Hofmann | Hardy spaces associated to non-negative selfadjoint operators satisfying Davies-Gaffney estimates[END_REF]. There, the theory of tent spaces ( [START_REF] Coifman | Some new functions and their applications to harmonic analysis[END_REF] and [START_REF] Russ | The atomic decomposition for tent spaces on spaces of homogeneous type, in Asymptotic geometric analysis, harmonic analysis, and related topics[END_REF]) was used to produce specific atomic decompositions for Hardy spaces defined by square functions. This theory was further enhanced in [START_REF] Dekel | Hardy spaces associated with non-negative self-adjoint operators[END_REF] and [START_REF] Song | Maximal function characterizations for Hardy spaces associated to nonnegative self-adjoint operators on space of homogeneous type[END_REF] by characterizations by means of maximal functions.

In the one-dimensional case and in the product case considered in [START_REF] Anker | The Hardy space H 1 in the rational Dunkl setting[END_REF] and [START_REF] Dziubański | Riesz transforms characterizations of Hardy spaces H 1 for the rational Dunkl setting and multidimensional Bessel operators[END_REF], the Dunkl kernel can be expressed explicitly in terms of classical special functions (Bessel functions or the confluent hypergeometric function). Thus its behavior is fully understood. In the general case considered in the present paper, no such information is available. Therefore an essential part of our work consists in estimating the Dunkl kernel, the heat kernel, the Poisson kernel, and their derivatives (see the end of Section 3, Section 4, and Section 5). As observed in [START_REF] Anker | The Hardy space H 1 in the rational Dunkl setting[END_REF], the heat kernel satisfies no Gaussian bound in the Dunkl setting. However, as it is shown in Section 4, some Gaussian-type bounds hold provided the Euclidean distance is replaced by the orbit distance (3.3). Similarly for the Poisson kernel, whose estimates in terms of the orbit distance resemble the analysis on spaces of homogeneous type (see Section 5). These crucial observations allow us to adapt the techniques of [START_REF] Hofmann | Hardy spaces associated to non-negative selfadjoint operators satisfying Davies-Gaffney estimates[END_REF], [START_REF] Dekel | Hardy spaces associated with non-negative self-adjoint operators[END_REF], and [START_REF] Song | Maximal function characterizations for Hardy spaces associated to nonnegative self-adjoint operators on space of homogeneous type[END_REF] in order to obtain atomic, maximal function, and square function characterizations of the Hardy space H 1 ∆ . As far as the Riesz transform characterization of H 1 ∆ is concerned, we use the maximum principle for Dunkl-Laplace subharmonic functions, together with estimates for the Dunkl and Poisson kernels.

Let us finally mention some further works in the continuation of the present paper. In [START_REF] Dziubański | Remark on atomic decompositions for Hardy space H 1 in the rational Dunkl setting[END_REF] another atomic decomposition for the Hardy H 1 ∆ space is obtained. The article [START_REF] Hejna | Hardy spaces for the Dunkl harmonic oscillator[END_REF] provides characterizations of the Hardy space associated with the Dunkl harmonic oscillator, while [START_REF] Dziubański | Hörmander's multiplier theorem for the Dunkl transform[END_REF] is devoted to non-radial multipliers associated with the Dunkl transform.

1.1. Notation.

• As usual, N = {0, 1, 2, . . .} denotes the set of nonnegative integers.

• The Euclidean space R N is equipped with the standard inner product

x, y = N j=1

x j y j and the corresponding norm x = N j=1 |x j | 2 1/2 . Throughout the paper, B (x, r) = { y ∈ R N | x-y < r } stands for the ball with center x ∈ R N and radius r > 0. Finally, R N +1 + denotes the half-space (0, ∞)×R N in R N +1 + .

• In R N , the directional derivative along ξ is denoted by ∂ ξ . As usual, for every multi-index α = (α 1 , α 2 , . . . , α N ) ∈ N N , we set |α| = N j=1 α j and

∂ α = ∂ α 1 e 1 • ∂ α 2 e 2 • . . . • ∂ α N e N ,
where {e 1 , e 2 , . . . , e N } is the canonical basis of R N . The additional subscript x in ∂ α

x means that the partial derivative ∂ α is taken with respect to the variable x ∈ R N .

• The symbol ∼ between two positive expressions f, g means that their ratio f g is bounded from above and below by positive constants.

• The symbol (respectively ) between two nonnegative expressions f, g means that there exists a constant C > 0 such that f ≤ Cg (respectively f ≥ Cg). • We denote by C 0 (R N ) the space of all continuous functions on R N vanishing at infinity, by C ∞ c (R N ) the space of all smooth functions on R N with compact support, and by S(R N ) the Schwartz class on R N .

Statement of the results

In this section we first collect basic facts concerning Dunkl operators, the Dunkl Laplacian, and the corresponding heat and Poisson semigroups. For details we refer the reader to [START_REF] Dunkl | Differential-difference operators associated to reflection groups[END_REF], [START_REF] Rösler | Dunkl operators (theory and applications)[END_REF] and [START_REF] Rösler | Dunkl theory, convolution algebras, and related Markov processes[END_REF]. Next we state our main results.

In the Euclidean space R N the reflection σ α with respect to the hyperplane α ⊥ orthogonal to a nonzero vector α ∈ R N is given by

σ α (x) = x -2
x, α α 2 α.

A finite set R ⊂ R N \ {0} is called a root system if σ α (R) = R for every α ∈ R. We shall consider normalized reduced root systems, that is, α 2 = 2 for every α ∈ R. The finite group G generated by the reflections σ α is called the Weyl group (reflection group) of the root system. We shall denote by O(x), resp. O(B) the G-orbit of a point x ∈ R N , resp. a subset B ⊂ R N . A multiplicity function is a G-invariant function k : R → C, which will be fixed and ≥ 0 throughout this paper. Given a root system R and a multiplicity function k, the Dunkl operators T ξ are the following deformations of directional derivatives ∂ ξ by difference operators :

T ξ f (x)= ∂ ξ f (x) + α∈R k(α) 2 α, ξ f (x)-f (σ α (x)) α, x = ∂ ξ f (x) + α∈R + k(α) α, ξ f (x)-f (σ α (x)) α, x .
Here R + is any fixed positive subsystem of R. The Dunkl operators T ξ , which were introduced in [START_REF] Dunkl | Differential-difference operators associated to reflection groups[END_REF], commute pairwise and are skew-symmetric with respect to the Ginvariant measure dw(x) = w(x) dx, where

w(x) = α∈R | α, x | k(α) = α∈R + | α, x | 2k(α) .
Set T j = T e j , where {e 1 , . . . , e N } is the canonical basis of R N . The Dunkl Laplacian associated with R and k is the differential-difference operator ∆ = n j=1 T 2 j , which acts on C 2 functions by

∆f (x)= ∆ eucl f (x) + α∈R k(α)δ α f (x) = ∆ eucl f (x) + 2 α∈R + k(α)δ α f (x),
where

δ α f (x) = ∂ α f (x) α, x - f (x) -f (σ α (x)) α, x 2 .
The operator ∆ is essentially self-adjoint on L 2 (dw) (see for instance [START_REF] Amri | Dunkl-Schrödinger operators[END_REF]Theorem 3.1]) and generates the heat semigroup (2.1)

H t f (x) =e t∆ f (x) = R N h t (x, y)f (y) dw(y).
Here the heat kernel

h t (x, y) is a C ∞ function in all variables t > 0, x ∈ R N , y ∈ R N , which satisfies h t (x, y) = h t (y, x)> 0 and R N h t (x, y) dw(y) = 1.
Notice that (2.1) defines a strongly continuous semigroup of linear contractions on L p (dw), for every 1 ≤ p < ∞.

The Poisson semigroup P t = e -t √ -∆ is given by the subordination formula (2.2)

P t f (x) = π -1/2 ∞ 0 e -u exp t 2 4u ∆ f (x) du √ u
and solves the boundary value problem [START_REF] Rösler | Markov processes related with Dunkl operators[END_REF]Section 5]). Let e 0 = (1, 0, . . ., 0), e 1 = (0, 1, . . ., 0),. . . , e N = (0, 0, . . ., 1) be the canonical basis in R 1+N . In order to unify our notation we shall denote the variable t by x 0 and set T 0 = ∂ e 0 .

(∂ 2 t + ∆ x ) u(t, x) = 0 u(0, x) = f (x) in the half-space R 1+N + = (0, ∞)×R N ⊂ R 1+N (see
Our goal is to study real harmonic functions of the operator

(2.3) L = T 2 0 + ∆ = N j=0 T 2 j .
The operator L is the Dunkl Laplacian associated with the root system R, considered as a subset of R 1+N under the embedding

R ⊂ R N ֒→ R × R N .
We say that a system u = (u 0 , u 1 , . . . , u N ), where

u j = u j (x 0 , x 1 , . . . , x N x ) ∀ 0 ≤ j ≤ N, of C 1 real functions on R 1+N + satisfies the generalized Cauchy-Riemann equations if (2.4) T i u j = T j u i ∀ 0 ≤ i = j ≤ N , N j=0 T j u j = 0. In this case each component u j is L-harmonic, i.e., Lu j = 0.
We say that a system u of C 2 real L-harmonic functions on R 1+N + belongs to the Hardy space H 1 if it satisfies both (2.4) and the L 1 condition

u H 1 = sup x 0 >0 |u(x 0 , •)| L 1 (dw) = sup x 0 >0 R N |u(x 0 , x)| dw(x) < ∞, where |u(x 0 , x)| = N j=0 |u j (x 0 , x)| 2 1/2
. We are now ready to state our first main result. Theorem 2.5. Let u 0 be a L-harmonic function in the upper half-space R 1+N + . Then there are L-harmonic functions u j (j = 1, . . ., N) such that u = (u 0 , u 1 , . . ., u N ) belongs to H 1 if and only if the nontangential maximal function

(2.6) u * 0 (x) = sup x ′ -x <x 0 |u 0 (x 0 , x ′ )| belongs to L 1 (dw).
In this case, the norms u * 0 L 1 (dw) and u H 1 are moreover equivalent.

If u ∈ H 1 , we shall prove that the limit f (x) = lim x 0 →0 u 0 (x 0 , x) exists in L 1 (dw) and u 0 (x 0 , x) = P x 0 f (x). This leads to consider the so-called real Hardy space

H 1 ∆ = {f (x) = lim x 0 →0 u 0 (x 0 , x) | (u 0 , u 1 , . . ., u N ) ∈ H 1 },
equipped with the norm

f H 1 ∆ = (u 0 , u 1 , . . ., u N ) H 1 . Let us denote by (2.7) M P f (x) = sup x-x ′ <t P t f (x ′ )
the nontangential maximal function associated with the Poisson semigroup P t = e -t √ -∆ . According to Theorem 2.5, H 1 ∆ coincides with the following subspace of L 1 (dw) : (2.8)

H 1 max,P = {f ∈ L 1 (dw) | f H 1 max, P := M P f L 1 (dw) < ∞}. Moreover, the norms f H 1
∆ and f H 1 max, P are equivalent. Our task is to prove other characterizations of H 1 ∆ by means of real analysis.

A. Characterization by the heat maximal function. Let

M H f (x) = sup x-x ′ 2 <t |H t f (x ′ )|
be the nontangential maximal function associated with the heat semigroup H t = e t∆ and set

(2.9) 

H 1 max,H = {f ∈ L 1 (dw) | f H 1 max, H := M H f L 1 (dw) < ∞}. Theorem 2.
Q t = t √ -∆e -t √
-∆ are uniformly bounded on L p (dw) (this is a consequence of the estimates (4.4), (5.8) and (5.5)). Consider the square function (2.11) Sf (x) =

x-y <t

|Q t f (y)| 2 dt dw(y) t w(B(x, t)) 1/2
and the space

H 1 square = {f ∈ L 1 (dw) | Sf L 1 (dw) < ∞}.
Theorem 2.12. The spaces H 

R j f = T j (-∆) -1/2 f
(see Section 8), are bounded operators on L p (dw), for every 1 < p < ∞ (cf. [START_REF] Amri | Riesz transforms for Dunkl transform[END_REF]). In the limit case p = 1, they turn out to be bounded operators from

H 1 ∆ into H 1 ∆ ⊂ L 1 (dw)
. This leads to consider the space 

H 1 Riesz = {f ∈ L 1 (dw) | R j f L 1 (w) < ∞, ∀ 1 ≤ j ≤ N}.
:= f L 1 (dw) + N j=1 R j f L 1 (dw) .
are equivalent.

D.

Characterization by atomic decompositions. Let us define atoms in the spirit of [START_REF] Hofmann | Hardy spaces associated to non-negative selfadjoint operators satisfying Davies-Gaffney estimates[END_REF]. Given a Euclidean ball B in R N , we shall denote its radius by r B and its Gorbit by O(B). For any positive integer M, let D(∆ M ) be the domain of ∆ M as an (unbounded) operator on L 2 (dw).

Definition 2.15. Let 1 < q ≤ ∞ and let M be a positive integer. A function a ∈ L 2 (dw) is said to be a (1, q, M)-atom if there exist b ∈ D(∆ M ) and a ball B such that

• a = ∆ M b , • supp (∆ ℓ b) ⊂ O(B) ∀ 0 ≤ ℓ ≤ M, • (r 2 B ∆) ℓ b L q (dw) ≤ r 2M B w(B) 1 q -1 ∀ 0 ≤ ℓ ≤ M. Definition 2.16. A function f belongs to H 1 (1,q,M ) if there are λ j ∈ C, j |λ j | < ∞, and (1, q, M)-atoms a j such that (2.17) f = j λ j a j .
In this case, set

f H 1 (1,q,M ) = inf j |λ j | ,
where the infimum is taken over all representations (2.17).

Let us note that by the Hölder inequality, a L 1 (dw) ≤ |G| 1-1 q , where |G| denotes the number of elements of G. Hence the series in (2.17) converges in L 1 (dw). The results of the paper guarantee that the convergence holds in the Hardy space H 1 considered here as well.

Theorem 2.18. The spaces H 1 ∆ and H 1 (1,q,M ) coincide and the corresponding norms are equivalent.

Let us briefly describe the organization of the proofs of the results. Clearly, H 1

(1,q 1 ,M ) ⊂ H 1

(1,q 2 ,M ) for 1 < q 2 ≤ q 1 ≤ ∞. The proof (u 0 , u 1 , . . ., u N ) ∈ H 1 implies u * 0 ∈ L 1 (dw), which is actually the inclusion H 1 ∆ ⊂ H 1 max,P , is presented in Section 7, see Proposition 7.12. The proof is based on L-subharmonicity of certain function constructed from u (see Section 6). The converse to Proposition 7.12 is proved at the very end of Section 11. Inclusions: 

H 1 ∆ ⊂ H 1 Riesz ⊂ H 1 ∆ are shown in Section 8. Further, H 1 (1,q,M ) ⊂ H

Dunkl kernel, Dunkl transform and Dunkl translations

The purpose of this section is to collect some facts about the Dunkl kernel, the Dunkl transform and Dunkl translations. General references are [START_REF] Dunkl | Differential-difference operators associated to reflection groups[END_REF], [START_REF] De Jeu | The Dunkl transform[END_REF], [START_REF] Rösler | Dunkl operators (theory and applications)[END_REF], [START_REF] Rösler | Dunkl theory, convolution algebras, and related Markov processes[END_REF]. At the end of this section we shall derive estimates for the Dunkl translations of radial functions. These estimates will be used later to obtain bounds for the heat kernel and for the Poisson kernel, as well as for their derivatives, and furthermore upper and lower bounds for the Dunkl kernel.

We begin with some notation. Given a root system R in R N and a multiplicity function k ≥ 0, let (3.1) γ = α∈R + k(α) and N = N + 2γ. The number N is called the homogeneous dimension, because of the scaling property w(B(tx, tr)) = t N w(B(x, r)).

Observe that w(B(x, r)) ∼ r N α∈R ( | α, x | + r ) k(α) .
Thus the measure w is doubling, that is, there is a constant C > 0 such that w(B(x, 2r)) ≤ C w(B(x, r)).

