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Abstract—For a long time, researchers have worked on defining different metrics able to characterize the importance of nodes in static
networks. Recently, researchers have introduced extensions that consider the dynamics of networks. These extensions study the
time-evolution of the importance of nodes, which is an important question that has yet received little attention in the context of temporal
networks. They follow different approaches for evaluating a node’s importance at a given time and the value of each approach remains
difficult to assess. In order to study this question more in depth, we compare in this paper a method we recently introduced to three
other existing methods. We use several datasets of different nature, and show and explain how these methods capture different notions
of importance.We also show that in some cases it might be meaningless to try to identify nodes that are globally important. Finally, we
highlight the role of inactive nodes, that still can be important as a relay for future communications.

Index Terms—centrality, network dynamics, temporal paths, node importance
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1 INTRODUCTION

Scientists studying complex networks have been inter-
ested for a long time in the question of evaluating the
importance of a node. This has led to the introduction of
several measures of importance, such as for instance degree,
closeness or betweenness centrality, Eigenvector centrality
or Katz centrality, or PageRank.

Many centrality measures are based on the study of
paths in the network. In this approach, a node will be
important if the paths from it to other nodes are short in
average, or if it lies on the shortest paths between sev-
eral pairs of nodes. One motivation is that links can act
as a dissemination medium for an information spreading
on the network. For instance, individuals can exchange
information when they communicate, or a message can be
forwarded from computer to computer until it reaches its
destination.

Researchers started to focus on static networks first as
they represent many real-world situations, such as protein
interaction networks or food chain networks, among others.
However, other cases of interest include temporal aspects,
such as email exchanges between individuals occurring at
different points in time. Such networks were first analyzed
and modeled statically for the sake of simplicity but this
representation induces a strong loss of information. Indeed,
in the case of path based centralities, the order of links is
completely lost and paths that do not respect time exist in
the time-aggregated version of a dataset. To observe this,
consider the toy example of Figure 1. This small network
composed of five nodes evolves during four distinct time
steps. By discarding the temporal aspect and aggregating
all links into a single network, we can observe that a path
from a to e exists although no transmission between a and
e is possible in the temporal network.

This has led to a stream of works aiming at under-
standing and modeling these dynamics. In particular, in the
case of centrality, some works have been concerned with
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Fig. 1: A small example of a dynamic network. The links
existing at time t = 1 are shown on the top left corner, the

ones existing at t = 2 in the top right corner, and so on, and
the aggregated network is shown last.

efficiently updating the centrality values of the nodes when
a change occurs in the network. In many cases however,
the time scale at which the network evolves is the same as
the one at which a dissemination phenomena may occur on
the network. This is the case for instance when a disease
propagates among individuals when they are in contact, or
when information is disseminated by emails.
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One very important point concerning centrality in dy-
namic networks is that while paths change during the
network time span so does the importance of nodes. Con-
sider again the toy example of Figure 1. One can see that,
intuitively, the importance of node b is stronger at time t = 1
than at time t = 3. Indeed, at time t = 1 it forms a bridge
between node a and nodes c and d, thanks to the link that
exist at t = 2. This is in contrast with its situation at time
t = 3 where it cannot be used as a relay anymore.

Several works have introduced extensions of centrality
notions for the case of dynamic networks. In this paper, we
study four such extensions proposed in the literature. We
compare these extensions on several datasets from which
we conclude that:

1) perception of the importance of a node strongly
depends on the centrality metric used, raising the
question of the desired characteristics of a dynamic
centrality metric;

2) the dynamic of the network might be such that it
is meaningless to identify nodes which are more
important than others;

3) metrics react differently to the different natures of
datasets;

4) a node can be inactive (i.e. not have any links) at a
given time, yet be highly important as it may serve
as a relay for future communications.

This work is organized as follows. First we present in
Section 2 the existing work related to the notion of centrality
in static and dynamic networks. We present in details the
four methods we study here in Section 3, before providing
our methodology of comparison in Section 4. We present
the datasets we use for the comparison in Section 5 and the
results we obtained in Section 6 before concluding the paper
in Section 7.

2 RELATED WORK

Many papers have studied the importance of nodes in static
networks, i.e. networks that don’t evolve with time. Among
the metrics that have been introduced, one may cite the
degree centrality, closeness centrality [1], betweenness cen-
trality [2] and the Katz [3] and eigenvector centralities [4],
[5]. Closeness and betweenness centralities are based on
shortest paths, while the Katz centrality takes into account
paths of all lengths between two nodes.

Some papers which have studied dynamic networks
have been concerned with efficiently computing the static
centrality at all times. For instance, Kas et al. [6] propose
an algorithm that, given distances between all pairs of
nodes and given a network change (edge appearance of
disappearance), computes the new centrality measure by
updating the distance values rather than computing them
all from scratch again. This is relevant, e.g. in contexts
where the network evolves at a much slower scale than the
one on which a dissemination takes place.

One of the first methods attempting to account for the
evolution of temporal networks is the snapshot method. In
this approach, the network timeline is divided into several
periods, and all nodes and links that exist in this period are

aggregated into a snapshot network; each snapshot is then
analyzed separately using a static metric. Uddin et al. [7]
propose a framework that, given a static centrality measure,
computes it for each period. This method proves to be better
than a static analysis. Another approach [8] studies the dy-
namicity of nodes. The authors introduce two metrics which
quantify the change in importance and presence of a node
in a dynamic network. This approach is subtly but really
different from a study of the time evolution of a node’s
importance. Braha et al. [9] also use the snapshot approach.
However, in addition to detecting important nodes, they
detect cycles as well. Similarly Tang et al. [10] consider the
same aggregation while keeping the edge order in each
snapshot. They are thus more accurate as they only take into
account paths that are temporally possible. All in all, the
inconvenience of these aggregation variants remain: each
centrality value represents the centrality for a period rather
than an exact instant, leading to information loss.

