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REDUCING VARIANCE BY REWEIGHTING SAMPLES

MATHIAS ROUSSET, YUSHUN XU, PIERRE-ANDRÉ ZITT

Abstract. We devise methods of variance reduction for the Monte Carlo estimation of an
expectation of the type E [φ(X,Y )], when the distribution of X is exactly known. The key
general idea is to give each individual of a sample a weight, so that the resulting weighted
empirical distribution has a marginal with respect to the variable X as close as possible to its
target. We prove several theoretical results on the method, identifying settings where the variance
reduction is guaranteed. We perform numerical tests comparing the methods and demonstrating
their efficiency.
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1. Introduction

1.1. The framework. Let (X,Y ) be a couple of random variables, and say that we are interested
in computing the expected value E [φ(Y )] — or more generally E [φ(X,Y )] — for each φ in some
class of test functions. Since the distribution of φ(X,Y ) is most often impossible to obtain in closed
analytic form, a classical approach is to resort to Monte-Carlo integration: given an iid sample
(X; Y) = (X1, ..., XN ;Y1, ..., YN ), the usual ”näıve” Monte Carlo estimator is

ΦMC(X,Y) = 1
N

N∑
n=1

φ(Xn, Yn). (1)

This estimator is unbiased, and its mean square error is given by its variance:

MSE(ΦMC) := E
[
(ΦMC(X,Y)− E [φ(X,Y )])2] = 1

N
Var(φ(X,Y )).

The behaviour in N is inescapable and given by the CLT; however, over the years, many variance
reduction techniques have been devised to reduce the constant multiplicative factor, using various
kinds of additional hypotheses on the couple (X,Y ). For a general overview of these techniques,
see for example the survey paper of Glynn [Gly94], or the book [Ros13]. We introduce in this
paper new techniques for reducing variance, which can be seen as a variation on the classical
post-stratification method, except that we do not have to fix strata. The method is based on two
assumptions on the distribution of the couple (X,Y ).

Assumption 1.1. The distribution of the first marginal X is exactly known: X ∼ γ := N (0, 1),
the standard Gaussian distribution.

We note that we could easily accomodate other distributions than the standard Gaussian, which
we consider for simplicity; the main point is that we know the distribution of X.

Before introducing the second assumption, let us first recall a classical decomposition of the
variance. If we denote by

Mφ(X) := E [φ(X,Y )|X] , Vφ(X) := E
[
(φ(X,Y )−Mφ(X))2

∣∣∣X] ,
the mean and variance of φ(X,Y ) conditionally on X, then the variance of φ(X,Y ) may be
rewritten as the sum of the expected conditional variance and the variance of the conditional
expectation, so that the mean square error reads:

MSE(ΦMC) = 1
N

E [VΦ(X)] + 1
N

Var(MΦ(X)). (2)

We now state informally and unprecisely the second assumption, see Corollary 1.16 and Re-
mark 1.17 below for possible more precise statements.

Assumption 1.2. For the considered test function φ, the (random) conditional variance Vφ(X)
is sufficiently ’small’ compared to the variance of the conditional expectation Var(Mφ(X)).

Under our two assumptions, we devise a generic method that estimates E [φ(X,Y )] with a
smaller variance than the näıve method (1).

Since we do not have the liberty of choosing the values of (Xn)1≤n≤N , but we know exactly their
distribution γ, our main idea is to use the samples X = (X1, ..., XN ) to devise random weights
(wn(X))1≤n≤N such that the empirical measure

∑
n wn(X)δXi is ”as close as possible” to the true

distribution γ. For instance, for some distance dist () between distributions – the choice of which
will be discussed below — we may look for solutions of the minimization problem:

minimize: dist
(
γ,

N∑
n=1

wnδXn

)
subject to:

{
wn ≥ 0,∑
n wn = 1.

(3)

This minimization problem typically admits a unique solution (w1(X), ..., wN (X)), which can be
used instead of the näıve uniform weights (1/N) to estimate E [φ(X,Y )] by:

ΦW (X,Y) =
N∑
n=1

wn(X)φ(Xn, Yn).
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In the remainder of this paper, we study this estimator to show, both theoretically and empir-
ically, that it can indeed succeed in reducing the variance with respect to the näıve Monte Carlo
method.

1.2. A decomposition of the mean square error. The mean square error of our estimator is
given by:

MSE(ΦW ) := E
[
(ΦW (X,Y)− E [φ(X,Y )])2

]
= E

(∑
n

wn(X)φ(Xn, Yn)−
∑
n

wn(X)Mφ(Xn) +
∑
n

wn(X)Mφ(Xn)− E [φ(X,Y )]
)2


= E

(∑
n

wn(X)(φ(Xn, Yn)−Mφ(Xn))
)2
+ E

(∑
n

wn(X)Mφ(Xn)− E [φ(X,Y )]
)2


since the cross terms vanish because E [φ(Xn, Yn)−Mφ(Xn)|X] = 0. In the first term, we expand
the square, condition on X and use the conditional independence of the (Yn); we rewrite the second
term using the notation η?N =

∑
n wn(X)δXn and get

E
[
(ΦW (X,Y)− E [φ(X,Y )])2

]
= E

[∑
n

wn(X)2Vφ(Xn)
]

+ E

[(∫
Mφ(x)dη?N (x)−

∫
Mφ(x)γ(dx)

)2
]

(4)

Let us note here that for the näıve choice wn(X) = 1/N , Equation (4) reduces to the decom-
position (2) in two terms of the same order 1/N . By choosing weights that minimize the distance
between the reweighted measure η?N and γ, our goal is to make the second term of the right hand
side of (4) negligible; for this we pay a price by increasing the first term. If Vφ(X) is small enough
in a suitable sense, this price is expected to be small enough to still be able to decrease the global
mean square error. It is the purpose of the main theoretical results of this paper to make this in-
formal statement precise; see Section 1.5, in particular Corollary 1.13 (conditional on the validity
of Conjecture 1.11) as well as Corollary 1.16 and Remark 1.17.

In order to give rigorous statements, we make two additional assumptions concerning the test
function φ and the distance we will use.

Assumption 1.3 (The distance). The distance dist () may be written in operator norm form
dist (η, γ) = sup

f∈D
|η(f)− γ(f)| (5)

where D is a set of functions (typically a unit ball of test functions).

Assumption 1.4 (The test function). There exist two constants mφ, vφ such that:
• The conditional mean x 7→ Mφ(x) is in the set D defined in the previous assumption, up

to an affine transformation; more precisely, there exists c such that (Mφ(·)− c) /mφ ∈ D.
If D is the unit ball associated with a norm, the optimal constant mϕ is the associated
distance between the line {Mφ − c, c ∈ R} and 0.
• The conditional variance Vφ satisfies

Vφ(Xn) ≤ vφ a.s. (6)

Assuming this, we get, as an immediate consequence of (4):

E
[
(ΦW (X,Y)− E [φ(X,Y )])2

]
≤ vφE

[∑
n

wn(X)2

]
+m2

φE
[
dist (η?N , γ)2

]
. (7)

We consequently propose to define and compute the weights (wn(X))1≤n≤N according to

minimize: dist
(
γ,

N∑
n=1

wnδXn

)
+ δ

∑
n

w2
n, subject to:

{
wn ≥ 0,∑
n wn = 1,

(8)

or more simply to (3) which is obtained from the former by taking δ = 0.
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Remark 1.5 (On Assumption 1.4). One could weaken the almost sure bound (6) to a moment
condition at the price of stronger constraints on the weights, using for instance Hölder’s inequality.
Such cases won’t be treated here and are left for future work.

Remark 1.6 (On the choice δ = 0). Depending on the choice of the distance dist ( ), solving (8) for
δ 6= 0, instead of δ = 0 — which is exactly (3) — can be almost free or quite costly numerically,
as will be detailed in the next section. Moreover it requires the tuning of another parameter δ. As
a consequence, for simplicity and homogoneity, we will mainly focus on the choice δ = 0. From
the discussion above, this choice is formally appropriate in the limiting case of observables φ for
which vφ � m2

φ.

To specify completely the algorithm, we need to choose an appropriate distance between proba-
bility measures to use in the minimization problem (3)-(8). Among the many possible choices, see
e.g. [GS02] for a review, we focus on two choices.

1.3. A regularized L2 distance. The first distance uses the Hilbert structure of the space L2(γ).
In this setting, a natural choice for comparing a probability measure η with the target Gaussian
distribution γ would be the χ2 divergence

∫
( dνdγ − 1)2dγ. Since this is degenerate if η is discrete,

we need to mollify η in some way before taking this divergence. A natural way of doing this in
L2(γ) is to use the Mehler kernel

Kh(x, y) := h−1/2 exp(−(x−
√

1− hy)2/(2h)) exp(x2/2) (9)

= h−1/2 exp
(
−
√

1− h
2h (x− y)2 +

√
1− h

2 + 2
√

1− h
(
x2 + y2)) .

and map η to
∫
Kh(x, y)dη(y): in probabilistic terms, we replace η by ηPt where Pt is the Ornstein–

Uhlenbeck semigroup, before taking the χ2 divergence. More formally, for any
h = 1− e−2t ∈ (0, 1),

we will see below in Section 3.2 that the formula

‖ν‖h =
∥∥∥∥d (νPt)

dγ

∥∥∥∥
L2(γ)

=
∥∥∥∥∫ Kh (x, y) ν(dy)

∥∥∥∥
L2(γ)

, (10)

defines a norm on signed measures ν satisfying some moment conditions, and we can set
dist (η1, η2) = ‖η1 − η2‖h

in (3). The latter distance has a variational representation as follows
‖ν‖h = sup

‖f‖L2(γ)≤1
νPtf,

so that the set D in (5) is the ’regularized’ image by the Ornstein–Uhlenbeck semigroup of the unit
ball of the Hilbert space L2(γ), and the optimal constant mφ in Assumption 1.4 is defined by (see
also Remark 3.5):

mφ := sup
‖ν‖h≤1 ν(1)=0

νMφ =
∥∥∥∥P−1

t

(
Mφ −

∫
Mφγ

)∥∥∥∥
L2(γ)

. (11)

Finally, we will detail in Section 3.4 how the minimization problem (8) turns out to be a quadratic
programming convex optimization problem, which can be solved using standard methods, typically
with a cubic polynomial complexity in terms of the sample size N . Solving the case δ 6= 0 is in fact
easier than the case δ = 0 since larger δ simply improve the conditioning of the symmetric matrix
underlying the quadratic porgramming problem.

