

Bright spots among the world's coral reefs

Joshua E. Cinner, Cindy Huchery, M. Aaron Macneil, Nicholas A.J. Graham, Tim R. Mcclanahan, Joseph Maina, Eva Maire, John N. Kittinger, Christina C. Hicks, Camilo Mora, et al.

► To cite this version:

Joshua E. Cinner, Cindy Huchery, M. Aaron Macneil, Nicholas A.J. Graham, Tim R. Mcclanahan, et al.. Bright spots among the world's coral reefs. Nature, 2016, 535 (7612), pp.416–419. 10.1038/nature18607 . hal-01925512

HAL Id: hal-01925512 https://hal.science/hal-01925512v1

Submitted on 6 Jan 2025

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

This is a repository copy of Bright spots among the world's coral reefs.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/112677/

Version: Accepted Version

Article:

Cinner, JE, Huchery, C, MacNeil, MA et al. (36 more authors) (2016) Bright spots among the world's coral reefs. Nature, 535 (7612). pp. 416-419. ISSN 0028-0836

https://doi.org/10.1038/nature18607

© 2016 Macmillan Publishers Limited, part of Springer Nature. This is an author produced version of a paper published in Nature. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1 Bright spots among the world's coral reefs

3	Joshua E. Cinner ^{1,*} , Cindy Huchery ¹ , M. Aaron MacNeil ^{1,2,3} , Nicholas A.J. Graham ^{1,4} ,
4	Tim R. McClanahan ⁵ , Joseph Maina ^{5,6} , Eva Maire ^{1,7} , John N. Kittinger ^{8,9} , Christina C.
5	Hicks ^{1,4,8} , Camilo Mora ¹⁰ , Edward H. Allison ¹¹ , Stephanie D'Agata ^{5,7,12} , Andrew
6	Hoey ¹ , David A. Feary ¹³ , Larry Crowder ⁸ , Ivor D. Williams ¹⁴ , Michel Kulbicki ¹⁵ ,
7	Laurent Vigliola ¹² , Laurent Wantiez ¹⁶ , Graham Edgar ¹⁷ , Rick D. Stuart-Smith ¹⁷ ,
8	Stuart A. Sandin ¹⁸ , Alison L. Green ¹⁹ , Marah J. Hardt ²⁰ , Maria Beger ⁶ , Alan
9	Friedlander ^{21,22} , Stuart J. Campbell ⁵ , Katherine E. Holmes ⁵ , Shaun K. Wilson ^{23,24} ,
10	Eran Brokovich ²⁵ , Andrew J. Brooks ²⁶ , Juan J. Cruz-Motta ²⁷ , David J. Booth ²⁸ ,
11	Pascale Chabanet ²⁹ , Charlie Gough ³⁰ , Mark Tupper ³¹ , Sebastian C.A. Ferse ³² , U.
12	Rashid Sumaila ³³ , David Mouillot ^{1,7}
13	
14	¹ Australian Research Council Centre of Excellence for Coral Reef Studies, James
14 15	¹ Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia
14 15 16	¹ Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia ² Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, QLD
14 15 16 17	 ¹Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia ²Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, QLD 4810 Australia
14 15 16 17 18	 ¹Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia ²Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, QLD 4810 Australia ³Department of Mathematics and Statistics, Dalhousie University, Halifax, NS B3H
14 15 16 17 18 19	 ¹Australian Research Council Centre of Excellence for Coral Reef Studies, James ²Cook University, Townsville, QLD 4811 Australia ²Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, QLD 4810 Australia ³Department of Mathematics and Statistics, Dalhousie University, Halifax, NS B3H 3J5 Canada
14 15 16 17 18 19 20	 ¹Australian Research Council Centre of Excellence for Coral Reef Studies, James ¹Australian Research Council Centre of Excellence for Coral Reef Studies, James ²Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, QLD ⁴810 Australia ³Department of Mathematics and Statistics, Dalhousie University, Halifax, NS B3H ³J5 Canada ⁴Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
14 15 16 17 18 19 20 21	 ¹Australian Research Council Centre of Excellence for Coral Reef Studies, James ¹Cook University, Townsville, QLD 4811 Australia ²Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, QLD 4810 Australia ³Department of Mathematics and Statistics, Dalhousie University, Halifax, NS B3H 3J5 Canada ⁴Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK ⁵Wildlife Conservation Society, Global Marine Program, Bronx, NY 10460 USA
 14 15 16 17 18 19 20 21 22 	 ¹Australian Research Council Centre of Excellence for Coral Reef Studies, James ¹Australian Research Council Centre of Excellence for Coral Reef Studies, James ²Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, QLD ⁴810 Australia ³Department of Mathematics and Statistics, Dalhousie University, Halifax, NS B3H ³J5 Canada ⁴Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK ⁵Wildlife Conservation Society, Global Marine Program, Bronx, NY 10460 USA ⁶Australian Research Council Centre of Excellence for Environmental Decisions,
 14 15 16 17 18 19 20 21 22 23 	 ¹Australian Research Council Centre of Excellence for Coral Reef Studies, James ²Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, QLD ⁴810 Australia ³Department of Mathematics and Statistics, Dalhousie University, Halifax, NS B3H ³J5 Canada ⁴Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK ⁵Wildlife Conservation Society, Global Marine Program, Bronx, NY 10460 USA ⁶Australian Research Council Centre of Excellence for Environmental Decisions, Centre for Biodiversity and Conservation Science, University of Queensland,

- ⁷MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université Montpellier, 34095
- 26 Montpellier Cedex, France
- 27 ⁸Center for Ocean Solutions, Stanford University, CA 94305 USA
- 28 ⁹Conservation International Hawaii, Betty and Gordon Moore Center for Science and
- 29 Oceans, 7192 Kalaniana'ole Hwy, Suite G230, Honolulu, Hawai'i 96825 USA
- 30 ¹⁰Department of Geography, University of Hawai'i at Manoa, Honolulu, Hawai'i
- 31 96822 USA
- 32 ¹¹School of Marine and Environmental Affairs, University of Washington, Seattle,
- 33 WA 98102 USA
- 34 ¹²Institut de Recherche pour le Développement, UMR IRD-UR-CNRS ENTROPIE,
- 35 Laboratoire d'Excellence LABEX CORAIL, BP A5, 98848 Nouméa Cedex, New
- 36 Caledonia
- 37 ¹³Ecology & Evolution Group, School of Life Sciences, University Park, University
- 38 of Nottingham, Nottingham NG7 2RD, UK
- 39 ¹⁴Coral Reef Ecosystems Division, NOAA Pacific Islands Fisheries Science Center,
- 40 Honolulu, HI 96818 USA
- 41 ¹⁵UMR Entropie, Labex Corail, –IRD, Université de Perpignan, 66000, Perpignan,
- 42 France
- 43 ¹⁶EA4243 LIVE, University of New Caledonia, BPR4 98851 Noumea cedex, New
- 44 Caledonia
- 45 ¹⁷Institute for Marine and Antarctic Studies, University of Tasmania, Hobart,
- 46 Tasmania, 7001 Australia
- 47 ¹⁸Scripps Institution of Oceanography, University of California, San Diego, La Jolla,
- 48 CA 92093 USA
- 49 ¹⁹The Nature Conservancy, Brisbane, Australia

