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Sum rules and large deviations for spectral matrix

measures in the Jacobi ensemble

Fabrice Gamboa∗ Jan Nagel† Alain Rouault‡

November 15, 2018

Abstract

We continue to explore the connections between large deviations for objects coming from

random matrix theory and sum rules. This connection was established in [18] for spectral

measures of classical ensembles (Gauss-Hermite, Laguerre, Jacobi) and it was extended to

spectral matrix measures of the Hermite and Laguerre ensemble in [21]. In this paper, we

consider the remaining case of spectral matrix measures of the Jacobi ensemble. Our main

results are a large deviation principle for such measures and a sum rule for matrix measures

with reference measure the Kesten-McKay law. As an important intermediate step, we

derive the distribution of canonical moments of the matrix Jacobi ensemble.

1 Introduction

A probability measure on a compact subset of R or on the unit circle may be encoded by the

sequence of its moments or by the coefficients of the recursion satisfied by the corresponding

orthogonal polynomials. It is however not easy to relate information on the measure, (for example

on its support), with information on the recursion coefficients. Sum rules give a way to translate

between these two languages. Indeed, a sum rule is an identity relating a functional of the
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probability measure, usually in the form of a realative entropy, and a functional of its recursion

coefficients. The ”measure side” of the identity gives the discrepancy between the measure and

a reference measure and the ”coefficient side” gives the discrepancy between the correponding

series of recursion coefficients.

One of the most classical example of such a sum rule is the Szegő-Verblunsky theorem for measures

on the unit circle T, see Chapter 1 of [33]. Here, the reference measure is the uniform measure

on T and the coefficient side involves a sum of functions of the Verblunsky coefficients. The most

famous sum rule for measures on the real line is the Killip-Simon sum rule [27] (see also [33]

Section 3.5). In this case, the reference measure is the semicircle distribution. In [18], we gave

a probabilistic interpretation of the Killip-Simon sum rule (KS-SR) and a general strategy to

construct and prove new sum rules. The starting point is a N × N random matrix XN chosen

according to the Gaussian unitarily invariant ensemble. The random spectral measure µN of this

random matrix is then defined through its moments, by the relation∫
xkdµN = (Xk

N)1,1.

It was shown in [22], that as N tends to infinity, the sequence (µN)N satisfies a large deviation

principle (LDP). The rate function Ic is a functional of the recursion coefficients. Surprinsingly,

this functional is exactly the coefficient side of the KS-SR. Later, in [18], we gave an alternative

proof of this LDP, with a rate function Im that is exactly the measure side of KS-SR. Since a

large deviation rate function is unique, this implies the sum rule identity Ic = Im. Working with

a random matrix of one of the other two classical ensembles, the Laguerre and Jacobi ensemble,

this method leads to new sum rules. Here the reference measures are the Marchenko-Pastur law

and the Kesten-McKay law, respectively [18]. We also refer to recent interesting developments of

the method explored in [2] and [3].

One of the ingredient to prove the LDP in terms of the coefficients is the fact that these coefficients

are independent and have explicit distributions. To be more precise, it has been shown in [14],

that in the Gaussian case the coefficients are independent random variables with normal or

gamma distributions. The Laguerre case has also been considered in [14]. In this last frame, the

convenient encoding is not directly by the recursion coefficients, but by decomposition of them

into independent variables. In [26], a further decomposition is shown for the Jacobi ensemble.

Actually these variables are the Verblunsky coefficient of the measure lifted to the unit circle,

which are sometimes also called canonical moments, see the monograph [10].

A natural extension of scalar measures are measures with values in the space of Hermitian non-

negative definite matrices. There is a rich theory of polynomials orthogonal with respect to such
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a matrix measure, and we refer the interested reader to [34], [15], [16] or [5] and referecences

therein. Surprisingly, sum rule identities also hold in the matrix frame. In [4], a matricial version

of KS-SR is proved (see also Section 4.6 of [33]). In [21], we have extended our probabilistic

method to the matrix case as well, and have proved an LDP for random matrix valued spectral

measures. This p× p measure ΣN is now defined by its matrix moments∫
xkdΣN(x) = (Xk

N)i,j=1,...,p, k ≥ 1,(1.1)

where XN is as before a random N × N matrix and N ≥ p. Using the explicit construction of

random matrices of the Gaussian and Laguerre ensemble, it is possible to derive the distribution

of the recursion coefficients of ΣN , which are now p × p matrices, and prove an LDP for them,

generalizing the results of [14] and [22]. Collecting these two LDPs and different representations

of the rate function, we obtain the matrix sum rule both for Gaussian and Laguerre cases. A

large deviation principle for the coefficients in the matricial Jacobi case, and consequently a new

sum rule, has been open so far.

In this paper, we complete the trio of matrix measures of classical ensembles by addressing the

Jacobi case. We prove an LDP for the spectral matrix measure in Theorem 5.1, which then implies

the new matrix sum rule stated in Theorem 3.1. A crucial ingredient for the proof of Theorem 5.1

is Theorem 4.2, where we derive the distribution of matricial canonical moments of ΣN . Up to our

knowledge, this result is new. Actually, we have to consider for our probabilistic approach certain

Hermitian versions of the canonical moments and we show that these versions are independent

and each distributed as p × p matrices of the Jacobi ensemble, thereby generalizing the results

of [26] to the matrix case. An additional difficulty is that the measures we need to consider are

finitely supported and then are not nontrivial. In this case, many arguments used in the scalar

case cannot be extended directly. The fact that there is still a one-to-one correspondence between

the spectral measure ΣN and its canonical moments might therefore be of independent interest.

Let us explain the main obstacle that so far impeded a large deviation analysis of the coefficients

in the matrix Jacobi case. For the Gaussian or Laguerre ensemble, the distribution of recursion

coefficients can be derived through repeated Householder reflections applied to the full matrix

XN . In the Jacobi case, it seems impossible to control the effect of these tranformation on the

different subblocks of XN . Instead, looking at the scalar case, there are two potential strategies.

First, by identifiying the canonical moments as variables appearing in the CS-decomposition of

XN . In the scalar case, this goes back to [35] and [17]. Any effort to generalize this to a block-CS-

demposition seems to fail due to non-commutativity of the blocks. The other possible strategy is

to follow the path of [26] applying the (inverse) Szegő mapping. This yields a symmetric measure

on the unit circle T. Then apply the Householder algorithm to the corresponding unitary matrix.
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Unfortunately, in the matrix case, the Szegő mapping does not give a good symmetric measure

on T in the matrix case. We refer to Section 4.2 for a discussion of this difficulty. In the present

paper, we obtain the distribution of canonical moments by directly computing the Jacobian of a

compound map. The first application maps support points and weights of ΣN to the recursion

coefficients. Then the recursion coefficients are mapped to a suitable Hermitian version of the

canonical moments. We give two different ways to compute this distribution. One proof follows

by direct calculation. The other one is more subtle. It uses the relation between the canonical

coefficients and the matrix Verblunsky coefficients.

This paper is organized as follows. In Section 2, we first give notations and explain the different

representations for the matrix measures. We also discuss finitely supported matrix measures. In

Section 3, we give our new sum rule. Section 4 is devoted to the set up of probability distributions

of the matrix models and of the canonical moments. This leads in Section 5 to an LDP for the

coeffcient side. Section 6 contains the proof of our three main results, subject to technical lemmas,

whose proofs are postponed to Section 7.

2 Matrix measures and representation of coefficients

All along this paper, p will be a fixed integer. A p × p matrix measure Σ on R is a matrix of

complex valued Borel measures on R such that for every Borel set A ⊂ R the matrix Σ(A) is

nonnegative definite, i.e. Σ(A) ≥ 0. When its k-th moment is finite, it is denoted by

Mk(Σ) =

∫
xkdΣ(x), k ≥ 1,

writing Mk for Mk(Σ) if the measure is clear from context. We keep, as much as possible, the

notations close to those of [21]. All matrix measures in this paper will be of size p × p. Let 1

be the p× p identity matrix and 0 be the p× p null matrix. For every integer n, In denotes the

np × np identity matrix. The set of all matrix measures with support in some set A is denoted

by Mp(A), and we let Mp,1(A) := {Σ ∈ Mp(A) : Σ(A) = 1} denoting the set of normalized

measures.

For the remainder of this section, let Σ ∈ Mp,1(R) have compact support. Such a measure Σ

can be uniquely described by its sequence of moments (M1(Σ),M2(Σ), . . . ). Another particular

convenient set of parameters characterizing the measure is given by the coefficients in the recursion

of orthogonal matrix polynomials, introduced in the following subsection. We will follow largely

the exposition developped in [5]. For matrix measures supported by [0, 1], there exists, just as

in the scalar case, a remarkable decomposition of the recursion coefficients into a set of so-called
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canonical moments. The parametrization of Σ in terms of these canonical moments is one of the

main tools for our probabilistic results.

2.1 Orthogonal matrix polynomials

The (right) inner product of two matrix polynomials f ,g, i.e., polynomials whose coefficients are

complex p× p matrices, is defined by

〈〈f, g〉〉 =

∫
f(x)†dΣ(x) g(x) .

A matrix measure is called nontrivial, if for any non zero polynomial P we have

tr〈〈P, P 〉〉 > 0,(2.1)

see Lemma 2.1 of [5] for equivalent characterizations of nontriviality. Let us first suppose that

Σ is nontrivial. Lemma 2.3 of [5] shows that then 〈〈Q,Q〉〉 is positive definite for any monic

polynomial Q (with leading coefficient 1). We may then apply the Gram-Schmidt procedure to

{1, x1, . . . } and obtain a sequence of monic matrix polynomials Pn, n ≥ 0, where Pn has degree

n and which are orthogonal with respect to Σ, that is, 〈〈Pn, Pm〉〉 = 0 if m 6= n. The polynomials

satisfy the recurrence

(2.2) xPn = Pn+1 + Pnun + Pn−1vn, n ≥ 0,

where, setting

γn := 〈〈Pn, Pn〉〉 ,(2.3)

γn is Hermitian and positive definite, and for n ≥ 1

un = γ−1
n 〈〈Pn, xPn〉〉, vn = γ−1

n−1γn,(2.4)

with v0 = 0. This defines a one-to-one correspondence between the sequence (u0, v1, u2, . . . ) and

the measure Σ.