1.4. An optimal transport distance. The second choice we investigate is the Wasserstein dis-
tance W1, defined classically as follows:

Definition 1.7 (Wasserstein distance). Let (E, d) be a Polish metric space. For any two probability
measures η1, η2 on E, the Wasserstein distance between η1 and η2 is defined by the formula

W1(η1, η2) =
(

inf
π∈Π

∫
E

d(x1, x2)dπ(x1, x2)
)

= inf
{
E [d(X1, X2)] , Law(X1) = η1,Law(X2) = η2

}
,

(12)
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where Π is the set of all couplings of η1 and η2.

Kantorovitch duality (see [Vil08]) implies that the latter distance is in fact an operator norm of
the form

W1(η1, η2) = ‖η1 − η2‖Lip = sup
‖f‖Lip≤1

η1(f)− η2(f),

where ‖f‖Lip = supx,y
f(x)−f(y)
d(x,y) is the Lipschitz seminorm. This is consistent with choosing for D

in (5) the set of 1-Lipschitz functions.
Finally, we will see in Proposition 4.1 that, at least in dimension 1 for the choice d(x1, x2) =

|x1 − x2|, the latter distance leads to an explicit formula for the optimal weights (wn(X))1≤n≤N ,
that can be computed with a complexity proportional to the sample size N . This leads to faster
algorithms and more explicit bounds on the mean square error as compared to the L2 case of the
last section. However, for this optimal transport method, solving the case δ 6= 0 is non explicit
and thus harder (although still a convex optimization problem).

Remark 1.8 (On other Wasserstein distances). We do not really lose generality here by only con-
sidering the W1 distance. Indeed, as can be seen from the proof of Proposition 4.1 below, the
optimal weights would be the same for any distance Wp, p ≥ 1.

1.5. Theoretical results. Recall that X = (X1, ..., XN ) is an i.i.d. N (0, 1) sequence in R. We
denote by

ηN = 1
N

∑
n

δXn .

the empirical measure of the sample X. The reweighted measure
∑
n wn(X)δXn will be denoted

by:
• η?h,N , if the wn(X) solve (8) for the L2 distance with parameter h and δ;
• η?Wass,N , if the wn(X) solve (3) for the Wasserstein distance (we will only consider the case
δ = 0).

We first focus on results on these optimally reweighted measures, shedding light on the behaviour
of the bound (7) and especially the second term in it. We start by the L2 minimization method.

Theorem 1.9 (The L2 method). For any fixed h, N and any δ ≥ 0, the optimization problem (8)
with the distance ‖·‖h has almost surely a unique solution. The distance of the optimizer η?h,N to
the target γ satisfies:

E
[∥∥η?h,N − γ∥∥2

h

]
≤ E

[
‖ηN − γ‖

2
h

]
= 1
N

(
1
h
− 1
)
. (13)

Moreover, in the case δ = 0, there exists a numerical h0 such that, for all h > h0,

E
[∥∥η?h,N − γ∥∥2

h

]
= o(1/N) (14)

as N goes to infinity.

The following result, where the window size h is allowed to depend on h, is an easy consequence
of (13).

Corollary 1.10. If (hN )N≥1 is bounded away from 1 and satisfies NhN →∞, then

η?hN ,N
(d)−−→ γ in probability.

The bound given by Equation (14) justifies our strategy in the sense that we managed to decrease
significantly the second term in the decomposition (7) of the mean square error. Considering the
first term in that decomposition leads naturally to the following conjecture, which is supported by
numerical tests.

Conjecture 1.11. For any h, there exists a constant Ch such that the optimal weights for the L2

method with δ = 0 satisfy

lim sup
N

NE

[∑
n

wn(X)2

]
≤ Ch.
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Remark 1.12 (The conjecture holds true for h = 0). A quick computation based on (9) and
Section 3.4 shows that the quadratic minimisation problem (8) in the case δ = 0 and h = 0 is
equivalent to the minimization over the simplex of the diagonal quadratic form

(w1, . . . , wN ) 7→
N∑
n=1

w2
n exp

(
1
2X

2
n

)
,

which is solved by wn(X) = Yn/(
∑
m Ym), where Ym = exp

(
− 1

2X
2
m

)
. Therefore

E

[
N
∑
n

w2
n(X)

]
= E

[
N
∑
n Y

2
n

(
∑
m Ym)2

]
= E

[
N2Y 2

1
(
∑
m Ym)2

]
.

The random variable SN = N2Y 2
1 /(
∑
n Yn)2 ≤ N2 converges almost surely to Y 2

1 /E [Y1]2 by the
law of large numbers. Moreover, the SN are uniformly integrable. Indeed,

E [SN1SN>K ] ≤ N2P [SN > K] ≤ N2P

[
1
N

∑
n

Yn < K−1/2

]
,

where in the last inequality we have used Y1 ≤ 1. If K−1/2 < E [Y1], the last probability is exponen-
tially small in N by Hoeffding’s inequality so that the uniform integrability follows. Consequently

lim
N→+∞

E

[
N
∑
n

wn(X)2

]
=

E
[
Y 2

1
]

E [Y1]2
= 2√

3
,

and the conjecture holds with C0 = 2/
√

3.

Corollary 1.13. Assume that Conjecture 1.11 holds true. Let h be larger than the numerical
constant h0 of Theorem 1.9, and assume that Mφ is regular enough so that (11) is finite, i.e.
mφ < +∞ – for instance Mφ is analytic. Assume also that Vφ(x) is bounded above by a constant
vφ. Then the L2 method with δ ≤ vφ/m2

φ satisfies

MSE (ΦW ) = E
[
(ΦW (X,Y)− E [φ(X,Y )])2

]
≤ Chvφ

N
+m2

φo(1/N)

for some numerical constant Ch and numerical o(1/N).
Therefore, under the above assumptions, the L2 method is asymptotically better than the näıve

Monte Carlo approach in terms of MSE as soon as vφ ≤ Var(Mφ(X))/(Ch − 1).

Remark 1.14 (On the optimal choice of h). The question of the best choice for the smoothing
parameter h is not easy to tackle: in the upper bound (7), h appears in the weights via Ch, in the
distance and in mφ. We will give below theoretical and empirical evidence that the best choice is
related to the regularity of the test function φ, and that smaller h are needed if φ is very irregular.

We are able to prove similar but more complete results for the Wasserstein method.

Theorem 1.15 (The Wasserstein method). For any N , the optimization problem has almost
surely a unique solution. The distance D =W1

(
η?Wass,N , γ

)
of the optimizer η?Wass,N to the target

γ satisfies for all integer p ≥ 1 the moment bounds:

E [Dp] = O?
(

1
Np

)
,

where O? means O up to logarithmic factors. In particular,

η?Wass,N
Law−−−−−→

N→+∞
γ in in probability.

Moreover, the optimal weights satisfy:

E

[∑
n

wn(X)2

]
≤ 6
N
.
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Figure 1. Comparison of methods for φ(X) and δ = 0

Corollary 1.16. Assume Mφ is Lipschitz – so that mφ < +∞, and that Vφ(x) is bounded above
by a constant vφ. Then

MSE (ΦW ) = E
[
(ΦW (X,Y)− E [φ(X,Y )])2

]
≤ c0vφ

N
+m2

φo(1/N)

for some numerical constant c0 ≤ 6 and numerical o(1/N).
Therefore, under the above assumptions, the Wasserstein method is asymptotically better than

the näıve Monte Carlo approach in terms of MSE as soon as vφ ≤ Var(Mφ(X))/(c0 − 1).

Remark 1.17 (The optimal c0). A careful look at the proof shows that, if the Xi follow the uniform
distribution on [0, 1], the bound on E

[∑
n wn(X)2] may be divided by 4, leading to c0 = 3/2.

Numerical tests suggest that even in the Gaussian case, this bound still holds true asymptotically
in the sense that NE

[∑
n wn(X)2]→ 3

2 . Therefore, we conjecture that the Wasserstein method is
better than the näıve Monte Carlo approach as soon as vφ ≤ 2 Var(Mφ(X)).

1.6. Numerical experiments. We supplement our theoretical findings with numerical tests. In
the first series of tests, we compare numerically the näıve Monte Carlo method, the L2 method
with various choices of the bandwidth, and the Wasserstein method, in the toy case where X itself
is the variable of interest. For simplicity, and for homogeneity between the two methods, we have
chosen in this first serie of numerical tests δ = 0 (up to numerical precision) in the the L2-method.
This case is an idealized case of concrete problems where vφ � m2

φ.
The full results may be found in Section 5. Figure 1 shows that both methods perform much

better than the näıve Monte Carlo estimator. The L2 method is often able to reduce significantly
the statistical error, but the bandwidth parameter h must be chosen carefully, depending on N and
the type of observable we are interested in. The parameter-free Wasserstein method is faster and
more robust, but may be outperformed by a well-tuned L2 method for very regular observables
(for example the cosine function).

The second series of numerical tests in done in Section 6. We let G be a d-dimensional standard
Gaussian vector, and assume we are interested in the distribution of a non-linear function Y =
F (G). We linearize F near 0 and let X = (DF )0G, so that the distribution of X is an explicit
one dimensional Gaussian. We then use our method to estimate, for any fixed t, the cumulant
generating function logE [exp(tF (G))], using X as our ”control variable”. In this more realistic
setting, we focus on the more robust Wasserstein method, and show how it can be compared to,
and combined with, a more classical control variate approach.
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quantiles, weighted estim.
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Figure 2. The figures above represents the [.05, .25, .75, .95]-quantile enveloppes
of the different estimators of the cumulant generating functions for F (G).

In Figure 2, we clearly see that our reweighting method always reduces variance in a substantial
way, without using any prior information of F . This non-linear example also shows that a standard
variance reduction by a linear control variate may be useless.

1.7. Conclusion. We have proposed generic and robust variance reduction techniques based on
reweighting samples using a one dimensional Gaussian control variable. The latter can be seen
as generalization of post-stratification methodologies and can outperform variance reduction by
control variate even in simple situations.

Theoretically, the results, which prove effective variance reduction for both methods, are quite
similar. The main difference is that in the Wasserstein setting, we are actually able to control the
variance of the weights with an explicit constant c0 ≤ 6; in the L2 case we only conjecture that
a similar result holds. This difference essentially comes from the fact that in our one dimensional
setting, the optimal Wasserstein weights are explicit, and therefore much easier to study.

Numerically, we have observed (as theoretically suggested) that the L2 approach, as compared
to the Wasserstein approach, requires more regular obervables and some tuning, and is more costly
when the sample size become large. Note however, that the L2 approach may be amenable to
control variables X in higher dimension, where Wasserstein optimization — optimal transport —
problems are known to be very cumbersome. This issue is left for future work.