Moreover, there exists a constant C ≥ 1 such that, for every x ∈ R N and for every 3.1. Dunkl kernel. For fixed x ∈ R N , the Dunkl kernel y -→E(x, y) is the unique solution to the system

r 2 ≥ r 1 > 0, (3.2) C -1 r 2 r 1 N ≤ w(B(x, r 2 )) w(B(x, r 1 )) ≤ C r 2 r 1 N . Set V (x,
T ξ f = ξ, x f ∀ ξ ∈ R N , f (0) = 1.
The following integral formula was obtained by Rösler [START_REF] Rösler | Positivity of Dunkl's intertwining operator[END_REF] :

(3.4) E(x, y) = R N e η,y dµ x (η),
where µ x is a probability measure supported in the convex hull conv O(x) of the G-orbit of x. The function E(x, y), which generalizes the exponential function e x,y , extends holomorphically to C N × C N and satisfies the following properties :

• E(0, y) = 1 ∀ y ∈ C N , • E(x, y) = E(y, x) ∀ x, y ∈ C N , • E(λx, y) = E(x, λy) ∀ λ ∈ C, ∀ x, y ∈ C N , • E(σ(x), σ(y)) = E(x, y) ∀ σ ∈ G, ∀ x, y ∈ C N , • E(x, y) = E(x, ȳ) ∀ x, y ∈ C N , • E(x, y)> 0 ∀ x, y ∈ R N , • |E(ix, y)| ≤ 1 ∀ x, y ∈ R N , • |∂ α y E(x, y)| ≤ x |α| max σ∈G e Re σ(x),y ∀ α ∈ N N ( 1 ), ∀ x ∈ R N , ∀ y ∈ C N .
3.2. Dunkl transform. The Dunkl transform is defined on L 1 (dw) by

F f (ξ) = c -1 k R N f (x)E(x, -iξ) dw(x),
where

c k = R N e -x 2 2 dw(x)> 0 .
The following properties hold for the Dunkl transform (see [START_REF] De Jeu | The Dunkl transform[END_REF], [START_REF] Rösler | Dunkl theory, convolution algebras, and related Markov processes[END_REF]):

• The Dunkl transform is a topological automorphisms of the Schwartz space S(R N ). • (Inversion formula) For every f ∈ S(R N ) and actually for every f ∈ L 1 (dw) such that F f ∈ L 1 (dw), we have

f (x) = (F ) 2 f (-x) ∀ x ∈ R N .
• (Plancherel Theorem) The Dunkl transform extends to an isometric automorphism of L 2 (dw). • The Dunkl transform of a radial function is again a radial function.

• (Scaling) For λ ∈ R * , we have

F (f λ )(ξ) = F f (λξ), where f λ (x) = |λ| -N f (λ -1 x).
• Via the Dunkl transform, the Dunkl operator T η corresponds to the multiplication by ±i η, • . Specifically,

F (T η f ) = i η, • F f, T η (F f ) = -i F ( η, • f ).
In particular, F (∆f 

)(ξ) = -ξ 2 F f (ξ).
τ x f (y) = c -1 k R N E(iξ, x) E(iξ, y) F f (ξ) dw(ξ).
Notice the following properties of Dunkl translations :

• each translation τ x is a continuous linear map of S(R N ) into itself, which extends to a contraction on L 2 (dw),

• (Identity) τ 0 = I, • (Symmetry) τ x f (y) = τ y f (x) ∀ x, y ∈ R N , ∀ f ∈ S(R N ), • (Scaling) τ x (f λ ) = (τ λ -1 x f ) λ ∀ λ > 0 , ∀ x ∈ R N , ∀ f ∈ S(R N ),
• (Commutativity) the Dunkl translations τ x and the Dunkl operators T ξ all commute, • (Skew-symmetry)

R N τ x f (y) g(y) dw(y) = R N f (y) τ -x g(y) dw(y) ∀ x ∈ R N , ∀ f, g ∈ S(R N ).
The latter formula allows us to define the Dunkl translations τ x f in the distributional sense for f ∈ L p (dw) with 1 ≤ p ≤ ∞. In particular,

R N τ x f (y) dw(y) = R N f (y) dw(y) ∀ x ∈ R N , ∀ f ∈ S(R N ).
Finally, notice that τ x f is given by (3.5), if f ∈ L 1 (dw) and F f ∈ L 1 (dw).

The Dunkl convolution of two reasonable functions (for instance Schwartz functions) is defined by

(f * g)(x) = c k F -1 [(F f )(F g)](x) = R N (F f )(ξ) (F g)(ξ) E(x, iξ) dw(ξ) ∀ x ∈ R N or, equivalently, by (f * g)(x) = R N f (y) τ x g(-y) dw(y) ∀ x ∈ R N .
3.4. Dunkl translations of radial functions. The following specific formula was obtained by Rösler [START_REF] Rösler | A positive radial product formula for the Dunkl kernel[END_REF] for the Dunkl translations of (reasonable) radial functions f (x) = f ( x ) :

(3.6) τ x f (-y) = R N ( f • A)(x, y, η) dµ x (η) ∀ x, y ∈ R N .
Here A(x, y, η) = x 2 + y 2 -2 y, η = x 2η 2 + yη 2 and µ x is the probability measure occurring in (3.4), which is supported in conv O(x).

In the remaining part of this section, we shall derive estimates for the Dunkl translations of certain radial functions. Recall that d(x, y) denotes the distance of the orbits O(x) and O(y) (see (3.3)). Let us begin with the following elementary estimates (see, e.g., [START_REF] Amri | Riesz transforms for Dunkl transform[END_REF]), which hold for x, y ∈ R N and η ∈ conv O(x) :

(3.7) A(x, y, η) ≥ d(x, y) and (3.8) 
     ∇ y {A(x, y, η) 2 } ≤ 2 A(x, y, η), |∂ β y {A(x, y, η) 2 }| ≤ 2 if |β| = 2, ∂ β y {A(x, y, η) 2 } = 0 if |β| > 2.
Hence (3.9) ∇ y A(x, y, η) ≤ 1 and, more generally,

|∂ β y (θ • A)(x, y, η)| ≤ C β A(x, y, η) m-|β| ∀ β ∈ N N , if θ ∈ C ∞ (R {0}) is a homogeneous symbol of order m ∈ R, i.e., | d dx β θ(x) ≤ C β |x| m-β ∀ x ∈ R {0} , ∀ β ∈ N .
Similarly,

|∂ β y ( θ • A)(x, y, η)| ≤ C β 1+A(x, y, η) m-|β| ∀ β ∈ N N , if θ ∈ C ∞ (R) is an even inhomogeneous symbol of order m ∈ R, i.e., d dx β θ(x) ≤ C β (1+|x|) m-β ∀ x ∈ R , ∀ β ∈ N .
Consider the radial function

q(x) = c M (1+ x 2 ) -M/2
on R N , where M > N and c M > 0 is a normalizing constant such that R N q(x) dw(x) = 1. Notice that q(x) = c M (1+x 2 ) -M/2 is an even inhomogeneous symbol of order -M. The following estimate holds for the translates q t (x, y) = τ x q t (-y) of q t (x) = t -N q(t -1 x).

Proposition 3.10. There exists a constant C > 0 (depending on M) such that

0 ≤ q t (x, y) ≤ C V (x, y, t) -1 ∀ t > 0, ∀ x, y ∈ R N .
Proof. By scaling we can reduce to t = 1. Fix x, y ∈ R N . We shall prove that

R N (1 + A(x, y, η)) -M dµ x (η) ∼ R N (1 + A(x, y, η) 2 ) -M/2 dµ x (η)
= q 1 (x, y) ≤ CV (x, y, 1) -1 .

(3.11)

Set B = {y ′ ∈ R N | y ′ -y ≤ 1}
. By continuity, the function B ∋ y ′ -→ q 1 (x, y ′ ) reaches a maximum K = q 1 (x, y 0 ) ≥ 0 on the ball B at some point y 0 ∈ B. For every y ′ ∈ B, we have

0 ≤q 1 (x, y 0 ) -q 1 (x, y ′ ) = R N (q • A)(x, y 0 , η) -(q • A)(x, y ′ , η) dµ x (η) = R N 1 0 ∂ ∂s (q • A)(x, y ′ + s(y 0 -y ′ ) ys , η) ds dµ x (η) ≤ y 0 -y ′ R N 1 0 |(q ′ • A)(x, y s , η)| ds dµ x (η) ≤ M y 0 -y ′ R N 1 0 (q • A)(x, y s , η) ds dµ x (η) = M y 0 -y ′ 1 0 q 1 (x, y s ) ds ≤ M y 0 -y ′ K .
Here we have used (3.9) and the elementary estimate

|q ′ (x)| ≤ M q(x) ∀ x ∈ R .
Hence

q 1 (x, y ′ ) ≥ q 1 (x, y 0 ) -|q 1 (x, y 0 ) -q 1 (x, y ′ )| ≥ K - K 2 = K 2 , if y ′ ∈ B ∩ B(y 0 , r) with r = 1 2M
. Moreover, as w( B ∩ B(y 0 , r)) ∼ w( B), we have

1 = R N q 1 (x, y ′ )dw(y ′ ) ≥ B∩B(y 0 ,r) q 1 (x, y ′ ) dw(y ′ ) ≥ K 2 w( B ∩ B(y 0 , r)) ≥ K C w( B) . Therefore 0 ≤ q 1 (x, y) ≤ K ≤ C w(B(y, 1)) -1 .
We deduce (3.11) by using the symmetry q 1 (x, y) = q 1 (y, x).

Consider next a radial function f satisfying

|f (x)| (1 + x ) -M -κ ∀ x ∈ R N
with M > N and κ ≥ 0. Then the following estimate holds for the translates

f t (x, y) = τ x f t (-y) of f t (x) = t -N f (t -1 x).
Corollary 3.12. There exists a constant C > 0 such that

|f t (x, y)| ≤ C V (x, y, t) -1 1+ d(x, y) t -κ ∀ t > 0, ∀ x, y ∈ R N .
Proof. By scaling we can reduce to t = 1. By using (3.6), (3.7), and (3.11) we get

|f 1 (x, y)| R N 1 + A(x, y, η) -M 1 + A(x, y, η) -κ dµ x (η) ≤ C V (x, y, 1) -1 1 + d(x, y) -κ .
Notice that the space of radial Schwartz functions f on R N identifies with the space of even Schwartz functions f on R, which is equipped with the norms

(3.13) f Sm = max 0≤j≤m sup x∈R (1+ |x|) m d dx j f (x) ∀ m ∈ N .
Proposition 3.14. For every κ ≥ 0, there exist C ≥ 0 and m ∈ N such that, for all even Schwartz functions ψ{1} , ψ{2} and for all even nonnegative integers ℓ 1 , ℓ 2 , the convolution kernel

Ψ s,t (x, y) = c -1 k R N (s ξ ) ℓ 1 ψ {1} (s ξ ) (t ξ ) ℓ 2 ψ {2} (t ξ ) E(x, iξ) E(-y, iξ) dw(ξ) satisfies |Ψ s,t (x, y)| ≤ C ψ {1} S m+ℓ 1 +ℓ 2 ψ {2} S m+ℓ 1 +ℓ 2 × min s t ℓ 1 , t s ℓ 2 V (x, y, s + t) -1 1 + d(x, y) s + t -κ ,
for every s, t > 0 and for every x, y ∈ R N .

Proof. By continuity of the inverse Dunkl transform in the Schwartz setting, there exists a positive even integer m and a constant C > 0 such that

sup z∈R N (1+ z ) M +κ |F -1 f (z)| ≤ C f Sm , for every even function f ∈ C m (R) with f Sm < ∞. Consider first the case 0 < s ≤ t = 1. Then (sξ) ℓ 1 ψ{1} (sξ) ξ ℓ 2 ψ{2} (ξ) Sm ≤ C ψ {1} Sm ψ {2} S m+ℓ 1 +ℓ 2 s ℓ 1 .
According to Corollary 3.12, we deduce that

|Ψ s,1 (x, y)| ≤ C N s ℓ 1 V (x, y, 1) -1 1+ d(x, y) -κ ≤ C N s ℓ 1 V (x, y, s +1) -1 1+ d(x, y) s +1 -κ
, where N = ψ {1} S m+ℓ 1 +ℓ 2 ψ {2} S m+ℓ 1 +ℓ 2 . In the case s = 1 ≥ t > 0, we have similarly

|Ψ 1,t (x, y)| ≤ C N t ℓ 2 V (x, y, 1+ t) -1 1+ d(x, y) 1+ t -κ
.

The general case is obtained by scaling.

Heat kernel and Dunkl kernel

Via the Dunkl transform, the heat semigroup H t = e t∆ is given by

H t f (x) = F -1 e -t ξ 2 F f (ξ) (x).
Alternately (see, e.g., [START_REF] Rösler | Dunkl theory, convolution algebras, and related Markov processes[END_REF])

H t f (x) = f * h t (x) = R N h t (x, y) f (y) dw(y),
where the heat kernel h t (x, y) is a smooth positive radial convolution kernel. Specifically, for every t > 0 and for every x, y ∈ R N , (4.1)

h t (x, y) = c -1 k (2t) -N/2 e -x 2 + y 2 4t E x √ 2t , y √ 2t = τ x h t (-y), where h t (x) = ht ( x ) = c -1 k (2t) -N/2 e -x 2 4t . In particular, h t (x, y) = h t (y, x) > 0, R N h t (x, y) dw(y) = 1, h t (x, y) ≤ c -1 k (2t) -N/2 e -d(x,y) 2 4t . (4.2)
4.1. Upper heat kernel estimates. We prove now Gaussian bounds for the heat kernel and its derivatives, in the spirit of spaces of homogeneous type, except that the metric xy is replaced by the orbit distance d(x, y) (see (3.3)). In comparison with (4.2), the main difference lies in the factor t N/2 , which is replaced by the volume of appropriate balls. 

(4.4) |∂ m t h t (x, y)| ≤ C t -m V (x, y, √ t ) -1 e -c d(x,y) 2 /t ,
for every t > 0 and for every x, y ∈ R N . (b) Hölder bounds : for any nonnegative integer m, there are constants C, c > 0 such that

(4.5) |∂ m t h t (x, y) -∂ m t h t (x, y ′ )| ≤ C t -m y-y ′ √ t V (x, y, √ t ) -1 e -c d(x,y) 2 /t ,
for every t > 0 and for every x, y, y ′ ∈ R N such that y-y ′ < √ t . (c) Dunkl derivative : for any ξ ∈ R N and for any nonnegative integer m, there are constants C, c > 0 such that

(4.6) T ξ,x ∂ m t h t (x, y) ≤ C t -m-1/2 V (x, y, √ t ) -1 e -c d(x,y) 2 /t ,
for all t > 0 and x, y ∈ R N . (d) Mixed derivatives : for any nonnegative integer m and for any multi-indices α, β, there are constants C, c > 0 such that, for every t > 0 and for every x, y ∈ R N ,

(4.7) ∂ m t ∂ α x ∂ β y h t (x, y) ≤ C t -m-|α| 2 -|β| 2 V (x, y, √ t ) -1 e -c d(x,y) 2 /t ,
for every t > 0 and for every x, y ∈ R N .

Proof. The proof relies on the expression

(4.8) h t (x, y) = R N ht A(x, y, η) dµ x (η)
and on the properties of A(x, y, η).

(a) Consider first the case m = 0. By scaling we can reduce to t = 1. On the one hand, we use (3.7) to estimate

c k 2 N/2 h 1 (x, y) = R N e -A(x,y,η) 2 /8 e -A(x,y,η) 2 /8 dµ x (η) ≤ e -d(x,y) 2 /8
R N e -A(x,y,η) 2 /8 dµ x (η) .

On the other hand, it follows from Proposition 3.10 and Corollary 3.12 that

R N e -c A(x,y,η) 2 dµ x (η) V (x, y, 1) -1 ,
for any fixed c > 0 . Hence

h 1 (x, y) V (x, y, 1) -1 e -d(x,y) 2 /8 . Consider next the case m > 0. Observe that ∂ m t ht (x) is equal to t -m ht (x) times a polynomial in x 2 t . Therefore (4.9) ∂ m t ht (x) ≤ C m t -m h2t (x) .
By differentiating (4.8) and by using (4.9), we deduce that

∂ m t h t (x, y) ≤ C m t -m h 2t (x, y) .
We conclude by using the case m = 0. (b) Observe now that ht (x) = ∂ x ∂ m t ht (x) is equal to x t m+1 ht (x) times a polynomial in

x 2 t , hence (4.10) ht (x) ≤ C m t -m-1/2 h2t (x) .
By differentiating (4.8) and by using (3.9) and (4.4), we estimate

|∂ m t h t (x, y) -∂ m t h t (x, y ′ )| = R N ∂ m t ht (A(x, y, η)) -∂ m t ht (A(x, y ′ , η)) dµ x (η) = R N 1 0 ∂ ∂s ∂ m t ht (A(x, y ′ + s(y-y ′ ) ys , η)) ds dµ x (η) ≤ y-y ′ 1 0 R N ht (A(x, y s , η)) dµ x (η) ds ≤ C m t -m y-y ′ √ t 1 0 h 2t (x, y s ) ds ≤ C ′ m t -m y-y ′ √ t 1 0 V (x, y s , √ 2t ) e -c d(x, ys) 2 2 t
ds .

