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Ongoing declines among the world’s coral reefs1,2 require novel approaches to 	
sustain these ecosystems and the millions of people who depend on them3. A ͺ	
presently untapped approach that draws on theory and practice in human health ͻ	
and rural development4,5 is systematically identifying and learning from the ͺͲ	
‘outliers’- places where ecosystems are substantially better ('bright spots') or ͺͳ	
worse ('dark spots') than expected, given the environmental conditions and ͺʹ	
socioeconomic drivers they are exposed to. Here, we compile data from more ͺ͵	
than 2,500 reefs worldwide and develop a Bayesian hierarchical model to ͺͶ	
generate expectations of how standing stocks of reef fish biomass are related to ͺͷ	
18 socioeconomic drivers and environmental conditions. We then identified 15 ͺ	
bright spots and 35 dark spots among our global survey of coral reefs, defined as ͺ	
sites that had biomass levels more than two standard deviations from ͺͺ	
expectations. Importantly, bright spots were not simply comprised of remote ͺͻ	
areas with low fishing pressure- they include localities where human populations ͻͲ	
and use of ecosystem resources is high, potentially providing novel insights into ͻͳ	
how communities have successfully confronted strong drivers of change. ͻʹ	
Alternatively, dark spots were not necessarily the sites with the lowest absolute ͻ͵	
biomass and even included some remote, uninhabited locations often considered ͻͶ	
near-pristine6. We surveyed local experts about social, institutional, and ͻͷ	
environmental conditions at these sites to reveal that bright spots were ͻ	
characterised by strong sociocultural institutions such as customary taboos and ͻ	
marine tenure, high levels of local engagement in management, high dependence ͻͺ	
on marine resources, and beneficial environmental conditions such as deep-ͻͻ	
water refuges. Alternatively, dark spots were characterised by intensive capture ͳͲͲ	
and storage technology and a recent history of environmental shocks. Our ͳͲͳ	



	 

results suggest that investments in strengthening fisheries governance, ͳͲʹ	
particularly aspects such as participation and property rights, could facilitate ͳͲ͵	
innovative conservation actions that help communities defy expectations of ͳͲͶ	
global reef degradation.  ͳͲͷ	
  ͳͲ	



	 

Main text  ͳͲ	
Despite substantial international conservation efforts, many of the world's ecosystems ͳͲͺ	
continue to decline1,7. Most conservation approaches aim to identify and protect ͳͲͻ	
places of high ecological integrity under minimal threat8. Yet, with escalating social ͳͳͲ	
and environmental drivers of change, conservation actions are also needed where ͳͳͳ	
people and nature coexist, especially where human impacts are already severe9. Here, ͳͳʹ	
we highlight an approach for implementing conservation in coupled human-natural ͳͳ͵	
systems focused on identifying and learning from outliers - places that are performing ͳͳͶ	
substantially better than expected, given the socioeconomic and environmental ͳͳͷ	
conditions they are exposed to. By their very nature, outliers deviate from ͳͳ	
expectations, and consequently can provide novel insights on confronting complex ͳͳ	
problems where conventional solutions have failed.  This type of positive deviance, or ͳͳͺ	
‘bright spot’ analysis has been used in fields such as business, health, and human ͳͳͻ	
development to uncover local actions and governance systems that work in the ͳʹͲ	
context of widespread failure10,11, and holds much promise in informing conservation.   ͳʹͳ	
 ͳʹʹ	
To demonstrate this approach, we compiled data from 2,514 coral reefs in 46 ͳʹ͵	
countries, states, and territories (hereafter ‘nation/states’) and developed a Bayesian ͳʹͶ	
hierarchical model to generate expected conditions of how standing reef fish biomass ͳʹͷ	
(a key indicator of resource availability and ecosystem functions12) was related to 18 ͳʹ	
key environmental variables and socioeconomic drivers (Box 1; Extended Data ͳʹ	
Tables 1,2; Methods). A key and significant finding from our global analysis is that ͳʹͺ	
the size and accessibility of the nearest market, more so than local or national ͳʹͻ	
population pressure, management, environmental conditions, or national ͳ͵Ͳ	
socioeconomic context, was the strongest driver of reef fish biomass globally (Box 1).  ͳ͵ͳ	
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 ͳ͵ʹ	
Next, we identified 15 ‘bright spots’ and 35 ‘dark spots’ among the world's coral reefs, ͳ͵͵	
defined as sites with biomass levels more than two standard deviations higher or ͳ͵Ͷ	
lower than expectations from our global model, respectively (Fig. 1; Methods; ͳ͵ͷ	
Extended Data Table 3). Rather than simply identifying places in the best or worst ͳ͵	
condition, our bright spots approach reveals the places that most strongly defy ͳ͵	
expectations. Using them to inform the conservation discourse will certainly ͳ͵ͺ	
challenge established ideas of where and how conservation efforts should be focused. ͳ͵ͻ	
For example, remote places far from human impacts are conventionally considered ͳͶͲ	
near-pristine areas of high conservation value6, yet most of the bright spots we ͳͶͳ	
identified occur in fished, populated areas (Extended Data Table 3), some with ͳͶʹ	
biomass values below the global average. Alternatively, some remote places such as ͳͶ͵	
parts of the NW Hawaiian Islands underperform (i.e. were identified as dark spots).  ͳͶͶ	
 ͳͶͷ	
Detailed analysis of why bright spots can evade the fate of similar areas facing ͳͶ	
equivalent stresses will require a new research agenda gathering detailed site-level ͳͶ	
information on social and institutional conditions, technological innovations, external ͳͶͺ	
influences, and ecological processes13 that are simply not available in a global-scale ͳͶͻ	
analysis. As a preliminary hypothesis-generating exercise to begin uncovering why ͳͷͲ	
bright and dark spots may diverge from expectations, we surveyed data providers and ͳͷͳ	
other experts about the presence or absence of 10 key social and environmental ͳͷʹ	
conditions at the 15 bright spots, 35 dark spots, and 14 average sites with biomass ͳͷ͵	
values closest to model expectations (see Methods for details). Our survey revealed ͳͷͶ	
that bright spots were more likely to have high levels of local engagement in the ͳͷͷ	
management process, high dependence on coastal resources, and the presence of ͳͷ	



	 ͻ

sociocultural governance institutions such as customary tenure or taboos (Fig. 2, ͳͷ	
Methods). For example, in one bright spot, Karkar Island, Papua New Guinea, ͳͷͺ	
resource use is restricted through an adaptive rotational harvest system based on ͳͷͻ	
ecological feedbacks, marine tenure that allows for the exclusion of fishers from ͳͲ	
outside the local village, and initiation rights that limit individuals’ entry into certain ͳͳ	
fisheries14. Bright spots were also generally proximate to deep water, which may help ͳʹ	
provide a refuge from disturbance for corals and fish15 (Fig. 2, Extended Data Fig. 6). ͳ͵	
Conversely, dark spots were distinguished by having fishing technologies allowing ͳͶ	
for more intensive exploitation, such as fish freezers and potentially destructive ͳͷ	
netting, as well as a recent history of environmental shocks (e.g. coral bleaching or ͳ	
cyclone; Fig. 2). The latter is particularly worrisome in the context of climate change, ͳ	
which is likely to lead to increased coral bleaching and more intense cyclones16.  ͳͺ	
 ͳͻ	
Our global analyses highlight two novel opportunities to inform coral reef governance. ͳͲ	
The first is to use bright spots as agents of change to expand the conservation ͳͳ	
discourse from the current focus on protecting places under minimal threat8, toward ͳʹ	
harnessing lessons from places that have successfully confronted high pressures.  ͳ͵	
Our bright spots approach can be used to inform the types of investments and ͳͶ	
governance structures that may help to create more sustainable pathways for impacted ͳͷ	
coral reefs. Specifically, our initial investigation highlights how investments that ͳ	
strengthen fisheries governance, particularly issues such as participation and property ͳ	
rights, could help communities to innovate in ways that allow them to defy ͳͺ	
expectations. Conversely, the more typical efforts to provide capture and storage ͳͻ	
infrastructure, particularly where there are environmental shocks and local-scale ͳͺͲ	
governance is weak, may lead to social-ecological traps17 that reinforce resource ͳͺͳ	