- ²⁰Future of Fish, 7315 Wisconsin Ave, Suite 1000W, Bethesda, MD 20814, USA
- 51 ²¹Fisheries Ecology Research Lab, Department of Biology, University of Hawaii,
- 52 Honolulu, HI 96822, USA
- ²²National Geographic Society, Pristine Seas Program, 1145 17th Street N.W.
- 54 Washington, D.C. 20036-4688, USA
- ²³Department of Parks and Wildlife, Kensington, Perth WA 6151 Australia
- ²⁴Oceans Institute, University of Western Australia, Crawley, WA 6009, Australia
- ²⁵The Israeli Society of Ecology and Environmental Sciences, Kehilat New York 19
- 58 Tel Aviv, Israel
- ²⁶Marine Science Institute, University of California, Santa Barbara, CA 93106-6150,
- 60 USA
- 61 ²⁷Departamento de Ciencias Marinas., Recinto Universitario de Mayaguez,
- 62 Universidad de Puerto Rico, 00680, Puerto Rico
- 63 ²⁸School of Life Sciences, University of Technology Sydney 2007 Australia
- 64 ²⁹UMR ENTROPIE, Laboratoire d'Excellence LABEX CORAIL, Institut de
- 65 Recherche pour le Développement, CS 41095, 97495 Sainte Clotilde, La Réunion

66 (FR)

- ³⁰Blue Ventures Conservation, 39-41 North Road, London N7 9DP, United Kingdom
- 68 ³¹Coastal Resources Association, St. Joseph St., Brgy. Nonoc, Surigao City, Surigao
- 69 del Norte 8400, Philippines
- ³²Leibniz Centre for Tropical Marine Ecology (ZMT), Fahrenheitstrasse 6, D-28359
- 71 Bremen, Germany
- 72 ³³Fisheries Economics Research Unit, University of British Columbia, 2202 Main
- 73 Mall, Vancouver, B.C., V6T 1Z4, Canada

75 *Correspondence to: Joshua.cinner@jcu.edu.au

Ongoing declines among the world's coral reefs^{1,2} require novel approaches to 77 78 sustain these ecosystems and the millions of people who depend on them³. A 79 presently untapped approach that draws on theory and practice in human health and rural development^{4,5} is systematically identifying and learning from the 80 81 'outliers'- places where ecosystems are substantially better ('bright spots') or 82 worse ('dark spots') than expected, given the environmental conditions and 83 socioeconomic drivers they are exposed to. Here, we compile data from more 84 than 2,500 reefs worldwide and develop a Bayesian hierarchical model to 85 generate expectations of how standing stocks of reef fish biomass are related to 86 18 socioeconomic drivers and environmental conditions. We then identified 15 87 bright spots and 35 dark spots among our global survey of coral reefs, defined as 88 sites that had biomass levels more than two standard deviations from 89 expectations. Importantly, bright spots were not simply comprised of remote 90 areas with low fishing pressure- they include localities where human populations 91 and use of ecosystem resources is high, potentially providing novel insights into 92 how communities have successfully confronted strong drivers of change. 93 Alternatively, dark spots were not necessarily the sites with the lowest absolute 94 biomass and even included some remote, uninhabited locations often considered near-pristine⁶. We surveyed local experts about social, institutional, and 95 96 environmental conditions at these sites to reveal that bright spots were 97 characterised by strong sociocultural institutions such as customary taboos and 98 marine tenure, high levels of local engagement in management, high dependence 99 on marine resources, and beneficial environmental conditions such as deep-100 water refuges. Alternatively, dark spots were characterised by intensive capture 101 and storage technology and a recent history of environmental shocks. Our

- 102 results suggest that investments in strengthening fisheries governance,
- 103 particularly aspects such as participation and property rights, could facilitate
- 104 innovative conservation actions that help communities defy expectations of
- 105 global reef degradation.

107 <u>Main text</u>

108 Despite substantial international conservation efforts, many of the world's ecosystems continue to decline^{1,7}. Most conservation approaches aim to identify and protect 109 places of high ecological integrity under minimal threat⁸. Yet, with escalating social 110 111 and environmental drivers of change, conservation actions are also needed where people and nature coexist, especially where human impacts are already severe⁹. Here, 112 113 we highlight an approach for implementing conservation in coupled human-natural 114 systems focused on identifying and learning from outliers - places that are performing 115 substantially better than expected, given the socioeconomic and environmental 116 conditions they are exposed to. By their very nature, outliers deviate from 117 expectations, and consequently can provide novel insights on confronting complex 118 problems where conventional solutions have failed. This type of positive deviance, or 119 'bright spot' analysis has been used in fields such as business, health, and human 120 development to uncover local actions and governance systems that work in the context of widespread failure^{10,11}, and holds much promise in informing conservation. 121 122 123 To demonstrate this approach, we compiled data from 2,514 coral reefs in 46 124 countries, states, and territories (hereafter 'nation/states') and developed a Bayesian 125 hierarchical model to generate expected conditions of how standing reef fish biomass (a key indicator of resource availability and ecosystem functions¹²) was related to 18 126 127 key environmental variables and socioeconomic drivers (Box 1; Extended Data 128 Tables 1,2; Methods). A key and significant finding from our global analysis is that 129 the size and accessibility of the nearest market, more so than local or national 130 population pressure, management, environmental conditions, or national 131 socioeconomic context, was the strongest driver of reef fish biomass globally (Box 1).

133 Next, we identified 15 'bright spots' and 35 'dark spots' among the world's coral reefs, 134 defined as sites with biomass levels more than two standard deviations higher or 135 lower than expectations from our global model, respectively (Fig. 1; Methods; 136 Extended Data Table 3). Rather than simply identifying places in the best or worst 137 condition, our bright spots approach reveals the places that most strongly defy 138 expectations. Using them to inform the conservation discourse will certainly 139 challenge established ideas of where and how conservation efforts should be focused. 140 For example, remote places far from human impacts are conventionally considered near-pristine areas of high conservation value⁶, yet most of the bright spots we 141 142 identified occur in fished, populated areas (Extended Data Table 3), some with 143 biomass values below the global average. Alternatively, some remote places such as 144 parts of the NW Hawaiian Islands underperform (i.e. were identified as dark spots).

145

146 Detailed analysis of why bright spots can evade the fate of similar areas facing 147 equivalent stresses will require a new research agenda gathering detailed site-level 148 information on social and institutional conditions, technological innovations, external influences, and ecological processes¹³ that are simply not available in a global-scale 149 150 analysis. As a preliminary hypothesis-generating exercise to begin uncovering why 151 bright and dark spots may diverge from expectations, we surveyed data providers and 152 other experts about the presence or absence of 10 key social and environmental 153 conditions at the 15 bright spots, 35 dark spots, and 14 average sites with biomass 154 values closest to model expectations (see Methods for details). Our survey revealed 155 that bright spots were more likely to have high levels of local engagement in the 156 management process, high dependence on coastal resources, and the presence of

132

157 sociocultural governance institutions such as customary tenure or taboos (Fig. 2, 158 Methods). For example, in one bright spot, Karkar Island, Papua New Guinea, 159 resource use is restricted through an adaptive rotational harvest system based on 160 ecological feedbacks, marine tenure that allows for the exclusion of fishers from 161 outside the local village, and initiation rights that limit individuals' entry into certain fisheries¹⁴. Bright spots were also generally proximate to deep water, which may help 162 provide a refuge from disturbance for corals and fish 15 (Fig. 2, Extended Data Fig. 6). 163 164 Conversely, dark spots were distinguished by having fishing technologies allowing 165 for more intensive exploitation, such as fish freezers and potentially destructive 166 netting, as well as a recent history of environmental shocks (e.g. coral bleaching or 167 cyclone; Fig. 2). The latter is particularly worrisome in the context of climate change, 168 which is likely to lead to increased coral bleaching and more intense cyclones¹⁶. 169 170 Our global analyses highlight two novel opportunities to inform coral reef governance. 171 The first is to use bright spots as agents of change to expand the conservation discourse from the current focus on protecting places under minimal threat⁸, toward 172 173 harnessing lessons from places that have successfully confronted high pressures. 174 Our bright spots approach can be used to inform the types of investments and 175 governance structures that may help to create more sustainable pathways for impacted 176 coral reefs. Specifically, our initial investigation highlights how investments that 177 strengthen fisheries governance, particularly issues such as participation and property 178 rights, could help communities to innovate in ways that allow them to defy 179 expectations. Conversely, the more typical efforts to provide capture and storage 180 infrastructure, particularly where there are environmental shocks and local-scale governance is weak, may lead to social-ecological traps¹⁷ that reinforce resource 181