In order to conclude, notice that

(4.11) V (x, y s , √ 2t ) ∼ V (x, y, √ t )
under the assumption y-y ′ < √ t and let us show that, for every c > 0, there exists C ≥ 1 such that (4.12)

C -1 e -3 2 c d(x, y) 2 t ≤ e -c d(x, ys) 2 t ≤ C e -1 2 c d(x, y) 2 t .
As long as d(x, y) = O( √ t ), all expressions in (4.12) are indeed comparable to 1. On the other hand, if d(x, y) ≥ √ 32 t , then

|d(x, y) 2 -d(x, y s ) 2 | = |d(x, y) -d(x, y s )| {d(x, y) + d(x, y s )} ≤ y -y s {2 d(x, y) + y -y s } ≤ √ 2 t {2 d(x, y) + √ 2 t } ≤ √ 8 t d(x, y) + 2 t ≤ 1 2 d(x, y) 2 + 2 t . Hence 1 2 d(x, y) 2 /t -2 ≤ d(x, y s ) 2 /t ≤ 3 2 d(x, y) 2 /t + 2 .
(c) By symmetry, we can replace T ξ,x by T ξ,y . Consider first the contribution of the directional derivative in T ξ,y . By differentiating (4.8) and by using (4.10) and (4.4), we estimate as above

|∂ ξ,y ∂ m t h t (x, y)| ≤ ξ R N | ht (A(x, y, η))| dµ x (η) ≤ C t -m-1/2 h 2t (x, y) ≤ C t -m-1/2 V (x, y, √ t ) -1 e -c d(x,y) 2 /t .
Consider next the contributions 

(4.13) ∂ m t h t (x, y) -∂ m t h t (x, σ α (y)) α, y of the difference operators in T ξ,y . If | α, y | > t/2 ,
∂ m t h t (x, y) -∂ m t h t (x, σ α (y)) α, y ≤ √ 2 R N 1 0 | ht (A(x, y s , η))|ds dµ x (η) ≤ C t -m-1/2 1 0 h 2t (x, y s ) ds ≤ C t -m-1/2 1 0 V (x, y s , √ 2t ) -1 e -c d(x, ys) 2 2 t ds ≤ C t -m-1/2 V (x, y, √ t ) -1 e -c d(x, y) 2 t .
In the last step we have used (4.11) and (4.12), which hold as

y s -y ≤ √ t . (d) This time, we use (3.8) to estimate (4.14) ∂ β y ∂ m t ht A(x, y, η) ≤ C m,β t -m-|β| 2 h2t
A(x, y, η) . Firstly, by differentiating (4.8) and by using (4.14), we obtain

(4.15) ∂ m t ∂ β y h t (x, y) ≤ C m,β t -m-|β| 2 h 2t (x, y) . Secondly, by differentiating h t (x, y) = R N h t/2 (x, z) h t/2 (z, y) dw(z) ,
by using (4.15) and by symmetry, we get y) . We conclude by using (4.4).

∂ m t ∂ α x ∂ β y h t (x, y) ≤ C m,α,β t -m-|α| 2 -|β| 2 h 2t (x,

4.2.

Lower heat kernel estimates. We begin with an auxiliary result.

Lemma 4.16. Let f be a smooth bump function on R such that 0 ≤ f ≤ 1, f (x) = 1 if |x| ≤ 1 2 and f (x) = 0 if |x| ≥ 1. Set as usual f (x) = f ( x ) and f (x, y) = τ x f (-y). Then 0 ≤ f (x, y) ≤ 1 and f (x, y) = 0 if d(x, y) ≥ 1.
Moreover, there exists a positive constant c 1 such that

(4.17) sup y∈O(B(x,1) f (x, y) ≥ c 1 w(B(x, 1)) , for every x ∈ R N .
Proof. All claims follow from (3.6) and (3.7). Let us prove the last one. On the one hand, by translation invariance,

R N f (x, y) dw(y) = R N f (y) dw(y) ≥ w(B(0, 1/2)).
On the other hand,

R N f (x, y) dw(y) = O(B(x,1)) f (x, y) dw(y) ≤ |G| w(B(x, 1)) sup y∈O(B(x,1)) f (x, y).
This proves (4.17) with c 1 = w(B(0,1/2))

|G| .

Proposition 4.18. There exist positive constants c 2 and ε such that

h t (x, y) ≥ c 2 w(B(x, √ t )) , for every t > 0 and x, y ∈ R N satisfying x -y ≤ ε √ t .
Proof. By scaling it suffices to prove the proposition for t = 2. According to Lemma 4.16, applied to h1 f , there exists c 3 > 0 and, for every x ∈ R N , there exists y(x) ∈ O(B(x, 1)) such that

h 1 (x, y(x)) ≥ c 3 w(B(x, 1)) -1 .
This estimate holds true around y(x), according to (4.5), Specifically, there exists 0 < ε < 1 (independent of x) such that

h 1 (x, y) ≥ c 3 2 w(B(x, 1)) -1 ∀ y ∈ B(y(x), ε).
By using the semigroup property and the symmetry of the heat kernel, we deduce that

h 2 (x, x) = h 1 (x, y) h 1 (y, x) dw(y) ≥ B(y(x),ε) h 1 (x, y) 2 dw(y) ≥ w(B(y(x), ε) ( c 3 2 ) 2 w(B(x, 1 
)) -2 . By using the fact that the balls B(y(x), ε), B(x, 1), B(x, √ 2) have comparable volumes and by using again (4.5), we conclude that

h 2 (x, y) ≥ c 4 w(B(x, √ 2)) -1 ,
for all x, y ∈ R N sufficiently close.

A standard argument, which we include for the reader's convenience, allows us to deduce from such a near on diagonal estimate the following global lower Gaussian bound. 

(4.20) h t (x, y) ≥ C min {w(B(x, √ t )), w(B(y, √ t ))} e -c x-y 2 /t ,
for every t > 0 and for every x, y ∈ R N .

Proof. We resume the notation of Proposition 4.18. For s ∈ R, we define ⌈s⌉ to be the smallest integer larger than or equal to s. Assume that xy 2 /t ≥ 1 and set

n = ⌈4 x -y 2 /(ε 2 t)⌉ ≥ 4. Let x i = x + i(y -x)/n (i = 0, . . . , n), so that x 0 = x,
x n = y, and x i+1 -

x i = x -y /n. Consider the balls B i = B(x i , ε 4 t/n) and observe that y i+1 -y i ≤ y i -x i + x i -x i+1 + x i+1 -y i+1 < ε 4 t n + ε 2 t n + ε 4 t n = ε t n if y i ∈ B i and y i+1 ∈ B i+1
. By using the semigroup property, Proposition 4.18 and the behavior of the ball volume, we estimate

h t (x, y) = R N • • • R N h t/n (x, y 1 )h t/n (y 1 , y 2 ) . . . h t/n (y n-1 , y) dw(y 1 ) . . . dw(y n-1 ) ≥ c n-1 2 B 1 • • • B n-1 w(B(x, t/n)) -1 . . . w(B(y n-1 , t/n)) -1 dw(y 1 ) . . . dw(y n-1 ) ≥ c n-1 3 w(B(x, t/n)) -1 w(B 1 ) . . . w(B n-1 ) w(B(x 1 , t/n)) . . . w(B(x n-1 , t/n)) ≥ c n-1 5 w(B(x, √ t )) -1 = c -1 5 w(B(x, √ t )) -1 e -n ln c -1 5 ≥ C w(B(x, √ t )) -1 e -c x-y 2 t .
We conclude by symmetry.

By combining (4.4) and (4.20), we obtain in particular the following near on diagonal estimates. Notice that the ball volumes w(B(x, √ t )) and w(B(y, √ t )) are comparable under the assumptions below.

Corollary 4.21. For every c > 0, there exists C > 0 such that

C -1 w(B(x, √ t )) ≤ h t (x, y) ≤ C w(B(x, √ t )) ,
for every t > 0 and x, y ∈ R N such that x-y ≤ c √ t .

4.3.

Estimates of the Dunkl kernel. According to (4.1), the heat kernel estimates (4.4) and (4.20) imply the following results, which partially improve upon known estimates for the Dunkl kernel. Notice that x can be replaced by y in the ball volumes below.

Corollary 4.22. There are constants c ≥ 1 and

C ≥ 1 such that C -1 w(B(x, 1)) e x 2 + y 2 2 e -c x-y 2 ≤ E(x, y) ≤ C w(B(x, 1)) e x 2 + y 2 2 e -c -1 d(x,y) 2 ,
for all x, y ∈ R N . In particular,

• for every ε > 0, there exists C ≥ 1 such that

C -1 w(B(x, 1)) e x 2 + y 2 2 ≤ E(x, y) ≤ C w(B(x, 1)) e x 2 + y 2 2
, for all x, y ∈ R N satisfying xy < ε ;

• there exist c > 0 and C > 0 such that

E(λx, y) ≥ C w(B( √ λ x, 1)) e λ(1-c x-y 2 ) ,
for all λ≥ 1 and for all x, y ∈ R N with x = y = 1.

Poisson kernel in the Dunkl setting

The Poisson semigroup P t = e -t √ -∆ is subordinated to the heat semigroup H t = e t∆ by (2.2) and correspondingly for their integral kernels (5.1)

p t (x, y) = π -1/2 ∞ 0 e -u h t 2 4u (x, y) du √ u .
This subordination formula enables us to transfer properties of the heat kernel h t (x, y) to the Poisson kernel p t (x, y). For instance,

p t (x, y) = p t (y, x)> 0, R N p t (x, y) dw(y) = 1, p t (x, y) = τ x p t (-y), (5.2) where (5.3) p t (x) = pt ( x ) = c ′ k t t 2 + x 2 -N+1 2 and c ′ k = 2 N/2 Γ( N+1 2 ) √ π c k > 0 .
The following global bounds hold for the Poisson kernel and its derivatives.

Proposition 5.4. (a) Upper and lower bounds : there is a constant C≥ 1 such that

(5.5) C -1 V (x, y, t + x -y ) t t + x -y ≤ p t (x, y) ≤ C V (x, y, t + d(x, y)) t t + d(x, y)
for every t > 0 and for every x, y ∈ R N . (b) Dunkl gradient : for every ξ ∈ R N , there is a constant C > 0 such that

(5.6) T ξ,y p t (x, y) ≤ C V (x, y, t + d(x, y)) 1 t + d(x, y)
for all t > 0 and x, y ∈ R N . (c) Mixed derivatives : for any nonnegative integer m and for any multi-index β, there is a constant C ≥ 0 such that, for every t > 0 and for every x, y ∈ R N ,

(5.7) ∂ m t ∂ β y p t (x, y) ≤ C p t (x, y) t + d(x, y) -m-|β| × 1 if m = 0, 1 + d(x,y) t if m > 0.
Moreover, for any nonnegative integer m and for any multi-indices β, β ′ , there is a constant C ≥ 0 such that, for every t > 0 and for every x, y ∈ R N , y) . Notice that, by symmetry, (5.6) holds also with T ξ,x instead of T ξ,y .

(5.8) ∂ m t ∂ β x ∂ β ′ y p t (x, y) ≤ C t -m-|β|-|β ′ | p t (x,
Proof. (a) The Poisson kernel bounds (5.5) are obtained by inserting the heat kernel bounds (4.4) and (4.20) in the subordination formula (5.1). For a detailed proof we refer the reader to [START_REF] Dziubański | Hardy spaces for semigroups with Gaussian bounds[END_REF]Proposition 6]. (b) The Dunkl gradient estimate (5.6) is deduced similarly from (4.6). (c) The estimate (5.7) is proved directly. As (t, x) -→ (t 2 +x 2 ) -(N+1)/2 is a homogeneous symbol of order -N-1 on R 2 , we have (5.9)

|∂ β x pt (x)| ≤ C β (t+|x|) -β pt (x) |∂ m t ∂ β x pt (x)| ≤ C m,β t -1 (t+|x|) 1-m-β pt (x) ∀ t > 0, ∀ x ∈ R,
for every positive integer m and for every nonnegative integer β. By using (3.6), (3.7), (5.2), (5.3) and (5.9), we estimate

∂ β y p t (x, y) ≤ R N ∂ β y pt (A(x, y, η)) dµ x (η) ≤ C β R N t + A(x, y, η) -|β| pt (A(x, y, η)) dµ x (η) ≤ C β t + d(x, y -|β| p t (x, y)
and, similarly,

∂ m t ∂ β y p t (x, y) ≤ C m,β t -1 t + d(x, y 1-m-|β| p t (x, y),
for every positive integer m. Finally, (5.8) is deduced from (5.7) by using the semigroup property. More precisely, by differentiating

p t (x, y) = R N p t/2 (x, z) p t/2 (z, y) dw(z) ,
by using (5.7) and by symmetry, we obtain

∂ m t ∂ β x ∂ β ′ y p t (x, y) t -m-|β|-|β ′ | R N p t/2 (x, z) p t/2 (z, y) dw(z) = t -m-|β|-|β ′ | p t (x, y) .
Notice the following straightforward consequence of the upper bound in (5.5) :

(5.10)

M P f (x) σ∈G M HL f (σ(x)) ,
where M HL denotes the Hardy-Littlewood maximal function on the space of homogeneous type (R N , x-y , dw). Likewise, (4.4) yields

M H f (x) σ∈G M HL f (σ(x)) .
Observe that the Poisson kernel is an approximation of the identity in the following sense.

Proposition 5.11. Given any compact subset K ⊂ R N , any r > 0 and any ε > 0, there exists t 0 = t 0 (K, r, ε) > 0 such that, for every 0 < t < t 0 and for every x ∈ K,

x-y >r p t (x, y) dw(y) < ε .

Proof. Let K be a compact subset of R N and let r, ε > 0. Fix

x 0 ∈ K and consider f ∈ C ∞ c (R N ) such that 0 ≤ f ≤ 1, f = 1 on B(x 0 , r/4
) and supp f ⊂ B(x 0 , r/2). By the inversion formula,

f (x) -P t f (x) = c -1 k R N (1-e -t ξ ) E(iξ, x) F f (ξ) dw(ξ) , hence (5.12) |f (x) -P t f (x)| ≤ c -1 k R N 1-e -t ξ |F f (ξ)| dw(ξ) .
As Ff ∈ S(R N ), (5.12) implies that there is t 0 = t 0 (x 0 , r, ε) > 0 such that sup

x∈R N |f (x) -P t f (x)|<ε ∀ 0 < t < t 0 .
In particular, for every 0 < t < t 0 and for every x ∈ B(x 0 , r/4), we have 0 ≤

x-y >r p t (x, y) dw(y) = 1 -

x-y ≤r p t (x, y) dw(y) ≤f (x) -

x-y ≤r p t (x, y)f (y) dw(y) ≤ |f (x) -P t f (x)|<ε .

We easily conclude the proof by compactness.

The following results follow from (5.5), (5.10), and Proposition 5.11. 

P t f (y) -f (x) = 0.
Remark 5.15. The assertion of Proposition 5.11 remains valid with the same proof if p t (x, y) is replaced by Φ t (x, y) = τ x Φ t (-y), where Φ ∈ S(R N ) is radial, nonnegative, and Φ(x) dw(x) = 1.