	 ͳͲ

degradation beyond expectations. Effectively harnessing the potential to learn from ͳͺʹ	
both bright and dark spots will require scientists to increase research efforts in these ͳͺ͵	
places, NGOs to catalyze lessons from other areas, donors to start investing in novel ͳͺͶ	
solutions, and policy makers to ensure that governance structures foster flexible ͳͺͷ	
learning and experimentation. Indeed, both bright and dark spots may have much to ͳͺ	
offer in terms of how to creatively confront drivers of change, identify the paths to ͳͺ	
avoid and those offering novel management solutions, and prioritizing conservation ͳͺͺ	
actions. Critically, the bright spots we identified span the development spectrum from ͳͺͻ	
low (Solomon Islands and Papua New Guinea) to high (territories of the USA and ͳͻͲ	
UK; Fig. 1) income, showing that lessons about effective reef management can ͳͻͳ	
emerge from diverse places. ͳͻʹ	
 ͳͻ͵	
A second opportunity stems from a renewed focus on managing the socioeconomic ͳͻͶ	
drivers that shape reef conditions. Many social drivers are amenable to governance ͳͻͷ	
interventions, and our comprehensive analysis (Box 1) shows how an increased policy ͳͻ	
focus on social drivers such as markets and development could result in ͳͻ	
improvements to reef fish biomass. For example, given the important influence of ͳͻͺ	
markets in our analysis, reef managers, donor organisations, conservation groups, and ͳͻͻ	
coastal communities could improve sustainability by developing interventions that ʹͲͲ	
dampen the negative influence of markets on reef systems. A portfolio of market ʹͲͳ	
interventions, including eco-labelling and sustainable harvesting certifications, ʹͲʹ	
fisheries improvement projects, and value chain interventions have been developed ʹͲ͵	
within large-scale industrial fisheries to increase access to markets for seafood that is ʹͲͶ	
sourced sustainably 21-23. Although there is considerable scope for adapting these ʹͲͷ	
interventions to artisanal coral reef fisheries in both local and regional markets, ʹͲ	



	 ͳͳ

effectively dampening the negative influence of markets may also require developing ʹͲ	
novel interventions that address the range of ways in which markets can lead to ʹͲͺ	
overexploitation. Existing research suggests that markets create incentives for ʹͲͻ	
overexploitation not only by affecting price and price variability for reef products18, , ʹͳͲ	
but also by influencing people’s behavior19, including their willingness to cooperate in ʹͳͳ	
the collective management of natural resources20.  ʹͳʹ	
 ʹͳ͵	
The long-term viability of coral reefs will ultimately depend on international action to ʹͳͶ	
reduce carbon emissions16. However, fisheries remain a pervasive source of reef ʹͳͷ	
degradation, and effective local-level fisheries governance is crucial to sustaining ʹͳ	
ecological processes that give reefs the best chance of coping with global ʹͳ	
environmental change25.Seeking out and learning from bright spots has uncovered ʹͳͺ	
novel solutions in fields as diverse as human health, development, and business10,11, ʹͳͻ	
and this approach may offer insights into confronting the complex governance ʹʹͲ	
problems facing coupled human-natural systems such as coral reefs.  ʹʹͳ	
 ʹʹʹ	
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Figures ʹʹ͵	

 ʹʹͶ	
Figure 1 | Bright and dark spots among the world’s coral reefs. (a) Each site’s deviation from expected biomass (y-axis) along a gradient of ʹʹͷ	
nation/state mean biomass (x-axis). Sites with biomass values >2 standard deviations above or below expected values were considered bright and ʹʹ	
dark spots, respectively. The 15 bright and 35 dark spots are indicated with yellow and black dots respectively. Each grey vertical line represents ʹʹ	
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	 ͳ͵	

a nation/state in our analysis. Nation/states with bright or dark spots are labelled and numbered, corresponding to the numbers in panel b. There ʹʹͺ	
can be multiple bright or dark spots in each nation/state, thus the 50 bright and dark spots are distributed among 17 nation/states. As a ʹʹͻ	
conservative precaution, we did not consider a site a bright or dark spot if there were fewer than 5 sites sampled in a nation/state (Methods); ʹ͵Ͳ	
consequently there is one site with biomass levels lower than 2 SD below expectations that is not labelled as a dark spot. BIOT= British Indian ʹ͵ͳ	
Ocean Territory (Chagos); PNG= Papua New Guinea; CNMI= Commonwealth of the Northern Mariana Islands; NWHI= Northwest Hawaiian ʹ͵ʹ	
Islands; PRIA= Pacific Remote Island Areas. (b) Map highlighting bright spots and dark spots with large circles, and other sites in small circles. ʹ͵͵	
Bright spots are mostly concentrated on islands of the Pacific and Southeast Asia, while dark spots are spread among every major tropical ocean ʹ͵Ͷ	
basin. ʹ͵ͷ	
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 ʹ͵	
Figure 2 | Differences in social and environmental conditions between bright ʹ͵	
spots, dark spots, and ‘average’ sites. *=p<0.05, **=p<0.01, ***=p<0.001. P ʹ͵ͺ	
values are determined using Fisher’s Exact test. Intensive netting includes beach seine ʹ͵ͻ	
nets, surround gill nets, and muro-ami. ʹͶͲ	
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Box 1 
Drawing on a broad body of theoretical and empirical research in the social sciences24,26,27 and 
ecology2,6,28 on coupled human-natural systems, we quantified how reef fish biomass (panel a) was 
related to distal social drivers such as markets, affluence, governance, and population (panels b,c), 
while controlling for well-known environmental conditions such as depth, habitat, and productivity 
(panel d) (Extended Data Table 1, Methods). In contrast to many global studies of reef systems that 
are focused on demonstrating the severity of human impacts6, our examination seeks to uncover 
potential policy levers by highlighting the relative role of specific social drivers. Critically, the 
strongest driver of reef fish biomass (i.e. the largest standardized effect size) was our metric of 
potential interactions with urban centres, called market gravity29 (Extended Data Fig. 1, 2, 3; 
Methods). Specifically, we found that reef fish biomass decreased as the size and accessibility of 
markets increased (Extended Data Fig. 2b, and Extended Data Fig. 3). Somewhat counter-intuitively, 
fish biomass was higher in places with high local human population growth rates, likely reflecting 
human migration to areas of better environmental quality30-a phenomenon that could result in 
increased degradation at these sites over time. We found a strong positive, but less certain 
relationship (i.e. a high standardized effect size, with >75% of the posterior distribution above zero) 
with the Human Development Index, meaning that reefs tended to be in better condition in wealthier 
nations/states (panel c). Our analysis also confirmed the role that marine reserves can play in 
sustaining biomass on coral reefs, but only when compliance is high (panel b), reinforcing the 
importance of fostering compliance for reserves to be successful.  

 

Global patterns and drivers of reef fish biomass. (a) Reef fish biomass [in (log)kg/ha] among 
918 study sites across 46 nations/states. For illustration purposes and to avoid the overlap of 
sites in a global map, we display sites as points that vary in size and colour proportional to 
amount of fish biomass, with small, red dots indicating low fish biomass and large, green dots 
indicating high biomass. b-d) Standardised effect size of local scale social drivers, nation/state 
scale social drivers, and environmental covariates, respectively. Parameter estimates are 
Bayesian posterior median values, 95% uncertainty intervals (UI; thin lines), and 50% UI 
(thick lines). Black dots indicate that the 95% UI does not overlap 0; Grey closed circles 
indicates that 75% of the posterior distribution lies to one side of 0; and grey open circles 
indicate that the 50% UI overlaps 0.  
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Methods  ʹͶͳ	
 ʹͶʹ	
Scales of data ʹͶ͵	
Our data were organized at three spatial scales: reef (n=2514), site (n=918), and ʹͶͶ	
nation/state (n=46). ʹͶͷ	

i) reef (the smallest scale, which had an average of 2.4 surveys/transects - ʹͶ	
hereafter 'reef').  ʹͶ	