182 degradation beyond expectations. Effectively harnessing the potential to learn from 183 both bright and dark spots will require scientists to increase research efforts in these 184 places, NGOs to catalyze lessons from other areas, donors to start investing in novel 185 solutions, and policy makers to ensure that governance structures foster flexible 186 learning and experimentation. Indeed, both bright and dark spots may have much to 187 offer in terms of how to creatively confront drivers of change, identify the paths to 188 avoid and those offering novel management solutions, and prioritizing conservation 189 actions. Critically, the bright spots we identified span the development spectrum from 190 low (Solomon Islands and Papua New Guinea) to high (territories of the USA and 191 UK; Fig. 1) income, showing that lessons about effective reef management can 192 emerge from diverse places.

193

194 A second opportunity stems from a renewed focus on managing the socioeconomic 195 drivers that shape reef conditions. Many social drivers are amenable to governance 196 interventions, and our comprehensive analysis (Box 1) shows how an increased policy 197 focus on social drivers such as markets and development could result in 198 improvements to reef fish biomass. For example, given the important influence of 199 markets in our analysis, reef managers, donor organisations, conservation groups, and 200 coastal communities could improve sustainability by developing interventions that 201 dampen the negative influence of markets on reef systems. A portfolio of market 202 interventions, including eco-labelling and sustainable harvesting certifications, 203 fisheries improvement projects, and value chain interventions have been developed 204 within large-scale industrial fisheries to increase access to markets for seafood that is sourced sustainably ²¹⁻²³. Although there is considerable scope for adapting these 205 206 interventions to artisanal coral reef fisheries in both local and regional markets,

207	effectively dampening the negative influence of markets may also require developing
208	novel interventions that address the range of ways in which markets can lead to
209	overexploitation. Existing research suggests that markets create incentives for
210	overexploitation not only by affecting price and price variability for reef products ¹⁸ , ,
211	but also by influencing people's behavior ¹⁹ , including their willingness to cooperate in
212	the collective management of natural resources ²⁰ .
213	
214	The long-term viability of coral reefs will ultimately depend on international action to
215	reduce carbon emissions ¹⁶ . However, fisheries remain a pervasive source of reef
216	degradation, and effective local-level fisheries governance is crucial to sustaining
217	ecological processes that give reefs the best chance of coping with global
218	environmental change ²⁵ .Seeking out and learning from bright spots has uncovered
219	novel solutions in fields as diverse as human health, development, and business ^{10,11} ,
220	and this approach may offer insights into confronting the complex governance
221	problems facing coupled human-natural systems such as coral reefs.
222	

Figures

Figure 1 | Bright and dark spots among the world's coral reefs. (a) Each site's deviation from expected biomass (y-axis) along a gradient of nation/state mean biomass (x-axis). Sites with biomass values >2 standard deviations above or below expected values were considered bright and dark spots, respectively. The 15 bright and 35 dark spots are indicated with yellow and black dots respectively. Each grey vertical line represents

a nation/state in our analysis. Nation/states with bright or dark spots are labelled and numbered, corresponding to the numbers in panel b. There

can be multiple bright or dark spots in each nation/state, thus the 50 bright and dark spots are distributed among 17 nation/states. As a

230 conservative precaution, we did not consider a site a bright or dark spot if there were fewer than 5 sites sampled in a nation/state (Methods);

231 consequently there is one site with biomass levels lower than 2 SD below expectations that is not labelled as a dark spot. BIOT= British Indian

232 Ocean Territory (Chagos); PNG= Papua New Guinea; CNMI= Commonwealth of the Northern Mariana Islands; NWHI= Northwest Hawaiian

233 Islands; PRIA= Pacific Remote Island Areas. (b) Map highlighting bright spots and dark spots with large circles, and other sites in small circles.

Bright spots are mostly concentrated on islands of the Pacific and Southeast Asia, while dark spots are spread among every major tropical ocean

basin.

Figure 2 | Differences in social and environmental conditions between bright

- 238 spots, dark spots, and 'average' sites. *=p<0.05, **=p<0.01, ***=p<0.001. P
- 239 values are determined using Fisher's Exact test. Intensive netting includes beach seine
- 240 nets, surround gill nets, and muro-ami.

Box 1

Drawing on a broad body of theoretical and empirical research in the social sciences^{24,26,27} and ecology^{2,6,28} on coupled human-natural systems, we quantified how reef fish biomass (panel a) was related to distal social drivers such as markets, affluence, governance, and population (panels b,c), while controlling for well-known environmental conditions such as depth, habitat, and productivity (panel d) (Extended Data Table 1, Methods). In contrast to many global studies of reef systems that are focused on demonstrating the severity of human impacts⁶, our examination seeks to uncover potential policy levers by highlighting the relative role of specific social drivers. Critically, the strongest driver of reef fish biomass (i.e. the largest standardized effect size) was our metric of potential interactions with urban centres, called market gravity²⁹ (Extended Data Fig. 1, 2, 3; Methods). Specifically, we found that reef fish biomass decreased as the size and accessibility of markets increased (Extended Data Fig. 2b, and Extended Data Fig. 3). Somewhat counter-intuitively, fish biomass was higher in places with high local human population growth rates, likely reflecting human migration to areas of better environmental quality³⁰-a phenomenon that could result in increased degradation at these sites over time. We found a strong positive, but less certain relationship (*i.e.* a high standardized effect size, with >75% of the posterior distribution above zero) with the Human Development Index, meaning that reefs tended to be in better condition in wealthier nations/states (panel c). Our analysis also confirmed the role that marine reserves can play in sustaining biomass on coral reefs, but only when compliance is high (panel b), reinforcing the importance of fostering compliance for reserves to be successful.

Global patterns and drivers of reef fish biomass. (a) Reef fish biomass [in (log)kg/ha] among 918 study sites across 46 nations/states. For illustration purposes and to avoid the overlap of sites in a global map, we display sites as points that vary in size and colour proportional to amount of fish biomass, with small, red dots indicating low fish biomass and large, green dots indicating high biomass. b-d) Standardised effect size of local scale social drivers, nation/state scale social drivers, and environmental covariates, respectively. Parameter estimates are Bayesian posterior median values, 95% uncertainty intervals (UI; thin lines), and 50% UI (thick lines). Black dots indicate that the 95% UI does not overlap 0; Grey closed circles indicates that 75% of the posterior distribution lies to one side of 0; and grey open circles indicate that the 50% UI overlaps 0.

241 Methods

242

243 <u>Scales of data</u>

i)

Our data were organized at three spatial scales: reef (n=2514), site (n=918), and nation/state (n=46).

246 247 reef (the smallest scale, which had an average of 2.4 surveys/transects - hereafter 'reef').