From the matrix coefficients un, vn, we can then define a sequence of very useful Hermitian

matrices. We first define matrices related to orthonormal polynomials recursion. Let for n ≥ 0

Ãn+1 := γ1/2
n vn+1γ

−1/2
n+1 = γ−1/2

n γ
1/2
n+1,(2.5)

Bn+1 := γ1/2
n unγ

−1/2
n = γ−1/2

n 〈〈Pn, xPn〉〉γ−1/2
n .(2.6)
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Obviously, setting

pn = Pnγ
−1/2
n , n ≥ 0,

defines a sequence of matrix orthonormal polynomials. These polynomials satisfy the recursion

xpn = pn+1Ã†n+1 + pnBn+1 + pn−1Ãn, n ≥ 0),(2.7)

taking p−1 = 0. The matrices Ãn and Bn play the role of matrix Jacobi coefficients in the

following sense. Define the infinite block-tridiagonal matrix

J =


B1 Ã1

Ã†1 B2
. . .

. . . . . .

 .(2.8)

On the space of matrix polynomials, the map f 7→ (x 7→ xf(x)) is a right homomorphism,

represented in the (right-module) basis p0,p1, . . . by the matrix J . Moreover, the measure Σ is

nothing more than the spectral measure of the matrix J defined through its moments by

e∗i

∫
xk dΣ(x)ej = e∗iJej, i, j = 1, . . . , p.

(See for example Theorem 2.11 of [5]).

The matrix Bn is Hermitian and we define the Hermitian square of Ãn by

(2.9) An = ÃnÃn
†

= γ
−1/2
n−1 γnγ

−1/2
n−1 .

Note that An is Hermitian positive definite.

2.2 Measures on [0, 1]

Now suppose that Σ is a nontrivial matrix measure supported by a subset of [0, 1]. We present two

(equivalent) ways to parametrize Σ, extending the corresponding parametrization of the scalar

case. The first one uses the canonical moments, the second one uses the Szegő mapping and

Verblunsky coeffcients.

2.2.1 Encoding via canonical coefficients

Dette and Studden [11] proved the following matrix version of Favard’s Theorem for measures on

[0, 1]: If Σ has support in [0, 1], there exist matrices Un, n ≥ 1, such that the recursion coefficients

defined in (2.2) can may be decomposed as

un = ζ2n+1 + ζ2n, vn = ζ2n−1ζ2n, n ≥ 1,(2.10)
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where ζ0 = 0, ζ1 = U1 and for n > 1

ζn = (1− Un−1)Un .(2.11)

Moreover, Un has the following geometric interpretation. Suppose M1, . . . ,Mn−1 are the first

n− 1 matrix moments of some nontrivial matrix probability measure on [0, 1]. Then there exist

Hermitian matrices M−
n , M+

n , which are upper and lower bounds for the n-th matrix moment.

More precisely, M1, . . . ,Mn are the first n moments of some nontrivial measure with support in

[0, 1], if and only if

M−
n < Mn < M+

n .(2.12)

Here we use the partial Loewner ordering, that is, A > B (A ≥ B) for Hermitian matrices A,B, if

and only if A−B is positive (non-negative) definite. Then, if Mn are the moments of a nontrivial

measure, the following representation holds:

Un = (M+
n −M−

n )−1(Mn −M−
n ) .(2.13)

So that, Un is the relative position of Mn within the set of all possible n-th matrix moments,

given the matrix moments of lower order. For this reason, Un is also called canonical moment.

Let us define

Rn = M+
n −M−

n , Hn = Mn −M−
n ,(2.14)

so that Un = R−1
n Hn. A Hermitian version of the canonical moments can be defined by

Un = R1/2
n UnR

−1/2
n = R−1/2

n HnR
−1/2
n .(2.15)

The matrices Un have been considered previously in [8], to study asymptotics in the random

matrix moment problem. Note that Un and Un are similar and

0 < Un < 1 .

Finally, we remark that M−
n ,M

+
n are continuous functions of M1, . . . ,Mn−1, and that

H2n = γn.(2.16)

2.2.2 Encoding via Szegő mapping

The Szegő mapping is two-one from T = {z ∈ C : |z| = 1} to [−2, 2] defined by

z ∈ T 7→ z + z−1 ∈ [−2, 2] .(2.17)
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This induces a bijection Σ 7→ Sz(Σ) between matrix probability measures on T invariant by

z 7→ z̄ and matrix probability measures on [−2, 2]. On T, a matrix measure is characterized

by the system of its matricial Verblunsky coefficents, ruling the recursion of (right) orthogonal

polynomials. When the measure is invariant, theVerblunsky coefficients (αn)n≥0 are Hermitian

([5] Lemma 4.1) and satisfy 0 < α2
n < 1 for every n.

The Verblunsky coefficients of such a matrix probability measure on T and the Jacobi coefficients

of the corresponding matrix measure on [−2, 2] are connected by the Geronimus relations ([5]

Theorem 4.2). It is more convenient here to consider the matrix measure on [0, 1] denoted by

S̃z(Σ), obtained by pushing forward Sz(Σ) by the affine mapping x 7→ (2− x)/4.

For n ≥ 0, let αn be the Verblunsky coefficient of Σ and Un+1 the Hermitian canonical moment

of S̃z(Σ). Then, the following equality holds:

αn = 2Un+1 − 1 .(2.18)

The correspondance between the two above encodings is proven in [13], Theorem 4.3, for real-

valued matrix measure. The general complex case is considered in [36].

Remark 2.1 In the scalar case, the canonical parameters Un can be identified in the CS decom-

position (see Edelman-Sutton [17]). In the matrix case, this approach does not seem to work, due

to the lack of commutativity.

2.3 Finitely supported measures

When the support of Σ consists of N = np distinct points, then (7.14) cannot be satisfied for

all non zero polynomials and Σ is not nontrivial. However, if (7.14) is satisfied for all non

zero polynomials of degree at most n− 1, then actually 〈〈Q,Q〉〉 is positive definite for all monic

polynomials of degree at most n−1, see Lemma 2.3 in [5]. This implies that we can use the Gram-

Schmidt method to define monic orthogonal polynomials up to degree n. Further, γk = 〈〈Pk, Pk〉〉
is positive definite for k ≤ n− 1. Therefore, the orthogonal polynomials allow also to define the

recursion coefficients u0, . . . , un−1; v1, . . . vn−1. So that, we can construct Ã1, . . . , Ãn−1;B1, . . . ,Bn
as well, with Ãk nonsingular for k = 1, . . . , n − 1. Let us denote by Jn the np × np Hermitian

block matrix of Jacobi coefficients

(2.19) Jn =


B1 Ã1

Ã†1 B2
. . .

. . . . . . Ãn−1

Ã†n−1 Bn

 .
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Let ΣJn denote the spectral measure of Jn, as defined by (1.1). The same calculation as in the

scalar case shows that the first 2n − 1 moments of ΣJn coincide with those of Σ. Since these

matrix moments determine uniquely the recursion coefficients of monic orthogonal polynomials,

the entries of the matrix (2.19) are then also the recursion coefficients of orthonormal polynomials

for ΣJn .

Now, suppose that the support points of Σ lie in [0, 1]. The existence of the canonical moments

is tackled in the following lemma, proved in Section 7. It requires some additional assumption

and is not so obvious.

Lemma 2.2 Suppose Σ ∈ Mp,1([0, 1]) is such that tr〈〈P, P 〉〉 > 0 for all non zero polynomials

of degree at most n− 1. Suppose further Σ({0}) = Σ({1}) = 0. Then, the matrices M−
k ,M

+
k for

k ≤ 2n− 1 still exist and they satisfy M−
k < Mk < M+

k for k ≤ 2n− 1. Moreover, the matrices

Uk = (M−
k −M

+
k )−1(Mk −M−

k ), 1 ≤ k ≤ 2n− 1,(2.20)

are related to the recursion coefficients u0, . . . , un−1; v1, . . . vn−1 of Σ as in (2.10) and (2.11).

Lemma 2.2 implies that we may still define the Hermitian variables U1, . . . ,U2n−1, if the measure

Σ is sufficiently nontrivial. In conclusion, for any measure satisfying the assumptions of Lemma

4.1, we have a one-to-one correspondence between:

• matrix moments M1, . . . ,M2n−1, with M−
k < Mk < M+

k for k = 1, . . . , 2n− 1,

• recursion coefficients B1, . . . ,Bn as in (2.6) and positive definite A1, . . . ,An−1 as in (2.9),

• canonical moments U1, . . . ,U2n−1 as in (2.15), with 0 < Uk < 1 for k ≤ 2n− 1.

3 The Jacobi sum rule

The reference measure for the sum rule in the Jacobi case is the matricial version of the Kesten-

McKay law. In the scalar case, this measure is defined for parameters κ1, κ2 ≥ 0 by

KMK(κ1, κ2)(dx) =
2 + κ1 + κ2

2π

√
(u+ − x)(x− u−)

x(1− x)
1(u−,u+)(x)dx ,

where

u± :=
1

2
+
κ2

1 − κ2
2 ± 4

√
(1 + κ1)(1 + κ2)(1 + κ1 + κ2)

2(2 + κ1 + κ2)2
.(3.1)
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It appears (sometimes in other parametrizations) as a limit law for spectral measures of regular

graphs (see [30]), as the asymptotic eigenvalue distribution of the Jacobi ensemble (see [7]), or in

the study of random moment problems (see [12]). For κ1 = κ2 = 0, it reduces to the arcsine law.