Conjugate harmonic functions -subharmonicity

For σ ∈ G, let f σ (x) = f (σ(x)). It is easy to check that (6.1) Lemma 6.2. Assume that u(x 0 , x) = (u 0 (x 0 , x), u 1 (x 0 , x), . . ., u N (x 0 , x)) satisfies the Cauchy-Riemann equations (2.4). For σ ∈ G, set

T ξ f σ (x) = (T σξ f ) σ (x), σ ∈ G, x, ξ ∈ R N , (∆f σ )(x) = (∆f ) σ (x). Let {σ ij } N i,
(6.3) u σ,0 (x 0 , x) = u 0 (x 0 , σ(x)), u σ,j (x 0 , x) = N i=1 σ ij u i (x 0 , σ(x)), j = 1, 2, . . ., N.
Then u σ (x 0 , x) = (u σ,0 (x 0 , x), u σ,1 (x 0 , x), . . ., u σ,N (x 0 , x)) satisfies the Cauchy-Riemann equations. Moreover,

(6.4) |u σ (x 0 , x)| = |u(x 0 , σ(x))|. Proof. Let 1 ≤ k, j ≤ N. Then T k u σ,j (x 0 , x) = N i=1 σ ij T k (u i (x 0 , σ•))(x) = N i=1 σ ij N ℓ=1
σ ℓk (T ℓ u i )(x 0 , σ(x)), (6.5) and, similarly,

T j u σ,k (x 0 , x) = N i=1 σ ik N ℓ=1 σ ℓj (T ℓ u i )(x 0 , σ(x)). (6.6)
Recall that T ℓ u i = T i u ℓ . Hence, (6.6) becomes

T j u σ,k (x 0 , x) = N i=1 σ ik N ℓ=1 σ ℓj (T i u ℓ )(x 0 , σ(x)). (6.7)
Now we see that (6.5) and (6.7) are equal. The proof that T k u σ,0 = T 0 u σ,k is straightforward. The second equality of (2.4) follows directly from (6.7) and the fact that

σ -1 = σ * . Since {σ ij } ∈ O(N, R), |u σ,0 (x 0 , x)| 2 + N j=1 |u σ,j (x 0 , x)| 2 = |u 0 (x 0 , σ(x))| 2 + N j=1 N i=1 σ ij u i (x 0 , σ(x)) 2 = |u 0 (x 0 , σ(x))| 2 + N i=1 |u i (x 0 , σ(x))| 2 , (6.8) 
which proves (6.4). Let (6.9)

F (t, x) = {u σ (t, x)} σ∈G .
We shall always assume that u and u σ are related by (6.3). Then, by (6.4),

|F (x 0 , x)| 2 = σ∈G N ℓ=0 |u σ,ℓ (x 0 , x)| 2 = σ∈G |u σ (x 0 , x)| 2 = σ∈G |u(x 0 , σ(x))| 2 . Observe that |F (x 0 , x)| = |F (x 0 , σ(x))| for every σ ∈ G. Consequently, for every α ∈ R, σ∈G N ℓ=0 u σ,ℓ (x 0 , x) -u σ,ℓ (x 0 , σ α (x)) • u σ,ℓ (x 0 , x) = 1 2 σ∈G N ℓ=0 u σ,ℓ (x 0 , x) -u σ,ℓ (x 0 , σ α (x)) 2 .
(6.10)

We shall need the following auxiliary lemma.

Lemma 6.11. For every ε > 0 there is δ > 0 such that for every matrix

A = {a ij } N i,j=0
with real entries a ij one has

A 2 ≤ ε (trA) 2 + i<j (a ij -a ji ) 2 + (1 -δ) A 2 HS ,
where A HS denotes the Hilbert-Schmidt norm of A.

Proof. The lemma was proved in [START_REF] Dziubański | Riesz transforms characterizations of Hardy spaces H 1 for the rational Dunkl setting and multidimensional Bessel operators[END_REF]. For the convenience of the reader we present a short proof. The inequality is known for trace zero symmetric A (see Stein and Weiss [36, Lemma 2.2]). By homogeneity we may assume that A HS = 1. Assume that the inequality does not hold. Then there is ε > 0 such that for every n > 0 there is

A n = {a {n} ij } N i,j=0 , A n HS = 1 such that A n 2 > ε (trA k ) 2 + i<j (a {n} ij -a {n} ji ) 2 + 1 - 1 n A n 2 HS .
Thus there is a subsequence n s such that A ns → A, A HS = 1 and

A 2 ≥ ε (trA) 2 + i<j (a ij -a ji ) 2 + A 2 HS .
But then A = A * and trA = 0, and so, A 2 ≥ A 2 HS . This contradicts the already known inequality.

We now state and prove the main theorem of Section 6, which is the analog in the Dunkl setting of a Euclidean subharmonicity property (see [34, Chapter VII, Section 3.1]) and which was proved in the product case in [START_REF] Dziubański | Riesz transforms characterizations of Hardy spaces H 1 for the rational Dunkl setting and multidimensional Bessel operators[END_REF]Proposition 4.1]. Recall (2.3) that L = T 2 0 + ∆. Theorem 6.12. There is an exponent 0 < q < 1 which depends on k such that if u = (u 0 , u 1 , . . ., u N ) ∈ C 2 satisfies the Cauchy-Riemann equations (2.4), then the function

|F | q is L-subharmonic, that is, L(|F | q )(t, x) ≥ 0 on the set where |F | > 0.
Proof. Observe that |F | q is C 2 on the set where |F | > 0. Let • denote the inner product in R (N +1)•|G| . For j = 0, 1, . . ., N, we have

∂ e j |F | q = q|F | q-2 (∂ e j F ) • F ∂ 2 e j |F | q = q(q -2)|F | q-4 (∂ e j F ) • F 2 + q|F | q-2 (∂ 2 e j F ) • F + |∂ e j F | 2 .
Recall that |F (x 0 , x)| = |F (x 0 , σ(x))|. Hence, (6.13)

L|F | q = q(q -2)|F | q-4 N j=0 (∂ e j F ) • F 2 + q|F | q-2 N j=0 ∂ 2 e j F + 2 α∈R + k(α) α, x ∂ α F • F + N j=0 |∂ e j F | 2 .
Since T j T ℓ = T ℓ T j , we conclude from (2.4) applied to u σ that for ℓ = 0, 1, . . ., N, we have

N j=0 ∂ 2 e j u σ,ℓ (x 0 , x)+2 α∈R + k(α) α, x ∂ α u σ,ℓ (x 0 , x) = α∈R + k(α) α 2 u σ,ℓ (x 0 , x) -u σ,ℓ (x 0 , σ α (x)) α, x 2 .
Thus,

N j=0 ∂ 2 e j F + 2 α∈R + k(α) α, x ∂ α F • F = σ∈G N ℓ=0 N j=0 ∂ 2 e j u σ,ℓ (x 0 , x) + 2 α∈R + k(α) α, x ∂ α u σ,ℓ (x 0 , x) u σ,ℓ (x 0 , x) = σ∈G N ℓ=0 α∈R + k(α) α 2 u σ,ℓ (x 0 , x) -u σ,ℓ (x 0 , σ α (x)) α, x 2 u σ,ℓ (x 0 , x) = α∈R + k(α) α 2 α, x 2 σ∈G N ℓ=0 u σ,ℓ (x 0 , x) -u σ,ℓ (x 0 , σ α (x)) u σ,ℓ (x 0 , x) = 1 2 α∈R + k(α) α 2 α, x 2 σ∈G N ℓ=0 u σ,ℓ (x 0 , x) -u σ,ℓ (x 0 , σ α (x)) 2 (6.14)
Thanks to (6.13) and (6.14), it suffices to prove that there is 0 < q < 1 such that (6.15)

(2 -q) N j=0 (∂ e j F (x 0 , x)) • F (x 0 , x) 2 ≤ 1 2 |F (x 0 , x)| 2 σ∈G N ℓ=0 α∈R + k(α) α 2 α, x 2 u σ,ℓ (x 0 , x) -u σ,ℓ (x 0 , σ α (x)) 2 + |F (x 0 , x)| 2 N j=0 |∂ e j F (x 0 , x)| 2 . Set B σ =     ∂ e 0 u σ,0 ∂ e 0 u σ,1 . . . ∂ e 0 u σ,N ∂ e 1 u σ,0 ∂ e 1 u σ,1 . . . ∂ e 1 u σ,N . . . ∂ e N u σ,0 ∂ e N u σ,1 . . . ∂ e N u σ,N     .
Let B = {B σ } σ∈G be matrix with N + 1 rows and (N + 1) • |G| columns. It represents a linear operator (denoted by B) from R (N +1)•|G| into R 1+N . Let B be its norm.

Observe that for 0 < q < 1, we have

(2 -q) N j=0 (∂ e j F ) • F 2 ≤ (2 -q)|F | 2 B 2 , |F | 2 N j=0 |∂ e j F | 2 = |F | 2 B 2 HS .
Clearly,

B 2 ≤ σ∈G B σ 2 , B 2 HS = σ∈G B σ 2 HS .
Therefore the inequality (6.15) will be proven if we show that

(2 -q) σ∈G B σ 2 ≤ σ∈G B σ 2 HS + 1 2 σ∈G N ℓ=0 α∈R + k(α) α 2 α, x 2 u σ,ℓ (x 0 , x) -u σ,ℓ (x 0 , σ α (x)) 2 .
(6.16)

Recall that

γ = N j=1 α∈R + k(α) α, e j 2 α 2 = N j=0 α∈R + k(α) α, e j 2 α 2 
(see (3.1)). By applying first the Cauchy-Riemann equations (2.4) and next the Cauchy-Schwarz inequality, we obtain

(trB σ ) 2 = - N j=1 α∈R + k(α) α, e j u σ,j (x 0 , x) -u σ,j (x 0 , σ α (x)) α, x 2 ≤ N j=1 α∈R + k(α) α, e j 2 α 2 N j=1 α∈R + α 2 k(α) u σ,j (x 0 , x) -u σ,j (x 0 , σ α (x)) 2 α, x 2 ≤ γ N j=0 α∈R + α 2 k(α) u σ,j (x 0 , x) -u σ,j (x 0 , σ α (x)) 2 α, x 2 .
(6.17)

Utilizing again the Cauchy-Riemann equations (2.4), we get 0≤i<j≤N ∂ e i u σ,j (x 0 , x) -∂ e j u σ,i (x 0 , x)

2 = N j=1 α∈R + k(α) α, e j u σ,0 (x 0 , x) -u σ,0 (x 0 , σ α (x)) α, x 2 + 1≤i<j≤N α∈R + -k(α) α, e i u σ,j (x 0 , x) -u σ,j (x 0 , σ α (x)) α, x + k(α) α, e j u σ,i (x 0 , x) -u σ,i (x 0 , σ α (x)) α, x 2 ≤ 2 N j=0 α∈R + k(α) α, e j 2 α 2 N j=0 α∈R + α 2 k(α) u σ,j (x 0 , x) -u σ,j (x 0 , σ α (x)) 2 α, x 2 .
(6.18)

Using the auxiliary Lemma 6.11 together with (6.17) and (6.18) we have that for every ε > 0 there is 0

< δ < 1 such that σ∈G B σ 2 ≤ (1 -δ) σ∈G B σ 2 HS + 3εγ σ∈G N j=0 α∈R + α 2 k(α) u σ,j (x 0 , x) -u σ,j (x 0 , σ α (x)) 2 α, x 2 . (6.19)
Taking ε > 0 such that 3εγ ≤ 1 4 and utilizing (6.19) we deduce that (6.16) holds for q such that (1δ) ≤ (2q) -1 .

Harmonic functions in the Dunkl setting.

In this section we characterize certain L-harmonic functions in the half-space R 1+N + by adapting the classical proofs (see, e.g., [START_REF] Fefferman | H p spaces of several variables[END_REF], [START_REF] Stein | Singular integral and differentiability properties of functions[END_REF] and [START_REF] Stein | On the theory of harmonic functions of several variables I (the theory of H p -spaces)[END_REF]). Let us first construct an auxiliary barrier function.

7.1. Barrier function. For fixed δ > 0, let v 1 , . . ., v s ∈ R N be a set of vectors of the unit sphere in S N -1 = {x ∈ R N : x = 1} which forms a δ-net on S N -1 . Let M, ε > 0. Define 

, ε -1 ] × R N . Set V(x 0 , x) = s m=1 V m (x 0 , x).
By Corollary 4.22, (7.2) lim

x →∞ V(x 0 , x) = ∞ uniformly in x 0 ∈ [0, ε -1 ].
7.2. Maximum principle and the mean value property. As we have already remarked in Section 2, the operator L is the Dunkl-Laplace operator associated with the root system R as a subset of R 1+N = R × R N . We shall denote the element of R 1+N by x = (x 0 , x). The associated measure will be denoted by w. Clearly, dw(x) = w(x) dx dx 0 . Moreover, E(x, y) = e x 0 y 0 E(x, y). We shall slightly abuse notation and use the same letter σ for the action of the group G in R 1+N , so σ(x) = σ(x 0 , x) = (x 0 , σ(x)).

The following weak maximum principle for L-subharmonic functions was actually proved in Theorem 4.2 of Rösler [START_REF] Rösler | Generalized Hermite polynomials and the heat equation for Dunkl operators[END_REF]. Proof. The proof is identical to that of Stein [START_REF] Stein | Singular integral and differentiability properties of functions[END_REF]. Clearly, the Poisson integral of a bounded function is bounded and L-harmonic. To prove the converse assume that u is L-harmonic and bounded, so

Theorem 7.3. Let Ω ⊂ R 1+N be open, bounded, and Ω ⊂ (0, ∞) × R N . Assume that Ω is G-invariant, that is, (x 0 , σ(x)) ∈ Ω for (x 0 , x) ∈ Ω and all σ ∈ G. Let f ∈ C 2 (Ω) ∩ C(Ω) be real-valued and L-subharmonic. Then max Ω f = max ∂Ω f. Let f {r} (x) = χ B(0,r) (x)
|u| ≤ M. Set f n (x) = u( 1 n , x) and u n (x 0 , x) = P x 0 f n (x). Then U n (x 0 , x) = u(x 0 + 1 n , x) -u n (x 0 , x) is L-harmonic, |U n | ≤ 2M, continuous on [0, ∞) × R N , and U n (0, x) = 0. We shall prove that U n ≡ 0. Fix (y 0 , y) ∈ R 1+N + . Set U(x 0 , x) = U n (x 0 , x) + V(x 0 , x)
and consider the function U on the closure of the set Ω = (0, ε -1 ) × B(0, R), with ε > 0 small and R large enough. Then U is L-harmonic in Ω, continuous on Ω, and positive on the boundary of the ∂Ω. Thus, by the maximum principle, U is positive in Ω, so

U n (y 0 , y) > -2Mεy 0 - s m=1 εE επ 4 y, v m cos επ 4 y 0 .
Letting ε → 0 we obtain U n (y 0 , y) ≥ 0. The same argument applied to -u gives -U n (y 0 , y) ≥ 0, so U n ≡ 0, which can be written as

(7.6) u x 0 + 1 n , x = P x 0 f n (x) = p x 0 (x, y)f n (y) dw(y).
Clearly |f n | ≤ M, so by the *-weak compactness, there is a subsequence n j and f ∈ L ∞ (R N ) such that for ϕ ∈ L 1 (dw), we have 

lim j→∞ ϕ(y)f n j (y) dw(y) = ϕ(y)f (y) dw(y). So, u(x 0 , x) = lim j→∞ u x 0 + 1 n j , x = lim j→∞ p x 0 (x, y)f n j (y) dw(y) = p x 0 (x, y)f (y) dw(y).
x 0 >0 u(x 0 , •) L p (dw) < ∞.
If p = 1 then u is a Poisson integral of a bounded measure ω if and only if u is Lharmonic and (7.10) sup

x 0 >0 u(x 0 , •) L 1 (dw) < ∞. Moreover, if u * ∈ L 1 (dw) (see (2.6)), then dω(x) = f (x)dw(x), where f ∈ L 1 (dw).
Proof. Assume that either (7.9) or (7.10) holds. Then, by Theorem 7.4, for every ε > 0, (7.11) sup

x 0 >0 sup x∈R N |u(x 0 + ε, x)| ≤ C ε < ∞. Set f n (x) = u( 1 n , x)
. From Theorem 7.5 we conclude that u( 1 n + x 0 , x) = P x 0 f n (x). Moreover, there is a subsequence n j such that f n j converges weakly-* to f ∈ L p (dw) (if 1 < p < ∞) or to a measure ω (if p = 1). In both cases u is the Poisson integral either of f or ω. If additionally u * ∈ L 1 (dw), then the measure ω is absolutely continuous with respect to dw.

7.4.