248 site (a cluster of reefs). We clustered reefs together that were within 4km ii) 249 of each other, and used the centroid of these clusters (hereafter 'sites') to 250 estimate site-level social and site-level environmental covariates 251 (Extended Data Table 1). To make these clusters, we first estimated the 252 linear distance between all reefs, then used a hierarchical analysis with the 253 complete-linkage clustering technique based on the maximum distance 254 between reefs. We set the cut-off at 4km to select mutually exclusive sites 255 where reefs cannot be more distant than 4km. The choice of 4km was 256 informed by a 3-year study of the spatial movement patterns of artisanal 257 coral reef fishers, corresponding to the highest density of fishing activities 258 on reefs based on GPS-derived effort density maps of artisanal coral reef fishing activities³¹. This clustering analysis was carried out using the R 259 260 functions 'hclust' and 'cutree', resulting in an average of 2.7 reefs/site. 261 Nation/state (nation, state, or territory). A larger scale in our analysis was iii)

individual nations (but could also include states, territories, overseas
 regions, or extremely remote areas within a state such as the northwest

Hawaiian Islands; Extended Data Table 2), within which sites and reefswere nested for analysis.

267

268 <u>Estimating Biomass</u>

269	Reef fish biomass can reflect a broad selection of reef fish functioning and benthic
270	conditions ^{12,32-34} , and is a key metric of resource availability for reef fisheries. Reef
271	fish biomass estimates were based on instantaneous visual counts from 6,088 surveys
272	collected from 2,514 reefs. All surveys used standard belt-transects, distance sampling,
273	or point-counts, and were conducted between 2004 and 2013. Where data from
274	multiple years were available from a single reef, we included only data from the year
275	closest to 2010. Within each survey area, reef associated fishes were identified to
276	species level, abundance counted, and total length (TL) estimated, with the exception
277	of one data provider who measured biomass at the family level. To make estimates of
278	biomass from these transect-level data comparable among studies, we:
279	i) Retained families that were consistently studied and were above a
280	minimum size cut-off. Thus, we retained counts of >10cm diurnally-active,
281	non-cryptic reef fish that are resident on the reef (20 families, 774 species),
282	excluding sharks and semi-pelagic species (Extended Data Table 4). We
283	also excluded three groups of fishes that are strongly associated with coral
284	habitat conditions and are rarely targets for fisheries (Anthiinae,
285	Chaetodontidae, and Cirrhitidae). We calculated total biomass of fishes on
286	each reef using standard published species-level length-weight relationship
287	parameters or those available on FishBase ³⁵ . When length-weight
288	relationship parameters were not available for a species, we used the
289	parameters for a closely related species or genus.

290	ii)	Directly accounted for depth and habitat as covariates in the model (see
291		"environmental conditions" section below);
292	iii)	Accounted for any potential bias among data providers (capturing
293		information on both inter-observer differences, and census methods) by
294		including each data provider as a random effect in our model.
295		
296	Biomass 1	means, medians, and standard deviations were calculated at the reef-scale.
297	All report	ed log values are the natural log.
298		
299	Social Dr	ivers
300	1. Local I	Population Growth: We created a 100km buffer around each site and used
301	this to cal	culate human population within the buffer in 2000 and 2010 based on the
302	Socioecor	nomic Data and Application Centre (SEDAC) gridded population of the
303	world dat	abase ³⁶ . Population growth was the proportional difference between the
304	population	n in 2000 and 2010. We chose a 100km buffer as a reasonable range at
305	which ma	ny key human impacts from population (e.g., land-use and nutrients) might
306	affect ree	fs ³⁷ .
307		
308	2. Manag	ement: For each site, we determined if it was: i) unfished- whether it fell

309 within the borders of a no-take marine reserve. We asked data providers to further

310 classify whether the reserve had high or low levels of compliance; ii) restricted -

311 whether there were active restrictions on gears (e.g. bans on the use of nets, spearguns,

312 or traps) or fishing effort (which could have included areas inside marine parks that

313 were not necessarily no take); or iii) fished - regularly fished without effective

314	restrictions. To determine these classifications, we used the expert opinion of the data
315	providers, and triangulated this with a global database of marine reserve boundaries ³⁸ .
316	

317	3. Gravity: We adapted the economic geography concept of gravity, also called	
318	interactance ³⁹ , to examine potential interactions between reefs and: i) major urban	
319	centres/markets (defined as provincial capital cities, major population centres,	
320	landmark cities, national capitals, and ports); and ii) the nearest human settlements	
321	(Extended Data Fig. 1). This application of the gravity concept infers that potential	
322	interactions increase with population size, but decay exponentially with the effective	
323	distance between two points. Thus, we gathered data on both population estimates and	
324	a surrogate for distance: travel time.	
325		
326	Population estimations	
327	We gathered population estimates for: 1) the nearest major markets (which	
328	includes national capitals, provincial capitals, major population centres, ports,	
329	and landmark cities) using the World Cities base map from ESRI TM ; and 2) the	
330	nearest human settlement within a 500km radius using LandScan TM 2011	
331	database. The different datasets were required because the latter is available in	
332	raster format while the former is available as point data. We chose a 500km	
333	radius from the nearest settlement as the maximum distance any non-market	
334	fishing activities for fresh reef fish are likely to occur.	
335		
336	Travel time calculation	
337	Travel time was computed using a cost-distance algorithm that computes the	
338	least 'cost' (in minutes) of travelling between two locations on a regular raster	

339	grid. In our case, the two locations were either: 1) the centroid of the site (i.e.
340	reef cluster) and the nearest settlement, or 2) the centroid of the site and the
341	major market. The cost (i.e. time) of travelling between the two locations was
342	determined by using a raster grid of land cover and road networks with the
343	cells containing values that represent the time required to travel across them 40
344	(Extended Data Table 5), we termed this raster grid a <i>friction-surface</i> (with the
345	time required to travel across different types of surfaces analogous to different
346	levels of friction). To develop the friction-surface, we used global datasets of
347	road networks, land cover, and shorelines:
348	- Road network data was extracted from the Vector Map Level 0
349	(VMap0) from the National Imagery and Mapping Agency's (NIMA)
350	Digital Chart of the World (DCW®). We converted vector data from
351	VMap0 to 1km resolution raster.
352	- Land cover data were extracted from the Global Land Cover 2000^{41} .
353	-To define the shorelines, we used the GSHHS (Global Self-consistent,
354	Hierarchical, High-resolution Shoreline) database version 2.2.2.
355	
356	These three friction components (road networks, land cover, and water bodies)
357	were combined into a single friction surface with a Behrmann map projection.
358	We calculated our cost-distance models in R^{42} using the <i>accCost</i> function of
359	the 'gdistance' package. The function uses Dijkstra's algorithm to calculate
360	least-cost distance between two cells on the grid and the associated distance
361	taking into account obstacles and the local friction of the landscape ⁴³ . Travel
362	time estimates over a particular surface could be affected by the infrastructure
363	(e.g. road quality) and types of technology used (e.g. types of boats). These

types of data were not available at a global scale but could be important modifications in more localised studies.