1.8. Outline of the paper. In Section 2, we briefly discuss how our method fits in the landscape
of variance reduction techniques, and how it can be seen as complementing control variates and
generalizing post-stratification. In Section 3 we discuss the L2 method; the results on the Wasser-
stein approach are established in Section 4. The first numerical tests, considering only the gaussian
variable X, are presented in Section 5. Finally, the tests on more realistic models are presented in
Section 6.

2. Comparison with classical methods

2.1. Comparison to variance reduction with control variates. The method presented in
this work can be seen as an alternative to control variates. More precisely, as we are about to
explain now, they can be interesting as a complement to control variates when the latter is either
not efficient or too expensive.

Within the framework of Section 1.1, a control variate is a computable function ψ of X such
that the mean square error of E

[
(φ(X,Y )− ψ(X))2

]
is as small as possible (see [Owe13, Gla13]
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for a general introduction). Recent works have studied various techniques to find an optimized ψ
using basic functions and a Monte Carlo approach (see for instance [Jou09, PS18]). The associated
estimator is then

ΦCV (X,Y) = 1
N

N∑
n=1

φ(Xn, Yn)− ψ(Xn) +
∫
ψdγ,

whose mean square error (identical to variance since it is unbiased), satisfies

MSE(ΦCV (X,Y)) = 1
N

E

[(
φ(X,Y )− ψ(X) +

∫
ψdγ − E [φ(X,Y )]

)2
]
.

This quantity is classically minimized by choosing ψ(X) = E [φ(X,Y )|X], up to an irrelevant
additive constant.

As a consequence, if a good control variate, close to the conditional expectation ψ(X) ∼
E [φ(X,Y )|X] is available, and if we try to apply our method to φ̃(X,Y ) = φ(X,Y ) − ψ(X),
then Assumption 1.2 will not hold for φ̃. In the numerical experiment done in Section 6 —
see also Figure 2 — we compare the reweighting method with a natural affine control variate
Ψ(X) = aX + b which is not sufficient to approximate correctly E [φ(X,Y )|X]; interestingly the
reweighting method is able to overcome this issue in a generic way, without specific analytic ap-
proximation of E [φ(X,Y )|X] contrary to what is required to improve the control variate.

The latter discussion suggests that the present variance reduction method based on re-weighting
samples will be useful in one of the following two situations:

• The available control variates behaves very poorly.
• One is interested in estimating E [φ(X,Y )] for a large class of test functions φ, making the

calculation of control variates very costful.

2.2. Comparison to post-stratification variance reduction. The present work may be in-
terpreted as a generalization of post-stratification methods to continuous state spaces. In the
framework of Section 1.1, post-stratification can be defined by first choosing a finite partition of R,
given by K ’strata’, for instance the K-quantiles x1/2 < . . . < xK−1/2 defined by

∫ xk+1/2
xk−1/2

dγ = 1/K.
In that context, the post-stratification weights are defined by{

wn(X) = 1
KBn(X) ,

Bn(X) = card {Xm ∈ strat(Xn), 1 ≤ m ≤ N} ,
(15)

where in the above strat(Xn) is the interval [xk−1/2, xk+1/2[ containing Xn. The latter post-
stratification weights are defined so that the sum of the weights of particles in a given stratum is
constant an equal to 1/K.

We can then check the following:
Lemma 2.1. Let us denote by DK the space of functions on R that are constant on the srata
[xk−1/2, xk+1/2[, for k = 1 . . .K. Consider the semi-norm over finite measures

pK(µ) = sup
ψ∈DK , ‖ψ‖∞≤1

µ(ψ).

Then the post-stratification weights (15) is the solution to the minimization problem obtained by
setting dist (η, γ) = pK (η − γ) in (3) that is

minimize: pK

(
γ −

N∑
n=1

wnδXn

)
, subject to:

{
wn ≥ 0,∑
n wn = 1,

(16)

that moreover minimize the variance of the weight
∑
n w

2
n − 1.

Proof. It’s easy to check that, by definition,

pK

(
γ −

N∑
n=1

wnδXn

)
=

K∑
k=1

∣∣∣∣∣ 1
K
−
∑
n

wn1Xn∈[xk−1/2,xk+1/2[

∣∣∣∣∣
As a consequence, the weights that are solution to the minimization (16) are exactly those such
that for all 1 ≤ m ≤ n ∑

n

wn1Xn∈strat(Xm) = 1/K
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which means that the sum of the weights of particles in the same stratum are equal to 1/K. Now
the unique minimum of

∑
n∈I w

2
n under the constraint that

∑
n∈I) wn = c0 is constant is given by

uniform weights wn = c0/card(I) since by Jensen∑
n∈I

(c0/card(I))2 =
(∑
n∈I

wn

)2

/card(I) ≤
∑
n∈I

w2
n. �

As a consequence, the methods presented in this work can be interpreted as extensions of
the post-stratification methods from the semi-norm pK to the norms ‖ . ‖h or to the Wasserstein
distance (which is in fact a norm) W1.

3. The L2 method

In this section, after recalling a few classical facts and formulae on the Hilbert space L2(γ), we
define precisely the h-norm on signed-measures, and study in Section 3.4 the corresponding opti-
mization problem. Finally, we prove in Section 3.5 and 3.6 the results announced in Theorem 1.9.

3.1. Useful tools in L2. We start by recalling a few useful definitions and results concerning the
standard Gaussian Hilbert space L2(γ).

Orthogonalizing the standard polynomial basis with respect to the scalar product 〈f, g〉γ =∫
f(x)g(x)dγ(x) gives rise to the classical family of Hermite polynomials (Hn), see e.g. [AS92,

Chapter 22] for details: a Hilbert basis of L2(ga), where Hn is a polynomial of degree n, with
the normalization 〈Hm, Hn〉 = m!1m=n. We write hn the corresponding orthonormal basis hn =
(n!)−1/2Hn.

Recall the definition of the Mehler kernel (9):
Kh(x, y) = h−1/2 exp(−(x−

√
1− hy)2/(2h)) exp(x2/2)

= h−1/2 exp
(
−
√

1− h
2h (x− y)2 +

√
1− h

2 + 2
√

1− h
(
x2 + y2)) .

It will be useful to introduce another parameter t such that h = 1− e−2t; we let
kt(x, y) = Kh(x, y) = K1−e−2t(x, y).

The classical formula of Mehler gives the spectral decomposition of this kernel.
Lemma 3.1 (Mehler’s formula). For all (x, y) ∈ R2 and t > 0,

kt(x, y) =
∞∑
n=0

e−nthn(x)hn(y) = kt(y, x). (17)

It is also classical to interpret this kernel as the probability density kernel of the Ornstein-
Uhlenbeck semigroup with respect to the standard Gaussian.
Lemma 3.2. Let Pt denotes the semigroup of probability transitions of the Ornstein–Uhlenbeck
process solution to the SDE dXt = −Xtdt+

√
2Bt where Bt is a standard Brownian motion, that is

E [f(Xt)|X0 ∼ η] =
∫
Ptf(x)dη(x) for all bounded continuous test function f and any probability

measure η. Then it holds
Pt(x, dz) = kt(x, z)γ(dz).

Proof. Xt has the same distribution as e−tX0 +
√

1− e−2tG for a standard Gaussian random
variable G. Hence recalling (9) and h = 1− e−2t it yields E [f(Xt)|X0 = x] =

∫
f(z)kt(x, z)γ(dz).

�

Let us collect a few consequences of this representation.
Lemma 3.3. Let γ = N (0, 1), then∫

Kh (x, y) γ(dy) =
∫
Kh(x, y)γ(dx) = 1; (18)∫

ks(x, y)kt(y, z)γ(dy) = ks+t (x, z) ; (19)∫ ∫
Kh(x, y)2γ(dx)γ(dy) = 1

h
. (20)
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Proof. For the first equality, we integrate (17) with respect to one of the variables:∫
kt(x, y)γ(dy) =

∫ ∞∑
n=0

e−nthn(x)hn(y)γ(dy)

=
∞∑
n=0

e−nthn(x)
∫
hn(y)γ(dy) = h0(x) = 1.

The second equality is another way of expressing the semigroup property for the Ornstein Uhlen-
beck process: For all x, z ∈ R∫

kt(x, y)ks(y, z)γ(dy) =
∫ ∑

m,n

e−mt−nshm(x)hm(y)hn(y)hn(z)γ(dy)

=
∑
n

e−n(t+s)hn(x)hn(z)

= kt+s(x, z).

Applying this to the special case x = z and t = s, for h = 1 − e−2t, and integrating with respect
to γ(dx) yields∫ ∫

Kh(x, y)2γ(dx)γ(dy) =
∫
k2t(y, y)γ(dy) =

∫ ∞∑
n=0

e−2nthn(y)2γ(dy)

=
∞∑
n=0

e−2nt = 1
1− e−2t = 1

h
. �

3.2. The h-norm: theoretical properties. We gather the definition and main properties of the
h-norm in the following result.

Theorem 3.4. Let
h = 1− e−2t, t > 0.

Let M be the set of signed measures on R with a finite total mass, and let

S =
{
ν ∈M,

∫
exp

(
y2

4

)
|η| (dy) < +∞

}
.

(1) For any ν ∈ S, the function x 7→
∫
Kh(x, y)dν(y) is in L2(γ), so that

‖ν‖h :=
∥∥∥∥d (νPt)

dγ

∥∥∥∥
L2(γ)

=
∥∥∥∥∫ Kh (x, y) ν(dy)

∥∥∥∥
L2(γ)

<∞.

(2) Let us denote D := {Ptϕ;ϕ ∈ L2(γ), ‖ϕ‖L2(γ) ≤ 1} the unit ball of the space {ψ = Ptϕ;ϕ ∈
L2(γ)} endowed with the norm

∥∥P−1
t ψ

∥∥
L2(γ). Then ‖ν‖h admits the dual representation

‖ν‖h = sup
‖ϕ‖L2(γ)≤1

∫
ϕ
d (νPt)
dγ

dγ = sup
‖P−1

t ψ‖
L2(γ)

≤1

∫
ψdν = sup

ψ∈D

∫
ψdν. (21)

(3) The map ν 7→ ‖ν‖h is a norm on S.
(4) ‖·‖h′ ≤ ‖·‖h, when h ≤ h′.
(5) If (ηk)k∈N and η are probability measures in S, and if ‖ηk − η‖h → 0, then ηk converges

weakly to η.