The matrix version is then denoted by

ΣKMK(κ1,κ2) := KMK(κ1, κ2) · 1.(3.2)

The canonical moments of ΣKMK(κ1,κ2) of even/odd order are given by

U2k = Ue :=
1

2 + κ1 + κ2

· 1, U2k−1 = Uo :=
1 + κ1

2 + κ1 + κ2

· 1 .(3.3)

(See [23] Sect. 6 for the scalar case, which can obviously be extended to the matrix case.)

Both sides of our sum rule (Theorem 3.1) will only be finite for measures satisfying a certain

condition on their support, related to the Kesten-McKay law. Let I = [u−, u+]. We define

Sp = Sp(u−, u+) as the set of all bounded nonnegative matrix measures Σ ∈Mp(R) that can be

written as

Σ = ΣI +
N+∑
i=1

Γ+
i δλ+i +

N−∑
i=1

Γ−i δλ−i ,(3.4)

where supp(ΣI) ⊂ I, N−, N+ ∈ N0 ∪ {∞}, Γ±i are rank 1 Hermitian matrices and

0 ≤ λ−1 ≤ λ−2 ≤ · · · < u− and 1 ≥ λ+
1 ≥ λ+

2 ≥ · · · > u+ .

We assume that λ−j converges towards u− (resp. λ+
j converges to u+) whenever N− (resp. N+)

is not finite. An atom outside [α−, α+] may appear several times in the decomposition. Its

multiplicity is the rank of the total matrix weight that is decomposed in a sum of rank 1 matrices.

We also define

Sp,1 = Sp,1(u−, u+) := {Σ ∈ Sp(u−, u+)|Σ(R) = 1} .

Furthermore, the spectral side of the sum rule of Theorem 3.1 involves the relative entropy with

respect to the central measure. If Σ has the Lebesgue decomposition

Σ(dx) = h(x)ΣKMK(dx) + Σs(dx),(3.5)

with h positive p × p Hermitian and Σs singular with respect to ΣKMK, then we define the

Kullback-Leibler distance of ΣKMK with respect to Σ as

K(ΣKMK |Σ) = −
∫

log deth(x)ΣKMK(dx) .
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Let us remark that if K(ΣKMK |Σ) is finite, then h is positive definite almost everywhere on I,

which implies that Σ is nontrivial. Conversely, if Σ is trivial, then K(ΣKMK |Σ) is infinite.

Finally, for the contribution of the outlying support points, we define two functionals

F+
J (x) =


∫ x

u+

√
(t− u+)(t− u−)

t(1− t)
dt if u+ ≤ x ≤ 1,

∞ otherwise.

(3.6)

Similarly, let

F−J (x) =


∫ u−

x

√
(u− − t)(u+ − t)

t(1− t)
dt if 0 ≤ x ≤ u−,

∞ otherwise.

(3.7)

We are now able to formulate our main result consisting in a sum rule for the matrix Jacobi case.

Theorem 3.1 For Σ ∈ Sp,1(u−, u+) a nontrivial measure with canonical moments (Uk)k≥1, we

have

K(ΣKMK |Σ) +
N+∑
i=1

F+
J (λ+

i ) +
N+∑
i=1

FJ(λ−i ) =
∞∑
k=1

Ho(U2k+1) +He(U2k)(3.8)

where, for a matrix U satisfying 0 ≤ U ≤ 1,

He(U) := −(log detU − log detUe)− (1 + κ1 + κ2) (log det(1− U)− log det(1− Ue)) ,

Ho(U) := −(1 + κ1) (log detU − log detUo)− (1 + κ2) (log det(1− U)− log det(1− Uo)) ,

(3.9)

and where both sides may be infinite simultaneously. If Σ /∈ Sp,1(u−, u+), the right hand side

equals +∞.

Remark 3.2 The arguments on the right hand side of the sume rule are the canonical moments

as they appear in the decomposition of recursion coefficients in (2.10) and (2.11). For some

applications, it might be more convenient to work with the Hermitian version as defined in (2.15).

Indeed, since He,Ho are invariant under similarity transforms, the value of the right hand side

does not change when the Hermitian canonical moments Uk are considered.

We also point out that for trivial measures, Uk or 1 − Uk will be singular for some k and then

the right hand side equals +∞ (see also Theorem 5.1). Since in this case the Kullback-Leibler

divergence equals +∞ as well, the equality in Theorem 3.1 is also true for trivial matrix measures.

11



As in previous papers, an important consequence of this sum rule a system of equivalent conditions

for finiteness of both sides. It is a gem, as defined by Simon in [33] p.19. The following statement

is the gem implied by Theorem 3.1. We give equivalent conditions on the matrices Uk and the

spectral measure, which characterize the finiteness of either side in the sum rule identity. The

following corollary is the matrix counterpart of Corollary 2.6 in [18]. It follows immediately from

Theorem 3.1, since

F±J (u± ± h) =
2
√
u+ − u−

3u±(1− u±)
h3/2 + o(h3/2) (h→ 0+)

and, for H similar to a Hermitian matrix,

He(Ue +H) =
(2 + κ1 + κ2)2(κ1 + κ2)

2(1 + κ1 + κ2)
trH2 + o(||H||2),

Ho(Uo +H) =
(2 + κ1 + κ2)2(κ2 − κ1)

2(1 + κ1)(1 + κ2)
trH2 + o(||H||2),

as ||H|| → 0, where || · || is any matrix norm.

Corollary 3.3 Let Σ be a nontrivial matrix probability measure on [0, 1] with canonical moments

(Uk)k≥1. Then for any κ1, κ2 ≥ 0,

∞∑
k=1

[
tr(U2k−1 − Uo)2 + tr(U2k − Ue)2

]
<∞(3.10)

if and only if the three following conditions hold:

1. Σ ∈ Sp,1(u−, u+)

2.
∑N+

i=1(λ+
i − u+)3/2 +

∑N−

i=1(u− − λ−i )3/2 <∞ and additionally, if N− > 0, then λ−1 > 0 and

if N+ > 0, then λ+
1 < 1.

3. Writing the Lebesgue decomposition of Σ as in (3.5), then∫ u+

u−

√
(u+ − x)(x− u−)

x(1− x)
log det(h(x))dx > −∞.

4 Randomization: Classical random matrix ensembles

and their spectral measures

To prove the sum rule of Theorem 3.1 by our probabilistic method, we start from some ran-

dom Hermitian matrix XN of size N = np. The random spectral measure ΣN associated with
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(XN ; e1, . . . , ep), is defined through its matrix moments:

Mk(Σn)i,j = e†iX
k
Nej, k ≥ 0, 1 ≤ i, j ≤ p,(4.1)

where e1, . . . , eN is the canonical basis of CN . From the spectral decomposition of XN , we see

that the matrix measure ΣN is

ΣN =
N∑
j=1

vjv
†
jδλj ,(4.2)

where the support is given by the eigenvalues of XN and vj is the projection of a unitary eigen-

vector corresponding to the eigenvalue λj on the subspace generated by e1, . . . , ep. A sum rule

is then a consequence of two LDPs for the sequence (ΣN)n, the first one when the measure is

encoded by its support and the weight, as in (4.2), and the second one when the measure is

encoded by its recursion coefficients. The two following questions are therefore crucial:

• What is the joint distribution of (λ1, . . . , λN ; v1, . . . , vN)?

• What is the distribution of the matricial recursion or canonical coefficients?

The answer to the first question is now classical (see [31] or [1]), when XN is chosen according to

a density (the joint density of all real entries, up to symmetry constaint) proportional to

exp
(
−NtrV (X)),(4.3)

for some potential V . In this case, the eigenvalues follow a log-gas distribution and independently,

the eigenvector matrix is Haar distributed on the unitary group. In [21], the authors considered

such general potentials and proved an LDP using the encoding by eigenvalues and weights. For

XN distributed according to the Hermite and Laguerre ensemble, it is also possible to answer the

second question and derive the LDPs in both encodings. Remarkably, the recursion coefficients in

the Hermite case are independent and are p× p matrices of the Hermite and Laguerre ensemble.

In the Laguerre case, Hermitian version of the matrices ζk as in (2.10) are Laguerre-distributed.

In this section, we give the answer to the second question, when XN is a matrix of the Jacobi

ensemble. We first introduce all classical ensembles.

4.1 The classical ensembles: GUE, LUE, JUE

We denote by N (0, σ2) the centered Gaussian distribution with variance σ2 > 0. A random

variable X taking values in HN , the set of all Hermitian N×N matrices, is distributed according

13



to the Gaussian unitary ensemble GUEN , if all real diagonal entries are distributed as N (0, 1) and

the real and imaginary parts of off-diagonal variables are independent and N (0, 1/2) distributed

(also called complex standard normal distribution). All entries are assumed to be independent

up to symmetry and conjugation. The random matrix X has then a density as in (4.3) with

V (x) = 1
2
x2. The joint density of the (real) eigenvalues λ = (λ1, . . . , λN) of X is

gG(λ) = cHr ∆(λ)2

N∏
i=1

e−λ
2
i /2.(4.4)

where

∆(λ) =
∏

1≤i<j≤N

|λi − λj|

is the Vandermonde determinant.

By analogy with the scalar χ2 distribution, the Laguerre ensemble is the distribution of the

”square” of Gaussian matrices. More precisely, if a is a nonnegative integer and if G denotes a

N × (N + a) matrix with independent complex standard normal entries, then X = GG† is said

to be distributed according to the Laguerre ensemble LUEN(N + a). Its density (on the set H+
N

of positive definite Hermitian matrices) is proportional to

(detX)a exp
(
− 1

2
trX

)
.