366

365

367 *Gravity computation*

368 i) To compute the gravity to the nearest market, we calculated the population 369 of the nearest major market and divided that by the squared travel time between the market and the site. Although other exponents can be used⁴⁴, we 370 used the squared distance (or in our case, travel time), which is relatively 371 372 common in geography and economics. This decay function could be 373 influenced by local considerations, such as infrastructure quality (e.g. roads), 374 the types of transport technology (i.e. vessels being used), and fuel prices, 375 which were not available in a comparable format for this global analysis, but 376 could be important considerations in more localised adaptations of this study. 377 ii) To determine the gravity of the nearest settlement, we located the nearest 378 populated pixel within 500kms, determined the population of that pixel, and 379 divided that by the squared travel time between that cell and the reef site. As is standard practice in many agricultural economics studies⁴⁵, an assumption in 380 381 our study is that the nearest major capital or landmark city represents a market. 382 Ideally we would have used a global database of all local and regional markets for 383 coral reef fish, but this type of database is not available at a global scale. As a 384 sensitivity analysis to help justify our assumption that capital and landmark cities 385 were a reasonable proxy for reef fish markets, we tested a series of candidate 386 models that predicted biomass based on: 1) cumulative gravity of all cities within 387 500km; 2) gravity of the nearest city; 3) travel time to the nearest city; 4) 388 population of the nearest city; 5) gravity to the nearest human population above 40

 $people/km^2$ (assumed to be a small peri-urban area and potential local market); 6) 389 390 the travel time between the reef and a small peri-urban area; 7) the population size 391 of the small peri-urban population; 8) gravity to the nearest human population 392 above 75 people/km² (assumed to be a large peri-urban area and potential market); 393 9) the travel time between the reef and this large peri-urban population; 10) the 394 population size of this large peri-urban population; and 11) the total population 395 size within a 500km radius. Model selection revealed that the best two models 396 were gravity of the nearest city and gravity of all cities within 500km (with a 3 397 AIC value difference between them; Extended Data Table 6). Importantly, when 398 looking at the individual components of gravity models, the travel time 399 components all had a much lower AIC value than the population components, which is broadly consistent with previous systematic review studies⁴⁶. Similarly, 400 401 travel time to the nearest city had a lower AIC score than any aspect of either the 402 peri-urban or urban measures. This suggests our use of capital and landmark cities 403 is likely to better capture exploitation drivers from markets rather than simple 404 population pressures. This may be because market dynamics are difficult to 405 capture by population threshold estimates; for example some small provincial 406 capitals where fish markets are located have very low population densities, while 407 some larger population centres may not have a market. Downscaled regional or 408 local analyses could attempt to use more detailed knowledge about fish markets, 409 but we used the best proxy available at a global scale. 410

4. Human Development Index (HDI): HDI is a summary measure of human

411

412 development encompassing: a long and healthy life, being knowledgeable, and having

414	the State (e.g. Florida and Hawaii), we used the national (e.g. USA) HDI value.
415	
416	5. Population Size: For each Nation/state, we determined the size of the human
417	population. Data were derived mainly from census reports, the CIA fact book, and
418	Wikipedia.

a decent standard of living. In cases where HDI values were not available specific to

419

413

420 6. *Tourism*: We examined tourist arrivals relative to the nation/state population size

421 (above). Tourism arrivals were gathered primarily from the World Tourism

422 Organization's Compendium of Tourism Statistics.

423

424 7. National Reef Fish Landings: Catch data were obtained from the Sea Around Us

425 Project (SAUP) catch database (www.seaaroundus.org), except for Florida, which

426 was not reported separately in the database. We identified 200 reef fish species and

427 taxon groups in the SAUP catch database⁴⁷. Note that reef-associated pelagics such as

428 scombrids and carangids normally form part of reef fish catches. However, we chose

429 not to include these species because they are also targeted and caught in large

430 amounts by large-scale, non-reef operations.

431

432 8. Voice and Accountability: This metric, from the World Bank survey on governance,

433 reflects the perceptions of the extent to which a country's citizens are able to

434 participate in selecting their government, as well as freedom of expression, freedom

435 of association, and a free media. In cases where governance values were not available

436 specific to the Nation/state (e.g. Florida and Hawaii), we used national (e.g. USA)

437 values.

439 <u>Environmental Drivers</u>

1. Depth: The depth of reef surveys were grouped into the following categories: <4m,
4-10m, >10m to account for broad differences in reef fish community structure
attributable to a number of inter-linked depth-related factors. Categories were
necessary to standardise methods used by data providers and were determined by preexisting categories used by several data providers.

445

446 2. Habitat: We included the following habitat categories: i) Slope: The reef slope 447 habitat is typically on the ocean side of a reef, where the reef slopes down into deeper 448 water; ii) Crest: The reef crest habitat is the section that joins a reef slope to the reef 449 flat. The zone is typified by high wave energy (i.e. where the waves break). It is also 450 typified by a change in the angle of the reef from an inclined slope to a horizontal reef 451 flat; iii) Flat: The reef flat habitat is typically horizontal and extends back from the 452 reef crest for 10's to 100's of metres; iv) Lagoon / back reef: Lagoonal reef habitats 453 are where the continuous reef flat breaks up into more patchy reef environments 454 sheltered from wave energy. These habitats can be behind barrier / fringing reefs or 455 within atolls. Back reef habitats are similar broken habitats where the wave energy 456 does not typically reach the reefs and thus forms a less continuous 'lagoon style' reef 457 habitat. Due to minimal representation among our sample, we excluded other less 458 prevalent habitat types, such as channels and banks. To verify the sites' habitat 459 information, we used the Millennium Coral Reef Mapping Project (MCRMP) hierarchical data⁴⁸, Google Earth, and site depth information. 460 461

462	3. Productivity: We examined ocean productivity for each of our sites in mg C / m2 /
463	day (http://www.science.oregonstate.edu/ocean.productivity/). Using the monthly data
464	for years 2005 to 2010 (in hdf format), we imported and converted those data into
465	ArcGIS. We then calculated yearly average and finally an average for all these years.
466	We used a 100km buffer around each of our sites and examined the average
467	productivity within that radius. Note that ocean productivity estimates are less
468	accurate for nearshore environments, but we used the best available data.
469	
470	Analyses
471	We first looked for collinearity among our covariates using bivariate correlations and
472	variance inflation factor estimates (Extended Data Fig. 4, Extended Data Table 7).
473	This led to the exclusion of several covariates (not described above): i) Geographic
474	Basin (Tropical Atlantic, western Indo-Pacific, Central Indo-Pacific, or eastern Indo-
475	Pacific); ii) Gross Domestic Product (purchasing power parity); iii) Rule of Law
476	(World Bank governance index); iv) Control of Corruption (World Bank governance
477	index); and v) Sedimentation. Additionally, we removed an index of climate stress,
478	developed by Maina et al. ⁴⁹ , which incorporated 11 different environmental
479	conditions, such as the mean and variability of sea surface temperature due to
480	repeated lack of convergence for this parameter in the model, likely indicative of
481	unidentified multi-collinearity. All other covariates had correlation coefficients 0.7 or
482	less and Variance Inflation Factor scores less than 5 (indicating multicolinearity was
483	not a serious concern). Care must be taken in causal attribution of covariates that were
484	significant in our model, but demonstrated colinearity with candidate covariates that
485	were removed during the aforementioned process. Importantly, the covariate that

exhibited the largest effect size in our model, market gravity, was not stronglycollinear with other candidate covariates.

488

489 To quantify the multi-scale social, environmental, and economic factors affecting reef 490 fish biomass we adopted a Bayesian hierarchical modelling approach that explicitly 491 recognized the three scales of spatial organization: reef (j), site (k), and nation/state (s). 492

493 In adopting the Bayesian approach we developed two models for inference: a null 494 model, consisting only of the hierarchical units of observation (i.e. intercepts-only) 495 and a full model that included all of our covariates (drivers) of interest. Covariates 496 were entered into the model at the relevant scale, leading to a hierarchical model 497 whereby lower-level intercepts (averages) were placed in the context of higher-level 498 covariates in which they were nested. We used the null model as a baseline against 499 which we could ensure that our full model performed better than a model with no 500 covariate information. We did not remove 'non-significant' covariates from the model 501 because each covariate was carefully considered for inclusion and could therefore 502 reasonably be considered as having an effect, even if small or uncertain; removing 503 factors from the model is equivalent to fixing parameter estimates at exactly zero - a 504 highly-subjective modelling decision after covariates have already been selected as potentially important⁵⁰. 505

506

The full model assumed the observed, environmental-scale observations of fish biomass (y_{ijks}) were modelled using a noncentral-T distribution, allowing for fatter tails than typical log-normal models of reef fish biomass³².