In many contexts, the dissemination phenomenon in the
network happens on the same time scale as the network
evolution. It then becomes necessary to consider temporal
paths [11], [12], i.e. link sequences that are time-respecting.
For instance, in the dynamic network of Figure 1, there is a
temporal path from node a to node c going through the link
(a, b) at t = 1 and the link (b, c) at time t = 2.

Several definitions of temporal paths have been studied
in the literature. Some of them can be computed more
easily than others. Whitbeck et al. [13] propose an efficient
algorithm to approximate the existence of paths in the most
difficult case and show that the notion of reachability (i.e.
which nodes can be reached from which nodes, and at which
times in the network’s time span) provides enlightening
insight on the network’s dynamics.

Notions of centrality taking into account temporal paths
have also been introduced. Nicosia et al. [14] introduce the
notions of temporal closeness and betweenness centralities.
However, their definition of a shortest path considers only
paths whose starting point is at the beginning of a dataset’s
time span.

Scholtes et al. [15], [16] introduced another approach
to take into account all temporal paths. They introduced
a higher order aggregation where each node represents a
possible temporal path. In addition, they introduce several
temporal centrality definitions, including a temporal cen-
trality that represents a node’s importance at each instant,
which is, however, too costly to compute except for small
examples.

Another approach consists in depicting the dynamic
network as a static network [17], [18], by creating one copy
of each node for every instant, and linking two consecutive
copies of the same node by a (directed) link. This repre-
sentation allows to consider temporal paths while using
classical centrality metrics. However, using this represen-
tation is computationally expensive and remains unfeasible
particularly for highly active datasets.

Various other propositions acknowledge that the dis-
tances between nodes, and therefore, nodes’ importance,
vary with time [9], [12], [19], [20], [21], [22]. However,
in practice, they still represent the varying importance of
a node by a single value that is supposed to represent
its overall importance throughout the network global time
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span.
Several papers introduce and study variants of the Katz

or eigenvector centralities [23], [24]. Among those, Lerman
et al. [25] acknowledge the fact that a node’s importance
may evolve with time, but no systematic study is conducted.
Moreover, their variant relies on parameters defining what
is to be considered as relevant path lengths and path dura-
tion, which complicates the analysis. Fenu et al. [26] explore
the different methods for representing a dynamic network
as a block matrix where each column/row corresponds to a
pair composed of a node and a time instant. They propose
a method to construct such a block matrix that allows to
compute dynamic centrality metrics in an efficient way.
Taylor et al. [27] introduce such a block matrix (that they
call supra-centrality matrix) and study the corresponding
eigenvector centrality.

Finally, Costa et al. [28] notice that not all time instants
are equivalent in a dynamic network, and introduce
the notion of time centrality. This measures how fast a
dissemination process can reach a significant portion of the
nodes at a given time t. However, this notion is global and
does not describe the importance of individual nodes in the
dissemination process.

All in all, several papers acknowledge the fact that the
temporal evolution of networks impact the value of cen-
trality measures and propose variations of standard metrics
to account for the dynamics. However, and to the best of
our knowledge, very few analysis of the difference between
these methods have been performed. This paper intends
precisely to contribute in this direction, by comparing four
different methods that evaluate the importance of a node
based on different criteria.

3 TEMPORAL CENTRALITY DEFINITIONS

In this section we present the four methods that we will
compare in the rest of the paper.

3.1 Temporal Closeness
The first method was previously presented in [29]. A dy-
namic network G = (V,E) consists of a set V of nodes 1 and
a set E of timed links of the form (u, v, t) where u, v ∈ V
and t is a timestamp. Throughout the paper we consider
networks as undirected, i.e. a link (u, v, t) is equivalent to a
link (v, u, t).

A temporal path in a dynamic network consists of:

• a starting time ts, and
• a sequence of links

(v0, v1, t0), (v1, v2, t1), . . . , (vk, vk+1, tk)

such that:

1) for all i, i = 0..k − 1, ti < ti+1,
2) t0 > ts.

We say that such a path is a path from v0 to vk+1 starting
at time ts. Its duration is equal to tk − ts. We say that a path
from u to v starting at time ts is a shortest path if it has the
least duration among all paths from u to v starting at time

1. We assume that the set of nodes does not evolve with time.

ts. We define the (temporal) distance from u to v at time ts
to be the duration of a shortest path from u to v starting at
ts, and we denote it by dts(u, v). If there is no path from u
to v starting at time ts, we consider that dts(u, v) =∞.

Note that a path starting at time ts might imply waiting
times at all nodes, including the first one, in the same way
that a person starting a train trip with connections at a given
time must wait for the train in the first station, and then at
each connecting station.

If we consider the dynamic network of Figure 1, there is
a temporal path from b to d starting at time t = 1. The path
consists of the links (b, c, 2) and (c, d, 4) and its duration is
3. The temporal distance from b to d at time 1 is therefore
d1(b, d) = 3 (there is no path that starts at time 1 and arrives
earlier).

We recall that the closeness of a node u in a non-evolving
network is defined as [1]:∑

v 6=u

1

d(u, v)
,

where d(u, v) is the classical graph distance.
Similarly, we define the temporal closeness of a node u at

time t as:
Ct(u) =

∑
v 6=u

1

dt(u, v)
.

Note that the strict definition of Ct(u) requires to com-
pute the value for each time instant t. For obvious compu-
tational reasons (one of the dataset we use in this study is
a record spanning 3 years), we only compute the temporal
closeness for each node every I seconds. The value of I
is equal to the median of inter-link duration (i.e. the time
separating two consecutive links)2. We argue that this fixed
frequency is precise enough to get an accurate information
when compared to computing the temporal closeness at
every second.