Remark 3.5 (On the set D). The set D is the image of the unit ball of L2 by the Ornstein-Uhlenbeck
semigroup and consists of very regular functions. Indeed, its coefficents on the Hermite basis must
decrease geometrically: ψ ∈ D if and only if

‖ψ‖L2(γ) =
∑
k≥0

ekt
(∫

R
hkψdγ

)2
≤ 1.

The set D contains of course all conveniently normalized polynomials, as well as many explicit
non-polynomial functions. For instance, the cosine function is in D, as can be checked thanks to
the computations of Pteiλ· in the proof below.
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Proof. (1) By Minkowski’s integral inequality, we have

‖ν‖h =
(∫ (∫

Kh(x, y)ν(dy)
)2

γ(dx)
) 1

2

≤
∫ (∫

(Kh(x, y))2
γ(dx)

) 1
2

|ν| (dy).

By (19) from Lemma 3.3 applied with x = z and s = t, and a quick computation using the
explicit formula for k2t, we can rewrite the innermost integral as follows:∫

Kh(x, y)2γ(dx) = k2t(y, y) = (1− e−4t)−1/2 exp
((

e−2t

1 + e−2t

)
y2
)
.

Therefore, ‖ν‖h is finite whenever exp
((

e−2t

2(1+e−2t)

)
y2
)

is |ν| integrable. In particular it
is finite for all h if |ν| integrates exp(x2/4).

(2) The first equation uses the Hilbert structure of L2(γ) and the second one follows from the
fact that the Ornstein–Uhlenbeck semigroup Pt is self adjoint in L2(γ).

(3) Homogeneity and sub-additivity follow easily from the dual expression (21). Since the
positivity ‖η‖h ≥ 0 is obvious, it is enough to prove that ‖η‖h = 0 implies η = 0. We
prove this fact using characteristic functions. Denote by F(f) the Fourier transform, for
any function f : R→ C

F(f)(ξ) :=
∫
e−2πix·ξf(x)dx.

We recall that, for any a > 0,

F(e−ax
2
)(ξ) =

√
π

a
exp

(
− ξ

2

a
π2

)
. (22)

Now, remark that the Ornstein Uhlenbeck semigroup Pt leaves the set of functions
{x 7→ ceiλx} invariant: indeed, for any λ ∈ R, let λ̃ = λ√

1−h and c = e
hλ2

2(1−h) , we have

Pt

(
ceiλ̃·

)
(x) = E

[
ceiλ̃(

√
1−hx+

√
hG)
]

= cei
√

1−hλ̃xE
[
eiλ̃
√
hG
]

= ceiλx
∫
e−i(−

√
hλ̃)xγ(dx),

by Fourier transform (22), we get

Pt

(
ceiλ̃·

)
(x) = ceiλx

∫
e−i(−

√
hλ̃)x 1√

2π
e−

x2
2 dx

= ceiλxe−
hλ̃2

2

= eiλx.

Since
∥∥∥ceiλ̃·∥∥∥

L2(γ)
= ce−

λ̃2
2 ≤ |c|, then for any λ ∈ R∣∣ν(eiλ·)

∣∣ =
∣∣∣ν (Pt (ceiλ̃·))∣∣∣ ≤ |c| sup

‖φ‖L2≤1
|(ν) (Pt (φ))|

= |c| ‖ν‖h .
(23)

Therefore, if ‖ν‖h = 0, then
∣∣ν(eiλ·)

∣∣ = 0 for all λ, which implies ν = 0.
(4) Let h′ = 1− e−2t′ , then t ≤ t′. By definition of ‖·‖h, we have

‖ν‖h′ = sup
‖ϕ‖L2≤1

ν (Pt′ϕ) = sup
‖ϕ‖L2≤1

ν (PtPt′−tϕ)

≤ sup
ϕ:‖Pt′−tϕ‖≤1

ν (PtPt′−tϕ)

= sup
‖ϕ‖L2≤1

ν (Ptϕ)

= ‖ν‖h ,
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where we have use that ‖Pt′−tϕ‖L2 ≤ ‖ϕ‖L2 by Jensen’s inequality.
(5) Let (ηk) and η be probability measures in S such that ‖ηk − η‖ → 0. For any λ and any

k, we apply (23) to ν = ηk− η and let k go to infinity. This implies that ηk(eiλ·) converges
to η(eiλ·) for all λ, so ηk converges to η in distribution. �

3.3. Choice of the bandwidth h. We have seen in Theorem 3.4 that the mapping h 7→ ‖ ‖h
is decreasing, whereas the mapping h 7→ mφ := sup‖ν‖h≤1 ν (Mφ) is increasing. If one tries to

minimize the second term m2
φE
[∥∥∥η?h,N − γ∥∥∥2

h

]
in the upper bound (7), one can easily check that

its derivative with respect to h has the same sign as
d

dh
lnm2

φ + d

dh
lnE

[∥∥η?h,N − γ∥∥2
h

]
(24)

On the other hand, in the Hermite polynomials orthonormal basis, we have the simple formula
(see Remark 3.5) m2

φ =
∑
k≥1 ekt

(∫
hkMφdγ

)2 with h = 1− e−2t, so that

d

dh
m2
φ = dt

dh

∑
k≥1

kekt
(∫

hkMφdγ

)2
,

and thus the ratio d
dh lnm2

φ = m−2
φ

dm2
φ

dh can be interpreted as a strong measure of the irregularity
of x 7→ Mφ(x) — the more the observable Mφ is ’irregular’, the more the high frequency modes
are relatively large and the larger d

dh lnm2
φ is. As a consequence, for any fixed h, a less regular

observable Mφ renders the gradient (24) strictly positive, showing that the minimizer of h 7→

m2
φE
[∥∥∥η?h,N − γ∥∥∥2

h

]
is attained for smaller h — that is, as expected, for smaller kernel bandwidths.

This monotony between the best choice of bandwidth h and the regularity of the observable will
be observed numerically in Section 5.

3.4. The L2 method as a quadratic programming problem. We now discuss the mini-
mization problem (3) when dist () is the h-norm, first from a deterministic point of view. Let
x = (x1, ..., xN ) be a vector in RN . We want to solve the following minimization problem :

minimize:

∥∥∥∥∥∑
n

wnδxn − γ

∥∥∥∥∥
2

h

+ δ
∑
n

w2
n, subject to:

{
wn ≥ 0,∑
n wn = 1.

Let us denote by Ω the simplex {w = (w1, ..., wN )|wi ≥ 0,
∑N
n=1 wn = 1}, and let F (w) =

‖
∑
n wnδxn − γ‖

2
h
. By definition, F may be rewritten as follows:

F (w) =

∥∥∥∥∥
N∑
n=1

wnKh(y, xn)− 1

∥∥∥∥∥
2

L2(γ(dy))

=
∫ ( N∑

n=1
wnKh (y, xn)− 1

)2

γ(dx)

=
N∑
n,m

wnwm

∫
Kh(y, xn)Kh(y, xm)γ(dx)− 2

N∑
n=1

wn

∫
Kh(y, xn)γ(dx) + 1

By (19) in Lemma 3.3, we have

F (w) =
N∑
n,m

wnwmk2t (xn, xm)− 2
N∑
n=1

wn + 1

= w>Qw − 1,

where Q is the N ×N matrix whose components are given by

Qn,m = k2t (xn, xm) , for any 1 ≤ n,m ≤ N. (25)
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For future reference, let us note that using Mehler’s formula, k2t(xm, xn) =
∑
k e
−2kthk(xm)hk(xn),

so that we can also write, for any weight vector (w1, ..., wN ),∥∥∥∥∥
N∑
n=1

wnδxn − γ

∥∥∥∥∥
2

h

= w>Qw − 1 =
∑
k≥0

e−2kt

(∑
n

wnhk(xn)
)2

− 1

=
∑
k≥1

e−2kt

(∑
n

wnhk(xn)
)2

.

(26)

The minimization problem is therefore reduced to the following quadratic problem over a convex
set:

minimize: w>(Q+ δId)w subject to: w ∈ Ω. (27)

Proposition 3.6 (The quadratic programming problem). If the xn are pairwise distinct, then Q
is positive definite, and the minimization problem (27) has a unique solution even if δ = 0.

This holds in particular with probability one if the (xn)1≤n≤N = (Xn)1≤n≤N are iid samples
of γ.

Remark 3.7. Here the solution may or may not be in the interior of the simplex: there are vectors
x = (x1, ..., xN ) for which some of the components of the optimal weight vector are zero.

Proof. For any column vector a = (a1, ..., aN ), we need to prove that aTQa = 0 if and only if
a = 0. The same calculation leading to (26) yields

aTQa =
∑
k

e−2kt

(∑
m

amhk(xm)
)2

= 0,

which implies that, for all integer k,
∑N
m=1 amhk(xm) = 0. Let Pn be the Lagrange cardinal

polynomial that satisfies Pn(xm) = δnm. Since Pn may be decomposed on the basis of the hk, it
holds that

∑
m amPn(xm) = 0, so an must be zero. Since n is arbitrary, a = 0. This shows that Q

is positive definite.
We are therefore optimizing a strictly convex function over a compact convex set: the minimizer

exists and is unique. �

3.5. A first comparison with the näıve empirical measure. Recall that ηN = 1
N

∑
n δXn

and η?h,N =
∑
n wn(X)δXn denote respectively the näıve and L2-reweighted empirical measure.

Proof of Theorem 1.9. The existence and uniqueness of the minimizer follow from Proposition 3.6.
We now want to establish (13), that is,

E
[∥∥η?h,N − γ∥∥2

h

]
≤ E

[
‖ηN − γ‖

2
h

]
= 1
N

(
1
h
− 1
)
.

The first inequality follows from Jensen’s inequality. Indeed, by definition, the (wn) solve (27), so
that almost surely, ∥∥η?h,N − γ∥∥2

h
+ δ

∑
n

wn(X)2 ≤ ‖ηN − γ‖
2
h + δ/N.