510

$$log(y_{ijks}) \sim NoncentralT(\mu_{ijks}, \tau_{reef}, 3.5)$$
$$\mu_{ijks} = \beta_{0jks} + \beta_{reef} X_{reef}$$
$$\tau_{reef} \sim U(0, 100)^{-2}$$

512 with X_{reef} representing the matrix of observed environmental-scale covariates and

513 β_{reef} the array of estimated reef-scale parameters. The τ_{reef} (and all subsequent τ 's)

514 were assumed common across observations in the final model and were minimally

515 informative⁵⁰. Using a similar structure, the environmental-scale intercepts (β_{0jks})

516 were structured as a function of site-scale covariates (X_{sit}):

517

$$\beta_{0jks} \sim N(\mu_{jks}, \tau_{sit})$$
$$\mu_{jks} = \gamma_{0ks} + \gamma_{sit} X_{sit}$$
$$\tau_{sit} \sim U(0, 100)^{-2}$$

518

519 with γ_{sit} representing an array of site-scale parameters. Building upon the hierarchy, 520 the site-scale intercepts (γ_{0ks}) were structured as a function of state-scale covariates 521 (X_{sta}):

522

 $\gamma_{0ks} \sim N(\mu_{ks}, \tau_{sta})$ $\mu_{ks} = \gamma_{0s} + \gamma_{sta} X_{sta}$ $\tau_{sta} \sim U(0, 100)^{-2}$

523

524 Finally, at the top scale of the analysis we allowed for a global (overall) estimate of

525 average log-biomass (μ_0):

$$\gamma_{0s} \sim N(\mu_0, \tau_{glo})$$
$$\mu_0 \sim N(0.0, 1000)$$

527 $\tau_{glo} \sim U(0, 100)^{-2}$.

528

529 The relationships between fish biomass and environmental, site, and state scale drivers was carried out using the PyMC package⁵¹ for the Python programming 530 language, using a Metropolis-Hastings (MH) sampler run for 10⁶ iterations, with a 531 532 900,000 iteration burn in, leaving 10,000 samples in the posterior distribution of each 533 parameter; these long burn-in times are often required with a complex model using 534 the MH algorithm. Convergence was monitored by examining posterior chains and 535 distributions for stability and by running multiple chains from different starting points and checking for convergence using Gelman-Rubin statistics⁵² for parameters across 536 537 multiple chains; all were at or close to 1, indicating good convergence of parameters 538 across multiple chains.

539

540 Overall model fit

541

We conducted posterior predictive checks for goodness of fit (GoF) using Bayesian pvalues⁴⁰ (BpV), whereby fit was assessed by the discrepancy between observed or simulated data and their expected values. To do this we simulated new data (y_i^{new}) by sampling from the joint posterior of our model (θ) and calculated the Freeman-Tukey measure of discrepancy for the observed (y_i^{obs}) or simulated data, given their expected values (μ_i) :

549
$$D(\mathbf{y}|\boldsymbol{\theta}) = \sum_{i} (\sqrt{y_i} - \sqrt{\mu_i})^2$$

yielding two arrays of median discrepancies $D(y^{obs}/\theta)$ and $D(y^{new}/\theta)$ that were then used to calculate a BpV for our model by recording the proportion of times $D(y^{obs}/\theta)$ was greater than $D(y^{new}/\theta)$ (Extended Data Fig. 5). A BpV above 0.975 or under 0.025 provides substantial evidence for lack of model fit. Evaluated by the Deviance Information Criterion (DIC), the full model greatly outperformed the null model (ΔDIC=472).

557

558 To examine homoscedasticity, we checked residuals against fitted values. We also

checked the residuals against all covariates included in the model, and several

560 covariates that were not included in the model (primarily due to collinearity),

561 including: 1) *Atoll* - A binary metric of whether the reef was on an atoll or not; 2)

562 Control of Corruption: Perceptions of the extent to which public power is exercised

563 for private gain, including both petty and grand forms of corruption, as well as

⁵⁶⁴ 'capture' of the state by elites and private interests. Derived from the World Bank

survey on governance; 3) *Geographic Basin*- whether the site was in the Tropical

566 Atlantic, western Indo-Pacific, Central Indo-Pacific, or eastern Indo-Pacific; 4)

567 *Connectivity* – we examined 3 measures based on the area of coral reef within a 30km,

568 100km, and 600km radius of the site; 5) Sedimentation; 6) Coral Cover (which was

only available for a subset of the sites); 7) *Climate stress*⁴⁹; and 8) *Census method.*

570 The model residuals showed no patterns with these eight additional covariates,

571 suggesting they would not explain additional information in our model.

572

573 Bright and dark spot estimates

574 Because the performance of site scale locations are of substantial interest in

575 uncovering novel solutions for reef conservation, we defined bright and dark spots at 576 the site scale. To this end, we defined bright (or dark) spots as locations where 577 expected site-scale intercepts (γ_{0ks}) differed by more than two standard deviations 578 from their nation/state-scale expected value (μ_{ks}), given all the covariates present in 579 the full hierarchical model:

580
$$SS_{spot} = |(\mu_{ks} - \gamma_{0ks})| > 2[SD(\mu_{ks} - \gamma_{0ks})].$$

This, in effect, probabilistically identified the most deviant sites, given the model, while shrinking sites toward their group-level means, thereby allowing us to overcome potential bias due to low and varying sample sizes that can lead to extreme values from chance alone. As a conservative precaution, we did not consider a site a bright or dark spot if the group-level (i.e. nation/state) mean had fewer than 5 estimates (sites).

587

588 Analysing conditions at bright spots

589 For our preliminary investigation of why bright and dark spots may diverge from 590 expectations, we surveyed data providers and other experts about key social,

institutional, and environmental conditions at the 15 bright spots, 35 dark spots, and

592 14 sites that performed most closely to model specifications. Specifically, we

593 developed an online survey using Survey MonkeyTM software, which we asked data

594 providers who sampled those sites to complete with input from local experts where

- 595 necessary. Data providers generally filled in the survey in consultation with
- nationally-based field team members who had detailed local knowledge of the
- 597 socioeconomic and environmental conditions at each of the sites. Research on bright
- 598 spots in agricultural development¹³ highlights several types of social and

environmental conditions that may lead to bright spots, which we adapted and
developed proxies for as the basis of our survey into why our bright and dark spots
may diverge from expectations. These include:

- 602 i) Social and institutional conditions. We examined the presence of 603 customary management institutions such as taboos and marine tenure 604 institutions, whether there was a high level of engagement by local people 605 in management, whether there was high levels of dependence on marine 606 resources (whether a majority of local residents depend on reef fish as a 607 primary source of food or income). All social and institutional conditions 608 were recorded as presence/absence. Dependence on resources and 609 engagement were limited to sites that had adjacent human populations. All 610 other conditions were recorded regardless of whether there is an adjacent 611 community;
- 612 ii) Technological use/innovation. We examined the presence of motorised 613 vessels, intensive capture equipment (such as beach seine nets, surround 614 gill nets, and muro-ami nets), and storage capacity (i.e. freezers); and 615 iii) *External influences* (such as donor-driven projects). We examined the 616 presence of NGOs, fishery development projects, development initiatives 617 (such as alternative livelihoods), and fisheries improvement projects. All 618 external influences were recorded as present/absent then summarised into 619 a single index of whether external projects were occurring at the site; 620 Environmental/ecological processes (e.g. recruitment & connectivity). We iv) 621 examined whether sites were within 5km of mangroves and deep-water 622 refuges, and whether there had been any major environmental disturbances

623	such as coral bleaching, tsunami, and cyclones within the past 5 years. All
624	environmental conditions were recorded as present/absent.