3.2 Closeness Snapshot
The second method was proposed by Uddin et al. [7]. In
this framework, a temporal network Gt is represented as a
sequence of static networks (snapshots), each to be analyzed
separately. Each static network is the aggregation of all the
links in a given period and all the snapshots represent peri-
ods of equal duration. Given a static centrality measure for
each snapshot (such as the classical definition of closeness),
the framework computes this centrality for all nodes.

Note that for the comparison with the temporal closeness
presented above, we consider the closeness value of a node
is the same every I seconds in a given snapshot. We denote
this method by SnapshotCl.

3.3 Temporal Eigenvector
The third method was presented by Taylor et al. [27]. They
represent temporal networks as a supra-centrality matrix of
size NT × NT , where N is the number of nodes and T
is the number of considered time periods. This matrix con-
tains one static centrality matrix (for example an ordinary

2. The program we used to compute the metrics is publicly avail-
able [30].
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A > B = C = D = E > F︸ ︷︷ ︸
centrality Relation

=⇒ 5 1 1 1 1 0︸ ︷︷ ︸
ranks

Fig. 2: An example of inverse competition ranking.

adjacency matrix for the eigenvector centrality) for each
time period. These matrices are placed on the diagonal of
the supra-centrality matrix. Other links are added to couple
these centrality matrices with each other. The dominant vec-
tor of this supra-centrality matrix would give the centrality
for each node i at each time t.

In the following, we call this method Temporal Eigenvec-
tor. We will consider that each period has a duration of I
seconds.

3.4 Coverage Centrality
The fourth method was presented by Takaguchi et al. [17].
It represents a temporal network as a static network where
each temporal node consists of a pair composed of a node
(of the original network) and a time instant. Consecutive
pairs of the form (u, t1) and (u, t2) sharing a same node
u are linked, and temporal links between nodes u and v
at time t are represented by two links: one from (u, t) to
(v, t + 1), and the symmetric link. This allows to represent
temporal networks statically while keeping the temporal
order between the links. Building on this representation,
the authors introduce two centrality notions. First, temporal
coverage centrality represents the importance of a temporal
node (u, t) by the fraction of pairs of nodes for which a
shortest path passes through the node (u, t). A variant,
called temporal boundary coverage centrality, has been defined.
In this study, we only consider the temporal coverage
centrality. Preliminary results, however, revealed that both
centralities behave quite similarly on our datasets.

4 COMPARISON

The four approaches described in the previous section pro-
pose very different ways to quantify the importance of a
node in a dynamic network, thus making it difficult to
directly compare the raw values. In the rest of the paper
we will therefore rely on the following additional steps to
compare the methods.

4.1 Ranking
Evaluating the importance of a node with respect to the
others by considering only its centrality value is difficult.
Therefore, in order to obtain an intuition on the node’s rela-
tive importance, we rank them at each time step with respect
to their centrality values. We chose the inverse competition
ranking method. In this ranking, the ranking 0 is attributed
to the least central nodes, and the ranking of every node
is equal to the number of less central nodes. Consider the
example in Figure 2, which consists of 6 nodes with their
centrality relationship in addition to their attributed ranks.
The ranking 0 is attributed to F which is the least central
node, while nodes B,C,D and E share the same ranking 1
as they are all equally important. Finally, A is ranked 5.

We will use this ranking approach to compare properly
the results of the different methods.

First, given two rankings obtained by two different
methods for the same network at the same time step, we
can compute their correlation as defined by the Kendall-
Tau coefficient. This coefficient has a value in [−1, 1] that
represents the level of concordance between the two ranking
lists. 1 stands for a perfect correlation while −1 stands for
a perfect negative correlation. More precisely, we compute
the difference between the number of concordant and dis-
cordant pair of nodes between the two lists, a concordant
pair of nodes being a pair for which the two nodes have
the same relationship in both ranking lists. So a pair (u, v)
is said to be concordant if either u is ranked higher than v
in both ranking lists, or u is lower than v in both ranking
lists, or u has the same ranking as v in both ranking lists. We
then normalize this value by the number of pairs in order
to obtain a final value between −1 and 1. We compute this
correlation at each instant to study its evolution over time.

Second, while it is interesting to know how much the
rankings obtained by different methods differ globally, this
does not provide any intuition on the difference of impor-
tance attributed to any given node in particular. In order to
deepen our understanding, we will therefore also compute
for every node the difference between the two ranks. A
high difference thus indicates that the two rankings have
a strong divergence regarding the importance of the con-
sidered node, while a value close to 0 indicates that they
both agree on its relative importance in the network. We
will study the distribution of the rank difference over all
pairs consisting of a node and a time instant.

4.2 Global importance

In order to provide a more comprehensive and global
perspective of the importance of all nodes at each time
instant, we will study the number of times any given node is
attributed a high (or low rank). The idea is that a node that
is consistently assigned a high rank is evaluated as globally
important. More formally, we define two regions, which we
call top and bottom, representing respectively the top 25%
ranks and the bottom 25% ranks. Considering a network
of n nodes, a node with a ranking higher than bn ∗ 0.75c
is therefore considered to be in the top region while a node
with a ranking lower than bn∗0.25c is considered to be in the
bottom region. This allows to detect immediately which are
the nodes of high or low global importance in a network 3.

Finally, we compute for each node the total duration
spent in each region and we denote it by Durtop (resp.
Durbot). To compute these durations, we consider that a
node is present in the top or bottom region from the instant
where we compute the centrality to the next computing
instant: given a node u ∈ V , if R(u) = (ri)i=1...k is the
sequence of ranks (computed at instants i = 1..k) for u, we
define Durtop(u) and Durbot(u) as :

Durtop(u) = I · |{i ≤ k − 1, ri ≥ bn ∗ 0.75c}| ,

Durbot(u) = I · |{i ≤ k − 1, ri ≤ bn ∗ 0.25c}| .