Proof of a part of Theorem 2.5. We are now in a position to prove a part of Theorem 2.5, which is stated in the following proposition. The converse is proven at the very end of Section 11 (see Proposition 11.19). Proposition 7.12. Assume that u ∈ H 1 . Then

(7.13) u * L 1 (dw) ≤ C u H 1 . Proof. Fix ε > 0. Set u j,ε (x 0 , x) = u j (ε + x 0 , x), f j,ε (x) = u j (ε, x).
Then, by Theorem 7.4, the L-harmonic function u j,ε (x 0 , x) is bounded and continuous on the closed set [0, ∞) × R N . In particular, f j,ε ∈ L ∞ ∩ L 1 (dw) ∩ C 2 . By Theorem 7.5,

u j,ε (x 0 , x) = P x 0 f j,ε (x).
It is not difficult to conclude using (5.8) (with m = 0) that lim (x 0 ,x) →∞ |u j,ε (x 0 , x)| = 0. Thus also lim x →∞ f j,ε (x) = 0. Set u ε = (u 0,ε , u 1,ε , . . ., u N,ε ). Clearly, u ε ∈ H 1 . Let F ε (x 0 , x) = F (ε + x 0 , x), where F (x 0 , x) is defined by (6.9). Set f ε (x) = |F (ε, x)|. Let 0 < q < 1 be as in Theorem 6.12 and p = q -1 > 1. Observe that the function |F ε (x 0 , x)| q -P x 0 (f q ε )(x) vanishes for x 0 = 0 and lim

(x 0 ,x) →∞ |F ε (x 0 , x)| q -P x 0 (f q ε )(x) = 0.
So, by Theorem 6.12 and the maximum principle (see Theorem 7.3), (7.14) |u(ε + x 0 , x)| q ≤ |F ε (x 0 , x)| q ≤ P x 0 (f q ε )(x). Set u * ε (x) = sup x-y <x 0 |u(ε + x 0 , y)|. Then, by (7.14) and (5.10),

u * ε L 1 (dw) ≤ C p f q ε p L p (dw) = C p f ε L 1 (dw) ≤ C p u H 1 . Since u * ε (x) → u * (x)
as ε → 0 and the convergence is monotone, we use the Lebesgue monotone convergence theorem and get (7.13). From Theorem 7.8 and Proposition 7.12 we obtain the following corollary.

Corollary 7.15. If u ∈ H 1 , then there are f j ∈ L 1 (dw), j = 0, 1, . . ., N, such that |f j (x)| ≤ u * (x) and u j (x 0 , x) = P x 0 f j (x). Moreover, the limit lim x 0 →0 u j (x 0 , x) = f j (x) exists in L 1 (dw). 

F (R j f )(ξ) = -i ξ j ξ (F f )(ξ), j = 1, 2, . . ., N.
They are bounded operators on L 2 (dw). Clearly,

R j f = -T e j (-∆) -1/2 f = -lim ε→0, M →∞ c M ε T e j e t∆ f dt √ t ,
and the convergence is in L 2 (dw) for f ∈ L 2 (dw). It follows from [START_REF] Amri | Riesz transforms for Dunkl transform[END_REF] that R j are bounded operators on L p (dw) for 1 < p < ∞.

Our task is to define R j f for f ∈ L 1 (dw). To this end we set

T k = {ϕ ∈ L 2 (dw) : (F ϕ)(ξ)(1 + ξ ) n ∈ L 2 (dw), n = 0, 1, 2, . . .}. It is not difficult to check that if ϕ ∈ T k , then ϕ ∈ C 0 (R N ) and R j ϕ ∈ C 0 (R N ) ∩ L 2 (dw).
Moreover, for fixed y ∈ R N the function p t (x, y) belongs to T k . Now R j f , for f ∈ L 1 (dw), is defined in a weak sense as a functional on T k , by

R j f, ϕ = - R N f (x)R j ϕ(x) dw(x). 8.2. Proof of Theorem 2.14. Assume that f ∈ L 1 (dw) is such that R j f belong to L 1 (dw) for j = 1, 2, . . ., N. Set f 0 (x) = f (x), f j (x) = R j f (x), u 0 (x 0 , x) = P x 0 f (x), u j (x 0 , x) = P x 0 f j (x). Then u = (u 0 , u 1 , . . ., u n ) satisfies (2.4). Moreover, sup x 0 >0 R N |u j (x 0 , x)| dw(x) ≤ f j L 1 (dw) for j = 0, 1, . . ., N.
Thus u ∈ H 1 and

f H 1 ∆ = u H 1 ≤ f L 1 (dw) + N j=1 R j f L 1 (dw) .
We turn to prove the converse. Assume that f 0 ∈ H 1 ∆ . By the definition of H 1 ∆ there is a system u = (u 0 , u 1 , . . ., u N ) ∈ H 1 such that f 0 (x) = lim x 0 →0 u 0 (x 0 , x) (convergence in L 1 (dw)). Set f j (x) = lim x 0 →0 u j (x 0 , x), where limits exist in L 1 (dw) (see Corollary 7.15). We have u j (x 0 , x) = P x 0 f j (x). It suffices to prove that R j f 0 = f j . To this end, for ε > 0, let f j,ε (x) = u j (ε, x), u j,ε (x 0 , x) = u j (x 0 + ε, x). Then f j,ε ∈ L 1 (dw) ∩ C 0 (R N ). In particular, f j,ε ∈ L 2 (dw). Set g j = R j f 0,ε , v j (x 0 , x) = P x 0 g j (x). Then v = (u 0,ε , v 1 , . . ., v N ) satisfies the Cauchy-Riemann equations (2.4). Therefore,

T j u 0,ε (x 0 , x) = T 0 u j,ε (x 0 , x) = T 0 v j (x 0 , x). Hence, u j,ε (x 0 , x) -v j (x 0 , x) = c j (x). But lim x 0 →∞ u j,ε (x 0 , x) = 0 = lim x 0 →∞ v j (x 0 , x) for every x ∈ R N . Consequently, u j,ε (x 0 , x) = v j (x 0 , x). Thus, f j,ε = R j f 0,ε . Since lim ε→0 f j,ε = f j in L 1 (dw) and R j f 0,ε → Rf 0 in the sense of distributions, we have f j = R j f 0 . 9. Inclusion H 1 (1,q,M ) ⊂ H 1 ∆
In this section we show that the atomic space H 1 (1,q,M ) with M > N is contained in the Hardy space H 1 ∆ and there exists C = C k,q,M such that (9.1)

f H 1 ∆ ≤ C f H 1 (1,q,M ) . Let f ∈ H 1 (1,q,M ) . According to Theorem 2.14, it is enough to show that R j f ∈ L 1 (dw) and R j f L 1 (dw) ≤ C f H 1 (1,q,M )
. By the definition of the atomic space, there is a sequence a j of (1, q, M) atoms and

λ i ∈ C, (λ i ) ∈ ℓ 1 , such that f = i λ i a i and i |λ i | ≤ 2 f H 1
(1,q,M ) . Observe that the series converges in L 1 (dw), hence R j f = i λ j R j a j in the sense of distributions. Therefore it suffices to prove that there is a constant C > 0 such R j a L 1 (dw) ≤ C for every a being a (1, q, M)-atom. Our proof follows ideas of [START_REF] Hofmann | Hardy spaces associated to non-negative selfadjoint operators satisfying Davies-Gaffney estimates[END_REF]. Let b ∈ D(∆ M ) and B(y 0 , r) be as in the definition of (1, q, M) atom. Since R j is bounded on L q (dw), by the Hölder inequality, we have

R j a L 1 (O(B(y 0 ,4r))) ≤ C.
In order to estimate R j a on the set O(B(y 0 , 4r)) c we write

R j a = c ′′ k ∞ 0 T j,x e t∆ a dt √ t = c ′′ k r 2 0 T j,x e t∆ a dt √ t + c ′′ k ∞ r 2 T j,x e t∆ (∆) M b dt √ t = c ′′ k r 2 0 T j,x e t∆ a dt √ t + c ′′ k ∞ r 2 T j,x ∂ M t e t∆ b dt √ t = R j,0 a + R j,∞ a.
Further, using (4.6) with m = 0 together with (3.2), we get

|R j,0 a(x)| ≤ C r 2 0 R N t -1 w(B(y, √ t )) -1 e -cd(x,y) 2 /t |a(y)| dw(y)dt ≤ C r N+1 d(x, y) N+1 w(B(y 0 , r)) . (9.2) 
To estimate R j,∞ a we recall that b L 1 (dw) ≤ r 2M . Using (4.6) with m = M, we obtain

|R j,∞ a(x)| ≤ C ∞ r 2 R N t -M -1 w(B(y, √ t )) -1 e -cd(x,y) 2 /t |b(y)| dw(y)dt ≤ C r 2M d(x, y) 2M w(B(y 0 , r))
.

(9.3)
Obviously, (9.2) and ( 9.3) combined with (3.2) imply R j a L 1 (O(B(y 0 ,4r)) c ) ≤ C.

Maximal functions

Let Φ(x) be a radial continuous function such that y). Then, by Corollary 3.12,

|Φ(x)| ≤ C(1 + x ) -κ-β with κ > N. Let Φ t (x) = t -N Φ(t -1 x) and Φ t (x, y) = τ x Φ t (-
|Φ t (x, y)| ≤ CV (x, y, t) -1 1 + d(x, y) t -β . Set M Φ,a f (x) = sup x-y <at |Φ t f (y)|, where Φ t f (x) = Φ t * f (x) = R N Φ t (x, y) f (y) dw(y).
If a = 1, then we simply write M Φ . We say that an L 1 (dw)-function f belongs to (5.3)), then we write M P , H 1 max,P and • H 1 max,P for the corresponding maximal function, space, and norm respectively (see (2.7) and (2.8)).

H 1 max,Φ if M Φ f ∈ L 1 (dw). Then we set f H 1 max,Φ = M Φ f L 1 (dw) . Recall that if Φ(x) = p 1 (x) (see
10.1. The space N . The space H 1 max,Φ is related with the tent space N . Definition 10.1. For a > 0, λ > N, and a function u(t, x) denote

u * a (x) = sup x-y <at |u(t, y)|, u * * λ (x) = sup y∈R N , t>0 |u(t, y)| t y -x + t λ .
The tent space N a is defined by

N a = {u(t, x) : u Na = u * a L 1 (dw) < ∞}. If a = 1, then we write N , u N , and u * (cf. (2.6)). Obviously, if u(t, x) = Φ t f (x), then f H 1 max,Φ = u N . Lemma 10.2. There are constants C, C λ , c λ > 0 such that (10.3) u Na ≤ C a + b b N u N b , (10.4) c λ u N ≤ u * * λ L 1 (dw) ≤ C λ u N . Proof.
The proofs are the same as those in [35, Chapter II] and [19, page 114] .

If Ω ⊂ R N is an open set, then the tent over Ω is given by

Ω = (0, ∞) × R N \ x∈Ω c Γ(x), where Γ(x) = {(t, y) : x -y < 4t}.
The space N admits the following atomic decomposition (see [START_REF] Stein | Harmonic analysis (real variable methods, orthogonality and oscillatory integrals[END_REF]). Definition 10.5. A function A(t, x) is an atom for N if there is a ball B such that

• supp A ⊂ B, • A L ∞ ≤ w(B) -1 .
Clearly, A N ≤ 1 for every atom A for N . Moreover, every u ∈ N can be written as u = j λ j A j , where A j are atoms for N , λ j ∈ C, and

j |λ j | ≤ C u N . Proposition 10.6. Let u(t, x) = P t f (x), v(t, x) = t n d n dt n P t f (x). Then for f ∈ L 1 (dw) we have v N ≤ C n u N . Proof. Assume that u N < ∞. Clearly, v(t, x) = 2 n Q t/2 P t/2 f (x), where Q t = t n d n dt n P t . Set u {1} (t, x) = u( t 2 , x). Then u {1} N ≤ C u N .
By the atomic decomposition we write u {1} = j c j A j , where A j are atoms for N , c j ∈ C, and |c j | u N , (see Definition 10.5). Thus, by Lemma 10.2, we have

v(t, x) = 2 n j c j Q t/2 A j (t, x), Q t/2 A j (t, x) = R N Q t/2 (x, y)A j (t, y)dw(y).
From Proposition 5.4 and Definition 10.5 we conclude that Q t/2 A j (t, x) N ≤ C.

10.2. Calderón reproducing formula. Fix a positive integer m sufficiently large. Let Θ ∈ C m (R) be an even function such that Θ S m < ∞ (see (3.13)). Set Θ(x) = Θ( x ). Assume that R N Θ(x) dw(x) = 0. The Plancherel theorem for the Dunkl transform implies

(10.7) Θ t * f (x) L 2 (R 1+N + , dw(x) dt t ) ≤ C f L 2 (dw) . By duality, (10.8) π Θ F (x) L 2 (dw(x)) ≤ C F (t, x) L 2 (R 1+N + , dw(x) dt t )
, where

π Θ F (x) = ∞ 0 (Θ t * F (t, •))(x) dt t = ∞ 0 R N Θ t (x, y)F (t, y) dw(y) dt t .
Let Φ(x) ≥ 0 be a radial C ∞ real-valued function on R N supported by B(0, 1/4), Φ(x) ≡ 1 on B(0, 1/8). Let κ be a positive integer, κ > N/2. Set

Ψ(x) = ∆ 2κ (Φ * Φ)(x) = (∆ κ Φ) * (∆ κ Φ)(x).
Then Ψ is radial and real-valued, supp Ψ ⊂ B(0, 1/2),

R N Ψ(x)dw(x) = 0, F Ψ(ξ) = c k ξ 4κ (F Φ) 2 (ξ) = c k ξ 4κ |F Φ(ξ)| 2 .
Clearly, from (3.6) and (3.7) we get (10.9)

Φ t (x, y) = 0 if d(x, y) > t/4 and Ψ t (x, y) = 0 if d(x, y) > t/2.
Further, for every t > 0, we have

R N Ψ t (x, y) dw(y) = R N Ψ t (x, y) dw(x) = 0.
Moreover, for n = 0, 1, 2, . . ., and f ∈ L 2 (dw), we have the Calderón reproducing formulae:

f = c ′ n ∞ 0 Ψ t t n ( √ -∆) n e -t √ -∆ f dt t = c ′ ∞ 0 t 2 Ψ t ∆e t 2 ∆ f dt t
and the integrals converge in the L 2 (dw)-norm. Fix a positive integer m (large enough). Let Φ {j} (x) = Φ{j} ( x ), j = 1, 2, where Φ{j} are even C m -functions such that (10.10) Φ{j} S m < ∞ and (10.11)

R N Φ {j} (x) dw(x) = 1, j = 1, 2.
Taking instead of Φ {j} their dilations Φ {j} s (x) = s -N Φ {j} (x/s) if necessary, we may assume that (10.12)

f = c ′′ j ∞ 0 Ψ t Φ {j} t f dt t , f ∈ L 2 (dw), j = 1, 2,
where the integrals converge in the L 2 -norm. Moreover, by Lemma 10.2, there is a constant

C s > 0 such that if u {j} (t, x) = Φ {j} t f (x) and v {j} (t, x) = Φ {j} ts f (x) = u {j} (st, x), then C -1 s v {j} N ≤ u {j} N ≤ C s v {j} N .
We are in a position to state the main results of this section. Proposition 10.13. For Φ {1} and Φ {2} as above and every f ∈ L 2 (dw), we have

Φ {1} t f Nα = M Φ {1} ,α f L 1 (dw) ≤ C Φ {1} ,Φ {2} ,α,α ′ M Φ {2} ,α ′ f L 1 (dw) = C Φ {1} ,Φ {2} ,α,α ′ Φ {2} t f N α ′ . Proof. Let Ψ {1} = Φ {1} -Φ {2}
. Then Ψ {1} is radial and thanks to (10.11), we have

F Ψ {1} (ξ) = O( ξ 2 ) for ξ < 1. It suffices to prove that Ψ {1} t f N ≤ C Φ {2} t f N .
Using the Calderón reproducing formula (10.12), we obtain

Ψ {1} t f = c ′ 2 ∞ 0 Ψ {1} t Ψ s Φ {2} s f
ds s According to Proposition 3.14, for any η, ℓ > 0 such that ℓ ≤ 4κ, the integral kernel K t,s (y, z) of the operator

Ψ {1} t Ψ s satisfies |K t,s (y, z)| ≤ C η,ℓ min t s 2 , s t ℓ 1 V (y, z, s + t) 1 + d(y, z) s + t -N-η .
We take N < λ < η < ℓ. Then for xy < t, we have (10.14)

R N |K t,s (y, z)| 1 + d(x, z) s λ dw(z) ≤ C ′ min s t ℓ-λ , t s 2 .
Therefore, using (10.14), we obtain sup

x-y <t |Ψ {1} t f (y)| = c ′ 2 sup x-y <t ∞ 0 R N K t,s (y, z)Φ {2} s f (z) dw(z) ds s ≤ c ′ 2 sup z,s |Φ {2} s f (z)| 1 + d(x, z) s -λ × sup x-y <t ∞ 0 R N |K t,s (y, z)| 1 + d(x, z) s λ dw(z) ds s ≤ C sup z,s |Φ {2} s f (z)| 1 + d(x, z) s -λ . (10.15) 
The proof is complete, by applying (10.4).