ii)  site (a cluster of reefs). We clustered reefs together that were within 4km ʹͶͺ	
of each other, and used the centroid of these clusters (hereafter ‘sites’) to ʹͶͻ	
estimate site-level social and site-level environmental covariates ʹͷͲ	
(Extended Data Table 1). To make these clusters, we first estimated the ʹͷͳ	
linear distance between all reefs, then used a hierarchical analysis with the ʹͷʹ	
complete-linkage clustering technique based on the maximum distance ʹͷ͵	
between reefs. We set the cut-off at 4km to select mutually exclusive sites ʹͷͶ	
where reefs cannot be more distant than 4km. The choice of 4km was ʹͷͷ	
informed by a 3-year study of the spatial movement patterns of artisanal ʹͷ	
coral reef fishers, corresponding to the highest density of fishing activities ʹͷ	
on reefs based on GPS-derived effort density maps of artisanal coral reef ʹͷͺ	
fishing activities31. This clustering analysis was carried out using the R ʹͷͻ	
functions ‘hclust’ and ‘cutree’, resulting in an average of 2.7 reefs/site. ʹͲ	

iii)  Nation/state (nation, state, or territory). A larger scale in our analysis was ʹͳ	
‘nation/state’, which are jurisdictions that generally correspond to ʹʹ	
individual nations (but could also include states, territories, overseas ʹ͵	
regions, or extremely remote areas within a state such as the northwest ʹͶ	



	 ͳ

Hawaiian Islands; Extended Data Table 2), within which sites and reefs ʹͷ	
were nested for analysis.  ʹ	

 ʹ	
Estimating Biomass ʹͺ	
Reef fish biomass can reflect a broad selection of reef fish functioning and benthic ʹͻ	
conditions12,32-34, and is a key metric of resource availability for reef fisheries. Reef ʹͲ	
fish biomass estimates were based on instantaneous visual counts from 6,088 surveys ʹͳ	
collected from 2,514 reefs. All surveys used standard belt-transects, distance sampling, ʹʹ	
or point-counts, and were conducted between 2004 and 2013. Where data from ʹ͵	
multiple years were available from a single reef, we included only data from the year ʹͶ	
closest to 2010. Within each survey area, reef associated fishes were identified to ʹͷ	
species level, abundance counted, and total length (TL) estimated, with the exception ʹ	
of one data provider who measured biomass at the family level. To make estimates of ʹ	
biomass from these transect-level data comparable among studies, we:  ʹͺ	

i) Retained families that were consistently studied and were above a ʹͻ	
minimum size cut-off. Thus, we retained counts of >10cm diurnally-active, ʹͺͲ	
non-cryptic reef fish that are resident on the reef (20 families, 774 species), ʹͺͳ	
excluding sharks and semi-pelagic species (Extended Data Table 4). We ʹͺʹ	
also excluded three groups of fishes that are strongly associated with coral ʹͺ͵	
habitat conditions and are rarely targets for fisheries (Anthiinae, ʹͺͶ	
Chaetodontidae, and Cirrhitidae). We calculated total biomass of fishes on ʹͺͷ	
each reef using standard published species-level length-weight relationship ʹͺ	
parameters or those available on FishBase35. When length-weight ʹͺ	
relationship parameters were not available for a species, we used the ʹͺͺ	
parameters for a closely related species or genus. ʹͺͻ	



	 ͳͺ

ii)  Directly accounted for depth and habitat as covariates in the model (see ʹͻͲ	
“environmental conditions” section below); ʹͻͳ	

iii)  Accounted for any potential bias among data providers (capturing ʹͻʹ	
information on both inter-observer differences, and census methods) by ʹͻ͵	
including each data provider as a random effect in our model.  ʹͻͶ	

 ʹͻͷ	
Biomass means, medians, and standard deviations were calculated at the reef-scale. ʹͻ	
All reported log values are the natural log.  ʹͻ	
 ʹͻͺ	
Social Drivers ʹͻͻ	
1. Local Population Growth: We created a 100km buffer around each site and used ͵ͲͲ	
this to calculate human population within the buffer in 2000 and 2010 based on the ͵Ͳͳ	
Socioeconomic Data and Application Centre (SEDAC) gridded population of the ͵Ͳʹ	
world database36. Population growth was the proportional difference between the ͵Ͳ͵	
population in 2000 and 2010. We chose a 100km buffer as a reasonable range at ͵ͲͶ	
which many key human impacts from population (e.g., land-use and nutrients) might ͵Ͳͷ	
affect reefs37. ͵Ͳ	
 ͵Ͳ	
2. Management: For each site, we determined if it was: i) unfished- whether it fell ͵Ͳͺ	
within the borders of a no-take marine reserve. We asked data providers to further ͵Ͳͻ	
classify whether the reserve had high or low levels of compliance; ii) restricted - ͵ͳͲ	
whether there were active restrictions on gears (e.g. bans on the use of nets, spearguns, ͵ͳͳ	
or traps) or fishing effort (which could have included areas inside marine parks that ͵ͳʹ	
were not necessarily no take); or iii) fished - regularly fished without effective ͵ͳ͵	



	 ͳͻ

restrictions. To determine these classifications, we used the expert opinion of the data ͵ͳͶ	
providers, and triangulated this with a global database of marine reserve boundaries38.  ͵ͳͷ	
 ͵ͳ	
3. Gravity:  We adapted the economic geography concept of gravity, also called ͵ͳ	
interactance39, to examine potential interactions between reefs and: i) major urban ͵ͳͺ	
centres/markets (defined as provincial capital cities, major population centres, ͵ͳͻ	
landmark cities, national capitals, and ports); and ii) the nearest human settlements ͵ʹͲ	
(Extended Data Fig. 1). This application of the gravity concept infers that potential ͵ʹͳ	
interactions increase with population size, but decay exponentially with the effective ͵ʹʹ	
distance between two points. Thus, we gathered data on both population estimates and ͵ʹ͵	
a surrogate for distance: travel time.  ͵ʹͶ	
 ͵ʹͷ	
 Population estimations ͵ʹ	

We gathered population estimates for: 1) the nearest major markets (which ͵ʹ	
includes national capitals, provincial capitals, major population centres, ports, ͵ʹͺ	
and landmark cities) using the World Cities base map from ESRITM; and 2) the ͵ʹͻ	
nearest human settlement within a 500km radius using LandScanTM 2011 ͵͵Ͳ	
database. The different datasets were required because the latter is available in ͵͵ͳ	
raster format while the former is available as point data. We chose a 500km ͵͵ʹ	
radius from the nearest settlement as the maximum distance any non-market ͵͵͵	
fishing activities for fresh reef fish are likely to occur.  ͵͵Ͷ	

 ͵͵ͷ	
 Travel time calculation ͵͵	

Travel time was computed using a cost-distance algorithm that computes the ͵͵	
least ‘cost’ (in minutes) of travelling between two locations on a regular raster ͵͵ͺ	



	 ʹͲ

grid. In our case, the two locations were either: 1) the centroid of the site (i.e. ͵͵ͻ	
reef cluster) and the nearest settlement, or 2) the centroid of the site and the ͵ͶͲ	
major market. The cost (i.e. time) of travelling between the two locations was ͵Ͷͳ	
determined by using a raster grid of land cover and road networks with the ͵Ͷʹ	
cells containing values that represent the time required to travel across them40 ͵Ͷ͵	
(Extended Data Table 5), we termed this raster grid a friction-surface (with the ͵ͶͶ	
time required to travel across different types of surfaces analogous to different ͵Ͷͷ	
levels of friction). To develop the friction-surface, we used global datasets of ͵Ͷ	
road networks, land cover, and shorelines: ͵Ͷ	

- Road network data was extracted from the Vector Map Level 0 ͵Ͷͺ	
(VMap0) from the National Imagery and Mapping Agency's (NIMA) ͵Ͷͻ	
Digital Chart of the World (DCW®). We converted vector data from ͵ͷͲ	
VMap0 to 1km resolution raster.  ͵ͷͳ	
 - Land cover data were extracted from the Global Land Cover 200041.  ͵ͷʹ	
-To define the shorelines, we used the GSHHS (Global Self-consistent, ͵ͷ͵	
Hierarchical, High-resolution Shoreline) database version 2.2.2.  ͵ͷͶ	