626 To test for associations between these conditions and whether sites diverged more or less from expectations, we used two complementary approaches. The link between the 627 628 presence/absence of the aforementioned conditions and whether a site was bright, 629 average, or dark was assessed using a Fisher's Exact Test. Then we tested whether the 630 mean deviation in fish biomass from expected was similar between sites with 631 presence or absence of the mechanisms in question (i.e. the presence or absence of 632 marine tenure/taboos) using an ANOVA assuming unequal variance. The two tests 633 yielded similar results, but provide slightly different ways to conceptualise the issue, 634 the former is correlative while the latter explains deviation from expectations based 635 on conditions, so we provide both (Figure 2, Extended Data Fig. 6). 636

637 **References**

- Pandolfi, J. M. *et al.* Global trajectories of the long-term decline of coral reef
 ecosystems. *Science* **301**, 955-958 (2003).
- Bellwood, D. R., Hughes, T. P., Folke, C. & Nystrom, M. Confronting the
 coral reef crisis. *Nature* 429, 827-833 (2004).
- Hughes, T. P., Bellwood, D. R., Folke, C., Steneck, R. S. & Wilson, J. New
- paradigms for supporting the resilience of marine ecosystems. *Trends Ecol Evol* 20, 380-386 (2005).
- 645 4 Sternin, M., Sternin, J. & Marsh, D. in *The Hearth Nutrition Model:*
- 646 Applications in Haiti, Vietnam, and Bangladesh. (eds O Wollinka, E Keeley,
- 647 B Burkhalter, & N Bashir) 49-61 (VA: BASICS, 1997).
- 648 5 Pretty, J. N. *et al.* Resource-conserving agriculture increases yields in

649 developing countries. *Emviron Sci Tech* **40**, 1114-1119 (2006).

- 650 6 Knowlton, N. & Jackson, J. B. C. Shifting baselines, local impacts, and global
 651 change on coral reefs. *Plos Biol* 6, 215-220 (2008).
- Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in
 an age of extinction. *Science* 336, 1401-1406 (2012).
- 654 8 Devillers, R. *et al.* Reinventing residual reserves in the sea: are we favouring
 655 ease of establishment over need for protection? *Aquat Conserv* (2014).
- 656 9 Pressey, R. L., Visconti, P. & Ferraro, P. J. Making parks make a difference:
- 657 poor alignment of policy, planning and management with protected-area
- 658 impact, and ways forward. *Philos T R Soc B* **370** (2015).
- 659 10 Pascale, R. T. & Sternin, J. Your company's secret change agents. *harvard*660 *business review* 83, 72-81 (2005).

661	11	Levinson, F. J., Barney, J., Bassett, L. & Schultink, W. Utilization of positive
662		deviance analysis in evaluating community-based nutrition programs: An
663		application to the Dular program in Bihar, India. Food Nutr Bull 28, 259-265
664		(2007).
665	12	McClanahan, T. R. et al. Critical thresholds and tangible targets for
666		ecosystem-based management of coral reef fisheries. P Natl Acad Sci USA
667		108 , 17230-17233 (2011).
668	13	Noble, A., Pretty, J., de Vries, F. P. & Bossio, D. in Bright spots demonstrate
669		community successes in African agriculture (ed F. W. T. Penning de Vries)
670		7 (International Water Management Institute, 2005).
671	14	Cinner, J., Marnane, M. J., McClanahan, T. R. & Almany, G. R. Periodic
672		closures as adaptive coral reef management in the Indo-Pacific. Ecol Soc 11
673		(2006).
674	15	Lindfield, S. J., Harvey, E. S., Halford, A. R. & McIlwain, J. L. Mesophotic
675		depths as refuge areas for fishery-targeted species on coral reefs. Coral Reefs,
676		1-13 (2015).
677	16	Cinner, J. E. et al. A framework for understanding climate change impacts on
678		coral reef social-ecological systems. Reg Environ Chang, 1-14 (2015).
679	17	Cinner, J. E. Social-ecological traps in reef fisheries. Global Environ Chang
680		21 , 835-839 (2011).
681	18	Schmitt, K. M. & Kramer, D. B. Road development and market access on
682		Nicaragua's Atlantic coast: implications for household fishing and farming
683		practices. Environ Conserv 36, 289-300 (2009).
684	19	Falk, A. & Szech, N. Morals and markets. Science 340, 707-711 (2013).

- 685 20 Ostrom, E. Governing the commons: The evolution of institutions for 686 collective action. (Cambridge university press, 1990). 687 O'Rourke, D. The science of sustainable supply chains. Science 344, 1124-21 688 1127 (2014). 689 22 Sampson, G. S. et al. Secure sustainable seafood from developing countries. 690 Science 348, 504-506 (2015). 691 Van Barneveld, W., Sary, Z., Woodley, J., Miller, M. & Picou-Gill, M. 23 692 Towards the co-operative management of fishing in Discovery Bay, Jamaica: 693 the role of the Fisheries Improvement Project. Proc Gulf & Caribbean 694 Fisheries Institute (1991) 44, 195-210 (1996). 695 24 Cinner, J. E. et al. Comanagement of coral reef social-ecological systems. P 696 Natl Acad Sci USA 109, 5219-5222 (2012). 697 Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. 25 698 Predicting climate-driven regime shifts versus rebound potential in coral reefs. 699 *Nature* **518**, 94-+ (2015). 700 York, R., Rosa, E. A. & Dietz, T. Footprints on the earth: The environmental 26 701 consequences of modernity. Am Sociol Rev 68, 279-300 (2003).
- 70227Lambin, E. F. *et al.* The causes of land-use and land-cover change: moving
- beyond the myths. *Global Environ Chang* **11**, 261-269 (2001).
- Hughes, T. P., Huang, H. & Young, M. A. L. The wicked problem of China's
 disappearing coral reefs. *Conserv Biol* 27, 261-269 (2013).
- Dodd, S. C. The interactance hypothesis: a gravity model fitting physical
- 707 masses and human groups. *Am Sociol Rev* **15**, 245-256 (1950).

708	30	Wittemyer, G., Elsen, P., Bean, W. T., Burton, A. C. O. & Brashares, J. S.
709		Accelerated human population growth at protected area edges. Science 321,
710		123-126 (2008).
711	31	Daw, T. et al. The spatial behaviour of artisanal fishers: Implications for
712		fisheries management and development (Fishers in Space). (WIOMSA, 2011).
713	32	MacNeil, M. A. et al. Recovery potential of the world's coral reef fishes.
714		<i>Nature</i> 520 , 341-344 (2015).
715	33	Mora, C. et al. Global human footprint on the linkage between biodiversity
716		and ecosystem functioning in reef fishes. Plos Biol 9 (2011).
717	34	Edwards, C. B. et al. Global assessment of the status of coral reef herbivorous
718		fishes: evidence for fishing effects. P Roy Soc B-Biol Sci 281 (2014).
719	35	Froese, R. & Pauly, D. FishBase. World Wide Web electronic publication,
720		< <u>www.fishbase.org</u> > (2014).
721	36	Center for International Earth Science Information Network (CIESIN),
722		Columbia University & Centro Internacional de Agricultura Tropical (CIAT).
723		Gridded population of the world. Version 3 (GPWv3): centroids,
724		< <u>http://sedac.ciesin.columbia.edu/gpw</u> > (2005).
725	37	MacNeil, M. A. & Connolly, S. R. 12 Multi-scale patterns and processes in
726		reef fish abundance. Ecol Fish Coral Reefs, 116 (2015).
727	38	Mora, C. et al. Coral reefs and the global network of marine protected areas.
728		Science 312 , 1750-1751 (2006).
729	39	Lukermann, F. & Porter, P. W. Gravity and potential models in economic
730		geography. Ann Assoc Am Geog 50, 493-504 (1960).
731	40	Nelson, A. Travel time to major cities: A global map of Accessibility. (Ispra,
732		Italy, 2008).