3. it is worth noticing that, because the inverse competition ranking
may assign the same ranking to several nodes, these regions may
contain more than or less than 25% of the nodes.
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5 DATA SETS

In order to compare and understand the differences between
the different methods, we study several datasets coming
from different contexts and presenting different character-
istics:

• Enron [31]: this dataset contains the 47 088 emails
that 151 Enron employees exchanged during approx-
imately three years. It records information on the
senders, receivers, and the moment they were sent.

• Radoslaw [32]: this dataset contains 82 876 emails
exchanged by 168 employees of a mid-sized com-
pany during a period of nine months in 2010. It
records information on the senders, receivers, and
the moment they were sent.

• Rollernet [33]: this dataset was collected during a
rollerblading tour in Paris in August 2006. The tour
is a weekly event and gathers approximately 2 500
participants. Among these, 62 were equipped with
wireless sensors recording when they were at a
communication distance from one another. The total
dataset duration is approximately 2 hours and 45
minutes (note that there is a break of approximately
30 minutes during the tour).

• Twitter (HashTags): A 22 day long twitter dataset
generated by twitter accounts known to be associated
with terrorist groups. Each node represents a hash-
tag, while each link represents a tweet that contained
the two hashtags. Thus, a tweet with several hashtags
generates several links. The dataset contains 3 048
hashtags and 100 429 links.

• Twitter (Retweets): From the same twitter dataset,
we extracted a subset of 27 919 re-tweets generated
by the 10 484 twitter accounts. Each link (u, v, t)
represents a user v re-tweeting a tweet of user u at
time t.

• Facebook [34]: this dataset is a 1 year long record of
the activity of Facebook users between 31st of De-
cember 2015 and 31st of December 2016. The dataset
contains 8 977 Facebook users and their 66 153 posts
to each other’s wall on Facebook. The nodes of the
network are users, and each link represents a user
writing on another user’s wall.

In all cases, we consider that links are undirected. In
order to apply the snapshotCl method on these networks,
we need to choose a snapshot duration. Choosing the ap-
propriate value is in general a difficult question as this
impacts the obtained results [35], [36], [37]. We chose the
value that gave a good compromise between a low loss of
temporal information (i.e., a low aggregation and hence a
small snapshot duration) and a sufficiently high number of
active nodes, so each snapshot contains relevant informa-
tion. We show that the choice of the snapshot duration has
little impact on our observations in Section 7 and in the
supplementary material.

The main global characteristics of these datasets, includ-
ing the chosen snapshot duration, are presented in Table 1.
In the rest of the paper, for the sake of brevity and because
the observations on some datasets are similar, we will only
present the results on three of the datasets: Enron, RollerNet,
and Twitter (HashTags). Before comparing the methods, it is
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Fig. 3: Time-evolution of the proportion of active nodes.

enlightening to make some global observation related to the
dynamic of the three networks.

For each dataset, we computed the proportion of active
nodes in a snapshot (i.e. the fraction of nodes having at least
one link during the corresponding period). Figure 3 shows
the time evolution of this value for the three datasets. In the
Enron case, the proportion increases slowly to a maximum
of 80% before dropping drastically at the very end. In the
RollerNet case, the proportion of active nodes increases
rapidly and remains very close to 1 until the end. Finally, in
the Twitter dataset, we can see that the activity is extremely
low compared to the two other datasets, with only very
few nodes active in each snapshot. Thus, those three cases
present very different characteristics in terms of activity. We
conjecture that this has a strong impact on the way node’s
importance is perceived by the different methods. We will
investigate this question in the next section.

6 RESULTS

In this section, we compare how the different methods
presented in Section 3 quantify the importance of nodes
in a dynamic network. We start by analyzing the global
difference between the methods (Section 6.1) before eval-
uating how this difference impacts the relative importance
of individual nodes (Section 6.2). Finally, we compare which
nodes are identified by the methods as globally important
over the whole period of time (Section 6.3).

Note that temporal closeness, snapshotCl and temporal
eigenvector have been computed for all datasets but the
coverage centrality was too computationally expensive to
be used on another dataset than Enron.

6.1 Global observations

We start by comparing temporal closeness with snapshotCl.
Figure 4 presents the evolution of the Kendall-tau correla-
tion between the rankings provided by the two methods
for the three datasets. For Enron (Figure 4, top), the cor-
relation is low at first and then increases over time. At
the beginning, a large number of nodes are inactive and
snapshotCl attributes the lowest rank (0) to all of them.
However, temporal paths involving links that appear later
in the dataset exist from most of these nodes. Therefore, a
non-zero value (and hence a non-zero rank) is attributed
by the temporal closeness to these nodes. Naturally, as
the network evolves, more nodes become active and are
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Datasets |V | |E| Duration I (Seconds) Snapshot
duration

Enron 151 47 088 3 years 960 1 week
Radoslaw 168 82 876 9 months 53 1 week
RollerNet 62 403 834 3 hours 4 1 minute

Twitter
(HashTags) 3 048 100 429 22 days 16 3 hours

Twitter
(Retweets) 10 484 27 919 20 days 18 1 hours

Facebook 8 977 66 153 1 year 278 1 week

TABLE 1: number of nodes |V |, number of links |E|, dataset duration, median of inter-link
duration (I) and snapshot duration for each dataset.
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Fig. 4: Time-evolution of the Kendall-Tau correlation
between temporal closeness and snapshotCl. Top: Enron;

Middle: Rollernet; Bottom: Twitter.

then taken into account by snapshotCl, which increases the
correlation between the two methods4.

The effect of inactive nodes spotted above is not re-
stricted to the beginning of the evolution. One might notice
for instance that the correlation drops suddenly at certain
instants, even close to the end of the trace. Manual investi-
gation revealed that this corresponds to moments where a
significant number of nodes are temporarily inactive. This
generates a strong difference between temporal closeness
and snapshotCl for the same reason than above. We later on
refer to such instants as temporary inactive moments.