 ͵ͷͷ	
These three friction components (road networks, land cover, and water bodies) ͵ͷ	
were combined into a single friction surface with a Behrmann map projection. ͵ͷ	
We calculated our cost-distance models in R42 using the accCost function of ͵ͷͺ	
the 'gdistance' package. The function uses Dijkstra’s algorithm to calculate ͵ͷͻ	
least-cost distance between two cells on the grid and the associated distance ͵Ͳ	
taking into account obstacles and the local friction of the landscape43. Travel ͵ͳ	
time estimates over a particular surface could be affected by the infrastructure ͵ʹ	
(e.g. road quality) and types of technology used (e.g. types of boats). These ͵͵	



	 ʹͳ

types of data were not available at a global scale but could be important ͵Ͷ	
modifications in more localised studies.  ͵ͷ	

 ͵	
 Gravity computation  ͵	

i) To compute the gravity to the nearest market, we calculated the population ͵ͺ	
of the nearest major market and divided that by the squared travel time ͵ͻ	
between the market and the site. Although other exponents can be used44, we ͵Ͳ	
used the squared distance (or in our case, travel time), which is relatively ͵ͳ	
common in geography and economics. This decay function could be ͵ʹ	
influenced by local considerations, such as infrastructure quality (e.g. roads), ͵͵	
the types of transport technology (i.e. vessels being used), and fuel prices, ͵Ͷ	
which were not available in a comparable format for this global analysis, but ͵ͷ	
could be important considerations in more localised adaptations of this study. ͵	
ii) To determine the gravity of the nearest settlement, we located the nearest ͵	
populated pixel within 500kms, determined the population of that pixel, and ͵ͺ	
divided that by the squared travel time between that cell and the reef site.  ͵ͻ	

As is standard practice in many agricultural economics studies45, an assumption in ͵ͺͲ	
our study is that the nearest major capital or landmark city represents a market. ͵ͺͳ	
Ideally we would have used a global database of all local and regional markets for ͵ͺʹ	
coral reef fish, but this type of database is not available at a global scale. As a ͵ͺ͵	
sensitivity analysis to help justify our assumption that capital and landmark cities ͵ͺͶ	
were a reasonable proxy for reef fish markets, we tested a series of candidate ͵ͺͷ	
models that predicted biomass based on: 1) cumulative gravity of all cities within ͵ͺ	
500km; 2) gravity of the nearest city; 3) travel time to the nearest city; 4) ͵ͺ	
population of the nearest city; 5) gravity to the nearest human population above 40 ͵ͺͺ	



	 ʹʹ

people/km2 (assumed to be a small peri-urban area and potential local market); 6) ͵ͺͻ	
the travel time between the reef and a small peri-urban area; 7) the population size ͵ͻͲ	
of the small peri-urban population; 8) gravity to the nearest human population ͵ͻͳ	
above 75 people/km2 (assumed to be a large peri-urban area and potential market); ͵ͻʹ	
9) the travel time between the reef and this large peri-urban population; 10)  the ͵ͻ͵	
population size of this large peri-urban population; and 11) the total population ͵ͻͶ	
size within a 500km radius. Model selection revealed that the best two models ͵ͻͷ	
were gravity of the nearest city and gravity of all cities within 500km (with a 3 ͵ͻ	
AIC value difference between them; Extended Data Table 6). Importantly, when ͵ͻ	
looking at the individual components of gravity models, the travel time ͵ͻͺ	
components all had a much lower AIC value than the population components, ͵ͻͻ	
which is broadly consistent with previous systematic review studies46. Similarly, ͶͲͲ	
travel time to the nearest city had a lower AIC score than any aspect of either the ͶͲͳ	
peri-urban or urban measures. This suggests our use of capital and landmark cities ͶͲʹ	
is likely to better capture exploitation drivers from markets rather than simple ͶͲ͵	
population pressures. This may be because market dynamics are difficult to ͶͲͶ	
capture by population threshold estimates; for example some small provincial ͶͲͷ	
capitals where fish markets are located have very low population densities, while ͶͲ	
some larger population centres may not have a market. Downscaled regional or ͶͲ	
local analyses could attempt to use more detailed knowledge about fish markets, ͶͲͺ	
but we used the best proxy available at a global scale.  ͶͲͻ	

 ͶͳͲ	
4. Human Development Index (HDI): HDI is a summary measure of human Ͷͳͳ	
development encompassing: a long and healthy life, being knowledgeable, and having Ͷͳʹ	



	 ʹ͵

a decent standard of living. In cases where HDI values were not available specific to Ͷͳ͵	
the State (e.g. Florida and Hawaii), we used the national (e.g. USA) HDI value.  ͶͳͶ	
 Ͷͳͷ	
5. Population Size: For each Nation/state, we determined the size of the human Ͷͳ	
population. Data were derived mainly from census reports, the CIA fact book, and Ͷͳ	
Wikipedia.   Ͷͳͺ	
 Ͷͳͻ	
6. Tourism: We examined tourist arrivals relative to the nation/state population size ͶʹͲ	
(above). Tourism arrivals were gathered primarily from the World Tourism Ͷʹͳ	
Organization’s Compendium of Tourism Statistics.  Ͷʹʹ	
 Ͷʹ͵	
7. National Reef Fish Landings: Catch data were obtained from the Sea Around Us ͶʹͶ	
Project (SAUP) catch database (www.seaaroundus.org), except for Florida, which Ͷʹͷ	
was not reported separately in the database. We identified 200 reef fish species and Ͷʹ	
taxon groups in the SAUP catch database47. Note that reef-associated pelagics such as Ͷʹ	
scombrids and carangids normally form part of reef fish catches. However, we chose Ͷʹͺ	
not to include these species because they are also targeted and caught in large Ͷʹͻ	
amounts by large-scale, non-reef operations. Ͷ͵Ͳ	
 Ͷ͵ͳ	
8. Voice and Accountability: This metric, from the World Bank survey on governance, Ͷ͵ʹ	
reflects the perceptions of the extent to which a country's citizens are able to Ͷ͵͵	
participate in selecting their government, as well as freedom of expression, freedom Ͷ͵Ͷ	
of association, and a free media. In cases where governance values were not available Ͷ͵ͷ	
specific to the Nation/state (e.g. Florida and Hawaii), we used national (e.g. USA) Ͷ͵	
values.  Ͷ͵	