Remark 10.16. It follows from the proof of Proposition 10.13 that if Θ ∈ S(R N ) is radial and R N Θ(x) dw(x) = 0, and Φ {2} is as above, then for f ∈ L 2 (dw), we have

Θ t f N ≤ C Φ {2} t f N .
Proposition 10.17. For a function Φ {1} as above and α > 0 there is a constant

C Φ {1} ,α > 0 such that M Φ {1} ,α f L 1 (dw) ≤ C Φ {1} ,α M P f L 1 (dw) , for f ∈ L 1 (dw) ∩ L 2 (dw). Proof. For a positive integer n (large), set φ(ξ) = e -ξ n+1 j=0 ξ j j! . Then φ(ξ) -1 = O( ξ n+1 ) for ξ < 1. So φ is a C n (R N ) function such that |∂ β φ(ξ)| ≤ C β exp(-ξ /2), |β| ≤ n. Put Φ {2} = c -1 k F -1 φ. Applying Proposition 10.13, we have Φ {1} t f N Φ {2} t f N . Notice that d j dt j P t f (x) = F -1 ( tξ j e -t ξ F f (ξ))(x)
. Hence, from Proposition 10.6 we conclude,

Φ {2} t f N ≤ C n+1 j=0 t j d j dt j P t f N ≤ C ′ P t f N .
Lemma 10.18. H 1 max,H ⊂ H 1 max,P and there is a constant C > 0 such that (10. [START_REF] Folland | Hardy spaces on homogeneous groups[END_REF])

M P f L 1 (dw) ≤ C M H f L 1 (dw) for f ∈ L 1 (dw).
Proof. The proof is standard. Let f ∈ L 1 (dw). Set u(t, x) = e t 2 ∆ f (x). By the subordination formula (2.2) for fixed t > 0, we have sup

x ′ -x <t |P t f (x ′ )| ≤ 1 2 √ π ∞ 0 sup x ′ -x <t |u(ts, x ′ )|e -1 4s 2 ds s 2 = 1 2 √ π ∞ 0 sup x ′ -x <t |u(ts, x ′ )| ts x -x ′ + ts λ x -x ′ + ts ts λ e -1 4s 2 ds s 2 ≤ 1 2 √ π ∞ 0 u * * λ (x) 1 + s s λ e -1 4s 2 ds s 2 ≤ Cu * * λ (x)
. Now the lemma follows from (10.4).

Note that Propositions 10.13 and 10.17 together with Lemma 10.18 imply that

H 1 max,Φ {1} ∩ L 2 (dw) = H 1 max,H ∩ L 2 (dw) = H 1 max,P ∩ L 2 (dw) and for f ∈ L 2 (dw), we have (10.20) M Φ {1} f L 1 (dw) ∼ M H f L 1 (dw) ∼ M P f L 1 (dw) .
Our task is to remove the assumption f ∈ L 2 (dw) from (10.20).

Lemma 10.21. Assume that f ∈ H 1 max,P . Then P t f ∈ L 2 (dw) for every t > 0 and (10.22) lim t→0 P t ff H 1 max,P = 0. Proof. Proposition 5.4 implies that P t f ∈ L 2 (dw). To prove (10.22) we follow, e.g., [14, proof of (6.5)].

First observe that there is a constant C > 0 such that for every A > 0 and t > 0, we have sup s>At, x-y <s

|P t+s f (y) -P s f (y)| L 1 (dw(x)) ≤ CA -1 f L 1 (dw) . (10.23)
To see (10.23) fix z ∈ R N . For s > At, thanks to (5.5), we have

|p s+t (y, z) -p s (y, z)| = t 0 ∂ u p s+u (y, z) du ≤ C t 0 1 u + s + d(y, z) w(B(z, s + u + d(y, z))) -1 du ≤ C t 0 1 s + d(y, z) w(B(z, s + d(y, z))) -1 du ≤ C A s s + d(y, z) w(B(z, s + d(y, z))) -1 . Since s + d(x, z) ≤ s + d(x, y) + d(y, z) ≤ s + x -y + d(y, z) ≤ 2(s + d(y, z)), we obtain sup x-y <s |p s+t (y, z) -p s (y, z)| ≤ C A s s + d(x, z) w(B(z, s + d(x, z))) -1 , (10.24) 
which implies (10.23).

In order to finish the proof of (10.22) assume that f ∈ H 1 max,P . Using (10.23), we get

P t f -f H 1 max,P ≤ sup s>At, x-y <s |P t+s f (y) -P s f (y)| L 1 (dw(x)) + sup s≤At, x-y <s |P t+s f (y) -P s f (y)| L 1 (dw(x)) ≤ CA -1 f L 1 (dw) + sup s≤At, x-y <s |P s+t f (y) -f (x)| L 1 (dw(x)) + sup s≤At, x-y <s |P s f (y) -f (x)| L 1 (dw(x)) ≤ CA -1 f L 1 (dw) + 2 sup s≤(A+1)t, x-y <s |P s f (y) -f (x)| L 1 (dw(x))
.

Fix ε > 0 and take A = Cε -1 . Corollary 5.14 implies

lim t→0 sup s≤(A+1)t, x-y <s |P s f (y) -f (x)| = 0 for almost every x ∈ R N . Since sup s≤(A+1)t, x-y <s |P s f (y) -f (x)| ≤ 2M P f (x) ∈ L 1 (dw(x)
), the proof is complete by applying the Lebesgue dominated convergence theorem.

Lemma 10.25. Let ϕ ∈ S(R N ) be a radial function. There is a constant C > 0 such that for all ε > 0 and u(t, x)

∈ N if u ε (t, x) = u(t, •) * ϕ ε (x), then u ε N ≤ C u N .
Proof. Let λ > N and M > 0 be large enough. For fixed x ∈ R N we have

u * ε (x) ≤ C sup t≥ε, x-y <t R N |u(t, z)| 1 + d(z, x) t -λ 1 + d(z, y) t λ |ϕ ε (y, z)| dw(z) + C sup 0<t<ε sup d(x,y)<t R N |u(t, z)| 1 + d(x, y) ε M V (y, z, ε) -1 1 + d(x, z) ε -M dw(z) ≤ C ′ λ σ∈G u * * λ (σ(x)) + C ′ M R N u * (z)w(B(z, ε)) -1 1 + d(x, z) ε -M dw(z).
Integrating the inequality with respect to dw(x) and applying (10.4) we obtain the lemma.

Theorem 10.26. Let Φ {1} satisfies (10.10) and (10.11). Then the spaces H 1 max,Φ {1} , H 1 max,H , and H 1 max,P coincide and the corresponding norms are equivalent (cf. (10.20)). Proof. Assume that f ∈ H 1 max,P . Using Lemma 10.21 we take a sequence t n → 0, n = 0, 1, . . ., such that P t 0 f H 1 max,P ≤ 2 f H 1 max,P , P t n+1 f -P tn f H 1 max,P ≤ 2 -n f H 1 max,P . Then f = P t 0 f + ∞ n=1 (P tn f -P t n-1 f ) =: g 0 + ∞ n=1 g n , with the convergence in L 1 (dw). The functions g n ∈ L 2 (dw) ∩ H 1 max,P , so, by (10.20),

M Φ {1} f L 1 (dw) ≤ ∞ j=0 M Φ {1} g j L 1 (dw) ≤ C ∞ j=0 M P g j L 1 (dw) ≤ 3C f H 1 max,P .
We now turn to prove the converse. Suppose that f ∈ H 1 max,Φ {1} . Then using Lemma 10. [START_REF] Mauceri | A Hardy space associated with twisted convolution[END_REF] In the next theorem we show that all elements in H 1 max,H ∩ L 2 (dw) = H 1 max,P ∩ L 2 (dw) admit atomic decompositions into (1, ∞, M)-atoms. The L 2 (dw) condition is removed afterwards in Theorem 11.18.

and the fact that

f * h ε L 2 (dw) ≤ f L 1 (dw) h ε L 2 (dw) we conclude that f ε = f * h ε ∈ H 1 max,Φ {1} ∩ L 2 (dw) and sup ε>0 f ε H 1 max,Φ {1} ≤ C f H 1 max,Φ {1} . Applying (10.20) we get sup ε>0 f ε H 1 max,H ≤ C ′ f H 1 max,Φ {1} . Observe that lim ε→0 M H f ε (x) = M H f (x) for almost all x ∈ R N and
Theorem 11.1. For every positive integer M there is a constant C M > 0 such that every element f ∈ H 1 max,H ∩ L 2 (dw) = H 1 max,P ∩ L 2 (dw) can be written as

f = λ j a j
where a j are (1, ∞, M)-atoms,

|λ j | ≤ C M M P f L 1 (dw) . Moreover, the convergence is in L 2 (dw).
Proof. The theorem is known for Hardy spaces associated with semigroups with Gaussian bounds on spaces of homogeneous type (see [START_REF] Dekel | Hardy spaces associated with non-negative self-adjoint operators[END_REF] and [START_REF] Song | Maximal function characterizations for Hardy spaces associated to nonnegative self-adjoint operators on space of homogeneous type[END_REF]). The proof we present here is a straightforward adaptation of that of [START_REF] Song | Maximal function characterizations for Hardy spaces associated to nonnegative self-adjoint operators on space of homogeneous type[END_REF] with the difference that tents are now constructed with respect to the orbit distance d(x, y). We include details for the convenience of readers unfamiliar with [START_REF] Dekel | Hardy spaces associated with non-negative self-adjoint operators[END_REF] and [START_REF] Song | Maximal function characterizations for Hardy spaces associated to nonnegative self-adjoint operators on space of homogeneous type[END_REF]. More experienced readers may skip the proof and jump to Theorem 11.18.

Without loss of generality, we may assume that M is an even integer > 2 N.

Step 1. Reproducing formulae. Let Φ, Ψ be as in the Calderón reproducing formula with κ = M/2 (see Section 10). Set

ϕ(ξ) = F (Φ)(ξ) = φ( ξ ), ψ(ξ) = F (Ψ)(ξ) = c k ξ 2M |ϕ(ξ)| 2 = ψ( ξ ) = c k ξ 2M | φ( ξ )| 2 .
Then there is a constant c such that

f = lim ε→0 c ε -1 ε Ψ t t 2 ∆e t 2 ∆ f dt t
with the convergence in L 2 (dw). We have

F f (ξ) = lim ε→0 c k c ε -1 ε t 2 ξ 2 ψ(t ξ )e -t 2 ξ 2 F f (ξ) dt t .
For ξ = 0, set

η(ξ) = c k c ∞ 1 t 2 ξ 2 ψ(t ξ )e -t 2 ξ 2 dt t = c k c ∞ ξ t 2 ψ(t)e -t 2 dt t . Put η(0) = 1. Then η is a Schwartz class radial real-valued function. Set Ξ(x) = c -1 k F -1 η(x). Then Ξ ∈ S(R N ), Ξ(x) dw(x) = 1, and 
(11.2) c b a Ψ t t 2 ∆e t 2 ∆ f dt t = Ξ a f -Ξ b f.
Step 2. Space of orbits. Let X = R N /G be the space of orbits equipped with the metric d(O(x), O(y)) = d(x, y) and the measure m(A) = w O(x)∈A O(x) . So (X, d, m) is the space of homogeneous type in the sense of Coifman-Weiss. The space X can be identified with a positive Weyl chamber. Any open set in X of finite measure admits the following easily proved Whitney type covering lemma. Step 3. Decomposition of

R N +1 + . Assume that f ∈ H 1 max,H ∩ L 2 (dw). Let F (t, x) = |t 2 ∆e t 2 ∆ f (x)| + |Ξ t f (x)| , F (t, x) = sup σ∈G F (t, σ(x)), and 
Mf (x) = sup d(x,y)<5t F (t, y) = sup x-y <5t F (t, y).
Then, by Proposition 10.13 and Remark 10.16, we have

Mf L 1 (dw) ≤ C f H 1 max,H . Observe that Mf (σ(x)) = Mf (x). Therefore Mf (x) can be identified with the func- tion Mf (O(x)) on X. Moreover, Mf (x) L 1 (dw) = Mf (O(x)) L 1 (m) . For an open set Ω ⊂ X, let Ω = {(t, O(x)) : B X (O(x), 4t) ⊂ Ω}
be the tent over Ω. For j ∈ Z define

Ω j = {O(x) ∈ X : Mf (O(x)) > 2 j }, Ω j = {x ∈ R N : Mf (x) > 2 j }. Then Ω j is open in X, Ω j = O(x)∈Ω j O(x), m(Ω j ) = w(Ω j ), j 2 j w(Ω j ) ∼ Mf L 1 (dw) ∼ f H 1 max,H . Clearly, Ω j = {(t, x) ∈ R N +1 + : (t, O(x)) ∈ Ω j }. Set T j = Ωj \ Ωj+1 . Then, supp F (t, x) ⊂ j∈Z Ωj = j∈Z ( Ωj \ Ωj+1 ) = j∈Z T j (11.4) Let B X (O(x {n, j} ), r {n, j} /2)), x {n, j} ∈ R N , n = 1, 2, . . ., be a Whitney covering of Ω j . Set Q {n, j} = {x ∈ R N : O(x) ∈ B X (O(x {n, j} ), r {n, j} /2))} = O(B(x {n, j} , r {n, j} /2)).
Obviously, w(B(x {n, j} , r {n, j} /2)) ≤ w(Q {n, j} ) ≤ |G|w(B(x {n, j} , r {n, j} /2)). We define a cone over a G-invariant set E as R(E) = {(t, y) : d(y, E) < 2t}.

For n = 1, 2, . . ., let

T {n, j} = T j ∩ R(Q {n, j} ) \ n-1 i=0 R(Q {i, j} ) , R(Q {0, j} ) = ∅. Clearly, Ωj ⊂ n∈N R(Q {n, j} ), T {n, j} ∩ T {n ′ , j ′ } = ∅ if (j, n) = (j ′ , n ′ ). Thus we have supp F (t, x) ⊂ j∈Z n∈N
T {n, j} . (11.5)

Step 4. Decomposition of f and L 2 (dw)-convergence. Write

f = j∈Z, n∈N c ∞ 0 Ψ t χ T {n, j} t 2 ∆e t 2 ∆ f dt t = j∈Z, n∈N
λ {n, j} a {n, j} , (11.6) where λ {n, j} = 2 j w(Q {n, j} ),

a {n, j} = (λ {n, j} ) -1 c ∞ 0 Ψ t χ T {n, j} t 2 (-∆)e t 2 ∆ f dt t = (λ {n, j} ) -1 c ∞ 0 t 2M (-∆) M Φ t Φ t χ T {n, j} t 2 (-∆)e t 2 ∆ f dt t
and, thanks to (10.8), the convergence is in L 2 (dw), because T {n, j} are pairwise disjoint.

Step 5. What remains to prove. Our task is to prove that the functions a {n, j} are proportional to (1, ∞, M)-atoms. If this is done then

j∈Z, n∈N |λ {n, j} | = j∈Z, n∈N 2 j w(Q {n, j} ) j∈Z 2 j w(Ω j ) ∼ f H 1 max, H ,
which proves the atomic decomposition.

Step Note also that ∆ m b {n, j} (x) = 0 implies that there is (t, y) ∈ Ωj such that d(x, y) < t.

Then O(x) ∈ B X (O(y), t) ⊂ B X (O(y), 4t) ⊂ Ω j . Hence, (11.11) supp ∆ m b {n, j} ⊂ Ω j .