Finally, at the end of the evolution, the correlation

4. note that nodes that were active in the past but do not have any
future links are attributed a rank of 0 by both methods.

reaches very high values; this is due to a large number of
nodes inactive and ranked 0 by both methods, which makes
it hard to have a high difference in the global rankings.

In contrast with the Enron dataset, if we now consider
the RollerNet dataset (Figure 4, middle), we can see that the
Kendall-tau correlation 1) fluctuates highly, 2) is globally
lower, and 3) can even be negative at some instants. This
observation is clearly related to the high activity of the nodes
(see Fig. 3). This activity leads the networks of each snapshot
to be much denser than in Enron. As we highlighted in Sec-
tion 2, this makes snapshotCl more likely to consider paths
that are temporally impossible, thus leading to divergence
with temporal closeness.

Finally, we focus on the Twitter dataset (Figure 4, bot-
tom). Since the dataset is the least active and contains mostly
temporary inactive moments, the correlation is pretty low.
At the beginning most nodes are inactive; the number of
active nodes becomes significant only after the 14-th day.
This is why the correlation starts to increase at that time.
Finally, one can identify several periods of high correlation
which are strongly related to periods with a high number of
active nodes (see Figure 3).

We now turn to the comparison with temporal eigen-
vector. Figure 5 shows the evolution of the correlation
between temporal closeness and temporal eigenvector for
the three datasets. For Enron (Figure 5, top), the correlation
fluctuates and globally increases with time, before dropping
as the total activity drops (around the 1000-th day). This
shows that both methods are only correlated when there
is a relatively high activity. Interestingly, though we would
expect the correlation to increase at the very end, as previ-
ously seen with snapshotCl, it actually decreases. If we now
consider the Rollernet dataset (Figure 5, middle), we can see
how the correlation fluctuates as seen previously. We notice
that the correlation is quite low. This further indicates that
both methods do not have the same notion of importance.
Finally, for the Twitter dataset (Figure 5, bottom), we can
see how the correlation is quite low and constant, with two
peaks that correspond to a clear increase of the activity.
This further shows that both methods produce different
results when the activity is low. This is probably due to
the observation made by Fenu et al. [26] that Temporal
Eigenvector considers paths that do not respect time and can
therefore go backwards in time. This explains why nodes
that are permanently inactive at the end of the dataset can
have a non-zero rank.
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Fig. 5: Time-evolution of the Kendall-Tau correlation
between temporal closeness and temporal eigenvector. Top:

Enron; Middle: Rollernet; Bottom: Twitter.
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Fig. 6: Time-evolution of the Kendall-Tau correlation
between temporal closeness and coverage on Enron.

We now turn to the coverage method. Figure 6 shows
the evolution of the correlation between temporal closeness
and coverage over time on Enron. One can easily notice
that, except at the very end, the correlation is rather low
during all the evolution of the network. Since coverage
and temporal closeness both consider only time respecting
paths, the divergence between the two rankings indicates
that coverage captures another notion of importance in the
dynamics, which we will discuss later. However, there is a
noticeable increase at the end due to the very small number
of nodes that are active at that time. This compensates
for the difference in the definition of importance, as being
active becomes enough to be considered important by both
methods.

From this first analysis, we can conclude that the correla-
tion between snapshotCl and temporal closeness is strongly
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Fig. 7: Inverse cumulative distribution of rank difference
between Temporal Closeness and other methods: top:

snapshotCl; bottom Left: temporal eigenvector; bottom
Right: coverage centrality.

related to the proportion of active nodes in the network.
However, we provided evidence that snapshotCl has two
strong limitations: when the nodes are inactive, it is un-
able to detect the importance that future connections give
them; conversely, when many nodes are active, it considers
many temporally impossible paths and therefore cannot
quantify accurately the importance of the nodes. Though
the temporal eigenvector and coverage methods do not
have the same limitations, we have seen that they both
detect different types of temporal importance compared to
temporal closeness. We will investigate this further but it is
worth noting that temporal eigenvector considers paths that
may go backwards as well as forward in time.

6.2 Impact on individual nodes.
The previous section revealed that the four approaches
generate significantly different rankings for the importance
of nodes. This does not necessarily mean that the rank
attributed to a given node is very different for two different
methods. In order to study this aspect, this section analyses
the difference in the ranks provided by the four methods for
each node. More precisely, for each time instant and for each
node, we compute the difference between the rank granted
by temporal closeness and the one provided by either snap-
shotCl, temporal eigenvector or coverage centrality. We then
study the distribution of obtained values.

We start by comparing the difference between temporal
closeness and snapshotCl. Figure 7 (top) presents the inverse
cumulative distribution of the difference of the ranks for
each node at every instant, for the three datasets. For Enron
and Twitter, the temporal closeness attributes a higher rank
than snapshotCl in more than 70% of the cases. This is
in agreement with the conclusions drawn in the previous
section, and is mostly due to temporary inactive moments
during which snapshotCl attributes a rank 0 to a node,
while the temporal closeness ranks it higher. In contrast,
for Rollernet which is a highly active network, the numbers
of negative and positive values are more balanced. This is
in contrast to what we observe when we compare temporal
closeness and temporal eigenvector (Figure 7, bottom left).
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Except a few values in Rollernet, both methods never at-
tribute the same rank.

Finally, we consider the difference between temporal
closeness and coverage centrality (Figure 7, bottom right).
Interestingly, similarly to the comparison to the snapshotCl,
temporal closeness tends to attribute higher ranks than
coverage centrality (around 70% of the values). Since
coverage centrality is not affected by temporary inactive
moments, this indicates that the coverage method measures
the importance differently.