The eigenvalues density in this case is

gL(λ) = cLN,a∆(λ)2

N∏
i=1

λai e
−λi1{λi>0}.(4.5)

For a, b nonnegative integers, let L1 and L2 be independent matrices distributed according to

LUEN(N + a) and LUEN(N + b), respectively. Then the Jacobi ensemble JUEN(a, b) is the

distribution of

X = (L1 + L2)−1/2L1(L1 + L2)−1/2.(4.6)

Its density on the set of Hermitian N ×N matrices satisfying 0 < X < IN is proportional to

detXa det(IN −X)b.(4.7)

The density of the eigenvalues (λ1, . . . , λN) is then given by

gJ(λ) = cJN,a,b|∆(λ)|2
N∏
i=1

λai (1− λi)b1{0<λi<1}.(4.8)
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By extension we will say that X is distributed according to JUEN(a, b), if it has density (4.7),

for general real parameters a, b ≥ 0.

As mentioned above, in all three cases the eigenvector matrix is independent of the eigenvalues and

Haar distributed on the group of unitary matrices. As a consequence, the matrix weights in the

spectral measure (see (4.2)) have a distribution which is a matrical generalization of the Dirichlet

distribution. Let us denote the distribution of (v1v
†
1, . . . , vNv

†
N) by DN,p. It was shown in [24],

that this distribution may be obtained as follows: Let z1, . . . , zN be random vectors in Cp, with

all coordinates independent complex standard normal distributed and set H = z1z
†
1 + · · ·+ z1z

†
1.

Then we have the equality in distribution(
v1v

†
1, . . . , vNv

†
N

) d
=
(
H−1/2z1z

†
1H
−1/2, . . . , H−1/2zNz

†
NH

−1/2
)
.(4.9)

Using this representation, we can prove the following useful lemma, which shows that although

our random spectral measures are finitely supported and thus not nontrivial, it is still possible

to define the first recursion coefficients or canonical moments.

Lemma 4.1 Let N = np and ΣN be a random spectral measure as in (4.2). We assume that

there are almost surely N distinct support points and that the weights are DN,p distributed and

independent of the support points. Then, with probability one, for all nonzero matrix polynomials

P of degree at most n− 1,

tr〈〈P, P 〉〉 > 0.

4.2 Distribution of coefficients

In the following, let N = np. If ΣN is a spectral matrix measure of a matrix XN ∼ GUEN , then,

almost surely, the N support points of ΣN are distinct and none of them equal 0 or 1. By Lemma

4.1 and the discussion in Section 2.3, ΣN may be encoded by its first 2n − 1 coefficients in the

polynomial recursion. It is known that then the random matrices B1, . . . ,Bn,A1, . . . ,An−1 are

independent and

Ak ∼ LUEp((N − k)p), Bk ∼ GUEp .

For the Laguerre ensemble, the spectral measure is supported by [0,∞) and then a decomposition

as in (2.10) still holds, where now Hermitian versions of ζ1, . . . , ζ2n−1 are distributed according to

the Laguerre ensemble of dimension p with appropriate parameter. These results may be seen in

[21], Lemma 6.1 and 6.2. They are extensions of the scalar results of Dumitriu-Edelman [14] and

their proofs are in [19]. Since therein they are formulated in a slightly different way, we clarify
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the arguments in the Hermite case when we prove Theorem 4.2 below. It is one of our main

results, and shows that in the Jacobi case, the matricial canonical moments are independent and

again distributed as matrices of the Jacobi ensemble.

Theorem 4.2 Let ΣN be the random spectral matrix measure associated with the JUEN(a, b)

distribution. Then, the Hermitian canonical moments U1, . . . ,U2n−1 are independent and for

k = 1, 2, . . . , n− 1,

U2k−1 ∼ JUEp(p(n− k) + a, p(n− k) + b), U2k ∼ JUEp(p(n− k − 1), p(n− k) + a+ b)

(4.10)

and U2n−1 ∼ JUEp(a, b).

The Jacobi scalar case was solved by Killip and Nenciu [26]. They used the inverse Szegő mapping

and actually considered the symmetric random measure on T as the spectral measure of (U ; e1)

where U is an element of SO(2N) and e1 is the first vector of the canonical basis. This measure

may be written as

µ =
N∑
k=1

wk (δeiθk + δe−iθk ) .

Under the Haar measure, the support points (or eigenvalues) have the joint density proportional

to

∆(cos θ1, . . . , cos θN)2

and the weights are Dirichlet distributed. This induces for the pushed forward eigenvalues a

density proportional to

∆(λ)2

N∏
i=1

λ
−1/2
i (1− λi)−1/2

Then they used a ”magic relation” to get rid of the factor
∏
λ
a−1/2
i (1− λi)b−1/2.

If we consider the matricial case, i.e. if we sample U according to the Haar measure on SO(2Np)

with (p ≥ 2), the matrix spectral measure of (U ; e1, . . . , ep) is now

Σ =
N∑
k=1

(wkδeiθk + w̄kδe−iθk ) ,

the eigenvectors of conjugate eigenvalues being conjugate of each other. Unfortunately, this

measure is symmetric (i.e. invariant by z 7→ z̄) only in the scalar case p = 1, which prohibits the

use of the Szegő mapping. To find the distribution of the canonical moments, we have to follow
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another strategy. First, we will use the explicit relation between the distribution of eigenvalues

and weights and the distribution of the recursion coefficients, when sampling the matrix in the

Gaussian ensemble. Then we will compute the Jacobian of the mapping from recursion coefficients

to canonical moments using the representation in terms of moments as in (2.15).

5 Large deviations

In order to be self-contained, let us recall the definition of a large deviation principle. For a

general reference on large deviation statements we refer to the book [6] or to the Appendix D of

[1].

Let E be a topological Hausdorff space with Borel σ-algebra B(E). We say that a sequence (Pn)

of probability measures on (E,B(E)) satisfies the large deviation principle (LDP) with speed an

and rate function I : E → [0,∞] if:

(i) I is lower semicontinuous.

(ii) For all closed sets F ⊂ E: lim sup
n→∞

1

an
logPn(F ) ≤ − inf

x∈F
I(x)

(iii) For all open sets O ⊂ E: lim inf
n→∞

1

an
logPn(O) ≥ − inf

x∈O
I(x)

The rate function I is good if its level sets {x ∈ E| I(x) ≤ a} are compact for all a ≥ 0. We

say that a sequence of E-valued random variables satisfies an LDP if their distributions satisfy

an LDP.

It was shown in Theorem 3.2 of [21], that the sequence of matrix spectral measures ΣN of the

Jacobi ensemble JUEN(κ1N, κ2N) satisfies an LDP with speed N and good rate function equal

to the left hand side of the sum rule in Theorem 3.1. The LDP for the coefficient side is given in

the following theorem. Its proof is independent of the one given in [21].

Theorem 5.1 Let ΣN be a random spectral matrix measure of the Jacobi ensemble

JUEN(κ1N, κ2N), with κ1, κ2 ≥ 0 and N = pn. Then the sequence (ΣN)N satisfies the LDP

in Mp,1([0, 1]), with speed N and good rate function

IJ(Σ) =
∞∑
k=1

Ho(U2k−1) +He(U2k)(5.1)

for nontrivial Σ, where Ho and He are defined in (3.9) and Uk, k ≥ 1 are the canonical moments

of Σ. If Σ is trivial, then IJ(Σ) = +∞.
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The following lemma shows an LDP for the Jacobi ensemble of fixed size. It is crucial in proving

the LDP for the canonical moments and consequently Theorem 5.1.

Lemma 5.2 For α, α′ > 0 suppose that Xn ∼ JUEp(αn + a, α′n + b). Then (Xn)n satisfies the

LDP in the set of Hermitian p× p matrices, with speed n and good rate function Iα,α′ where

Iα,α′(X) = −α log detX − α′ log det(1−X) + pα log
α

α + α′
+ pα′ log

α′

α + α′
(5.2)

for 0 < X < 1 and Iα,α′(X) =∞ otherwise.

The proof of Lemma 5.2 makes use of the explicit density and follows as Proposition 6.6 in [20].

6 Proof of the main results

In this section we prove our three main results in the order of their dependence. First, Theorem

4.2provides the distribution of the canonical moments for the Jacobi ensemble, then Theorem

5.1 shows the LDP for the spectral measure of the Jacobi ensemble, and finally Theorem 3.1

establishes the sum rule for the Jacobi case. For these three proofs, we use the result of all our

technical lemmas, whose proofs are postponed to Section 7.

6.1 Proof of Theorem 4.2

The starting point is the spectral measure

ΣN =
N∑
i=1

viv
†
iδλi ,(6.1)

when the distribution of (λ, v) = (λ1, . . . , λnp, v1, . . . vnp) is the probability measure proportional

to (
∆(λ)2

N∏
i=1

λai (1− λi)b1{0<λi<1}dλj

)
dDN,p(v).(6.2)

We need to calculate the pushforward of this measure under the mapping (λ, v) 7→ U =

(U1, . . . ,U2n−1) to the Hermitian canonical moments. By Lemma 4.1 and Lemma 2.2 this is well-

defined and the canonical moments satisfy 0 < Uk < 1. The first step will be the computation of

the pushforward under the mapping (λ, v) 7→ (A,B), when (A,B) := (A1, . . . ,An−1,B1, . . . ,Bn)
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are the Hermitian recursion coefficients as defined in (2.6) and (2.9). This can be done by consid-

ering the corresponding change of measure in the Gaussian case, that is, when ΣN is the spectral

measure of a GUEN -distributed matrix with distribution proportional to(
∆(λ)2

N∏
i=1

e−
1
2
λ2i dλj

)
dDN,p(v).(6.3)

As mentioned in Section 4, the correspondence in the Gaussian case was investigated in [21].

Lemma 6.1 therein shows that the spectral matrix measure ΣN is also the spectral matrix measure

of the block-tridiagonal matrix

Ĵn =


D1 C1

C1 D2
. . .