	 ʹͶ

 Ͷ͵ͺ	
Environmental Drivers Ͷ͵ͻ	
1. Depth: The depth of reef surveys were grouped into the following categories: <4m, ͶͶͲ	
4-10m, >10m to account for broad differences in reef fish community structure ͶͶͳ	
attributable to a number of inter-linked depth-related factors. Categories were ͶͶʹ	
necessary to standardise methods used by data providers and were determined by pre-ͶͶ͵	
existing categories used by several data providers. ͶͶͶ	
 ͶͶͷ	
2. Habitat: We included the following habitat categories: i) Slope: The reef slope ͶͶ	
habitat is typically on the ocean side of a reef, where the reef slopes down into deeper ͶͶ	
water; ii) Crest: The reef crest habitat is the section that joins a reef slope to the reef ͶͶͺ	
flat. The zone is typified by high wave energy (i.e. where the waves break). It is also ͶͶͻ	
typified by a change in the angle of the reef from an inclined slope to a horizontal reef ͶͷͲ	
flat; iii) Flat: The reef flat habitat is typically horizontal and extends back from the Ͷͷͳ	
reef crest for 10’s to 100’s of metres; iv) Lagoon / back reef: Lagoonal reef habitats Ͷͷʹ	
are where the continuous reef flat breaks up into more patchy reef environments Ͷͷ͵	
sheltered from wave energy. These habitats can be behind barrier / fringing reefs or ͶͷͶ	
within atolls. Back reef habitats are similar broken habitats where the wave energy Ͷͷͷ	
does not typically reach the reefs and thus forms a less continuous 'lagoon style' reef Ͷͷ	
habitat. Due to minimal representation among our sample, we excluded other less Ͷͷ	
prevalent habitat types, such as channels and banks. To verify the sites’ habitat Ͷͷͺ	
information, we used the Millennium Coral Reef Mapping Project (MCRMP) Ͷͷͻ	
hierarchical data48, Google Earth, and site depth information.  ͶͲ	
 Ͷͳ	
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3. Productivity: We examined ocean productivity for each of our sites in mg C / m2 / Ͷʹ	
day (http://www.science.oregonstate.edu/ocean.productivity/). Using the monthly data Ͷ͵	
for years 2005 to 2010 (in hdf format), we imported and converted those data into ͶͶ	
ArcGIS. We then calculated yearly average and finally an average for all these years. Ͷͷ	
We used a 100km buffer around each of our sites and examined the average Ͷ	
productivity within that radius. Note that ocean productivity estimates are less Ͷ	
accurate for nearshore environments, but we used the best available data.    Ͷͺ	
 Ͷͻ	
Analyses ͶͲ	
We first looked for collinearity among our covariates using bivariate correlations and Ͷͳ	
variance inflation factor estimates (Extended Data Fig. 4, Extended Data Table 7). Ͷʹ	
This led to the exclusion of several covariates (not described above): i) Geographic Ͷ͵	
Basin (Tropical Atlantic, western Indo-Pacific, Central Indo-Pacific, or eastern Indo-ͶͶ	
Pacific); ii) Gross Domestic Product (purchasing power parity); iii) Rule of Law Ͷͷ	
(World Bank governance index); iv) Control of Corruption (World Bank governance Ͷ	
index); and v) Sedimentation. Additionally, we removed an index of climate stress, Ͷ	
developed by Maina et al.49, which incorporated 11 different environmental Ͷͺ	
conditions, such as the mean and variability of sea surface temperature due to Ͷͻ	
repeated lack of convergence for this parameter in the model, likely indicative of ͶͺͲ	
unidentified multi-collinearity. All other covariates had correlation coefficients 0.7 or Ͷͺͳ	
less and Variance Inflation Factor scores less than 5 (indicating multicolinearity was Ͷͺʹ	
not a serious concern). Care must be taken in causal attribution of covariates that were Ͷͺ͵	
significant in our model, but demonstrated colinearity with candidate covariates that ͶͺͶ	
were removed during the aforementioned process. Importantly, the covariate that Ͷͺͷ	



	 ʹ

exhibited the largest effect size in our model, market gravity, was not strongly Ͷͺ	
collinear with other candidate covariates.  Ͷͺ	
 Ͷͺͺ	
To quantify the multi-scale social, environmental, and economic factors affecting reef Ͷͺͻ	
fish biomass we adopted a Bayesian hierarchical modelling approach that explicitly ͶͻͲ	
recognized the three scales of spatial organization: reef (j), site (k), and nation/state (s).   Ͷͻͳ	
 Ͷͻʹ	
In adopting the Bayesian approach we developed two models for inference: a null Ͷͻ͵	
model, consisting only of the hierarchical units of observation (i.e. intercepts-only) ͶͻͶ	
and a full model that included all of our covariates (drivers) of interest. Covariates Ͷͻͷ	
were entered into the model at the relevant scale, leading to a hierarchical model Ͷͻ	
whereby lower-level intercepts (averages) were placed in the context of higher-level Ͷͻ	
covariates in which they were nested. We used the null model as a baseline against Ͷͻͺ	
which we could ensure that our full model performed better than a model with no Ͷͻͻ	
covariate information. We did not remove 'non-significant' covariates from the model ͷͲͲ	
because each covariate was carefully considered for inclusion and could therefore ͷͲͳ	
reasonably be considered as having an effect, even if small or uncertain; removing ͷͲʹ	
factors from the model is equivalent to fixing parameter estimates at exactly zero - a ͷͲ͵	
highly-subjective modelling decision after covariates have already been selected as ͷͲͶ	
potentially important50. ͷͲͷ	
 ͷͲ	
The full model assumed the observed, environmental-scale observations of fish ͷͲ	
biomass (yijks) were modelled using a noncentral-T distribution, allowing for fatter ͷͲͺ	
tails than typical log-normal models of reef fish biomass32. ͷͲͻ	
 ͷͳͲ	
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log	ሺݕ௦ሻ̱݈ܰܶܽݎݐ݊݁ܿ݊൫ߤ௦ǡ ߬ǡ ͵Ǥͷ൯ ߤ௦ ൌ ௦ߚ   ܺ ̱ܷ߬ሺͲǡͳͲͲሻିଶߚ

 ͷͳͳ	
with Xreef representing the matrix of observed environmental-scale covariates and ͷͳʹ	 	͵ the array of estimated reef-scale parameters. The ߬ (and all subsequent ߬'s) ͷͳߚ
were assumed common across observations in the final model and were minimally ͷͳͶ	
informative50. Using a similar structure, the environmental-scale intercepts (ߚ௦) ͷͳͷ	
were structured as a function of site-scale covariates (Xsit): ͷͳ	
 ͷͳ	 ௦ǡߤ௦̱ܰ൫ߚ ߬௦௧൯ ߤ௦ ൌ ௦ߛ   ௦௧ܺ௦௧ ߬௦௧̱ܷሺͲǡͳͲͲሻିଶߛ

 ͷͳͺ	
with  ߛ௦௧ representing an array of site-scale parameters. Building upon the hierarchy, ͷͳͻ	
the site-scale intercepts (ߛ௦) were structured as a function of state-scale covariates ͷʹͲ	
(Xsta):  ͷʹͳ	
 ͷʹʹ	 ௦ǡߤ̱ܰሺ	௦ߛ ߬௦௧ሻ ߤ௦ ൌ ௦ߛ   ௦௧ܺ௦௧ ߬௦௧̱ܷሺͲǡͳͲͲሻିଶߛ

 ͷʹ͵	
Finally, at the top scale of the analysis we allowed for a global (overall) estimate of ͷʹͶ	
average log-biomass (ߤ): ͷʹͷ	
 ͷʹ	



	 ʹͺ

ǡߤ̱ܰ൫	௦ߛ ߬൯ ߤ	̱ܰሺͲǤͲǡ ͳͲͲͲሻ ̱ܷ߬ሺͲǡͳͲͲሻିଶ. ͷʹ	
 ͷʹͺ	
The relationships between fish biomass and environmental, site, and state scale ͷʹͻ	
drivers was carried out using the PyMC package51 for the Python programming ͷ͵Ͳ	
language, using a Metropolis-Hastings (MH) sampler run for 106 iterations, with a ͷ͵ͳ	
900,000 iteration burn in, leaving 10,000 samples in the posterior distribution of each ͷ͵ʹ	
parameter; these long burn-in times are often required with a complex model using ͷ͵͵	
the MH algorithm. Convergence was monitored by examining posterior chains and ͷ͵Ͷ	
distributions for stability and by running multiple chains from different starting points ͷ͵ͷ	
and checking for convergence using Gelman-Rubin statistics52 for parameters across ͷ͵	
multiple chains; all were at or close to 1, indicating good convergence of parameters ͷ͵	
across multiple chains. ͷ͵ͺ	
 ͷ͵ͻ	
Overall model fit ͷͶͲ	
 ͷͶͳ	
We conducted posterior predictive checks for goodness of fit (GoF) using Bayesian p-ͷͶʹ	
values40 (BpV), whereby fit was assessed by the discrepancy between observed or ͷͶ͵	
simulated data and their expected values. To do this we simulated new data (yi

new) by ͷͶͶ	
sampling from the joint posterior of our model () and calculated the Freeman-Tukey ͷͶͷ	
measure of discrepancy for the observed (yi

obs) or simulated data, given their expected ͷͶ	
values (i): ͷͶ	
 ͷͶͺ	 ሻߠሺyȁܦ 	 ൌ 	 σ ሺඥݕ െ ඥߤሻଶ          ͷͶͻ	