In order to illustrate the differences between the four
methods, figure 8 presents the evolution of the rank for
a given node of Enron, for the four methods. We can ob-
serve that this node has many temporary inactive moments,
corresponding to periods during which it snapshotCl rank
is equal to 0. In contrast, temporal closeness takes into ac-
count future communications and therefore attributes a rank
higher than 0 at those times. This is particularly remarkable
between days 100 and 400. The links occurring around day
400 give it a high temporal closeness and hence a high rank
not only at that time, but also influence previous times:
even though the closeness at time, e.g., 300 is lower than
at time 400, it is still high enough to warrant a significant
rank for this node. This is again in sharp contrast with
snapshotCl which perceives the node as unimportant for
the whole period and clearly detects the role of the node
only by peaks of activity. Manual investigation revealed
that this phenomenon can be frequent: the fraction of time
instants where temporarily inactive nodes have a high rank
(≥ 0.75% of the nodes) represents 10% and 20% of the total
in the Enron and Twitter cases respectively. As expected, this
proportion drops to 1% in the case of RollerNet.

In the case of temporal eigenvector, although it can de-
tect the importance of inactive moments, the ranks fluctuate
extremely for no apparent reason. Quite interestingly, we
observe in particular that, after the 1000-th day, although
this node is no longer active, its rank still fluctuates and
reaches at some points very high values. This confirms
what we mentioned at the end of Section 6.1: the temporal
eigenvector method considers paths that go backwards in
time (otherwise it would give a rank 0 to this node). Even
more strikingly, we see that the importance of this node
evolves in a non monotonic way even though it doesn’t
have any activity. This indicates that this methods attributes
centrality values in a non-intuitive way.

In regards to the coverage centrality, although it is
difficult to conclude on its relevance, the rank evolution
confirms that it captures a different notion of importance
during temporarily inactive moments. One can see in partic-
ular that between days 400 and 500 the temporal closeness
and coverage centrality evolve in opposite directions: the
temporal closeness rank increases as the future links get
closer, while the coverage rank decreases and drops to 0
after the links have occurred.

The observations presented above confirm and refine the
conclusions drawn in the previous section: not only do the
four methods give different global rankings, but they also
have strong differences for individual nodes.

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0  200  400  600  800  1000  1200

R
a

n
k
in

g

Time

Temporal Eigenvector Coverage

 0
 20
 40
 60
 80

 100
 120
 140
 160

R
a

n
k
in

g

Temporal Closeness SnapshotCl

Fig. 8: Time-evolution of the rank of a node in Enron.

6.3 Identifying globally important nodes

Although the results presented in the previous sections
suggest that networks are highly dynamic and that nodes’
importance varies over time, this does not mean that there
are no nodes (or groups of nodes) that are globally impor-
tant. Indeed, some nodes could stay important during a
large period of the dataset. In this section we investigate
how long each node is considered important (Durtop) and
unimportant (Durbot) by each method.
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Figure 9 presents the correlations between Durtop and
Durbot for each of the four methods, for the Enron dataset.
It is striking to observe that most of the nodes are almost
always considered by snapshotCl as either highly impor-
tant or unimportant (Durtop + Durbot ' DurTotal). This
indicates that ranks in the middle region (bN ∗ 0.25c < R <
bN ∗ 0.75c) are rarely attributed to nodes, which is well
exemplified by the case presented in Figure 8. The behaviour
is clearly different for temporal closeness that can attribute
a wider range of values for the nodes. We also observe that,
for temporal eigenvector, Durtop and Durbot do not reach
values as high as for the other methods. This can be an
indication that the fluctuation seen in Figure 8 is a general
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Fig. 10: Temporal closeness v.s. other methods. For Enron
dataset.

phenomenon. Manual investigation showed that all nodes
fluctuates in the same manner.

Despite these differences, one can see on Figure 10 that
the four methods tend to perceive similarly the global
importance of nodes; the difference between the four ap-
proaches therefore lies mainly in how they evaluate unim-
portant nodes, as well as the nodes of average importance.
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Interestingly, these observations are completely different
for RollerNet. In this dataset, one can see in Figure 11 that
no node spends time in the top (or bottom) region more
than half of the total duration, whatever the method used
(except for one node that is almost always in the bottom
region). Besides, when comparing the global importance
attributed to nodes by different methods (evaluated by
DurTop, Figure 12), one can see that the correlation between
temporal closeness and the other methods is not very strong
and is even anti correlated with temporal eigenvector. All
these observations are consistent with the fact that, in this
dataset, there is no meaningful notion of global importance.
We claim that this is due to the very dense (both temporally
and structurally) nature of this dataset.

The Twitter dataset is also interesting as it combines the
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Fig. 12: Temporal closeness v.s. other methods. For the
RollerNet dataset.
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behaviours previously seen in Enron for the four methods.
Figure 13 shows that the comparison between Durtop and
Durbot is similar to what we observed on Enron, and even
more extreme: for snapshotCl, points are all situated on the
line y = T − x (where T stands for the total duration),
meaning that at all times, any node is either in the top or the
bottom region, but never in-between. Behaviours are more
nuanced for the temporal closeness and, for temporal eigen-
vector, all the nodes have very similar values. This is similar
to what we observed for Enron, but far more extreme.
However, in contrast with Enron, the global importance (i.e.
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the Durtop value) attributed by temporal closeness is not at
all correlated to the one attributed by the other methods (see
Figure 145).

Finally, we study the results obtained for coverage cen-
trality for the Enron dataset. We observe that coverage is
close to snapshotCl in the sense that all nodes are always
either in the top or in the bottom region (Figure 9, bottom
right). However, as pointed out before, coverage does not
capture the same notion of importance as temporal close-
ness, which can be seen by comparing the correlation be-
tween the DurTop values (Figure 10 bottom). The elements
provided in this study do not allow to conclude on the
reasons of this divergence and we leave this question for
further studies.

7 DISCUSSION

In this paper, we considered four centrality methods that
quantify the time-evolution of nodes’ importance. For the
comparison of these methods, we performed several steps.
This included ranking the nodes with respect to their cen-
trality values, as well as computing a global duration that
represents a node’s global importance. Some papers [20]
propose the study of the average over time of centrality
rather than its evolution. They consider that this single value
is representative of the node’s complete evolution during a
dataset.