Step 7. Size of ∆ m b {n, j} for m = 0, 1, . . ., M -1. Suppose that (t, y) is such that χ T {n, j} (t, y) = 1. Then (t, y) ∈ ( Ωj+1 ) c , so

|t 2 ∆e t 2 ∆ f (y)| ≤ 2 j+1 . Consequently, |∆ m b {n, j} (x)| = c λ {n, j} r {n, j} 0 t 2M -2m (t 2 (-∆)) m Φ t Φ t (χ T {n, j} t 2 (-∆)e t 2 ∆ f )(x) dt t = (λ {n, j} ) -1 c r {n, j} 0 R N t 2M -2m K m t (x, y)(χ T {n, j} (t, y)t 2 (-∆)e t 2 ∆ f (y))dw(y) dt t ,
where K m t (x, y) is the integral kernel of the operator (-t 2 ∆) m Φ t Φ t . Recall that |K m t (x, y)| ≤ Cw(B(x, t)) -1 and K m t (x, y) = 0 for d(x, y) > t/2 (see (10.9) and Corollary 3.12). Thus,

|∆ m b {n, j} (x)| ≤ C(λ {n, j} ) -1 2 j+1 r {n, j} 0 R N t 2M -2m |K m t (x, y)|dw(y) dt t ≤ C(λ {n, j} ) -1 2 j+1 r {n, j} 0 t 2M -2m dt t = C(λ {n, j} ) -1 2 j (r {n, j} ) 2M -2m = Cw(Q {n, j} ) -1 (r {n, j} ) 2M -2m .
(11.12)

Step 8. Key lemma. It remains to estimate

a {n, j} (x) = (λ {n, j} ) -1 c ∞ 0 R N Ψ t (x, y)χ T {n, j} (t, y)(t 2 (-∆)e t 2 ∆ f )(y) dw(y) dt t . Let E {n, j} = n i=1 Q {i, j} . Then χ T {n, j} (t, y) = χ Ωj (t, y)χ ( Ωj+1 ) c (t, y)χ R(E {n, j} ) (t, y)χ (R(E {n-1, j} )) c (t, y)
= χ 1 (t, y)χ 2 (t, y)χ 3 (t, y)χ 4 (t, y). (11.13) The following lemma (see [START_REF] Song | Maximal function characterizations for Hardy spaces associated to nonnegative self-adjoint operators on space of homogeneous type[END_REF]Lemma 4.2]) plays a crucial role in the remaining part of the proof of Theorem 11.1.

Lemma 11.14. For every x ∈ Ω j and every function χ s , s = 1, 2, 3, 4, there are numbers 0 < δ s ≤ ω s such that ω s ≤ 3δ s and either Ψ t (x, y)χ s (t, y) = 0 for every 0 < t < δ s or Ψ t (x, y)χ s (t, y) = Ψ t (x, y) for every 0 < t < δ s and either Ψ t (x, y)χ s (t, y) = 0 for every t > ω s or Ψ t (x, y)χ s (t, y) = Ψ t (x, y) for every t > ω s .

Proof. For the reader's convenience, we include a short proof along the lines of [START_REF] Song | Maximal function characterizations for Hardy spaces associated to nonnegative self-adjoint operators on space of homogeneous type[END_REF]. Fix t > 0 and define χ

′ 1 (y) = χ [4t,∞) (d(y, Ω c j )), χ ′ 2 (y) = χ (-∞,4t) (d(y, Ω c j+1 )), χ ′ 3 (y) = χ (-∞,2t) (d(y, E {n, j} )), χ ′ 4 (y) = χ [2t,∞) (d(y, E {n-1, j} )).
Clearly, χ ′ s (y) = χ s (t, y) for s = 1, 2, 3, 4. If d(x, y) ≥ t, then Ψ t (x, y) = Ψ t (x, y)χ s (t, y) = 0. Therefore, to finish the proof, we assume that d(x, y) < t. Then

-t + d(A, x) < d(A, y) < t + d(A, x) for A = Ω c j , Ω c j+1 , E {n, j} , E {n-1, j} .
We are in a position to define consecutively δ s and ω s .

(1) If d(x, Ω c j ) < 3t or d(x, Ω c j ) > 5t, then χ ′ 1 (y) = 0 and χ ′ 1 (y) = 1 respectively, so we put δ We finish Step 8 by the remark (see Case 1 of the proof of the lemma) that if t > ω 1 > 0 then Ψ t (x, y)χ T {n, j} (t, y) = 0.

1 = 1 5 d(x, Ω c j ) and ω 1 = 1 3 d(x, Ω c j ). (2) If d(x, Ω c j+1 ) < 3t or d(x, Ω c j+1 ) > 5t, then χ ′ 2 (y) = 1 and χ ′ 2 (y) = 0 respectively. Hence we set δ 2 = 1 5 d(x, Ω c j+1 ) and ω 2 = 1 3 d(x, Ω c j+1 ) if d(x, Ω c j+1 ) = 0, δ 2 = ω 2 = δ 1 otherwise. (3) If d(x, E {n, j} ) < t or d(x, E {n, j} ) > 3t, then χ ′ 3 (y) = 1 and χ ′ 3 (y) = 0 respectively. Thus we put δ 3 = 1 3 d(x, E {n, j} ) and ω 3 = d(x, E {n, j} ) if d(x, E {n, j} ) = 0, δ 3 = ω 3 = δ 1 otherwise. (4) If d(x, E {n-1, j} ) < t or d(x, E {n-1, j} ) > 3t, then χ ′ 4 ( 
Step 9. Estimates for a {n, j} . We shall prove that (11.15) 

|a {n, j} (x)| ≤ Cw(Q {n, j} ) -1 . Fix x ∈ Ω j . Recall that supp a {n, j} ⊂ Ω j . Let J = 4 s=1 [δ s , ω s ], I = (0, ∞) \ J,
2 j+1 ≥ Mf (x ′ ) ≥ sup d(x ′ ,z)<5t |Ξ t f (z)| ≥ |Ξ t f (x)|.
Finally, in our case

(λ {n, j} ) -1 c bs as R N Ψ t (x, y)χ T {n, j} (t, y)(t 2 (-∆)e t 2 ∆ f )(y) dw(y) dt t = (λ {n, j} ) -1 c bs as R N Ψ t (x, y)(t 2 (-∆)e t 2 ∆ f )(y) dw(y) dt t = (λ {n, j} ) -1 c |Ξ as f (x) -Ξ bs f (x)| ≤ Cw(Q {n, j} ) -1 , (11.17) 
where in the last equality we have used (11.2). The estimates (11.16) . By Theorem 11.1 the functions g n admit atomic decompositions into (1, ∞, M)-atoms with the required control of their atomic norms.

We are in a position to complete the proof of Theorem 2.5, by proving the following proposition, which is the converse to Proposition 7.12.

Proposition 11.19. Assume that u 0 is L-harmonic and satisfies u * 0 ∈ L 1 (dw). Then there is a system u = (u 0 , u 1 , . . ., u N ) ∈ H 1 such that u H 1 ≤ C u * 0 L 1 (dw) . Proof. By Theorem 7.8 we have u 0 (t, x) = P t f 0 (x), where f 0 ∈ L 1 (dw). So f 0 ∈ H 1 max, P and f 0 H 1 max, P = u * 0 L 1 (dw) . Using Theorem 11.18 and then (9.1) we obtain that

f 0 ∈ H 1 ∆ and f 0 H 1 ∆ ≤ C u * 0 L 1 (dw) . 12. Inclusion H 1 (1,q,M ) ⊂ H 1 max,H
In this section we shall prove that for every integer M ≥ 1 and every 1 < q ≤ ∞, we have H 1

(1,q,M ) ⊂ H 1 max,H and f H 1 max,H ≤ C M,q f H 1 (1,q,M ) . It suffices to establish that there is a constant C M,q > 0 such that a H 1 max,H ≤ C M,q , for every a being (1, q, M)-atom. Since every (1, q, M)-atom is automatically (1, q, 1)atom, it is enough to consider M = 1 only.

Assume that a is a (1, q, 1)-atom associated with a set B = σ∈G B(σ(y 0 ), r). Then there is a function

b ∈ D(∆) such that a = ∆b, supp ∆ j b ⊂ B, ∆ j b L q (dw) ≤ r 2-2j w(B) 1 q -1 , j = 0, 1. Set u(t, x) = e t 2 ∆ a(x). Observe that u * L q (dw) ≤ C q a L q (dw) ≤ w(B) 1 q -1
(see (2.6) for the definition of u * ). Thus, by the doubling property of the measure dw(x) dx and the Hölder inequality,

d(x,y 0 )≤8r u * (x) dw(x) ≤ C ′ q .
We turn to estimate u * (x) on d(x, y 0 ) > 8r. Clearly,

u * (x) ≤ sup 0<t<d(x,y 0 )/4, d(x ′ ,x)<t |e t 2 ∆ ∆b(x ′ )| + sup t>d(x,y 0 )/4, d(x ′ ,x)<t |e t 2 ∆ ∆b(x ′ )| = J 1 (x) + J 2 (x). (12.1) 
Recall that b L 1 (dw) ≤ r 2 and note that e t 2 ∆ ∆ = ∆e t 2 ∆ = d ds e s∆ s=t 2 . To deal with J 1 we note that if d(x ′ , x) < t ≤ d(x, x 0 )/4, d(x, y 0 ) > 4r, and d(y, y 0 ) < r, then d(x ′ , y) ∼ d(x, y 0 ). So, using (4.4), we have

d ds h s (x ′ , y) s=t 2 ≤ C t 2 w(B(y 0 , d(y 0 , x))) e -c ′ d(y 0 ,x) 2 /t 2 .
Hence,

J 1 (x) w(B(y 0 , d(x, y 0 ))) -1 r 2 d(x, y 0 ) 2 .
In order to estimate J 2 , we observe from (4.4) that for t > d(x, y) and d(y, y 0 ) < r < t, we have

d ds h s (x ′ , y) s=t 2 ≤ C t 2 w(B(y 0 , d(y 0 , x)))
.

Consequently,

J 2 (x) w(B(y 0 , d(x, y 0 ))) -1 r 2 d(x, y 0 ) 2 . Now d(x,y 0 )>8r u * (x) dw(x) ∞ j=3 2 j r<d(x,y 0 )≤2 j+1 r r 2 w(B(y 0 , d(x, y 0 )))d(x, y 0 ) 2 dw(x) ∞ j=3 2 -2j = C.

Square function characterization

In this section we prove Theorem 2.12. More precisely we show that the atomic Hardy space H 1 (1,2,M ) coincides with the Hardy space defined by the square function (2.11) with

Q t = t √ -∆ e -t √ -∆
. This is achieved by mimicking arguments in [START_REF] Hofmann | Hardy spaces associated to non-negative selfadjoint operators satisfying Davies-Gaffney estimates[END_REF]. The proof for Q t = t 2 (-∆) e t 2 ∆ is similar. (1,2,M ) can be related with the so called tent space T 1 2 . The tent spaces on Euclidean spaces were introduced in [START_REF] Coifman | Some new functions and their applications to harmonic analysis[END_REF] and then extended on spaces of homogeneous type (see, e.g. [START_REF] Russ | The atomic decomposition for tent spaces on spaces of homogeneous type, in Asymptotic geometric analysis, harmonic analysis, and related topics[END_REF]). For more details we refer the reader to [START_REF] Stein | Harmonic analysis (real variable methods, orthogonality and oscillatory integrals[END_REF].

For a measurable function F (t, x) on (0, ∞) × R N , let 

F T 2 2 = Sf L 2 (dw) ∼ f L 2 (dw)
. and f = cπ Ψ (F ).

The tent space T 1 2 on the space of homogeneous type admits the following atomic decomposition (see, e.g., [START_REF] Russ | The atomic decomposition for tent spaces on spaces of homogeneous type, in Asymptotic geometric analysis, harmonic analysis, and related topics[END_REF]). Definition 13.4. A measurable function A(t, x) is a T 1 2 -atom if there is a ball B ⊂ R N such that

• supp A ⊂ B • (0,∞)×R N |A(t, x)| 2 dw(x) dt t ≤ w(B) -1 . A function F belongs to T 1 2 if and only if there are sequences A j of T 1 2 -atoms and λ j ∈ C such that j λ j A j = F,

j |λ j | ∼ F T 1 2 ,
where the convergence is in T 1 2 norm and a.e. The Hölder inequality immediately gives that there is a constant C > 0 such that for every function A(t, x) being a T 1 2 -atom one has A T 1 2 ≤ C. Observe that for f ∈ L 1 (dw), the function F (t, x) = Q t f (x) is well defined. Moreover, AF (x) = Sf (x) and Sf L 1 (dw) = F T 1 2 .

Remark 13.5. According to the proof of atomic decomposition of T 1 2 presented in [START_REF] Russ | The atomic decomposition for tent spaces on spaces of homogeneous type, in Asymptotic geometric analysis, harmonic analysis, and related topics[END_REF], the function λ j A j can be taken of the form λ j A j (t, x) = χ S j (t, x)F (t, x), where S j are disjoint, R N +1 + = S j , and S j is contained in a tent B j . So, if F ∈ T 1 2 ∩ T 2 2 , then F can be decomposed into atoms such that F (t, x) = j λ j A j (t, x) and the convergence is in T 1 2 , T 2 2 , and pointwise.

Lemma 13.6. The map (P s F )(t, x) = p s (x, y)F (t, y) dw(y) is bounded on T 1 2 . Moreover, there is a constant C > 0 independent of s > 0 such that P s F T 1 2 ≤ C F T 1 2 . Proof. Let F (t, x) = j λ j A j (t, x) be an atomic decomposition of F ∈ T 1 2 as described above. Since p s (x, y) ≥ 0, it suffices to prove that there is a constant C > 0 such that

P s |A| T 1 2 ≤ C
for every atom A of T 1 2 . To this end let B = B(x 0 , r) be a ball associated with A. Obviously, P s |A|(t, x ′ ) = 0 for t > r.

Case 1: s > r. Then, by (5.5) and the Hölder inequality, P s |A|(t, x ′ ) ≤ Cs s + d(x 0 , x ′ ) w(B(x 0 , r)) 1/2 w(B(x 0 , s + d(x 0 , x ′ )))

|A(t, y)| 2 dw(y) Lemma 13.8. The family P s forms approximate of identity in T 1 2 , that is, lim s→0 P s F -F T 1 2 = 0. Proof. According to Lemma 13.6, it suffices to establish that for every A being a T 1 2atom, we have (13.9) lim s→0 P s A -A T 1 2 = lim s→0 A(P s A -A) L 1 (dw) = 0.

Let A be such an atom and let B = B(x 0 , r) be its associated ball. To prove (13.9) it suffices to consider 0 < s < r.

If d(x, x 0 ) > 4r, yx 0 < r, and xx ′ < t < r, then s + d(x ′ , y) ∼ d(x, x 0 ), so We now turn to estimate A(P s A -A) L 1 (O(B(x 0 ,4r)),dw) . Observe that |(P s A -A)(t, x ′ )| ≤ 2M P A(t, x ′ ) and M P A(t, x ′ ) L 2 (dw(x ′ )) ≤ C A(t, x ′ ) L 2 (dw(x ′ )) .

Moreover, lim s→0 P s A(t, x ′ ) -A(t, x ′ ) L 2 (dw(x ′ )) = 0 for almost every t > 0. Therefore, applying the Hölder inequality and (13.2), we have lim sup where in the last equality we have used the Lebesgue dominated convergence theorem.

13.2. Proof of Theorem 2.12. The inclusion H 1 (1,2,M ) ⊂ H 1 square will be established if we prove the following lemma. Define a 1 = ∆ M -1 b. Then by the definition of the atom a 1 L 1 (w) ≤ r 2 . Note that Q t (a) = Q t (∆a 1 ) = (∆Q t )(a 1 ) = t(∂ t Q t ) 3 (a 1 ).

Estimation for I 1 . If z ∈ O(B) and xy < t ≤ 2 n r/4, then 2 n r d(z, y). Therefore, thanks to (5.5) 2 -4n w(B(x 0 , 2 n r)) -2 .

Finally,

Sa L 1 (O(8B) c ) n≥3 2 n r<d(x,x 0 )≤2 n+1 r 2 -2n w(B(x 0 , 2 n r)) -1 dw(x) 1.

The opposite inclusion H 1

square ⊂ H 1 (1,2,M ) is contained in the following proposition. Proposition 13.11. Let M be a positive integer. Assume that for f ∈ L 1 (dw) the function F (t, x) = Q t f (x) belongs to T 1 2 . Then there are λ j ∈ C and a j being (1, 2, M)atoms such that f = j λ j a j and

j |λ j | ≤ C F T 1 2 .
The constant C depends on M but it is independent of f .

Proof. We start our proof under the additional assumption f ∈ L 2 (dw). Then F (t, x) = Q t f (x) ∈ T 1 2 ∩ T 2 2 . The proof in this case is the same as that of [START_REF] Hofmann | Hardy spaces associated to non-negative selfadjoint operators satisfying Davies-Gaffney estimates[END_REF]Theorem 4.1]. The only difference is to control support of functions ∆ s b j . For the convenience of the reader we provide its sketch.

  σ∈G xσ(y) denote the distance between two G-orbits O(x) and O(y). Obviously, O(B(x, r)) = {y ∈ R N | d(y, x) < r} and w(B(x, r)) ≤ w(O(B(x, r))) ≤ |G| w(B(x, r)).

3. 3 .

 3 Dunkl translations and Dunkl convolution. The Dunkl translation τ x f of a function f ∈ S(R N ) by x ∈ R N is defined by (3.5)

Theorem 4 . 3 .

 43 (a) Time derivatives : for any nonnegative integer m, there are constants C, c > 0 such that

Theorem 4 . 19 .