. . . . . . Cn−1

Cn−1 Dn

 ,(6.4)

where Ck, Dk are Hermitian and independent, with Dk ∼ GUEp and Ck is positive definite with

C2
k ∼ LUEp(p(n−k)). This implies that the Hermitian recursion coefficients Bk and Ak are given

by Bk = Dk and Ak = C2
k , respectively. That is, the pushforward of the measure (6.3) under the

mapping (λ, v) 7→ (A,B) is the measure proportional to(
n∏
k=1

exp

(
−1

2
trB2

k

)
dBk

)(
n−1∏
k=1

(detAk)p(n−k−1) exp

(
−1

2
trAk

)
dAk

)
.(6.5)

Here and in the following, dM denotes the Lebesgue measure in each of the functionally inde-

pendent real entries of a Hermitian matrix M . Since

trĴ2
n =

n∑
k=1

trB2
k +

n−1∑
k=1

trAk =
N∑
j=1

λ2
j ,

we conclude that the pushforward of the measure(
∆(λ)2

N∏
i=1

1{0<λi<1}dλi

)
dDN,p(w)(6.6)

by the mapping (λ, w) 7→ (A,B) is, up to a multiplicative constant, the measure(
n−1∏
k=1

(detAk)p(n−k−1)dAk

)
n∏
k=1

dBk .(6.7)
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Note that an indicator function is omitted in (6.7), (ensuring that the spectral measure is sup-

ported by (0, 1)). This indicator function will appear in the condition 0 < Uk < 1, but it does

not play a role in the following arguments.

Now two steps are remaining. First, we need to compute the pushforward of (6.7) under the

mapping (A,B) 7→ U := (U1, . . . ,U2n−1). Second, to express the prefactor
∏np

i=1 λ
a
i (1 − λi)

b in

(6.2) in terms of U . This is summarized in the two following technical lemmas, whose proofs are

in Section 7.3 and 7.4, respectively.

Lemma 6.1 The pushforward of the measure (6.7) by the mapping (A,B) 7→ U is, up to a

multiplicative constant, the measure(
n−1∏
k=1

det((1− U2k−1)U2k−1)p(n−k)dU2k−1

)(
n−1∏
k=1

det(1− U2k)
p(n−k) det(U2k)

p(n−k)dU2k

)
(6.8)

Lemma 6.2

np∏
i=1

(1− λi) =
2n−1∏
k=1

det(1− Uk),
np∏
i=1

λi =
n∏
k=1

detU2k−1

n−1∏
k=1

det(1− U2k) .(6.9)

Gathering these results we see that the pushforward of the measure (6.2) by the mapping (λ, w) 7→
U is, again up to a multiplicative constant,

n∏
k=1

det(U2k−1)p(n−k)+a det(1− U2k−1)p(n−k)+b

n−1∏
k=1

det(U2k)
p(n−k−1) det(1− U2k)

p(n−k)+a+b

2n−1∏
k=1

dUk.

(6.10)

That is, the canonical moments are independent and

U2k−1 ∼ JUEp(p(n− k) + a, p(n− k) + b), U2k ∼ JUEp(p(n− k − 1), p(n− k) + a+ b) .

This ends the proof. 2

6.2 Proof of Theorem 5.1

Let ΣN be the spectral measure of a JUEN(κ1N, κ2, N) distributed matrix, with N = np and

κ1, κ2 ≥ 0. By Lemma 4.1 and Lemma 2.2, the first 2n−1 canonical moments U
(N)
k 1 ≤ k ≤ 2n−1

and their Hermitian versions U (N)
k , 1 ≤ k ≤ 2n − 1 are well-defined. They are elements of the

space

Qj =
{

(H1, . . . , H2j−1)|Hj ∈ Hp and 0 ≤ Hj ≤ 1 for all j
}
.(6.11)
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Let us define the sequence

U (N) =
(
U (N)

1 , . . . ,U (N)
2n−1,0, . . .

)
,(6.12)

as a random element of

Q∞ =
{

(H1, H2, . . . )|Hj ∈ Hp and 0 ≤ Hj ≤ 1 for all j
}
,(6.13)

which we endow with the product topology. By Theorem 4.2,

U (N)
2k−1 ∼ JUEp(p(n− k) + κ1np, p(n− k) + κ2np)

for 1 ≤ k ≤ n, and then we apply Lemma 5.2, to conclude that the sequence (U (N)
2k−1)n satisfies

the LDP in Q1 with speed n and good rate function Ip+pκ1,p+pκ2 . If we instead consider the LDP

at speed N , the rate function becomes

p−1Ip+pκ1,p+pκ2(U) = −(1 + κ1) log det(U)− (1 + κ2) log det(1− U)

+ p(1 + κ1) log
1 + κ1

2 + κ1 + κ2

+ p(1 + κ2) log
1 + κ1

2 + κ1 + κ2

,

where the right hand side is interpreted as +∞, if we do not have 0 < U < 1. Recalling (3.3)

and (3.9), we see that p−1Ip+pκ1,p+pκ2 = Ho. Turning to the canonical moments of even index,

Theorem 4.2 gives,

U (N)
2k ∼ JUEp(p(n− k − 1), p(n− k) + κ1np+ κ2np)

for 1 ≤ k ≤ n − 1. Then Lemma 5.2 yields the LDP for (U (N)
2k )n in Q1 with speed N and good

rate function p−1Ip,p+pκ1+pκ2 , satisfying

p−1Ip,p+pκ1+pκ2(U) = − log det(U)− (1 + κ1 + κ2) log det(1− U)

+ p log
1

2 + κ1 + κ2

+ p(1 + κ1 + κ2) log
1 + κ1 + κ2

2 + κ1 + κ2

= He(U).

Since the canonical moments are independent, we get for any j ≥ 1, that (U (N)
1 , . . . ,U (N)

2j−1)n≥j

satisfies the LDP in Qj with speed N and good rate function

I(j)(U1, . . . ,U2j−1) = Ho(U1) +He(U2) + · · ·+Ho(U2j−1).

We can now apply the projective method of the Dawson-Gärtner Theorem (see Theorem 4.6.1 in

[6]). It yields the LDP for the full sequence U (N) in Q∞, with speed N and good rate function

I∞(U1,U2, . . . ) = sup
j≥1
I(j)(U1, . . . ,U2j−1) =

∞∑
k=1

Ho(U2k−1) +He(U2k).(6.14)
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This rate function is finite only if 0 < Uk < 1 for all k. In particular, the set where it is finite is

a subset of the space

Q̂∞ = {H|0 < H < 1}N ∪
∞⋃
j=1

(
{H|0 < H < 1}2j−1 × {0}N

)
.(6.15)

We also have U (N) ∈ Q̂∞ for all n, see (6.12). It follows from Lemma 4.1.5 in [6], that U (N) also

satisfies the LDP in Q̂∞, with speed N and good rate function the restriction of I∞ to this space.

Then, we define the mapping ψ : Q̂∞ → Mp,1([0, 1]) as follows. If U ∈ Q̂∞ is such that

0 < Uk < 1 for all k, there is a unique nontrivial Σ ∈ Mp,1([0, 1]), such that Σ has Hermitian

canonical moments U , and we define ψ(U) = Σ. If U is such that 0 < U2j−1 < 1, but Uk = 0 for

k > 2j − 1, we use the correspondence from Section 2.3: then there are moments M1, . . . ,M2j−1

with M−
k < M+

k for k ≤ 2j − 1, and we define ψ(U) as the spectral measure of the block Jacobi

matrix Jj as in (2.19), constructed with these moments. That is, ψ(U) is the unique spectral

measure of such a Jacobi matrix with first canonical moments U1, . . . ,U2j−1. Then Un → U
implies that the block-Jacobi matrix of ψ(Un) converges entrywise to the block-Jacobi matrix of

ψ(U), where the latter one is extended by zeros if U has less nonzero matricial entries than Un.

This implies that the moments of ψ(Un) converge to the moments of ψ(U). Since the convergence

of moments of matrix measures on the compact set [0, 1] implies weak convergence, the mapping

ψ is continuous.

To end the proof, we now apply the contraction principle (Theorem 4.2.1 in [6]). We have

ψ(U (N)) = ΣN , and as ψ is continuous, the sequence (ΣN)n satisfies the LDP inMp,1([0, 1]) with

speed N and good rate function

IJ(Σ) = inf
U :ψ(U)=Σ

I∞(U).(6.16)

This infimum is infinite, unless Σ is nontrivial, and in this case it is given by I∞ evaluated at the

unique sequence of canonical moments of Σ. 2

6.3 Proof of Theorem 3.1

Let ΣN be the random spectral matrix measure of a matrix with distribution JUEN(κ1N, κ2N),

with κ1, κ2 ≥ 0, and suppose N = np. This distribution corresponds to a random matrix with

potential

V (x) = −κ1 log(x)− κ2 log(1− x),(6.17)
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see (4.3). In the scalar case p = 1, the equilibrium measure (the minimizer of the Voiculescu

entropy or the limit of ΣN) is given by KMK(κ1, κ2), see [18], p. 515. For this potential,

the assumptions (A1), (A2) and (A3) in [21] are satisfied, with matrix equilibrium measure

ΣV = ΣKMK(κ1,κ2) and then by Theorem 3.2 of that paper, the sequence (ΣN)n satisfies the LDP

in Mp,1(R) with speed N and good rate function

IV (Σ) = K(ΣKMK(κ1,κ2) |Σ) +
N+∑
i=1

F+
V (λ+

i ) +
N+∑
i=1

F−V (λ−i )(6.18)

for Σ ∈ Sp,1(u−, u+), and IV (Σ) = +∞ otherwise. Here, the functions F±V are given by

F+
V (x) =

JV (x)− infξ∈R JV (ξ) if u+ ≤ x ≤ 1,

∞ otherwise,
(6.19)

F−V (x) =

JV(x)− infξ∈R JV (ξ) if 1 ≤ x ≤ u−,

∞ otherwise,
(6.20)

where JV is the effective potential

V (x)− 2

∫
log |x− ξ| dKMK(κ1, κ2)(ξ).

On the one hand, as discussed in Proposition 3.2 of [18] (see also the references therein), for V

in (6.17), we have F±V = F±J , (see (3.7) and (3.6)). That is, the rate function IV is precisely the

left hand side of the sum rule in Theorem 3.1.