	 ʹͻ

 ͷͷͲ	
yielding two arrays of median discrepancies D(yobs|) and D(ynew|) that were then ͷͷͳ	
used to calculate a BpV for our model by recording the proportion of times D(yobs|) ͷͷʹ	
was greater than D(ynew|) (Extended Data Fig. 5). A BpV above 0.975 or under 0.025 ͷͷ͵	
provides substantial evidence for lack of model fit.  Evaluated by the Deviance ͷͷͶ	
Information Criterion (DIC), the full model greatly outperformed the null model ͷͷͷ	
(DIC=472). ͷͷ	
 ͷͷ	
To examine homoscedasticity, we checked residuals against fitted values. We also ͷͷͺ	
checked the residuals against all covariates included in the model, and several ͷͷͻ	
covariates that were not included in the model (primarily due to collinearity), ͷͲ	
including: 1) Atoll - A binary metric of whether the reef was on an atoll or not; 2) ͷͳ	
Control of Corruption: Perceptions of the extent to which public power is exercised ͷʹ	
for private gain, including both petty and grand forms of corruption, as well as ͷ͵	
'capture' of the state by elites and private interests. Derived from the World Bank ͷͶ	
survey on governance; 3) Geographic Basin- whether the site was in the Tropical ͷͷ	
Atlantic, western Indo-Pacific, Central Indo-Pacific, or eastern Indo-Pacific; 4) ͷ	
Connectivity – we examined 3 measures based on the area of coral reef within a 30km, ͷ	
100km, and 600km radius of the site; 5) Sedimentation; 6) Coral Cover (which was ͷͺ	
only available for a subset of the sites); 7) Climate stress49; and 8) Census method. ͷͻ	
The model residuals showed no patterns with these eight additional covariates, ͷͲ	
suggesting they would not explain additional information in our model.  ͷͳ	
 ͷʹ	
Bright and dark spot estimates ͷ͵	
Because the performance of site scale locations are of substantial interest in ͷͶ	
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uncovering novel solutions for reef conservation, we defined bright and dark spots at ͷͷ	
the site scale. To this end, we defined bright (or dark) spots as locations where ͷ	
expected site-scale intercepts (ߛ௦) differed by more than two standard deviations ͷ	
from their nation/state-scale expected value (ߤ௦), given all the covariates present in ͷͺ	
the full hierarchical model: ͷͻ	
ܵܵ௦௧ 	 ൌ 	 ȁሺߤ௦ െ ௦ሻȁߛ  ʹሾܵܦሺߤ௦ െ 	௦ሻሿ.  ͷͺͲߛ
This, in effect, probabilistically identified the most deviant sites, given the model, ͷͺͳ	
while shrinking sites toward their group-level means, thereby allowing us to ͷͺʹ	
overcome potential bias due to low and varying sample sizes that can lead to extreme ͷͺ͵	
values from chance alone. As a conservative precaution, we did not consider a site a ͷͺͶ	
bright or dark spot if the group-level (i.e. nation/state) mean had fewer than 5 ͷͺͷ	
estimates (sites).  ͷͺ	
 ͷͺ	
Analysing conditions at bright spots ͷͺͺ	
For our preliminary investigation of why bright and dark spots may diverge from ͷͺͻ	
expectations, we surveyed data providers and other experts about key social, ͷͻͲ	
institutional, and environmental conditions at the 15 bright spots, 35 dark spots, and ͷͻͳ	
14 sites that performed most closely to model specifications. Specifically, we ͷͻʹ	
developed an online survey using Survey MonkeyTM software, which we asked data ͷͻ͵	
providers who sampled those sites to complete with input from local experts where ͷͻͶ	
necessary. Data providers generally filled in the survey in consultation with ͷͻͷ	
nationally-based field team members who had detailed local knowledge of the ͷͻ	
socioeconomic and environmental conditions at each of the sites. Research on bright ͷͻ	
spots in agricultural development13 highlights several types of social and ͷͻͺ	
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environmental conditions that may lead to bright spots, which we adapted and ͷͻͻ	
developed proxies for as the basis of our survey into why our bright and dark spots ͲͲ	
may diverge from expectations. These include: Ͳͳ	

i) Social and institutional conditions. We examined the presence of Ͳʹ	
customary management institutions such as taboos and marine tenure Ͳ͵	
institutions, whether there was a high level of engagement by local people ͲͶ	
in management, whether there was high levels of dependence on marine Ͳͷ	
resources (whether a majority of local residents depend on reef fish as a Ͳ	
primary source of food or income). All social and institutional conditions Ͳ	
were recorded as presence/absence. Dependence on resources and Ͳͺ	
engagement were limited to sites that had adjacent human populations. All Ͳͻ	
other conditions were recorded regardless of whether there is an adjacent ͳͲ	
community;  ͳͳ	

ii)  Technological use/innovation. We examined the presence of motorised ͳʹ	
vessels, intensive capture equipment (such as beach seine nets, surround ͳ͵	
gill nets, and muro-ami nets), and storage capacity (i.e. freezers); and  ͳͶ	

iii)  External influences (such as donor-driven projects). We examined the ͳͷ	
presence of NGOs, fishery development projects, development initiatives ͳ	
(such as alternative livelihoods), and fisheries improvement projects. All ͳ	
external influences were recorded as present/absent then summarised into ͳͺ	
a single index of whether external projects were occurring at the site; ͳͻ	

iv) Environmental/ecological processes (e.g. recruitment & connectivity). We ʹͲ	
examined whether sites were within 5km of mangroves and deep-water ʹͳ	
refuges, and whether there had been any major environmental disturbances ʹʹ	



	 ͵ʹ

such as coral bleaching, tsunami, and cyclones within the past 5 years. All ʹ͵	
environmental conditions were recorded as present/absent.  ʹͶ	

 ʹͷ	
To test for associations between these conditions and whether sites diverged more or ʹ	
less from expectations, we used two complementary approaches. The link between the ʹ	
presence/absence of the aforementioned conditions and whether a site was bright, ʹͺ	
average, or dark was assessed using a Fisher’s Exact Test. Then we tested whether the ʹͻ	
mean deviation in fish biomass from expected was similar between sites with ͵Ͳ	
presence or absence of the mechanisms in question (i.e. the presence or absence of ͵ͳ	
marine tenure/taboos) using an ANOVA assuming unequal variance. The two tests ͵ʹ	
yielded similar results, but provide slightly different ways to conceptualise the issue, ͵͵	
the former is correlative while the latter explains deviation from expectations based ͵Ͷ	
on conditions, so we provide both (Figure 2, Extended Data Fig. 6).     ͵ͷ	
  ͵	
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Extended Data Tables ͻʹ	
 ͻ͵	
Extended Data Table 1 | Summary of social and environmental covariates. ͻͶ	
Further details can be found in the Supplemental Online Methods. The smallest scale ͻͷ	
is the individual reef. Sites consist of clusters of reefs within 4km of each other. ͻ	
Nation/states generally correspond to country, but can also include or territories or ͻ	
states, particularly when geographically isolated (e.g. Hawaii).  ͻͺ	
 ͻͻ	
Covariate Description Scale Key data sources 

Local 

population 

growth 

Difference in local 

human population 

(i.e. 100km buffer 

around our sites) 

between 2000-2010

Site Socioeconomic Data and 

Application Centre (SEDAC) 

gridded population of the work 

database36 

‘Gravity’ of 

major 

markets 

within 

500km 

The population of 

the major market 

divided by the 

squared travel time 

between the reef 

sites and the 

market. This value 

was summed for all 

major markets 

within 500km of 

the site.  

Site Human population size, land cover, 

road networks, coastlines  

‘Gravity’ of 

the closest 

human 

settlement 

The population of 

the nearest human 

settlement divided 

by the squared 

travel time between 

the reef site and the 

settlement.  

Site Human population size, land cover, 

road networks, coastlines  

Protection Whether the reef is Reef Expert opinion, global map of 



	 Ͷͳ

status openly fished, 

restricted (e.g. 

effective gear bans 

or effort 

restrictions), or 

unfished 

marine protected areas. 

Human 

Developmen

t index 

A summary 

measure of human 

development 

encompassing: a 

long and healthy 

life, being 

knowledgeable and 

have a decent 

standard of living. 

We used linear and 

quadratic functions 

for HDI. 