Jensen’s inequality on the weights (wn) then implies

1/N2 =
(∑

n

wn(X)/N
)2

≤
∑
n

w2
n(X)/N

so that ∥∥η?h,N − γ∥∥hN ≤ ‖ηN − γ‖h .
To compute the expected value of ‖ηN − γ‖

2
h, we use the spectral decomposition (26) to write

E
[
‖ηN − γ‖

2
h

]
= 1
N2

N∑
n,m

E

[ ∞∑
k=1

e−2kthk(Xn)hk(Xm)
]
,
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where t satisfies h = 1−e−2t. Since X1, ..., XN are i.i.d. N (0, 1) and the (hk)k≥1 are all orthogonal
to h0 = 1 in L2(γ),

E
[
‖ηN − γ‖

2
h

]
= 1
N2

∞∑
k=1

e−2kt
{ ∑
n=m

E
[
(hk(Xn))2

]
+
∑
n 6=m

E [hk(Xn)]E [hk(Xm)]
}

= 1
N

( ∞∑
k=1

e−2kt

)
= 1
N

(
e−2t

1− e−2t

)
= 1
N

(
1
h
− 1
)
,

concluding the proof of Equation (13). �

We end this section by proving the weak convergence result of Corollary 1.10. The proof uses the
following classical result (see e.g. [Kal02, Lem. 3.2]), which implies in particular that convergence
in probability is a topological notion that does not depend on the choice of a metric.

Lemma 3.8 (Subsequence criterion). Let Y1, Y2, ... be random elements in a metric space (S, d).
Then Yn

P−→ Y iff for all sub-sequence (kn) ⊂ N, there exists a further subsequence (lkn) ⊂ (kn)
such that Yn → Y a.s. along (lkn).

Proof of Corollary 1.10. We let N → +∞ with 1
N � hN ≤ h0 < 1, and show that in probability,

the random measure η?h,N converges weakly to γ.
Let hN = 1 − e−2t. By Lem. 3.8, it is enough to prove that from any subsequence of η∗hN ,N ,

we can extract a further subsequence along which η∗hN ,N converges in distribution to γ. Let us
consider an arbitrary subsequence of η∗hN ,N . By Equation (13),

E
[∥∥η?hN ,N − γ∥∥2

hN

]
≤ 1
N

(
1
hN
− 1
)
−−−−→
N→∞

0,

so the random variable
∥∥∥η?hN ,N − γ∥∥∥hN converges in L2(P) to 0. Convergence in L2 implies con-

vergence in probability so that by Lemma 3.8, there is a further subsequence along which∥∥η?hN ,N − γ∥∥hN a.s.−−−−→
N→∞

0.

Since hN ≤ h0, we get by Theorem 3.4, item (4), that along the sub-subsquence,∥∥η?hN ,N − γ∥∥h0

a.s.−−→ 0.

Since ‖·‖h0
-convergencence implies weak convergence by item (5) of Theorem 3.4, η?h,N

a.s.−−→
(d)

γ

along the sub-subsequence. �

3.6. Fast convergence of the weighted measure and a conjecture. In this Section we prove
the second part of Theorem 1.9: in the δ = 0 case, for h sufficiently large,

E
[∥∥η?h,N − γ∥∥2

h

]
= o(1/N).

3.6.1. Strategy of proof. Recall that η?h,N is defined by minimizing ‖
∑
wnδXn − γ‖

2
h over all weight

vectors. The main difficulty here is that this minimizer is not explicit. However, for any integer
K, the spectral decomposition giving (26) can be used to split the cost function in two terms:

‖η − γ‖2h =
K∑
k=1

e−2kt

(∑
n

wnhk(Xn)
)2

+
∑
k>K

e−2kt

(∑
n

wnhk(Xn)
)2

. (28)

Let wKn (X) be an optimizer of the first, finite dimensional term. If N is large enough with respect
to K, then it is reasonable to expect that, with high probability, the value of this finite dimensional
problem is zero.
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Definition 3.9 (K-good vectors). A vector x = (x1, ..., xN ) is said to be K-good if there exists a
weight vector (w1, ..., wN ) in the simplex Ω such that

∀1 ≤ k ≤ K,
∑
n

wnhk(xn) = 0.

Let G be the ”good event” G = {X is K-good}. On G we compare wn(X) to wKn (X); on the
bad event we simply use the näıve empirical measure:

E
[∥∥η?h,N − γ∥∥2

h

]
≤ E

[∥∥η?h,N − γ∥∥2
h

1G
]

+ E
[∥∥η?h,N − γ∥∥2

h
1Gc

]
≤ E

∥∥∥∥∥∑
n

wKn (X)δXn − γ

∥∥∥∥∥
2

h

1G

+ E
[
‖ηN − γ‖

2
h 1Gc

]

For the first term, on the good event G, we apply (28): by definition the first term vanishes and
we get ∥∥∥∥∥∑

n

wKn (X)δXn − γ

∥∥∥∥∥
2

h

1G ≤
∑
k>K

e−2tk

(∑
n

wKn (X)hk(Xn)
)2

≤
∑
k>K

∑
n

e−2tkwKn (X)h2
k(Xn).

where we used Jensen’s inequality with the weights wKn in the last line. We now take the expec-
tation, bounding wKn by one, to get

E

∥∥∥∥∥∑
n

wgn(X)δXn − γ

∥∥∥∥∥
2

h

1G

 ≤ ∑
k>K

∑
n

e−2tkE
[
h2
k(Xn)

]
≤ N

∑
k>K

e−2tk

≤ N e−2t(K+1)

1− e−2t .

On the bad event we use Hölder’s inequality:

E
[
‖ηN − γ‖

2
hN

1Gc
]
≤ E

[
‖ηN − γ‖

4
hN

]1/2
P [Gc]1/2 .

E
[∥∥η?h,N − γ∥∥2

h

]
≤ N e−2t(K+1)

1− e−2t + E
[
‖ηN − γ‖

4
hN

]1/2
P [Gc]1/2 . (29)

In order to bound the 4th moment of the h-norm, we proceed as follows. Recall that h = 1−e−2t,
and suppose that e2t ≥ 3, so that we can write t = s+ u with s satisfying e2s = 3. Then

‖ηN − γ‖
4
h =

∥∥∥∥dηNPtdγ
− 1
∥∥∥∥2

2
=
∥∥∥∥Ps(dηNPudγ

− 1
)∥∥∥∥4

2

≤
∥∥∥∥Ps(dηNPudγ

− 1
)∥∥∥∥2

4

≤
∥∥∥∥(dηNPudγ

− 1
)∥∥∥∥2

2

where the last line uses Nelson’s theorem, that is, the hypercontractivity of the Ornstein-Uhlenbeck
semigroup (see e.g. [Gro93]) which here holds true between L4 and L2 for time greater than
s = (ln 3)/2.

Taking expectations and reusing (13), we get

E
[
‖ηN − γ‖

4
h

]
≤ 1
N

(
1

1− e−2u − 1
)

= 1
N

(
1

1− 3e−2t − 1
)
.
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Putting everything together, we have for t ≥ (ln 3)/2:

E
[∥∥η?h,N − γ∥∥2

h

]
≤ N e−2t(K+1)

1− e−2t + 1√
N

( 1
1− 3e−2t − 1)1/2P [Gc]1/2 . (30)

To go forward, the main challenge is to get a bound on the probability of the bad event.

3.6.2. Control on the bad event by coupon collecting. Let M be an integer and decompose the real
line R in M segments between the quantiles (zi)0≤i≤M , where Fγ(zi) =

∫ zi
−∞ γ(dx) = i/M .

Definition 3.10 (Well spread vector). A vector x = (x1, ..., xN ) is said to be M -well-spread if it
visits each of the M quantiles of the Gaussian:

∀1 ≤ j ≤M,∃1 ≤ i ≤ N xi ∈ (zi−1, zi).

The main results of this section are the two following lemmas.

Lemma 3.11 (M -well-spread implies K-good). There exists a universal constant C such that, if
x is M -well-spread, then it is K-good for all K such that

M > CK5/28K .

Lemma 3.12 (Large samples are well-spread). Suppose that N > (2p + 2)M ln(M). For X =
(X1, ..., XN ), an iid gaussian sample, the probability that X is not M -well-spread is small:

P [∃i,∀n,Xn /∈ (zi−1, zi)] ≤
M

M − 1
1

M2p+1 .

We start by the short proof of this second lemma.

Proof of Lemma 3.12. We interpret the question as a coupon collecting problem. For M coupons,
the number of trials T needed to get a complete collection admits the following classical deviation
bound, see for example [MR95, Section 3.6.1, p. 58]:

∀l ∈ N, P [T > l] ≤M(1− 1/M)l ≤M exp(−l/M),
obtained by expressing {T > l} as the union of the M events “the kth coupon never appears in
the l trials”. Thus

∀t, P [T > M ln(M) +Mt] ≤ M

M − 1 exp(−t),

where the M/(M − 1) factor comes from the fact that M ln(M) + Mt might not be an integer.
We choose t = (2p + 1) ln(M), and recall that by assumption (2p + 2)M ln(M) < N . This yields
a bound on the probability of not being well-spread:

P [∃i,∀n,Xn /∈ (xi−1, xi)] = P [T > N ] ≤ P [T > (2p+ 2)M ln(M)]

≤ M

M − 1
1

M2p+1 . �

The proof of Lemma 3.11 is a bit more involved. Let us first state and prove three additional
lemmas.

Lemma 3.13. x is K-bad if and only if there exists a polynomial P such that deg(P ) ≤ K, P is
orthogonal to h0, and

∀1 ≤ n ≤ N, P (xi) > 0.

Proof. By definition, x is K-bad if and only if the origin of RK is not in the convex hull of the N
points (h1(Xn), ..., hK(Xn)). If this is the case, then by the hyperplane separation theorem there
exists an α = (α1, ..., αK) that has a positive scalar products with the N points, that is,

∀1 ≤ n ≤ N,
K∑
k=1

αkhk(Xn) > 0.

In other words, the polynomial P =
∑K
k=1 hk takes positive values on each of the Xn for 1 ≤ n ≤ N .

Since the (hk) are orthogonal, P is indeed orthogonal to h0.
Conversely if such a P =

∑K
k=1 αk exists then α = (α1, ..., αK) has a (strictly) positive scalar

product with the N points (h1(Xn), ..., hK(Xn))1≤n≤N , so it has a positive scalar product with any
convex combination of these points, therefore 0 cannot be in the convex hull of these points. �
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Lemma 3.14. There is a universal constant C such that, if P =
∑K
k=1 akhk is a polynomial of

degree at most K orthogonal to h0, then

E
[
|P (Z)|3

]1/3
≤ CK1/42K/2E

[
P (Z)2]1/2 .

Proof. Without loss of generality we may assume
∑K
k=1 a

2
k = 1.

E
[
|P (Z)|3

]1/3
≤
∑
|ak|E

[
|hk(Z)|3

]1/3
≤ CK−1/42K/2

∑
|ak|

≤ CK1/42K/2,

where the second line follows from Theorem 2.1, eq. (2.2) in [LC02], remarking that our hk are
normalized in L2 instead of monic, and the last line from the bound

∑
|ak| ≤

√
K(
∑
k |ak|

2)1/2. �

Lemma 3.15. If X ∈ L3 satisfies E [X] = 0, then

P [X > 0] ≥
E
[
X2]3

4E [X3]2
.