On the other hand, as shown in Theorem 5.1, the sequence (ΣN)n satisfies the LDP with speed

N and good rate function IJ . Since a large deviation rate function is unique, we get for any

Σ ∈Mp,1([0, 1]) the identity

IV (Σ) = IJ(Σ) ,

which is the sum rule of Theorem (3.1). 2

7 Proof of the technical lemmas

7.1 Proof of Lemma 2.2

The following statements are true for general nonnegative matrix measures Σ ∈ Mp([0, 1]) that

are not necessarily normalized. Let us denote the n-th moment space of nonnegative matrix
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measures on [0, 1] by

Mp,n =
{

(M0(Σ), . . . ,Mn(Σ))|Σ ∈Mp([0, 1])
}
⊂ Hn+1

p .(7.1)

A comprehensive study of this matrix moment space and the relation between canonical moments

and recursion coefficients has been addressed in [11]. Indeed, Theorem 2.7 therein shows that if

(M0, . . . ,M2n−1) lies in the interior of Mp,2n−1, then the upper and lower bound for Mk satisfies

M−
k < Mk < M+

k for 1 ≤ k ≤ 2n− 1, and then the canonical moments

Uk = (M−
k −M

+
k )−1(Mk −M−

k ), 1 ≤ k ≤ 2n− 1(7.2)

are well defined. Theorem 4.1 of [11] shows that the recursion coefficients u0, . . . , un−1; v1, . . . vn−1

of Σ satisfy the decomposition as in (2.10) and (2.11). Therefore, the statement of Lemma 2.2 fol-

lows once we show that for a measure Σ satisfying the assumption of the lemma, (M0, . . . ,M2n−1)

is in the interior of the moment space Mp,2n−1. Since this result may be of independent interest,

we formulate it as a lemma.

Lemma 7.1 Let Σ ∈Mp([0, 1]) such that

tr〈〈P, P 〉〉 > 0(7.3)

for all matrix polynomials P of degree at most n− 1. Then (M0, . . . ,M2n−3) is in the interior of

the moment space Mp,2n−3. If additionally Σ({0}) = Σ({1}) = 0, then (M0, . . . ,M2n−1) is in the

interior of the moment space Mp,2n−1.

By the above lemma, there are two sufficient conditions for the existence of the first 2n − 1

canonical moments: either (7.3) is satisfied for all polynomials up to degree n, or it holds for

polynomials up to degree n − 1 and the additional assumption Σ({0, 1}) = 0 is satisfied. If the

condition (7.3) fails for some polynomial of degree n, then atoms at the boundary can indeed

cause the moments to be more ”extremal”. This can be made more precise in the scalar case, for

which we refer to [9], Theorem 1.2.5 and Definition 1.2.10. Suppose µ is a scalar measure on [0, 1]

with n support points, then any nonzero polynomial with degree less than n has positive L2(µ)-

norm, but there is a polynomial of degree n with vanishing norm. Then the first 2n− 3 moments

will be in the interior of the moment space. On the other hand, the fact that (M0, . . . ,M2n−1) lies

in the boundary of the moment space is actually equivalent to the fact that {0, 1} has positive

mass. If both 0 and 1 are in the support of µ, then already (M0, . . . ,M2n−2) lies at the boundary

of the moment space. If exactly one support point is equal to 0 or 1, then the first 2n−2 moments

are interior, but the first 2n − 1 ones are not. If the support contains 0, then M2n−1 = M−
2n−1,
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whereas 1 in the support implies M2n−1 = M+
2n−1. The two versions of µ are then called the

lower and upper principal representation of (M0, . . . ,M2n−2), respectively. In the matrix case,

the boundary of Mp,2n−1 has a more complicated structure and there is no such equivalence.

Proof of Lemma 7.1: We again refer to [11]. Lemma 2.3 says that (M0, . . . ,Mm) is an element of

Mp,m if and only if, for all matrices A0, . . . , Am, such that Q(x) = Amx
m+ · · ·+A0 is nonnegative

definite for all x ∈ [0, 1], we have

tr
m∑
k=0

AkMk ≥ 0.(7.4)

Note that the case Am = 0 is also included. Furthermore, (M0, . . . ,Mm) is an interior point

of Mp,m if and only if, for all A0, . . . , Am for which such Q is nonnegative definite on [0, 1] and

nonzero, we have

tr
m∑
k=0

AkMk > 0.(7.5)

Theorem 2.5 of [11] shows that if the degree of Q is even, say 2`, then such a polynomial can be

written as

Q(x) = B1(x)B1(x)† + x(1− x)B2(x)B2(x)†,(7.6)

where B1 and B2 are matrix polynomials of degree ` and ` − 1, respectively. If the degree of Q

is equal to 2`− 1, then

Q(x) = xB1(x)B1(x)† + (1− x)B2(x)B2(x)†,(7.7)

with B1, B2 of degree ` − 1. Let Σ ∈ Mp([0, 1]) with Mk the k-th moment of Σ. If m = 2` and

Am 6= 0, then, using the decomposition (7.6),

tr
m∑
k=0

AkMk = tr

∫
Q(x)dΣ(x)

= tr

∫
B1(x)B1(x)†dΣ(x) + tr

∫
x(1− x)B2(x)B2(x)†dΣ(x)

= tr

∫
B(x)†1dΣ(x)B1(x) + tr

∫
x(1− x)B2(x)†dΣ(x)B2(x)

= tr 〈〈B1, B1〉〉+ tr 〈〈pB2, B2〉〉,(7.8)

where p(x) = x(1− x).
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A similar calculation can be made if m = 2`−1 and Am 6= 0. Together with the characterizations

of the moment space by (7.4) and (7.5), this implies that for any Σ ∈ Mp([0, 1]) and matrix

polynomial B

tr 〈〈qB,B〉〉 ≥ 0,(7.9)

when q(x) is the scalar polynomial 1, x, 1−x or x(1−x). Furthermore, the first 2m−1 moments

of Σ are in the interior of the moment space Mp,2m−1, if

tr 〈〈qB,B〉〉 > 0,(7.10)

whenever B is nonzero and such that the degree of q(x)B(x)B(x)† is at most 2m−1. We remark

that this is actually equivalent to the criterion given in [11] and stated in terms of Hankel matrices.

Now suppose that Σ is such that tr〈〈P, P 〉〉 > 0 for all nonzero polynomials P of degree at most

n− 1. We show that then (7.10) is satisfied whenever the degree of qBB† is at most 2n− 3. For

q(x) = 1 this is trivially true. In the other cases,

tr 〈〈qB,B〉〉 = tr 〈〈qB, qB〉〉+ tr 〈〈qB, (1− q)B〉〉.(7.11)

Since qB has degree at most n − 1, the first inner product on the right hand side of (7.11) is

positive by assumption. The second one is nonnegative by (7.4), since q(1−q)BB† is nonnegative

definite on [0, 1]. This proves that (M0, . . . ,M2n−3) is in the interior of Mp,2m−1.

Now assume Σ({0, 1}) = 0, we show that then (7.10) is satisfied whenever qBB† has degree at

most 2n − 1 and B is nonzero. In this case, B is of degree at most n − 1, and tr〈〈B,B〉〉 is

positive. Using that Σ has no mass at 0, 1,

tr 〈〈B,B〉〉 = lim
ε→0

tr

∫ 1−ε

ε

B(x)†dΣ(x)B(x),(7.12)

and then there exists a ε > 0, such that the integral on the right hand side is positive. Since

q(x) ≥ ε(1− ε) on [ε, 1− ε], and
∫
A
B(x)†dΣB(x) is always nonnegative definite,

tr 〈〈qB,B〉〉 ≥ tr

∫ 1−ε

ε

q(x)B(x)†dΣ(x)B(x) ≥ ε(1− ε) tr

∫ 1−ε

ε

B(x)†dΣ(x)B(x),(7.13)

which gives a positive lower bound. 2

7.2 Proof of Lemma 4.1

Let us begin by noting that if z1, . . . , zN are random vectors in Cp, independent and complex

standard normal distributed, then almost surely, any p of these vectors span Cp. This implies
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that almost surely, H = z1z
†
1 + · · ·+ zNz

†
N has full rank. Consider such a realization and let

P (x) = Cn−1x
n−1 + · · ·+ C1x+ C0

be a matrix polynomial of degree at most n− 1. We have

tr〈〈P, P 〉〉 = tr
N∑
i=1

P (λi)
†viv

†
iP (λi) =

N∑
i=1

v
†
iP (λi)

†P (λi)vi =
N∑
i=1

||P (λi)vi||2.

Suppose that tr〈〈P, P 〉〉 = 0, then the above calculation shows that for all i, vi is in the kernel of

P (λi). We may rewrite this in matrix form by saying that

WP = 0,(7.14)

where P is np× p with P† = (C0, . . . , Cn−1), and W is np× np with

W =


v
†
1 v

†
1λ1 · · · v

†
1λ

n−1
1

v
†
2 v

†
2λ2 · · · v

†
2λ

n−1
2

...
...

. . .
...

v†np v†npλnp · · · v†npλ
n−1
np

 .

Now, we show that W is nonsingular, so that the only solution to (7.14) is P = 0, that is, P is the

zero polynomial. Let H be the np× np block-diagonal matrix with blocks H1/2 on the diagonal,

then H is nonsingular. The matrix Z = WH has the same structure as W, except that vi is

replaced by zi. We use an argument similar to what has been done in the proof of Lemma 2.2 in

[24]. Conditionally on the eigenvalues, the determinant of Z is a polynomial in the np2 entries

of z1, . . . , znp. Since they are all independent standard Gaussians, they have a joint density and

then either det(Z) is 0 with probability 0 or it is the zero polynomial. Let us fix zkp+i = ei for

k = 0, . . . n− 1, i = 1, . . . , p, where e1, . . . , ep is the canonical basis of Cp. In this case,

Z =



e†1 e†1λ1 · · · e†1λ
n−1
1

e†2 e†2λ2 · · · e†2λ
n−1
2

...
...