Nation/st

ate  

United Nations Development 

Programme 

Population 

Size 

Total population 

size of the 

jurisdiction 

Nation/ 

state  

World Bank, census estimates, 

Wikipedia 

Tourism Proportion of 

tourist visitors to 

residents 

Nation/ 

state  

World Tourism Organization’s 

Compendium of Tourism Statistics, 

census estimates 

Voice and 

accountabili

ty 

Perceptions of the 

extent to which a 

country's citizens 

are able to 

participate in 

selecting their 

government. 

Nation/ 

state  

World Bank 

Fish 

landings 

Landings of reef 

fish (tons) per Km2 

Nation/ 

state  

Teh et al.47 
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of reef 

National 

fisheries 

poaching 

Results from 

survey of national 

fisheries managers 

about levels of 

compliance with 

national fisheries 

regulations 

Nation/ 

state  

Mora et al.53 

Climate 

stress 

A composite metric 

comprised of 11 

different 

environmental 

variables that are 

related to coral 

mortality from 

bleaching 

Site Maina et al.49 

Productivity The average (2005-

2010) ocean 

productivity in mg 

C / m2 / day  

Site http://www.science.oregonstate.edu/

ocean.productivity/ 

Habitat Whether the reef is 

a slop, crest, flat, or 

back reef/lagoon 

Reef Primary data 

Depth Depth of the 

ecological survey 

(<4m, 4.1-10m, 

>10m) 

Reef Primary data 

  ͺͲͲ	



	 Ͷ͵

Extended Data Table 2 | List of ‘Nation/states’ covered in study and their ͺͲͳ	
respective average biomass (plus or minus standard error) In most cases, ͺͲʹ	
nation/state refers to an individual country, but can also include states (e.g. Hawaii or ͺͲ͵	
Florida), territories (e.g. British Indian Ocean Territory), or other jurisdictions. We ͺͲͶ	
treated the NW Hawaiian Islands and Farquhar as separate ‘nation/states’ from ͺͲͷ	
Hawaii and Seychelles, respectively, because they are extremely isolated and have ͺͲ	
little or no human population. In practical terms, this meant different values for a few ͺͲ	
nation/state scale indicators that ended up having relatively small effect sizes, anyway ͺͲͺ	
(Fig. 1b): Population, tourism visitations, and in the case of NW Hawaiian Island, fish ͺͲͻ	
landings.   ͺͳͲ	
 ͺͳͳ	

Nation/states Average biomass (± SE)

American Samoa  235.93  (± 17.75)
Australia  735.01  (± 136.85)
Belize 981.16  (± 65.32)
Brazil  663.35  (± 115.17)
British Indian Ocean Territory (Chagos) 2975.58  (± 603.99)
Cayman Islands 464.09  (± 25.41)
Colombia 846.07  (± 162.49)
Commonwealth of the Northern Mariana Islands 505.54  (± 99.3)
Comoros Islands 305.62  (± 38.73)
Cuba 2107.37  (± 466.34)
Egypt 552.73  (± 70.18)
Farquhar  2665.48  (± 492.62)
Federated States of Micronesia 377.90 NA (n=1)
Fiji  1464.54  (± 144.39)
Florida  1661.35  (± 198.42)
French Polynesia 1077.20  (± 101.4)
Guam 118.98  (± 16.81)
Hawaii  380.45  (± 25.11)
Indonesia 275.76  (± 19.89)
Israel 445.16  (± 105.13)
Jamaica 275.77  (± 50.75)
Kenya 335.25  (± 65.81)
Kiribati  1219.93  (± 93.2)
Madagascar 409.48  (± 46.1)
Maldives 688.64  (± 97.07)
Marshall Islands 707.72  (± 174.38)
Mauritius  166.93  (± 73.7)
Mayotte  631.43  (± 68.25)
Mexico 1930.81  (± 737.09)



	 ͶͶ

Mozambique 461.01  (± 60.14)
Netherlands Antilles  428.01  (± 53.99)
New Caledonia 1460.27  (± 143.18)
NW Hawaiian Islands  729.71  (± 46.33)
Oman 282.79  (± 70.22)
Palau 3212.26  (± 332.02)
Panama 373.78  (± 85.41)
Papua New Guinea 566.70  (± 31.76)
Philippines 202.62 NA (n=1)
Pacific Remote Island Areas (PRIA), USA 641.47  (± 79.25)
Reunion  172.32  (± 30.67)
Seychelles 446.99  (± 46.6)
Solomon Islands 1280.30  (± 216.74)
Tanzania 346.29  (± 41.51)
Tonga 1149.97  (± 151.27)
United Arab Emirates 81.35  (± 28.66)
Venezuela 1472.39  (± 496.95)ͺͳʹ	
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Extended Data Table 3| List of Bright and Dark Spot locations, population status, ͺͳ͵	
and protection status.  ͺͳͶ	
 ͺͳͷ	
Bright 
or Dark Nation/State Location Populated Protection 

Bright 

British Indian Ocean 
Territory 

Chagos Unpopulated 
Unfished (high 
compliance) 

Commonwealth of 
the Northern Mariana 
Islands 

Agrihan Unpopulated Fished 

Guguan Unpopulated Fished 

Indonesia 
Raja Ampat 1 Populated Restricted 
Raja Ampat 2 Populated Restricted 
Kalimantan Populated Restricted 

Kiribati 
Tabueran 1 Populated Fished 
Tabueran 2 Populated Fished 

Papua New Guinea Karkar Populated Restricted 

PRIA 
Baker Unpopulated Restricted 
Jarvis Island Unpopulated Restricted 

Solomon Islands 

Choiseul Populated Fished 
Isabel Populated Fished 
Makira Populated Fished 
New Georgia Populated Fished 

Dark 

Australia Lord Howe Populated 
Unfished (high 
compliance) 

Hawaii 

Hawaii Populated Fished 
Kauai 1 Populated Fished 
Kauai 2 Populated Fished 
Lanai Populated Fished 
Maui 1 Populated Fished 
Maui 2 Populated Fished 
Molokai Populated Fished 
Oahu 1 Populated Fished 
Oahu 2 Populated Fished 
Oahu 3 Populated Fished 
Oahu 4 Populated Fished 
Oahu 5 Populated Fished 
Oahu 6 Populated Fished 

Indonesia 

Karimunjawa 
1 

Populated Fished 

Karimunjawa 
2 

Populated 
Unfished (low 
compliance) 

Karimunjawa 
3 

Populated 
Unfished (low 
compliance) 

Pulau Aceh Populated Fished 

Jamaica 

Montego Bay 
1 

Populated 
Unfished (low 
compliance) 

Montego Bay 
2 

Populated Fished 



	 Ͷ

Rio Bueno Populated Fished 
Kenya Diani Populated Fished 
Madagascar Toliara Populated Fished 

Mauritius 
Anse Raie Populated Fished 
Grand Sable Populated Fished 

NW Hawaii 

   

Lisianski Unpopulated 
Unfished (high 
compliance) 

Pearl & 
Hermes 1 

Unpopulated 
Unfished (high 
compliance) 

Pearl & 
Hermes 2 

Unpopulated 
Unfished (high 
compliance) 

Reunion Reunion Populated Fished 
Seychelles Bel Ombre Populated Restricted 

Tanzania 

Bongoyo Populated 
Unfished (high 
compliance) 

Chapwani Populated Fished 
Mtwara Populated Fished 
Stone Town, 
Zanzibar 

Populated Fished 

Venezuela Chuspa Populated Fished 
  ͺͳ	



	 Ͷ

Extended Data Table 4| List of fish families included in the study, their common ͺͳ	
name, and whether they are commonly targeted in artisanal coral reef fisheries. ͺͳͺ	
Note: Targeting of reef fishes can vary by location due to gear, cultural preferences, ͺͳͻ	
and a range of other considerations.  ͺʹͲ	
 ͺʹͳ	
Fish family Common family name Fishery target 
Acanthuridae Surgeonfishes Target 
Balistidae Triggerfishes Non-target 
Diodontidae Porcupinefishes Non-target 
Ephippidae Batfishes Target 
Haemulidae Sweetlips Target 
Kyphosidae Drummers Target 
Labridae Wrasses and Parrotfish Target >20cm 
Lethrinidae Emperors Target 
Lutjanidae Snappers Target 
Monacanthidae Filefishes Non-target 
Mullidae Goatfishes Target 
Nemipteridae Coral Breams Target 
Pinguipedidae Sandperches Non-target 
Pomacanthidae Angelfishes Target >20cm 
Serranidae Groupers Target 
Siganidae Rabbitfishes Target 
Sparidae Porgies Target 
Synodontidae Lizardfishes Non-target 
Tetraodontidae Pufferfishes Non-target 
Zanclidae Moorish Idol Non-target 