Proof. Since E [X] = 0, E [X+] = E [X−] = 1
2E [|X|]. Therefore by Hölder’s inequality,

1
4E [|X|]2 = E [X+]2 = E [X1X>0]2 ≤ E

[
X2]P [X > 0] .

Moreover, another application of Hölder’s inequality yields

E
[
X2] ≤ E [|X|]1/2 E

[
|X|3

]1/2
.

Putting these two inequalities together, we get

P [X > 0] ≥ E [|X|]2

4E [X2] ≥
E
[
X2]3

4E
[
|X|3

]2 . �

Proof of Lemma 3.11. Suppose that x is M -well-spread but K-bad. By Lemma 3.13, there exists
a Px of degree at most K that takes positive values on each of the xi. This Px has L ≤ K real roots
r1 ≤ · · · ≤ rL. To fix ideas, suppose that Px is negative at −∞. Setting r0 = −∞ and rL+1 =∞,
the open set {z : Px(z) < 0} may therefore be written as the union of disjoint, possibly empty,
intervals

⋃
m even,m≤L(rm, rm+1). These intervals cannot contain the xi, so each one is included in

the union of two adjacent interquantiles intervals, so that for m even, m ≤ L,∫ rm+1

rm

γ(dz) ≤ 2
M
.

Furhtermore, the number of intervals is at most d(K + 1)/2e ≤ (K + 3)/2. Rewriting the gaussian
integral as a probability, we get, for Z a standard Gaussian random variable,

P [Px(Z) < 0] ≤ (K + 3)/M.

The key point now is that Px is orthogonal to h0 = 1, that is, in probabilistic terms, E [Px(Z)] = 0,
so that we can use the concentration lemma 3.15, to bound the left hand side from below and get:

K + 3
M

≥
E
[
P (Z)2]3

4E [|P (Z)3|]2
≥ c

K3/28K
.

This bound implies the claim. �
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3.6.3. End of the proof of Theorem 1.9. Let us recall the bound (30) for t ≥ (ln 3)/2:

E
[∥∥η?h,N − γ∥∥2

h

]
≤ N e−2t(K+1)

1− e−2t + 1√
N

( 1
1− 3e−2t − 1)1/2P [Gc]1/2 . (31)

For each N choose M and K the largest possible integers such that

N > 4M ln(M), M > CK5/28K . (32)

Note that in particular N = O?(M). This relation between M and K ensures that, by Lemma 3.11,
the sample X is K-good as soon as it is M -well-spread, so that by Lemma 3.12,

P [Gc] = O(1/M3) = O?(1/N3),

and the last term in (31) is o(1/N). For the first term of (31), the bound is in Ne−2tK . The
definitions of K and M ensure that N = O((8+ε)K), so that N2e−2tK = o(1) if t is large enough, or

in other words Ne−2tK = o(1/N). Putting everything together, we get E
[∥∥∥η?h,N − γ∥∥∥2

h

]
= o(1/N),

concluding the proof of Equation (14) and of Theorem 1.9.

3.6.4. Proof of Corollary 1.13. Let us denote by wδn(X) and by ηδ,?N the optimal weights and the
associated weighted empirical distribution obtained by the optimization problem (8) for a given δ
(we drop the subscript h in notation for simplicity). By construction,

E
[
dist

(
η0,?
N , γ

)2
]

+ δ
∑
n

w0
n(X)2 ≥ E

[
dist

(
ηδ,?N , γ

)2
]

+ δ
∑
n

wδn(X)2

≥ E
[
dist

(
η0,?
N , γ

)2
]

+ δ
∑
n

wδn(X)2

so that
∑
n w

δ
n(X)2 ≤

∑
n w

0
n(X)2. As a consequence, the MSE obtained with a given δ can be

first bounded using (7) and then using the wieghts w0
n(X) so that

E
[(

Φδ
W (X,Y)− E [φ(X,Y )]

)2] ≤ (vφ−δm2
φ)E

[∑
n

w0
n(X)2

]
+m2

φE

[
dist

(
η0,?
N , γ

)2
+ δ

∑
n

w0
n(X)2

]
.

The corallary then follows from Theorem 1.9 and Conjecture 1.11.

4. The Wasserstein method

4.1. An exact expression for the optimal weights. The fact that the Wasserstein method is
both easier to analyze and faster in practice stems from the fact that the minimization problem
can be solved explicitely.

Proposition 4.1. Let x = (x1, ..., xN ) be a set of N distinct points in R, let (x(1) < x(2) · · · < x(N)
be their ordered relabelling, and let (yn)0≤n≤N be the middle points (1/2)(x(n) + x(n+1)), with the
convention y0 = −∞ and yN =∞.

For w = (w1, ..., wN ) in the simplex Ω = {(w1, ..., wN ) ∈ RN+ ,
∑
n wn = 1}, let F (w) be the cost

F (w) =W1

(
N∑
n=1

wnδxn , γ

)
.

The optimization problem

minimize: F (w) subject to: w ∈ Ω

has a unique solution w(x) = (w1(x), ..., wN (x)), given by

wn(x) =
∫ ym

ym−1
γ(dz),

where m is the unique integer such that xn = x(m).
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w1(x)
w2(x)

w3(x)

y1 y2
x(1) x(2) x(3)

Given the sample (x), the optimal Wasserstein weights are obtained by computing the middle points
yn = (x(n) + x(n+1))/2, and letting wn = γ([yn−1, yn]).

Figure 3. The optimal weights w(x).

Proof. First, note that thanks to the relabelling in the last part of the statement, is enough to
prove the result when the (xn) are already ordered; we assume from now on that x1 < · · · < xN .

Let η be any probability measure on R, and recall that γ is the standard Gaussian measure;
denote by Fη, Fγ their respective cumulative distribution functions. The Wasserstein distance W1
between η and γ admits the following classical representation, see for example [Vil03, Remark 2.19
item (iii)] :

W1(γ, η) =
∫
R
|Fη(x)− Fγ(x)| dx.

Consider now the discrete measure η(w) =
∑N
n=1 wnδxn . By cutting the integral at the points

xn and isolating the first and last terms, we get the explicit formula

F (w) =W1

(
N∑
n=1

wnδxn , γ

)

=
N−1∑
n=1

∫ xn+1

xn

∣∣∣∣∣
n∑

m=1
wm − Fγ(z)

∣∣∣∣∣ dz +
∫ x1

−∞
|Fγ(z)| dz +

∫ ∞
xN

|1− Fγ(z)| dz. (33)

Note that the extremal terms do not depend on the weight vector w. For 1 ≤ n ≤ N − 1, consider
now the nth term in this sum, and write it as φn(

∑n
m=1 wm), where

φn(c) =
∫ xn+1

xn

|c− Fγ(z)| dz.

Writing φn(c) = (xn+1 − xn)E [|c− Fγ(U)|] for U a uniform variable on [xn, xn+1], we see by
classical properties of medians, see e.g. [Str11, p. 43], that φn attains its minimal value at the
unique median of the distribution of Fγ(U), that is, at the point p where P [Fγ(U) ≤ p] = 1/2.
Since

P [Fγ(U) ≤ p] = P
[
U ≤ F−1

γ (p)
]

= (F−1
γ (p)− xn)/(xn+1 − xn),

the minimum of φn is attained at the unique point Fγ(yn), where we recall that yn is the midpoint
(xn + xn+1)/2.

To conclude the proof, it is now enough to remark that letting wn =
∫ yn
yn−1

γ(dz), we get∑n
m=1 wm = Fγ(yn), so that (w1, ..., wN ) minimizes all the terms in the sum (33). �

4.2. Probabilistic properties of the optimal weights. Let X1, ..., Xn be i.i.d. N (0, 1). In
this section we investigate the behaviour of the W1 distance D = D(X) = W1(

∑
n wn(X)δXn , γ)

between the optimally reweighted sample and the target Gaussian measure. We start by proving
the first part of Theorem 1.15: for any integer p,

E [Dp] = O?
(

1
Np

)
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where O? means O up to logarithmic correction terms.

Proof of Theorem 1.15, first part. Let us first note that, since γ is absolutely continuous with
respect to the Lebesgue measure, classical results on optimal transportation in dimension 1 for the
usual distance (see for example [Vil03, Theorem 2.18] and the remarks that follow it) imply that
the Monge-Kantorovitch problem (12) defining W1(η, γ) distance has an explicit minimizer, given
by the deterministic coupling (T (Z), Z), where Z ∼ γ and T is the monotone transport map

T (z) = F−1
η (Fγ(z)).

Therefore, the optimal coupling between a Gaussian random variableX and the optimally reweighted
empirical measure

∑
n wn(x)δxn is given by the piecewise constant transport map that sends each

interval ]yn, yn+1[ to xn, so D has the explicit expression

D =
∫

min
n
|x−Xn| γ(dx).

We start by a rough bound: for any λ > 0, the Laplace transform exp exp(λD) may be bounded
as follows using Jensen’s inequality:

E [exp(λD)] = E
[
exp

(
λ

∫
min
n
|x−Xn| γ(dx)

)]
≤ E

[
exp

(
λmin

n
|X −Xn|

)]
,

where X ∼ γ is independent of X = (X1, ..., Xn). Then
E [exp(λD)] ≤ E [exp (λ |X −X1|)]

≤ E [exp (λ |X|)]2 .
Since the last expression is finite, we have established

∀λ,∃Cλ,∀N, E [exp (λD)] ≤ Cλ. (34)
We now let M < N be an integer and decompose the real line R in M segments between

the quantiles (xi)0≤i≤M , where Fγ(xi) =
∫ xi
−∞ γ(dx) = i/M . We let G be the ”M -well-spread

event” (Definition 3.10) that there is at least one of the (Xn)1≤n≤N in each of the M ”bins”
(]xi−1, xi[)1≤i≤M . We then proceed in three steps.

Step 1: D is small on the well-spread event. Indeed, on G, there exist N(1), ..., N(M)
such that XN(i) ∈]xi−1, xi[. Therefore

D1G = 1G
∫

min
n
|x−Xn| γ(dx)

= 1G
M∑
i=1

∫ xi

xi−1

min
n
|x−Xn| γ(dx)

≤ 1G
M∑
i=1

∫ xi

xi−1

∣∣x−XN(i)
∣∣ γ(dx)

≤
M−1∑
i=2
|xi − xi−1|

∫ xi

xi−1

γ(dx) + 2
∫ ∞
xM−1

|x− xM−1| γ(dx)

≤ 2
M
xM−1 + 2

∫ ∞
xM−1

|x− xM−1| γ(dx)

≤ 2
M
xM−1 + 2

∫ ∞
xM−1

xγ(dx)

≤ 2
M
xM−1 + 2√

2π
exp(−x2

M−1/2).