. . .
...

e†p e†pλp · · · e†pλ
n−1
p

e†1 e†1λp+1 · · · e†1λ
n−1
p+1

...
...

. . .
...

e†p e†pλnp · · · e†pλ
n−1
np


.(7.15)
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By reordering rows and columns, this matrix may be transformed into the block diagonal matrix

Z̃ with n× n Vandermonde-blocks,

Z̃ =



1 λ1 · · · λn−1
1

1 λp+1 · · · λn−1
p+1

...
...

...

1 λ(n−1)p+1 · · · λn−1
(n−1)p+1

. . .

1 λp · · · λn−1
p

1 λ2p · · · λn−1
2p

...
...

...

1 λnp · · · λn−1
np



,(7.16)

which has determinant

det(Z̃) =

p∏
k=1

∏
1<j<n

(λjp+k − λip+k).(7.17)

Since the λi are almost surely disjoint, the matrix Z̃ is almost surely non-singular, which implies

that W is almost surely nonsingular. 2

7.3 Proof of Lemma 6.1

We have to compute the Jacobian determinant of the mapping (A,B) 7→ U . We will do this by

using the moments as intermediate variables. Let us begin by noting that un−1, U2n−1 depend on

M1, . . . ,M2n−1, but not on any higher moments and vn, U2n depend only on M1, . . . ,M2n. Since

for the similarity transforms in Section 2 we used only matrices depending on moments of strictly

lower order, the same statements can by made for the Hermitian versions, where Bn,U2n−1 depend

on M1, . . . ,M2n−1 and An,U2n depend on M1, . . . ,M2n. We have in particular

∂(B,A)

∂M
:=

∂(B1,A1, . . . ,Bn)

∂(M1, . . . ,M2n−1)
=

∂B1

∂M1

× ∂A1

∂M2

× · · · × ∂Bn
∂M2n−1

.(7.18)

Here, we denote by ∂F (M)
∂M

the Jacobian determinant of the mapping F : Hp → Hp, seen as

a mapping of all the p2 functionally independent real entries of a matrix in Hp, and with the

straightforward generalization to mappings with several such matricial coordinates, see [28]. In

particular, Theorem 3.5 in [28] shows that for nonsingular A,

∂(AMA†)

∂M
= det(A)2p.(7.19)
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Recall that

Ak = H
−1/2
2k−2H2kH

−1/2
2k−2 , Bk = H

−1/2
2k−2〈〈xPk−1, Pk−1〉〉H−1/2

2k−2(7.20)

and H2k = M2k −M−
2k depends only on M1, . . . ,M2k (see (2.16)). Then by (7.19),

∂Ak
∂M2k

= det(H2k−2)−p ,
∂Bk

∂M2k−1

= det(H2k−2)−p .(7.21)

Putting these together, we get that (7.18) is given by

∂(B,A)

∂M
= det(H2n−2)−p

n−1∏
k=1

det(H2k−2)−2p.(7.22)

To end this first step, we need to evaluate

∂U
∂M

:=
∂(U1, . . . ,U2n−1)

∂(M1, . . . ,M2n−1)
=

∂U1

∂M1

× · · · × ∂U2n−1

∂M2n−1

.(7.23)

where we have by (2.15)

∂Uk
∂Mk

=
∂
(
R
−1/2
k HkR

−1/2
k

)
∂Mk

= det(Rk)
−p(7.24)

and then

∂U
∂M

=
2n−1∏
k=1

det(Rk)
−p .(7.25)

Putting together (7.22) and (7.25), we have shown that

∂(B,A)

∂U
= det(H2n−2)−p

n−1∏
k=1

det(H2k−2)−2p

2n−1∏
k=1

det(Rk)
p.(7.26)

To express this in terms of the canonical moments, we use

Rk = Rk−1(1− Uk−1)Uk−1, Hk = RkUk ,

(see [11] formulas (2.19) and (2.16)). Taking determinants, we obtain

detRk =
k−1∏
j=1

det(1− Uj) detUj, detH2k−2 = detR2k−2 detU2k−2 .(7.27)
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We gather (7.26) and (7.27), to obtain that the pushforward of the measure (6.7) by the mapping

(A,B) 7→ U has, up to a multiplicative constant, the density

n−1∏
k=1

det(Ak)p(n−k−1) det(H2n−2)−p
n−1∏
k=1

det(H2k−2)−2p

2n−1∏
k=1

det(Rk)
p

=
n−1∏
k=1

det(H2k−2)−p(n−k−1) det(H2k)
p(n−k−1) det(H2n−2)−p

n−1∏
k=1

det(H2k−2)−2p

2n−1∏
k=1

det(Rk)
p

=
n−1∏
k=1

det(H2k−2)−p(n−k) det(H2k)
p(n−k−1)

n∏
k=1

det(H2k−2)−p
2n−1∏
k=1

det(Rk)
p

=
n∏
k=1

det(H2k−2)−p
2n−1∏
k=1

det(Rk)
p,(7.28)

where for the second line we used (7.20), and then observe the telescopic product of the deter-

minants of Hk.

It remains to express (7.28) in terms of the canonical moments. It’s time to use (7.27) to get

n∏
k=1

det(H2k−2)−p
2n−1∏
k=1

det(Rk)
p =

n−1∏
k=1

det(R2k)
−p det(U2k)

−p
2n−1∏
k=1

det(Rk)
p

=
n−1∏
k=1

det(U2k)
−p

n∏
k=1

det(R2k−1)p

=
n−1∏
k=1

det(U2k)
−p

n∏
k=1

2k−2∏
i=1

det(1− Ui)p det(Ui)p

=
n−1∏
k=1

det(U2k)
−p

n−1∏
k=1

det((1− U2k−1)U2k−1(1− U2k)U2k)
p(n−k)

=
n−1∏
k=1

det((1− U2k−1)U2k−1)p(n−k)

n−1∏
k=1

det(−U2k)
p(n−k) det(U2k)

p(n−k).(7.29)

This ends the proof of Lemma 6.1. 2

7.4 Two proofs of Lemma 6.2

It follows from Lemma 2.1 of Duran, Lopez-Rodriguez [15], that the eigenvalues of Jn are precisely

the zeros of the n-th polynomial orthogonal with respect to Σ. The quadrature formula of Sinap,

van Assche [34] implies that the zeros of this polynomial are equal to the support of the spectral
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measure. As a consequence,

det(Jn) =

np∏
i=1

λi, det(I − Jn) =

np∏
i=1

(1− λi).(7.30)

In view of (7.30) we have to prove that

det(In − Jn) =
2n−1∏
k=1

det(1− Uk), det Jn =

(
n∏
k=1

detU2k−1

)(
n−1∏
k=1

det(1− U2k)

)
.(7.31)

We give two proofs. The first one is matricial, using a recursion of Schur complements and the

second one is based on the Szegő mapping and matrix polynomials on the unit circle.

7.4.1 First proof

Using the Schur complement formula (see Theorem 1.1 in [25]),

det(In − Jn) = det(In−1 − Jn−1) det
(
1− Bn − (0, . . . , 0, Ã†n−1)(In−1 − Jn−1)−1(0, . . . , Ã†n−1)†

)
= det(In−1 − Jn−1) det

(
1− Bn − Ã†n−1[(In−1 − Jn−1)−1]n−1,n−1Ãn−1

)
= det(In−1 − Jn−1) det(ϕn),(7.32)

where we wrote [A]i,j for the p× p sub-block in position i, j and we define

ϕn = γ−1/2
n

(
1− Bn − Ã†n−1[(In−1 − Jn−1)−1]n−1,n−1Ãn−1

)
γ1/2
n

= γ−1/2
n

(
1− γ1/2

n un−1γ
−1/2
n − γ1/2

n γ
−1/2
n−1 [(In−1 − Jn−1)−1]n−1,n−1γ

−1/2
n−1 γ

1/2
n

)
γ1/2
n

=
(
1− un−1 − γ−1/2

n−1 [(In−1 − Jn−1)−1]n−1,n−1γ
−1/2
n−1 γn

)
=
(
1− un−1 − γ−1/2

n−1 [(In−1 − Jn−1)−1]n−1,n−1γ
1/2
n−1vn−1

)
.(7.33)

Recall the non-Hermitian recursion coefficients un, vn have been defined in (2.2) and (2.4). Using

again the formula of Schur complements (see Theorem 1.2 in [25]),

[(In−1 − Jn−1)−1]n−1,n−1 =
(
1− Bn−1 − (0, . . . , 0, Ã†n−2)(In−2 − Jn−2)−1(0, . . . , Ã†n−2)†

)−1

=
(
1− Bn−1 − Ã†n−2[(In−2 − Jn−2)−1]n−2,n−2Ãn−2

)−1

= γ
1/2
n−1ϕ

−1
n−1γ

−1/2
n−1 .(7.34)

We see that ϕn satisfies the recursion

ϕ1 = 1− u0, ϕn = 1− un−1 − ϕ−1
n−1vn−1, n ≥ 2.(7.35)
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Let us write Vk = 1− Uk. Then we claim that the solution to this recursion is given by

ϕn = V2n−2V2n−1.(7.36)

We prove (7.36) by induction. For n = 1, we have by (2.10)

ϕ1 = 1− u0 = 1− ζ1 = 1− U1 = V1,(7.37)

which agrees with (7.36) since V0 = 1. Then,

ϕn+1 = 1− un − ϕ−1
n vn

= ϕ−1
n [ϕn − ϕn(ζ2n + ζ2n+1)− ζ2n−1ζ2n]

= ϕ−1
n [V2n−2V2n−1 − V2n−2V2n−1(V2n−1U2n + V2nU2n+1)− V2n−2U2n−1V2n−1U2n]

= ϕ−1
n V2n−2

[
V2n−1 − V 2

2n−1U2n − V2n−1V2nU2n+1 − U2n−1V2n−1U2n

]
.(7.38)

In the last line, we write U2n−1V2n−1U2n = V2n−1U2n − V 2
2n−1U2n for the last term, which then

cancels the second term in the brackets and leads to

ϕn+1 = ϕ−1
n V2n−2 [V2n−1 − V2n−1V2nU2n+1 − V2n−1U2n]

= ϕ−1
n V2n−2V2n−1 [1− V2nU2n+1 − U2n]

= ϕ−1
n ϕn [V2n − V2nU2n+1]

= V2nV2n+1.(7.39)

This proves (7.36). We may then calculate recursively for (7.32)

det(In − Jn) = det(In−1 − Jn−1) detϕn = det(ϕ1 . . . ϕn),

so that

det(In − Jn) =
2n−1∏
k=1

detVk =
2n−1∏
k=1

det(1− Uk) =
2n−1∏
k=1

det(1− Uk) .(7.40)

For the computation of det Jn, we make use of a decomposition proven in Lemma 2.1 of [21].