 419 There exist positive constants C and c such that

Corollary 5 . 13 .

 513 Let f be a bounded continuous function on R N . Then its Poisson integral u(t, x) = P t f (x) is also bounded and continuous on [0, ∞) × R N . Corollary 5.14. Let f ∈ L p (dw) with 1 ≤ p ≤ ∞. Then for almost every x ∈ R N ,

  j=1 denote the matrix of σ ∈ G written in the canonical basis e 1 , . . ., e N of R N . Clearly, {σ ij } N i,j=1 belongs to the group O(N, R) of the orthogonal N × N matrices.

(7. 1 ) 4 x, v m cos επ 4 x 0

 140 V m (x 0 , x) = 2Mεx 0 + εE επ , m = 1, . . . , s, (cf. [34, Chapter VII, Section 1.2] in the classical setting). The function V m is Lharmonic and strictly positive on [0

7 . 3 .Theorem 7 . 5 .

 7375 be the characteristic function of the ball in R 1+N . Set f (r, x, y) = τ x f {r} (-y). Clearly, 0 ≤ f (r, x, y) ≤ 1. The following mean value theorem was proved in [20, Theorem 3.2]. Theorem 7.4. Let Ω ⊂ R 1+N be an open and G-invariant set and let u be a C 2 function in Ω. Then u is L-harmonic if and only if u has the following mean value property: for all x ∈ Ω and ρ > 0 such that B(x, ρ) ⊂ Ω, we have u(x) = 1 w(B(0, r)) Ω f (r, x, y)u(y)dw(y) for 0 < r < ρ/3. Characterizations of L-harmonic functions in the upper half-space. Suppose that u is a C 2 function on R 1+N + . Then u is a Poisson integral of a bounded function on R N if and only if u is L-harmonic and bounded.

Corollary 7 . 7 .Theorem 7 . 8 .

 7778 If u is L-harmonic and bounded in R 1+N + then u has a nontangential limit at almost every point of the boundary. Suppose that u is a C 2 -function on R 1+N + . If 1 < p < ∞ then u is a Poisson integral of an L p (dw) function if and only if u is L-harmonic and (7.9) sup

8 . 1 ∆ 8 . 1 .

 8181 Riesz transform characterization of H Riesz transforms. The Riesz transforms in the Dunkl setting are defined by

Lemma 11 . 3 .

 113 Suppose that Ω ⊂ X is an open set with finite measure. Then there is a sequence of balls B X (O(x {n} ), r {n} ) such that r {n} = d(O(x {n} ), Ω c ), n∈N B X (O(x {n} ), r {n} /2) = Ω, the balls B X (O(x {n} ), r {n} /10) are disjoint.

  y) = 0 and χ ′ 4 (y) = 1 respectively, so we put δ 4 = 1 3 d(x, E {n-1, j} ) and ω 4 = d(x, E {n-1, j} ) if d(x, E {n-1, j} ) = 0, δ 4 = ω 4 = δ 1 otherwise.

  where δ s , ω s are from Lemma 11.14. Obviously, I = (a 1 , b 1 ) ∪ . . . ∪ (a m , b m ), where m ≤ 5, a 1 = 0, b m = ∞, and (a l , b l ) are connected disjoint components of I. Clearly, a {n, j} (x) ≤ 4 s=1 (λ {n, j} ) -1

13. 1 .

 1 Tent spaces T p 2 on spaces of homogeneous type. The square function characterization of the Hardy space H 1

1 / 2 . 2 ≤( 13 . 7 )

 122137 If xx ′ < t ≤ r, then s + d(x 0 , x ′ ) ∼ s + d(x 0 , x), because, by our assumption, s > r. Hence, d(x 0 , x)w(B(x 0 , r)) 1/2 w(B(x 0 , s + d(x 0 , x))) × r 0 x-x ′ <t |A(t, y)| 2 dw(y) dw(x ′ )dt w(B(x, t))t 1/2 dw(x) ≤ C s s + d(x 0 , x) dw(x) w(B(x 0 , s + d(x 0 , x))) ≤ C,where to get the second to last inequality we first integrated with respect to dw(x ′ ) and then used the definition of T 1 2 -atom. Case 2: s ≤ r. Recall that P s is a contraction on L 2 (dw). Hence,AP s |A| L 1 (O(B(x 0 ,4r)), dw) ≤ Cw(B(x 0 , r)) 1/2 AP s |A| L 2 (dw) ≤ Cw(B(x 0 , r)) 1/2 P s |A| T 2 Cw(B(x 0 , r)) 1/2 |A| T 2 2 ≤ C.If d(x, x 0 ) > 4r, x ′x < t < r, and x 0y < r, then s + d(x ′ , y) ∼ s + d(x, x 0 ). Now we proceed as in Case 1 to get the required bound on O(B(x 0 , 4r)) c .

2 .

 2 |P s A(t, x ′ )| ≤ Cs s + d(x 0 , x) w(B(x 0 , r)) 1/2 w(B(x 0 , s + d(x 0 , x))) |A(t, y)| 2 dw(y) 1/Since supp A ∩ {(t, x ′ ) : x ′x < t < r} = ∅, we have |A(P s A -A)(x)| = |A(P s A)(x)| ≤ Cs s + d(x 0 , x) 1 w(B(x 0 , s + d(x 0 , x))).Hence, lim s→0 d(x,x 0 )>4r |A(P s A -A)(x)| dw(x) = 0.

s→0A

  (P s A -A) L 1 (O(B(x 0 ,4r))) ≤ lim sup s→0 Cw(B) 1/2 A(P s A -A) L 2 (O(B(x 0 ,4r))) ≤ lim sup s→0 Cw(B) 1/2 r 0 |P s A(t, x) -A(t, x)| 2 dw(x) dt t

Lemma 13 . 10 .= 2 n r/ 4 0

 131024 For every positive integer M there is a constant C M > 0 such that for every a(x) being a (1, 2, M)-atom if F (t, x) = Q t a(x), thenF (t, x) T 1 2 ≤ C M . Proof.Let a be a (1, 2, M)-atom, M ≥ 1, associated with a ball B = B(x 0 , r). By definition a = ∆ M b with ∆ ℓ b (for ℓ = 0, 1, . . ., M) satisfying relevant support and size conditions (see Definition 2.15). By the Hölder inequality,Sa L 1 (O(8B)) Sa L 2 (O(8B)) w(O(8B)) 1/2 1. If d(x, x 0 ) > 8r then choose n ≥ 3 such that 2 n r ≤ d(x, x 0 ) < 2 n+1 rand split the integral as below Sa(x) 2 = t> x-y |Q t a(y)| 2 w(B(y, t)) -1 dw(y) dt t t> x-y + ∞ 2 n r/4 t> x-y = I 1 + I 2 .

2 ta 1 2 L 1 2 ∞ 2 n r/ 4 t - 5 1 2 L 1

 221224511 -4 w(B(x 0 , 2 n r)) -2 (dw) . Consequently, I dt w(B(x 0 , 2 n r)) -2 a (dw)

  10. The spaces H 1 ∆ and H 1 max,H coincide and the corresponding norms f H 1 ∆ and f H 1 max, H are equivalent. B. Characterization by square functions. For every 1 ≤ p ≤ ∞, the operators

  1 ∆ and H 1 square coincide and the corresponding norms f H 1 ∆ and Sf L 1 (dw) are equivalent. Remark 2.13. The square function characterization of H 1 ∆ is also valid for Q t = t 2 ∆ e t 2 ∆ . C. Characterization by Riesz transforms. The Riesz transforms, which are defined in the Dunkl setting by

  Theorem 2.14. The spaces H 1 ∆ and H 1 Riesz coincide and the corresponding norms f H 1

∆ and

f H 1 Riesz

  we use(4.4) and estimate separately each term in (4.13). If | α, y | ≤ t/2 , we estimate again

  the convergence is monotone. Hence, by the Lebesgue monotone convergence theorem, we get f H

	1 max,H ≤ C ′ f H 1 max,Φ {1} . Finally, max,Φ {1} is obtained from Lemma 10.18. max,P ≤ C f H 1 the inequality f H 1
	11. Atomic decompositions; inclusion H 1 max,H ⊂ H 1 (1,∞,M )

  [START_REF] Christ | Singular integral characterizations of Hardy spaces on homogeneous groups[END_REF]. Functions b {n, j} . Support of ∆ m b {n, j} for m = 0, 1, . . . , M. Observe thata {n, j} = (λ {n, j} ) -1 c 2M (-∆) m Φ t Φ t χ T {n, j} t 2 (-∆)e t 2 ∆ f dt tfor m = 1, 2, . . .M, and, by the same arguments,

	r {n, j} r {n, j} Indeed, if t > r {n, j} and (t, y) ∈ R(Q {n, j} ) then 0 Ψ t χ T {n, j} t 2 (-∆)e t 2 ∆ f = (λ {n, j} ) -1 c 0 t 2M (-∆) M Φ t Φ t χ T {n, j} t 2 (-∆)e t 2 ∆ f dt t (11.7) (11.8) d(y, (Ω j ) c ) ≤ d(y, Q {n, j} ) + 1 2 r {n, j} + d(x {n, j} , (Ω j ) c ) ≤ 2t + 1 2 t + t = dt t Hence (t, y) / ∈ T {n, j} , which gives (11.7). As a consequence of (10.9) and (11.7), we have (11.9) supp a {n, j} ⊂ x ∈ R N : d(x, x {n, j} ) ≤ 7 2 r {n, j} = O B x {n, j} , 7 2 r {n, j} . . 7 2 t. Let b {n, j} = (λ {n, j} ) -1 c r {n, j} 0 t 2M Φ t Φ t χ T {n, j} t 2 (-∆)e t 2 ∆ f dt t . Then b {n, j} ∈ D(∆ M ), (-∆) (11.10) supp ∆ m b {n, j} ⊂ O B x {n, j} , 7 2 r {n, j} .

m b {n, j} = (λ {n, j} ) -1 c r {n, j} 0 t

  c ′ ) < 4t and x ′ / ∈ Ω j+1 , which means that Mf (x ′ ) ≤ 2 j+1 . Consequently, |t 2 (-∆)e t 2 ∆ f (y)| ≤ 2 j+1 . Hence, (λ {n, j} ) -1 c < ω s ≤ 3δ s .We turn to estimate the integrals over [a s , b s ]. Assume that (λ {n, j} ) -1 c Mf (x ′ ) < 2 j+1 . Note that d(x, x ′ ) < d(x, y) + d(y, x ′ ) < 5t. Consequently, for every t ∈ [a s , b s ], we have

	ωs δs as bs R N ≤ (λ {n, j} ) -1 2 j+1 c R N Ψ t (x, y)χ T {n, j} (t, y)(t 2 (-∆)e t 2 ∆ f )(y) dw(y) R N (λ {n, j} ) -1 c δs Ψ t (x, y)χ T {n, j} (t, y)(t 2 (-∆)e t 2 ∆ f )(y) dw(y) dt t ωs δs R N Ψ t (x, y) dw(y) dt t ≤ C ′ (λ {n, j} ) -1 2 j+1 c ωs δs dt t ≤ Cw(Q {n, j} ) -1 , because 0 bs + m s=1 (11.16) as R N Ψ ωs Ψ	dt t

t (x, y)χ T {n, j} (t, y)(t 2 (-∆)e t 2 ∆ f )(y) dw(y) dt t . Consider the integral over [δ s , ω s ]. Take t ∈ [δ s , ω s ] and y such that the integrant Ψ t (x, y)χ T {n, j} (t, y)(t 2 (-∆)e t 2 ∆ f )(y) = 0. Then (t, y) / ∈ Ωj+1 . Thus, there is x ′ such that d(y, x t (x, y)χ T {n, j} (t, y)(t 2 (-∆)e t 2 ∆ f )(y) dw(y) dt t > 0 By Lemma 11.14 for fixed x ∈ Ω j and s ∈ {1, 2, . . ., m}, either χ T {n, j} (t, y) ≡ 0 for all t ∈ [a s , b s ] and d(x, y) < t or χ T {n, j} (t, y) ≡ 1 for all t ∈ [a s , b s ] and d(x, y) < t. So the letter holds. This gives that for every t ∈ [a s , b s ] and y such that d(x, y) < t, we have (t, y) / ∈ Ωj+1 . So there is x ′ (which depends on (t, y)) such that d(y, x ′ ) < 4t and

  Theorem 11.18. There is a constant C > 0 such that every function f ∈ H 1 max,H can be written as f = λ j a j , where a j are (1, ∞, M)-atoms,|λ j | ≤ C M H f L 1 (dw) .Proof. Recall that f H 1 max,H ∼ f H 1 max,P (seeTheorem 10.26). Take a sequence g n , n = 0, 1, . . ., as in the proof of Theorem 10.26. Then g n ∈ H 1 max,P ∩ L 2 (dw), f =

	∞ n=0 g n , and ∞ n=0 g n H 1 max,P ≤ C f H 1 max,P
	and (11.17) give
	(11.15). Recall that w(Q {n,j} ) ∼ w(B(x {n,j} , 7r {n,j} /2)). Hence, from (11.15), (11.12), (11.9), and (11.10) we deduce Step 5. The proof of Theorem 11.1 is complete.
	Having Lemma 10.21 together with Theorems 11.1 and 10.26 we are in a position to
	complete the proof of the atomic decomposition of H 1 max,H functions. This is stated in the theorem below.

  Remark 13.3. By (10.8) and (13.2) the operator π Ψ maps continuously the space T 2 2 into L 2 (dw).Furthermore, by (10.7), ifF (t, x) = Q t f (x) for f ∈ L 2 (dw), then

	Clearly, by the doubling property,		
	(13.2)	F 2 T 2 2	= AF 2 L 2 (dw) ∼	0	∞	R N	|F (t, y)| 2 dw(y)dt t	.
		AF (x) :=	0	∞	y-x <t	w(B(x, t)) |F (t, y)| 2 dw(y)	t dt	1/2

. Definition 13.1. For 1 ≤ p < ∞ the tent space T p 2 is defined to be T p 2 = {F : F T p 2 := AF L p (dw) < ∞}.

  and (5.8) with m = 3, we have|Q t a(y)| 2 = t(∂ 3 t )(p t (y, z))a 1 (z) dw(z) V (z, y, t + d(z, y)) -1 |a 1 (z)| dw(z) 2 (2 n r) -4 t 2 (2 n r) 2 w(B(x 0 , 2 n r)) -2 a 1 2 L 1 (dw) . , 2 n r)) -2 a 1 2 L 1 (dw) (2 n r) -4 (2 n r) -2 2 -4n w(B(x 0 , 2 n r)) -2 .Estimation for I 2 . In this case t ≥ 2 n r/4, so thanks to (5.8) with m = 3 we have |Q

			2
		d(z, y) -2	t t + d(z, y)
	Consequently,	
	2 n r	
	I 1	t dt w(B(x 0
	0	

t a(y)| 2 = t(∂ 3 t )(p t (y, z))a 1 (z) dw(z) 2 t -2 t t + d(z, y) V (z, y, t + d(z, y)) -1 |a 1 (z)| dw(z)
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Let F = j λ j A j be a T 1 2 atomic decomposition of the function Q t f (x) as it is described in Remark 13.5. In particular, j |λ j | ≤ C Sf L 1 (dw) . Let Ψ be chosen such that ∞ 0 Ψ t Q t dt t forms a Calderón reproducing formula, with Ψ = ∆ M +1 Ψ {1} , where Ψ {1} is a radial C ∞ function supported by B(0, 1/4). By Remark 13.3 we have (13.12)

and the series converges in L 2 (dw). Let B j = B(y j , r j ) be a ball associated with A j .

Then supp

Clearly, supp b j ⊂ O(B(y j , 2r j )). The same argument as in the proof of Lemma 4.11. in [START_REF] Hofmann | Hardy spaces associated to non-negative selfadjoint operators satisfying Davies-Gaffney estimates[END_REF] shows that for every s = 0, 1, 2, . . ., M, the function

is supported by O(B(y j , 2r j )) and its L 2 (w)-norm is bounded by r 2M -2s w(B j ) -1/2 . Thus a j are proportional to (1, 2, M)-atoms. In particular, a j L 1 (dw) ≤ C and, consequently, the series (13.12) converges in L 1 (dw).

To remove the additional assumption f ∈ L 2 (dw) we use Lemma 13.8 together with the fact that P s f ∈ L 2 (dw) for f ∈ L 1 (dw), and apply the same arguments as those in the proofs of Theorems 10.26 and 11.18.