From the classical gaussian tail estimate
1√
2π

(
1
t
− 1
t3

)
exp(−t2/2) ≤ 1− Fγ(t) ≤ 1√

2π

(
1
t

)
, (35)
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applied to t = xM−1, it is easily seen by taking logarithms that xM−1 ∼
√

2 log(M). Using the
first inequality in (35) again, we get exp(−x2

M−1/2) = O?(1/M), and finally

D1G = O?
(

1
M

)
.

Step 2: the well-spread event is very likely. Assuming from now on that M satisfies
N > (2p+ 2)M ln(M), we get thanks to Lemma 3.12 that

P [Gc] = O(1/M2p+1).

Step 3: conclusion. We decompose E [Dp] in two parts, depending on whether the sample X
is well-spread or not. On G we use the result from Step 1; on Gc we apply Hölder’s inequality,
the bound on P [Gc] from step 2, and the a priori control on E

[
D2p] given by the preliminary

bound (34):

E [Dp] = E [Dp1G] + E [Dp1Gc ]

≤ O?
(

1
Mp

)
+
√
E [D2p]

√
P [Gc]

≤ O?
(

1
Mp

)
+O

(
1

Mp+1/2

)
≤ O?

(
1
Mp

)
.

Since M may be chosen large enough to guarantee N = O?(M), this implies E [Dp] = O?
( 1
Np

)
. �

Proof of Theorem 1.15, second part. We now turn to the proof of the control in l2 of the optimal
weights, and show that

E

[
N∑
n=1

wn(X)2

]
≤ 6
N
.

By definition,
wn(X) = Fγ(Yn+1)− Fγ(Yn),

where the Yn are the middle points of the reordered sample and Fγ is the cdf of the standard
Gaussian distribution. By a rough upper bound, for 2 ≤ n ≤ N − 1,

wn ≤ Fγ(X(n+1))− Fγ(X(n−1)).

The cdf Fγ maps the ordered sample (X(1), ..., X(N)) to an ordered sample (U(1), ..., U(N)) of the
uniform distribution on [0, 1], so

wn ≤ U(n+1) − U(n−1),

for 2 ≤ n ≤ N − 1, w1 ≤ U(2) and wn ≤ 1− U(N−1).
Let us upper bound E

[
w2
n

]
for 2 ≤ n ≤ N − 1, using known results on order statistics for

uniform variables that may be found e.g. in [Das11, Chapter 6, Theorem 6.6]. Conditionnally on
U(n+1) = u, U(n−1) is distributed like the second largest value in a sample of n uniform variables
on [0, u], that is, like

uU1/nV 1/(n−1)

where U and V are iid uniform on [0, 1]. Therefore

E
[
w2
n

]
≤ E

[
U2

(n+1)(1− U1/nV 1/(n−1))2
]

= E
[
U2

(n+1)

](
1− 2

∫
u1/nv1/(n−1)dudv +

∫
u2/nv2/(n−1)dudv)

)
= 6

(n+ 1)(n+ 2)E
[
U(n+1)

]2
.
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N Number of samples
M Number of repetitions
h Bandwidth

Table 1. Notation for the numerical tests

Now U(n+1) follow a Beta(n+ 1, N − n) distribution, so

E
[
U2

(n+1)

]
= Var(U(n+1)) + E

[
U(n+1)

]2
= (n+ 1)(N − n)

(N + 1)2(N + 2) + (n+ 1)2

(N + 1)2

= (n+ 1)(n+ 2)
(N + 1)(N + 2) ,

so that E
[
w2
n

]
≤ 6

(N+1)(N+2) , for all 2 ≤ n ≤ N − 1. One easily checks that this bound also holds
for n = 1 and N , and by summing we get

E

[
N∑
n=1

w2
n(X)

]
≤ 6N

(N + 1)(N + 2) ≤
6
N
. �

5. Numerical experiments I

In this section we focus on the comparison between the weighted empirical measures ηN , η?h,N
and η?Wass,N .

5.1. Implementation. The implementation of the Wasserstein method is straightforward: given (x),
we only need to sort it, compute the middle points (yn) and deduce the weights by applying Fγ .

For the L2 method, the quadratic programming optimization problem 3 (δ ' 0 case) is solved
using a standard Scilab library based on the dual iterative method detailed in [GI83].

The methods are then tested by computing estimators for the expected value of three functions
of X: E [X], E [cos(X)] and E [1X>1]. The estimators are computed on samples of size N , and the
experiment is repeated M times. We present the results as boxplots representing the quantiles on
the M repetitions.

5.2. Regularity of the test function and choice of the bandwidth. We first investigate
the influence of the bandwidth parameter h on the L2 method, by testing various values of h ∈
{0.01, 0.05, 0.1, 0.2, 0.5, 0.8} on the three test functions φ: a) x 7→ x, b) x 7→ cos(x) and c) x 7→
1|x|>1.

Figure 4(a) corresponds to the test function x 7→ x which is very specific, the symmetry ensures
that the estimator is unbiased, and the method seems to be better the larger h is. Figure 4(b)
corresponds to the test function cos; a bias clearly appears in that case, and the estimator is better
when h is quite large, with a trade-off at h = .5 (h = .8 is not as good). In both cases, the fact
that the estimators are better when h is quite large may be linked to two remarks made above:

• Remark 3.5 where it is recalled that x 7→ x and cos are regular test functions that belongs
to the image by the Orstein-Uhlenbeck semi-group Pt of an L2 function on which the
optimization is based on;

• Remark 1.14 where it is suggested that the more ’regular’ this test function is, the larger
the optimal h should be.

However, when we apply the method to estimate the expectation of a discontinuous function
of X, here x 7→ 1|x|>1, which does not belong to the appropriate class of regularity, the picture
is completely different and the best estimator is obtained for a much smaller h ≈ 0.05, as can be
seen in Figure 4(c).
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(a) x 7→ x (b) x 7→ cosx

(c) x 7→ x 7→ 1|x|≥1

Figure 4. M = 1000, N = 100

(a) x 7→ cosx (b) x 7→ 1|x|≥1

Figure 5. M = 1000, N = 100

5.3. Comparison between näıve, L2 and Wasserstein. Next, we compare the näıve Monte
Carlo method, the L2 reweighting (h = .5 and h = .05) and the Wasserstein reweighting.

Figure 5(a) corresponds to the cos test function case, and the näıve Monte Carlo approach is
outperformed by all reweighting methods, even with sub-optimal tuning (L2 for h = .05). On
the contrary, in Figure 5(b) which corresponds to the step test function the näıve Monte Carlo
approach is much better than the L2 reweighting methods with sub-optimal tuning (h = .5), and
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similar to the L2 reweighting methods with quasi-optimal tuning (h = .05). This is consistent
with the fact that the L2 reweighting method has been derived for regular test functions, which
excludes the step function case.

The Wasserstein reweighting is in both cases (cos and step) much better than the näıve Monte
Carlo, and better than the L2 reweighting in the step function case. For the cos case, the Wasser-
stein reweighting is similar to the L2 reweighting method with sub-optimal h = .05 and much
worse than the L2 reweighting method with quasi-optimal h = .5.

5.4. Conclusion. The Wasserstein reweighting is more robust (no parameter to tune) than the
L2 reweighting, and outperforms the latter for irregular test functions. However, for sufficiently
regular test functions and with well-chosen bandwidth h, the L2 reweighting is much better.

6. Numerical experiments II

In this section, we present numerical results exhibiting the variance reduction obtained with the
reweighting method.

For simplicity, and having in mind the various drawbacks of the L2 method in terms of speed
and parameter tuning, we will only focus on weights computed with a Wasserstein distance in the
minimization problem (3) — that is, the minimization problem with δ = 0.

6.1. Exchangeable functions of Gaussian vectors. Let (G1, . . . , GN ) denotes a sequence of
N i.i.d. centered Gaussian vectors in Rd with identity covariance matrix. We consider the problem
of reducing the variance of Monte Carlo estimators of the distribution of F (G) where

F : Rd → R
is a smooth non-linear function, which is invariant by permutation of the d coordinates (exchange-
ability). We assume for simplicity the following normalization:

F (0) = 0, D0F = (1/
√
d, . . . , 1/

√
d)

and set for each n = 1, . . . , N :
Xn := (D0F ) ·Gn ∼ N (0, 1), Yn := F (Gn).

We are then interested in estimating the cumulant generating function of the distribution of F (G)
denoted by

kY (t) := logE
(
etY
)

= logE
(

etF (G)
)
,

and possibly to compare it to the cumulant generating function of the distribution of the standard
Gaussian distribution

jX(t) := logE
(
etX
)

= logE
(

et(D0F )·G
)

= t2

2 .

We will consider, compare and combine various estimators. The first two are the näıve and Wasser-
stein reweighted estimators of kY , defined by

kMC(Y)(t) = log 1
N

N∑
n=1

etYn kW (X,Y) (t) = log
N∑
n=1

wn(X)etYn ,

where the weights w(X) are computed with the control variables X through the minimization
problem (3) associated with the (Euclidean-based) Wasserstein distance.

We define similarly two estimators for jX ,

jMC(Y)(t) = log 1
N

N∑
n=1

etXn jW (X,Y) (t) = log
N∑
n=1

wn(X)etXn .

Since jX(t) is explicit, it is quite natural to try and use etXn as a control variate, leading to a new
estimator:

kCV(Y)(t) = kMC(Y)(t)− jMC(X)(t) + jX(t),
Finally, we combine the reweighting and the control variate idea by defining

kCV+W(X,Y)(t) = kW(X,Y)(t)− jW(X)(t) + jX(t),
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Note that the control variate has been defined as the best linear approximation of F around the
mean 0 ∈ Rd.

We run our tests with the following particular choice of a non-linear function:

Fr(g) = 1
r

sin
(

1√
d

d∑
i=1

sin(r × gi)
)

with the parameters d = 10 and r ∈ {0.1, 1}. Note that r encodes the strength of the nonlinearity,
in the sense that

lim
r→0

Fr(g) = g.

In all this section, we have taken samples of size N = 30. This choice has been made so that
the quantiles of the estimators scales appropriately with the target function kY to be estimated.