To assess this claim, we propose to analyze the correla-
tion between Durtop and the average temporal closeness.
Figure 15 presents such a correlation for the three datasets.
In the case of Enron and RollerNet, these values seem corre-
lated (particularly for RollerNet). However, the correlation
is very low for Twitter: some nodes have a high average
temporal closeness yet a low Durtop, and conversely. We
argue that the average temporal closeness is not represen-
tative as it does not give each instant an equal amount of
importance. As we saw, a node can have an extremely high
temporal closeness at a single instant (and therefore a high
average temporal closeness) even though it may have a very
low activity (and hence, a very low closeness) in the rest of
the dataset. However, the Durtop value considers that all
instants have an equal importance.

To study the snapshotCl method, we had to choose a
value for the snapshot duration. As explained in Section 5,
we chose the value that gave a good compromise between
a low loss of temporal information and a sufficiently high

5. we only present the correlation between temporal closeness and
snaphsotCl as the plot obtained for temporal eigenvector is very similar.

 0

 200

 400

 600

 800

 1000

 1200

 0  200  400  600  800  1000  1200

D
u

r t
o
p
 (

S
n
a

p
s
h

o
tC

l)

1 day 1 week 2 weeks 1 month

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

D
u

r t
o
p
 (

S
n
a

p
s
h

o
tC

l)

30 seconds
1 minute

2 minutes
4 minutes

 0
 2
 4
 6
 8

 10
 12

 0  5  10  15  20  25
D

u
r t

o
p
 (

S
n
a
p
s
h
o

tC
l)

Durtop (Temporal closeness)

1 hour
2 hours

3 hours
12 hours

Fig. 16: Durtop for snapshotCl v.s. Durtop for temporal
closeness for different snapshot sizes. Top: Enron; Middle:

Rollernet; Bottom: Twitter.

number of active nodes in each snapshot, so that it contains
enough information. In order to check whether this has an
impact on our observations, we present in Figure 16 the
correlation between the Durtop values of temporal closeness
and the one of snapshotCl for different snapshot durations
and for the three datasets we studied.

We observe few differences. The main difference is that
for Enron, a snapshot duration significantly shorter than
the one we studied in the rest of the paper (1 day) leads
to a somewhat smaller Durtop value for all nodes. This is
consistent with the fact that the snapshotCl method tends to
detect the times at which the nodes are active: by reducing
the snapshot duration, the relative number of snapshots at
which any given node is active diminishes, hence a decrease
in the Durtop value and a corresponding increase in the
Durbot value. Note that this does not affect the general
shape of the plot, and that the Durtop values attributed by
temporal closenes and snapshotCl are still correlated.

We study more in depth the impact of the snapshot
duration in the supplementary material, and confirm that
the observations made here are general and do not depend
on the chosen snapshot duration.

We proposed in this paper a methodology to compare
the four methods and better understand the difference be-
tween each method on different datasets of different nature.

Our observations can be summarized as follows:

1) different centralities have different results; a node
can be perceived as important by the temporal
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closeness and irrelevant by the coverage centrality;
2) different datasets have different properties regard-

ing nodes’ importance; for one dataset, the im-
portance of all nodes fluctuates extremely rapidly
between high and low values; it is meaningless in
this case to state that one node is more important
than others, except for a very limited time span; in
other datasets however, we find that some nodes are
consistently important for the whole network time
span;

3) a node can be inactive (i.e. not have any links) yet
be highly important since it can be a waiting point
in an important temporal path between two nodes;

4) nodes can be globally important while having a low
global average centrality; average centrality gives a
high significance to periods with very high temporal
closeness (which correspond in general to highly
active periods for the considered node).

Following those observations, we can draw a couple of
conclusions regarding how to compare the different metrics.
In particular, observation 3 above leads to the conclusion
that snaphsotCl is unable to relate a temporary inactive
node to its future connections. Therefore, it does a poor
job in quantifying the importance of a node as a relay
for future communication. Another conclusion drawn from
the present study is that, although interesting, temporal
eigenvector is less accurate than temporal closeness and
coverage centrality to measure the importance of a node,
as it considers path that can go backwards in time.

Our work opens the way to several interesting perspec-
tives. First, the choice of several datasets stemming from
very different contexts strengthens the conclusions drawn
from this study. We would like to apply our approach to
more datasets. For the time being, we were only able to
apply the coverage centrality method to one dataset due to
computational reasons. Thus, we are unable to understand
completely the difference between the temporal closeness
and the coverage centrality. Finding a way to speed up
the coverage centrality computation, or approximate the
results, would therefore allow a better understanding of this
method.

Another way to address this question consists in ob-
taining datasets in which the ground truth about nodes’
importance is known, or where it can be measured using
an orthogonal approach. To that regards, one interesting
approach could be to relate the findings provided in the
present study to a practical investigation of the importance
of the nodes in the network. To do so, one could for
instance remove (a set of) nodes detected as important for
the network by the different metrics and analyze how it im-
pacts the properties of the structure in terms of information
diffusion. Although very interesting, we claim that such an
investigation deserves a complete and independent study
that we leave for future work.

Our study of the temporal closeness centrality relies on
a parameter I . Indeed, for computation reasons, instead of
computing the temporal closeness for every time instant,
we compute it only every I seconds. Though the values
obtained in this way are exact, this may induce small in-
accuracies, mainly on the obtained values for Durtop and

Durbot: indeed, the ranking of nodes is (exactly) known for
points spaced I seconds from each other, and each point at
which the rank is in the top or bottom region contributes
I seconds to Durtop or Durbot. This is an approximation
of the ideal case in which I is equal to the lowest time
resolution in the dataset. The value we selected for I in the
study corresponds to the median of inter-link duration (i.e.
the time separating two consecutive links) for each dataset.
Although we are confident that the choice of this value has
little impact on the conclusions drawn in the present study,
a more in-depth study of the impact of I would surely be
interesting. In particular, the value of I has a strong impact
on the running time of the temporal closeness computation.
Being able to identify low values of I that still give relevant
information would allow to run the computations much
faster, and hence tackle much larger datasets.