  ͺʹʹ	
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Extended Data Table 5 | Travel time estimates by land cover type. Adapted from ͺʹ͵	
Nelson40 ͺʹͶ	
 ͺʹͷ	
Global Land Cover Global Class  Speed associated (km/h)  

Tree Cover, broadleaved, deciduous & evergreen, closed; 

regularly flooded Tree Cover, Shrub, or Herbaceous Cover 

(fresh, saline, & brackish water)  

1  

Tree Cover, broadleaved, deciduous, open  

(open= 15-40% tree cover)  

1.25  

Tree Cover, needle-leaved, deciduous & evergreen, mixed 

leaf type;  Shrub Cover, closed-open, deciduous & 

evergreen; Herbaceous Cover, closed-open; Cultivated and 

managed areas;  Mosaic: Cropland / Tree Cover / Other 

natural vegetation, Cropland / Shrub or Grass Cover   

1.6  

Mosaic: Tree cover / Other natural vegetation; Tree Cover, 

burnt  

1.25  

Sparse Herbaceous or sparse Shrub Cover   2.5  

Water  20 

Roads  60  

Track 30 

Artificial surfaces and associated areas  30  

Missing values 1.4 

  ͺʹ	
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Extended Data Table 6 | Variance Inflation Factor Scores (VIF) for continuous ͺʹ	
data before and after removing variables due to colinearity. X = covariate ͺʹͺ	
removed.  ͺʹͻ	
 ͺ͵Ͳ	
Covariate starting 

VIF 
ending 
VIF 

Market gravity (log) 1.9 1.5
nearest settlement 
gravity 

1.4 1.3

Population growth 1.4 1.3
Climate stress 2.7 2.0
Ocean productivity 6.5 2.2
Sedimentation 6.0 X
Tourism 2.5 X
Control Corruption 10.5 X
GDP 8.2 X
HDI 5.5 3.3
Population size 1.9 1.8
Reef fish landings 3.1 2.2
Rule of Law 33.8 x
Voice and 
Accountability 

3.2 3.2

  ͺ͵ͳ	
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Extended Data Table 7| Model selection of potential gravity indicators and ͺ͵ʹ	
components.  ͺ͵͵	
 ͺ͵Ͷ	
Model Covariates AIC Delta 

AIC 
M2 Gravity of nearest city 2666.4 0
M1 Gravity of all cities in 500km 2669.5 3.1
M3 Travel time to nearest city 2700.0 33.6
M5 Gravity of nearest small peri-urban area (40 people/km2) 2703.9 37.5
M11 Total Population in 500km radius 2712.0 45.6
M9 Travel time to the nearest large peri-urban area (75 people/km2) 2712.1 45.7
M6 Travel time to nearest small peri-urban area (40 people/km2) 2713.8 47.4
M8 Gravity to the nearest large peri-urban area (75 people/km2) 2722.9 56.5
M7 Population of nearest small peri-urban area (40 people/km2) 2792.7 126.3
M4 Population of the nearest city 2812.8 146.5
M10 Population of the nearest large peri-urban area (75 people/km2) 2822.2 155.8
M0 Intercept only 2827.7 161.27
  ͺ͵ͷ	
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Extended Data Figure Legends ͺ͵	

 ͺ͵	
 ͺ͵ͺ	
Extended Data Figure 1 | a) A heuristic of the gravity concept where interactions ͺ͵ͻ	
between people and reefs are a function of population size (p) and the time it takes to ͺͶͲ	
travel to the reef (tt). Beginning in the 1800s, the concept of ‘gravity’ has been ͺͶͳ	
applied to measure economic interactions, migration patterns, and trade flows29,54-56. ͺͶʹ	
Drawing on an analogy from Newton’s Law of Gravitation, the gravity concept ͺͶ͵	
predicts that interactions between two points are positively related to their mass (i.e., ͺͶͶ	
population) and inversely related to the distance between them. Here, we adapt the ͺͶͷ	
gravity concept to examine interactions between people and reefs. We posit that ͺͶ	
human interactions with a reef will be a function of the population of a place (p) ͺͶ	
divided by the squared time it takes to travel (tt) to the reefs (i.e. travel time). Thus, ͺͶͺ	
gravity values could be similar for places that are large but far from the reefs (e.g. px ͺͶͻ	
= 30,000 people, ttx= 10hours) as to those with small populations that are close to the ͺͷͲ	
reef (e.g. py = 300 people, tty =1 hour). We used travel time instead of linear distance ͺͷͳ	
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	 ͷʹ

to account for the differences incurred by travelling over different surfaces (e.g. water, ͺͷʹ	
roads, tracks–see Methods). We developed gravity measures for the nearest human ͺͷ͵	
settlement and for the nearest major market (defined as provincial capitals, ports, and ͺͷͶ	
other large, populated places- see Methods). b) Gravity isoclines along gradients of ͺͷͷ	
population size and travel time. ͺͷ	
  ͺͷ	



	 ͷ͵

Extended Data Figure 2 | Marginal relationships between reef fish biomass and ͺͷͺ	
site-level social drivers. a) local population growth, b) market gravity, c) nearest ͺͷͻ	
settlement gravity, d) tourism, e) nation/state population size, f) Human development ͺͲ	
Index, g) high compliance marine reserve (0 is fished baseline), h) restricted fishing ͺͳ	
(0 is fished baseline), i) low compliance marine reserve (0 is fished baseline), j) voice ͺʹ	
and accountability, k) reef fish landings, l) ocean productivity; m) depth (-1= 0-4m, ͺ͵	
0= 4-10m, 1=>10m), n) reef flat (0 is reef slope baseline), o) reef crest flat (0 is reef ͺͶ	
slope baseline), p) lagoon/back reef flat (0 is reef slope baseline). All X variables are ͺͷ	
standardized. ** 95% of the posterior density is either a positive or negative direction ͺ	
(Box 1); * 75% of the posterior density is either a positive or negative direction. ͺ	

ͺͺ	
  ͺͻ	



	 ͷͶ

ͺͲ	
Extended Data Figure 3 | Market gravity and fish biomass. Relationship between ͺͳ	
market gravity and a) reef fish biomass; b) targeted reef fish biomass (using fish ͺʹ	
families targeted by artisanal fisheries specified in Extended Data Table 2); c) non-ͺ͵	
target reef fish biomass. The strong relationship between gravity and reef fish biomass ͺͶ	
is very similar for the biomass of fishes generally targeted by artisanal fisheries, but ͺͷ	
very different for non-target fishes. This suggests that the relationship between market ͺ	
gravity and fish biomass is primarily driven by fishing, rather than other potential ͺ	
human impacts of urban areas (sedimentation, nutrients, pollution, etc.).ͺͺ	
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	 ͷͷ	

Extended Data Figure 4| Correlation plot of candidate continuous covariates before accounting for colinearity (Extended Data Table 7). ͺͻ	
Colinearity between continuous and categorical covariates (including biogeographic region, habitat, protection status, and depth) were analysed ͺͺͲ	
using boxplots. ͺͺͳ	
 ͺͺʹ	
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 ͺͺͶ	
Extended Data Figure 5 | Model fit statistics. Bayesian p Values (BpV) for the full ͺͺͷ	
model indicating goodness of fit, based on posterior discrepancy. Points are Freeman-ͺͺ	
Tukey differences between observed and expected values, and simulated and expected ͺͺ	
values. Plot shows no evidence for lack of fit between the model and the data.   ͺͺͺ	
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 ͺͻͲ	
Extended Data Figure 6| Box plot of deviation from expected as a function of the ͺͻͳ	
presence or absence of key social and environmental conditions expected to ͺͻʹ	
produce bright spots. ͺͻ͵	
 ͺͻͶ	
 ͺͻͷ	