6.1.1. The almost linear case, r = .1. This case corresponds to a function F which is close to the
identity function. In Fig. 6, we have represented the quantiles of the different estimators of kY (t)
for t ∈ [−0.7, 0.7].
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Gaussian reference (No control variate)

-0.50 -0.25 0.00 0.25 0.50
-0.1

0.0

0.1

0.2

0.3

Without control variate

-0.50 -0.25 0.00 0.25 0.50
-0.1

0.0

0.1

0.2

0.3

With control variate

quantiles, weighted estim.
quantiles, non-weighted estim.
Target

Figure 6. Case r = .1. The figures above represents the [.05, .25, .75, .95]-
quantiles of the different estimators of the cumulant generating functions for F (G),
both without weights (dotted), and with weight (dashed). The figure in the up-
per left corner represents the estimators of the Gaussian reference jMC(X) and
jW(X). The figure in the upper right corner represents the estimators kMC(Y)
and kW(X,Y) (without control variate). Finally, the figure in the lower left corner
represents the estimators of kCV(X,Y) and kCV+W(X,Y) (with control variate).

In Fig. 7, we zoom in on the figure the lower left corner of Fig. 6 where a linear control
variate is used, by plotting the difference kCV(X,Y) − jX = kMC(Y)(t) − jMC(X)(t) as well
as kCV+W(X,Y)− jX = kCV+W(X,Y)− jW(X).
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-0.50 -0.25 0.00 0.25 0.50

-0.0100

-0.0075

-0.0050

-0.0025

0.0000

With control variate

Figure 7. Case r = .1. The figure above represents the [.05, .25, .75, .95]-
quantiles of kCV(X,Y)− jX (dotted) and kCV+W(X,Y)− jX (dashed).

6.1.2. The nonlinear case, r = 1. This case corresponds to a function F with a significant non-
linear behavior. In Fig. 8, we have represented the quantile envelopes of the different estimators
of kY (t) for t ∈ [−0.7, 0.7].
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Gaussian reference (No control variate)
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Without control variate
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quantiles, weighted estim.
quantiles, non-weighted estim.
Target

Figure 8. Case r = 1. The figures above represents the [.05, .25, .75, .95]-
quantiles of the different estimators of the cumulant generating functions for F (G),
both without weights (dotted), and with weight (dashed). The figure in the up-
per left corner represents the estimators of the Gaussian reference jMC(X) and
jW(X). The figure in the upper right corner represents the estimators kMC(Y)
and kW(X,Y) (without control variate). Finally, the figure in the lower left corner
represents the estimators of kCV(X,Y) and kCV+W(X,Y) (with control variate).

6.1.3. Interpretation. First note that the non-linearity of the function F in the case r = .1 has a
non-negligible influence on the distribution of F (G), as can be seen in the upper right and lower
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left figures of Fig. 8, where the cumulant generating function kY (t) (the ’target’, represented with
a full line) is substantially different from the Gaussian reference jX(t) (the ’Gaussian reference’,
represented with a full thin line), and has a much smaller variance.

We first immediately observe that in all cases (the Gaussian reference, the estimator of ky with-
out control variate, and the estimator of ky with control variate) the use of the studied weighting
method substantially improve the estimation by:

(1) Significantly reducing the spread of the tail distribution (the {.1, .9}-quantiles) of the es-
timators.

(2) Significantly reducing the statistical error of the typical outcomes (the {.25, .75}–quantiles)
of the estimators.

Then we can observe that as expected, the error reduction due to the weighting method is
slightly better for the Gaussian reference. However, it is clear that the error reduction due to
the weighted method is very significant in each case. For instance the typical error (as given by
the {.25, .75}–quantiles) of the estimator kW(X,Y) is reduced almost by a factor 2 as compared
to kMC(Y). As a reference, the typical error on jW(X) is reduced by a factor 5 as compared to
jMC(X).

Finally, it is remarkable to notice that in the case r = 1 the control variate method is useless
and may even be counterproductive. On the contrary the weighting method behaves well and
reduces the error (with or without control variate). It clear from Fig.8 that the weighting method
outperforms the control variate method which is not useful here.

This experiment demonstrates that the weighting method can then very easily and very effi-
ciently be used to reduce the statistical error caused by non-linear functions, without resorting to
ad hoc analytic calculations.

6.2. A physical toy example.

6.2.1. Model. In this section, we illustrate the use of the weighting method with a more concrete,
physical example. We consider a Langevin stochastic differential equation in Rd{

dQt = Ptdt

dPt = −Qtdt+ εF(Qt)dt− Ptdt+
√

2dWt

which is a toy model for a thermostatted linear mechanical system. The latter is perturbed out
of equilibrium by an exterior force field F : Rd → Rd, and we are interested in computing the
distribution of the long time stationary back reaction, that is to say the distribution of F(Q)
where Q ∈ Rd is distributed according to the invariant distribution of the Langevin process, and
this for ε small.

For simplicity we assume that Fi(Q) = F (Q) ∈ R is independent of i with again

F (0) = 0, D0F = (1/
√
d, . . . , 1/

√
d).

We set Xn = F (Qτn) where τ is a sufficiently large decorrelation time. We also set Yn = D0F ·Q̃τn
where Q̃ is solution to the coupled, non perturbed linear system{

dQ̃t = P̃tdt

dP̃t = −Q̃tdt− P̃tdt+
√

2dWt

so that Yn is a Gaussian sequence of unit standard Gaussian variables that are approximately
independent (for large τ). Using elementary calculations (see e.g. [BGM10]), one can check that
the positive definite quadratic Lyapunov functional

Dt :=
∣∣Pt − P̃t∣∣2 +

∣∣Qt − Q̃t∣∣2 +
(
Qt − Q̃t

)
·
(
Pt − P̃t

)
satisfies almost surely the following differential inequality:

d

dt
Dt ≤ −

1
2Dt + 4D1/2

t ε |F (Qt)| .

Assuming for simplicity that ‖F‖∞ = 1, a Gronwall-type integration yields that for any t ≥ 0∣∣Pt − P̃t∣∣2 +
∣∣Qt − Q̃t∣∣2 ≤ cDt ≤ ε+O

(
e−t/2

)
,
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for some numerical constant c. Hence (Qt, Pt) converges when ε → 0 to the Orstein-Uhlenbeck
process (Q̃t, P̃t) uniformly in time. This coupling calculation thus suggests that (Qτn)n≥1 will be
close to a i.i.d. Gaussian sequence when ε→ 0 and τ � 1.

6.2.2. Numerical experiment. We present in Figure 9 some numerical results in a test case with
the same non-linear function:

F (g) =
√
d sin

(
1
d

d∑
i=1

sin(gi)
)

with the parameters (ε = .01, d = 10, N = 50). The methodology is the same as in the last section.
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Figure 9. The figures above represents the {.05, .25, .75, .95}-quantiles of the
different estimators of the cumulant generating functions for the stationary distri-
bution of the exterior force F (Q), both without weights (dotted), and with weight
(dashed). The figure in the upper left corner represents the estimators of the
Gaussian reference kMC(X) and kW(X). The figure in the upper right corner rep-
resents the estimators kMC(Y) and kW(X,Y) (without control variate). Finally,
the figure in the upper right corner represents the estimators of kCv(X,Y) and
kW(X,Y) (without control variate)

6.2.3. Interpretation. We first remark that the target distribution has an increased variance due
to the presence of ε 6= 0. We then remark that the result are very similar as in previous section,
except that the statistical error reduction in the case with weights is similar with control variate
or without control variate. For any choice of estimator (with or without control variate), we see
that the use of weighting substantially improve the statistical error.

6.3. Conclusion. In various non-trivial cases where a random quantity is approximated by a
Gaussian one dimensional control variate, the Wasserstein reweighting method significantly reduces
variance (as compared to a näıve Monte Carlo calculation), and outperforms a control variate
variance reduction.
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References
[AS92] Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and

handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications,
Inc., New York, 1992.

[BGM10] François Bolley, Arnaud Guillin, and Florent Malrieu, Trend to equilibrium and particle approximation
for a weakly selfconsistent vlasov-fokker-planck equation, ESAIM: Mathematical Modelling and Numerical
Analysis 44 (2010), no. 5, 867–884.

[Das11] Anirban DasGupta, Probability for statistics and machine learning, Springer Texts in Statistics, Springer,
New York, 2011, Fundamentals and advanced topics. MR 2807365

[GI83] D. Goldfarb and A. Idnani, A numerically stable dual method for solving strictly convex quadratic pro-
grams, Mathematical Programming 27 (1983), no. 1, 1–33.

[Gla13] Paul Glasserman, Monte carlo methods in financial engineering, vol. 53, Springer Science & Business
Media, 2013.

[Gly94] P.W. Glynn, Efficiency improvement techniques, Annals of Operations Research 53 (1994), no. 1, 175–197
[Gro93] Leonard Gross, Logarithmic sobolev inequalities and contractivity properties of semigroups, Dirichlet

forms, Springer, 1993, pp. 54–88.
[GS02] Alison L Gibbs and Francis Edward Su, On choosing and bounding probability metrics, International

statistical review 70 (2002), no. 3, 419–435.
[Jou09] Benjamin Jourdain, Adaptive variance reduction techniques in finance, Advanced Financial Modelling 8

(2009), 205.
[Kal02] Olav Kallenberg, Foundations of modern probability, Probability and its Applications (New York),

Springer-Verlag, New York, 2002.
[LC02] Lars Larsson-Cohn, L p -norms of hermite polynomials and an extremal problem on wiener chaos, Ark.

Mat. 40 (2002), no. 1, 133–144.
[MR95] Rajeev Motwani and Prabhakar Raghavan, Randomized algorithms, Cambridge University Press, Cam-

bridge, 1995. MR 1344451
[Owe13] Art B. Owen, Monte carlo theory, methods and examples, 2013.
[PS18] François Portier and Johan Segers, Monte carlo integration with a growing number of control variates,

arXiv preprint arXiv:1801.01797 (2018).
[Ros13] Sheldon M. Ross, Simulation, Elsevier/Academic Press, Amsterdam, 2013, Fifth edition [of 1433593].

MR 3294208
[Str11] Daniel W. Stroock, Probability theory, second ed., Cambridge University Press, Cambridge, 2011, An

analytic view. MR 2760872
[Vil03] C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58, American Math-

ematical Society, Providence, RI, 2003. MR MR1964483 (2004e:90003)
[Vil08] , Optimal transport: old and new, vol. 338 Springer Science & Business Media, 2008.

Mathias Rousset, e-mail: mathias.rousset(AT)inria.fr

INRIA Rennes & IRMAR, Université de Rennes 1
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