There exists a block bi-diagonal matrix Zn, such that Jn = ZnZ
†
n and (see the proof in [19]), the

block Dk in position k, k of Zn satisfies

det(Dk) = det(ζ2n−1)1/2.(7.41)

Then, this implies

det Jn = (detZn)2 =
n∏
k=1

(detDk)
2 =

n∏
k=1

det ζ2k−1

= (detU1)(detV2) · · · (detU2n−2)(detV2n−2)(detU2n−1),(7.42)

which gives the second identity in (7.31). 2
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7.4.2 Second proof of Lemma 6.2 via Szegő’s mapping

It was tempting to extend to the matrix case the method used in the scalar one for the Jacobi

ensemble. The main steps use successively:

• the inverse Szegő mapping to turn the problem on [0, 1] into a problem on the unit circle,

• the correspondence between orthogonal polynomials on the unit circle and on the real line,

• the Szegő recursion for polynomials on the unit circle.

To begin with, we transfer the measure on [0, 1] to a measure on [−2, 2] by the mapping x 7→ 2−4x.

The new Jacobi matrix Ĵn is deduced from the original matrix Jn by

Ĵn = 2In − 4ΩJnΩ ,(7.43)

where Ω is a diagonal matrix with alternating blocks ±1’s on the diagonal.

Let P̂0, . . . , P̂n be the monic orthogonal polynomials associated with Ĵn. From [5] Section 2.9

(with reference in particular to [15] and [34])

det P̂n(z) = det(zIn − Ĵn),(7.44)

so that

det P̂n(z) = det ((z − 2)In + 4ΩJnΩ) = 4np det

(
z − 2

4
In + Jn

)
(7.45)

and in particular,

det Jn = 4−np det P̂n(2), det(In − Jn) = (−4)−np det P̂n(−2) .(7.46)

We refer to the definition of the Szegő mapping given in Section 2.2.2. In this Section, we write

ΣR for a matrix measure on the real line and denote by ΣT = S̃z
−1

(ΣR) the preimage under the

Szegő mapping. The correspondence between polynomials orthogonal with respect to ΣT and

with respect to ΣR is ruled by the following theorem (see Proposition 1 in [37]). It is the matrix

version of a famous theorem due to Szegő [29]. Since the notations are slightly different from the

usual ones, we rewrite the proof in Section 7.4.3.

Theorem 7.2 (Yakhlef-Marcellán) Let ΣR ∈ Mp,1([−2, 2]) be a nontrivial matrix measure

and denote by ΣT = S̃z(ΣT) the symmetric measure on T obtained by the Szegő mapping.
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If P̂n is the n-th right monic orthogonal polynomial for ΣR and Φ2n the 2n-th right monic orthog-

onal polynomial1 for ΣT, then

P̂n(z + z−1) =
[
z−nΦ2n(z) + znΦ2n(z−1)

]
τ−1
n ,(7.47)

where

τ n := 1 + Φ2n(0) = 1− κ2n−1α2n−1(κ2n−1)−1(7.48)

with

κk =
(
ρ0 . . .ρk−1

)−1
, ρj = (1−α2

j)
1/2 .

From (7.46) and (7.48) we deduce taking z = ±1,

P̂n(±2) = 2(±1)nΦ2n(±1)τ−1
n ,(7.49)

hence

det P̂n(±2) = 2p det(1−α2n−1)−1(±1)np det Φ2n(±1) .(7.50)

Recall that the recursion formula expressed for the monic polynomials on the unit circle, in this

particular case, is

zΦk(z)−Φk+1(z) = zkΦk(z
−1)κkαkκ

−1
k(7.51)

(see (3.11) in [5]), so that

Φ2n(1) =
2n−1∏
j=0

(
1− κjαjκ

−1
j

)
, Φ2n(−1) =

2n−1∏
j=0

(
1 + (−1)jκjαjκ

−1
j

)
and then

det Φ2n(1) =
2n−1∏
j=0

det (1−αj) , det Φ2n(−1) =
2n−1∏
j=0

det
(
1 + (−1)jαj

)
.(7.52)

These relations are the matrix extension of Lemma 5.2 of [26]. Coming back to (7.46) and (7.50),

we get

det(Jn) = 2−(2n−1)p

2n−2∏
j=0

det(1−αj), det(In − Jn) = 2−(2n−1)p

2n−2∏
j=0

det(1 + (−1)jαj).(7.53)

The connection with the canonical moments follows then from (2.18). Note that this identity

still holds if Σ is not nontrivial, as long as 0 < Uk < 1, or equivalently −1 < αk−1 < 1.

1The right monic OP for ΣT are obtained by applying Gram-Schmidt to {1, z1, . . . }.
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7.4.3 Proof of Theorem 7.2

In the scalar case, the proof is given in [32] Theorem 13.1.5 or in [33] Theorem 1.9.1, with

references therein. In the matrix case, one can follow the same scheme.

Since ΣT is invariant, the Verblunsky coefficients are Hermitian (see Lemma 4.1 in [5]). The

matrix Laurent polynomial z−nΦ2n(z) + znΦ2n(z−1) is invariant by z 7→ z−1. Hence there exists

a matrix polynomial Q̃n of degree n, such that

z−nΦ2n(z) + znΦ2n(z−1) = Q̃n(z + z−1) ,(7.54)

(see for instance Lemma 13.4.2 in [33]). Collecting terms with highest degrees, we have

Q̃n(z + z−1) =
(
zn + z−n

)
τ n + · · ·

and then

Q̃n(z + z−1)τ−1
n = Qn(z + z−1)(7.55)

where now Qn(x) is a monic polynomial of degree n. Now, let us check that the Q̃k (hence Qk)

are orthogonal polynomials for ΣR. First notice that

Q̃k(z + z−1) = z−k
(
Φ2k(z) + z2kΦ2k(z

−1)
)
.

From the Szegő mapping and (7.55), orthogonality of Q̃n and Q̃r (for n 6= r) with respect to ΣR

is equivalent to orthogonality (with respect to ΣT) of Φ2n(z) + z2nΦ2n(z−1) and H where

H(z) = zn−r
[
Φ2r(z) + z2rΦ2r(z

−1)
]
,

which is a polynomial of degree n+ r without constant term. By definition, Φ2n is orthogonal to

zj1 for all j = 0, . . . , 2n− 1. Besides, z2nΦ2n(z−1) is (right) orthogonal to zj1 for j = 1, . . . , 2n.

Indeed, ∫ [
z2nΦ2n(z̄)

]†
dΣT(z)zj =

∫
Φ2n(z̄)†dΣT(z)zj−2n

=

∫
Φ2n(z)†dΣT(z)z2n−j

(by invariance of ΣT) and this last integral is 0 for 1 ≤ j ≤ 2n due to the orthogonality of Φ2n

with polynomials of degree at most 2n− 1.

One can then conclude that Φ2n(z) + z2nΦ2n(z−1) is orthogonal to zk for 1 ≤ k ≤ 2n − 1, and

so to H. Summarizing, the Qn’s are the monic polynomials orthogonal with respect to ΣR, and

then P̂n = Qn for every n, or in other words, by (7.54) and (7.55)

P̂n(z + z−1) =
[
z−nΦ2n(z) + znΦ2n(z−1)

]
τ−1
n .(7.56)

2
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[33] B. Simon. Szegő’s theorem and its descendants. M. B. Porter Lectures. Princeton University

Press, Princeton, NJ, 2011.

[34] A. Sinap and W. Van Assche. Orthogonal matrix polynomials and applications. J. Comput.

Appl. Math., 66(1-2):27–52, 1996.

[35] B. Sutton. Computing the complete CS decomposition. Numerical Algorithms, 50(1):33–65,

2009.

[36] J. Wagener. Matrixwertige kanonische Momente auf dem Einheitskreis und ihre Anwendun-

gen in der Stochastik. PhD thesis, Ruhr-Universität Bochum, 2010.

[37] H.O. Yakhlef and F. Marcellán. Orthogonal matrix polynomials, connection between re-

currences on the unit circle and on a finite interval. In Approximation, optimization and

mathematical economics (Pointe-à-Pitre, 1999), pages 369–382. Physica, Heidelberg, 2001.

38


	Introduction
	Matrix measures and representation of coefficients
	Orthogonal matrix polynomials
	Measures on [0,1]
	Encoding via canonical coefficients
	Encoding via Szego mapping

	Finitely supported measures

	The Jacobi sum rule
	Randomization: Classical random matrix ensembles and their spectral measures
	The classical ensembles: GUE, LUE, JUE
	Distribution of coefficients

	Large deviations
	Proof of the main results
	Proof of Theorem 4.2
	Proof of Theorem 5.1
	Proof of Theorem 3.1

	Proof of the technical lemmas
	Proof of Lemma 2.2
	Proof of Lemma 4.1
	Proof of Lemma 6.1
	Two proofs of Lemma 6.2
	First proof
	Second proof of Lemma 6.2 via Szego's mapping
	Proof of Theorem 7.2