In this paper we studied the time evolution of the
importance of nodes. This topic is closely linked to the
question of detecting important changes, either in the network
as a whole or in the behavior of specific nodes. Some pa-
pers [8], [28] study the importance of specific time instants
and/or quantify the change in nodes’ importance. An in-
depth study of the link between these two questions would
lead to very interesting insights, for instance on questions
such as: are the changes in the importance of time instants
reflected in the importance of nodes at these instants? if so,
do these changes correspond to a global increase/decrease
of node importance, or are they triggered by a sudden
increase/decrease of the importance of one (or a few) major
nodes?

Finally, another interesting direction would be to de-
sign or use models for temporal networks that generate
artificial temporal networks in which nodes’ importance is
controlled.
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dio J Tessone, and Frank Schweitzer. Causality-driven slow-down
and speed-up of diffusion in non-markovian temporal networks.
Nature communications, 5:5024, 2014.

[17] Taro Takaguchi, Yosuke Yano, and Yuichi Yoshida. Coverage
centralities for temporal networks. The European Physical Journal
B, 89(2):35, 2016.

[18] Enrico Ser-Giacomi, Ruggero Vasile, Emilio Hernández-Garcı́a,
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[37] Yannick Léo, Christophe Crespelle, and Eric Fleury. Non-altering
time scales for aggregation of dynamic networks into series of
graphs. In International Conference on emerging Networking EXperi-
ments and Technologies (CONEXT), 2015.

Marwan Ghanem is a Ph.D. candidate at the
Computer Science laboratory LIP6 (Sorbonne
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Supplementary material

F

In this supplementary material we study more in depth
the impact of the choice of the snapshot duration for the
snapshotCl method.

For each of the datasets, we chose a range of values for
the snapshot duration, some shorter and some larger than
the one we have chosen for the main part of the paper. Then
we make the same studies than in Section 6 of the main
paper.

−0.2
 0

 0.2
 0.4
 0.6
 0.8

 1

 0  200  400  600  800  1000  1200

K
e
n
d
a
ll 

C
o
rr

e
la

ti
o
n

Duration

1 day 1 week 2 weeks 1 month

−0.2
 0

 0.2
 0.4
 0.6
 0.8

 1

 0  0.5  1  1.5  2  2.5  3

K
e
n
d
a
ll
 C

o
rr

e
la

ti
o
n

Duration

30 seconds

1 minute

2 minutes

4 minutes

−0.2
 0

 0.2
 0.4
 0.6
 0.8

 1

 0  5  10  15  20  25

K
e
n
d
a
ll
 C

o
rr

e
la

ti
o
n

Duration

1 hour

2 hours

3 hours

12 hours

Fig. 1: Time-evolution of the Kendall-Tau correlation
between temporal closeness and snapshotCl for different

snapshot sizes. Top: Enron; Middle: Rollernet; Bottom:
Twitter.

Figure 1 shows the time evolution of the Kendall-tau
correlation between the rankings produced by snapshotCl
and temporal closeness, for the three datasets.

We observe the same global behaviors for all snapshot
durations. In particular, we still observe a global increase of
the correlation for the Enron dataset, coming from the fact
that, as less nodes are active at the end of the dataset, both
methods tend to agree more on which nodes are important;
we still observe very important fluctuations for the Roller-

Net dataset, consistent with the fact that this dataset is very
dense and importance fluctuates widely from one instant to
the next; and we still observe a consistently low correlation
for the Twitter dataset, except at the times at which a larger
fraction of nodes are active.

We now study the difference in the ranks attributed by
snapshotCl and temporal closeness to each node. Figure 2
presents the inverse cumulative distribution of the differ-
ence of the ranks for each node at every instant, for the
three datasets.

For Rollernet and Twitter, we observe no significant
differences for the different snapshot durations. For En-
ron, we observe that, the higher the snapshot duration,
the lower the fraction of (instant, node) pairs for which
temporal closeness attributes a higher rank than snapshotCl.
This is consistent with our earlier observations: snapshotCl
attributes a rank of 0 during temporary inactive moments
to the corresponding nodes, while temporal closeness ranks
them higher. Since increasing the snapshot duration reduces
the fraction of snapshots during which any given node is
inactive, this induces a smaller fraction of positive rank
differences.

Finally, Figure 3 presents the correlations between
Durtop and Durbot values for snapshotCl, for the three
datasets. Again, for Rollernet and Twitter, we observe no
significant difference: for Rollernet, we see that the values
become more scattered when the snapshot duration in-
creases; for Twitter however, the values are still concentrated
in a single line, meaning that snapshotCl always considers
a node as important or unimportant, but never places it in
the middle region.

For Enron, we observe that the values become signif-
icantly more scattered as the snapshot duration increases.
This comes from the fact that, as the snapshot duration
increases, a larger fraction of nodes become active in each
snapshot, and hence not all active nodes are placed in the
top region by snapshotCl. However, we still clearly observe
the tendency to seldom place nodes in the middle region,
characterized by a globally linear shape of the plot, even
for large snapshot durations: a one month snapshot leads
to approximately 36 snapshots for the whole dataset, which
induces a very important loss of temporal information.

Finally, as we observed in the main text of this paper,
the snapshot duration has little impact on the correlations
between the Durtop values of snapshotCl and temporal
closeness.
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Fig. 2: Inverse cumulative distribution of rank difference
between Temporal Closeness and snapshotCl fir different

snapshot sizes. Top: Enron; Middle: Rollernet; Bottom:
Twitter.
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