733	41	Bartholomé, E. et al. GLC 2000: Global Land Cover mapping for the year
734		2000: Project status November 2002. (Institute for Environment and
735		Sustainability, 2002).
736	42	R: A language and environment for statistical computing (R Foundation for
737		Statistical Computing, Vienna, Austria, 2012).
738	43	Dijkstra, E. W. A note on two problems in connexion with graphs.
739		<i>Numerische mathematik</i> 1 , 269-271 (1959).
740	44	Black, W. R. An analysis of gravity model distance exponents. Transportation
741		2 , 299-312 (1973).
742	45	Emran, M. S. & Shilpi, F. The extent of the market and stages of agricultural
743		specialization. Vol. 4534 (World Bank Publications, 2008).
744	46	Cinner, J. E., Graham, N. A., Huchery, C. & Macneil, M. A. Global effects of
745		local human population density and distance to markets on the condition of
746		coral reef fisheries. Conserv Biol 27, 453-458 (2013).
747	47	Teh, L. S. L., Teh, L. C. L. & Sumaila, U. R. A global estimate of the number
748		of coral reef fishers. Plos One 8 (2013).
749	48	Andréfouët, S. et al. in 10th International Coral Reef Symposium (eds Y.
750		Suzuki et al.) 1732-1745 (Japanese Coral Reef Society, 2006).
751	49	Maina, J., McClanahan, T. R., Venus, V., Ateweberhan, M. & Madin, J.
752		Global gradients of coral exposure to environmental stresses and implications
753		for local management. Plos One 6 (2011).
754	50	Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian data analysis.
755		Vol. 2 (Taylor & Francis, 2014).
756	51	Patil, A., Huard, D. & Fonnesbeck, C. J. PyMC: Bayesian stochastic
757		modelling in Python. J Stat Software 35, 1 (2010).

758	52	Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple
759		sequences. Stat Sci 7, 457-472 (1992).
760	53	Mora, C. et al. Management effectiveness of the world's marine fisheries. Plos
761		<i>Biol</i> 7 (2009).
762	54	Ravenstein, E. G. The laws of migration. J Statist Soc London 48, 167-235
763		(1885).
764	55	Anderson, J. E. A theoretical foundation for the gravity equation. Am Econ
765		<i>Rev</i> , 106-116 (1979).
766	56	Anderson, J. E. The gravity model. (National Bureau of Economic Research,
767		2010).
768		

770	End Notes
771	Supplementary Information is linked to the online version of the paper at
772	www.nature.com/nature.
773	
774	Acknowledgments
775	The ARC Centre of Excellence for Coral Reef Studies, Stanford University, and
776	University of Montpellier funded working group meetings. Thanks to M. Barnes for
777	constructive comments.
778	
779	Author Contributions
780	J.E.C. conceived of the study with support from M.A.M, N.A.J.G, T.R.M, J.K, C.H,
781	D.M, C.M, E.A, and C.C.H; C.H. managed the database; M.A.M. and J.E.C.
782	developed and implemented the analyses; J.E.C. led the manuscript with M.A.M, and
783	N.A.J.G. All other authors contributed data and made substantive contributions to the
784	text.
785	
786	Author Information
787	Reprints and permissions information is available at www.nature.com/reprints. The
788	authors declare no competing financial interests. Correspondence and request for
789	materials should be addressed to J.E.C. (Joshua.cinner@jcu.edu.au). This is the
790	Social-Ecological Research Frontiers (SERF) working group contribution #11.
791	

792 Extended Data Tables793

794 Extended Data Table 1 | Summary of social and environmental covariates.

Further details can be found in the Supplemental Online Methods. The smallest scale

- is the individual reef. Sites consist of clusters of reefs within 4km of each other.
- 797 Nation/states generally correspond to country, but can also include or territories or
- states, particularly when geographically isolated (e.g. Hawaii).
- 799

Covariate	Description	Scale	Key data sources
Local	Difference in local	Site	Socioeconomic Data and
population	human population		Application Centre (SEDAC)
growth	(i.e. 100km buffer		gridded population of the work
	around our sites)		database ³⁶
	between 2000-2010		
'Gravity' of	The population of	Site	Human population size, land cover,
major	the major market		road networks, coastlines
markets	divided by the		
within	squared travel time		
500km	between the reef		
	sites and the		
	market. This value		
	was summed for all		
	major markets		
	within 500km of		
	the site.		
'Gravity' of	The population of	Site	Human population size, land cover,
the closest	the nearest human		road networks, coastlines
human	settlement divided		
settlement	by the squared		
	travel time between		
	the reef site and the		
	settlement.		
Protection	Whether the reef is	Reef	Expert opinion, global map of

status	openly fished,		marine protected areas.
	restricted (e.g.		
	effective gear bans		
	or effort		
	restrictions), or		
	unfished		
Human	A summary	Nation/st	United Nations Development
Developmen	measure of human	ate	Programme
t index	development		
	encompassing: a		
	long and healthy		
	life, being		
	knowledgeable and		
	have a decent		
	standard of living.		
	We used linear and		
	quadratic functions		
	for HDI.		
Population	Total population	Nation/	World Bank, census estimates,
Size	size of the	state	Wikipedia
	jurisdiction		
Tourism	Proportion of	Nation/	World Tourism Organization's
	tourist visitors to	state	Compendium of Tourism Statistics,
	residents		census estimates
Voice and	Perceptions of the	Nation/	World Bank
accountabili	extent to which a	state	
ty	country's citizens		
	are able to		
	participate in		
	selecting their		
	government.		
Fish	Landings of reef	Nation/	Teh et al. ⁴⁷
landings	fish (tons) per Km ²	state	

	of reef		
National	Results from	Nation/	Mora et al. ⁵³
fisheries	survey of national	state	
poaching	fisheries managers		
	about levels of		
	compliance with		
	national fisheries		
	regulations		
Climate	A composite metric	Site	Maina et al. ⁴⁹
stress	comprised of 11		
	different		
	environmental		
	variables that are		
	related to coral		
	mortality from		
	bleaching		
Productivity	The average (2005-	Site	http://www.science.oregonstate.edu/
	2010) ocean		ocean.productivity/
	productivity in mg		
	C / m2 / day		
Habitat	Whether the reef is	Reef	Primary data
	a slop, crest, flat, or		
	back reef/lagoon		
Depth	Depth of the	Reef	Primary data
	ecological survey		
	(<4m, 4.1-10m,		
	>10m)		

801 Extended Data Table 2 | List of 'Nation/states' covered in study and their

802 respective average biomass (plus or minus standard error) In most cases,

803 nation/state refers to an individual country, but can also include states (e.g. Hawaii or

Florida), territories (e.g. British Indian Ocean Territory), or other jurisdictions. We

treated the NW Hawaiian Islands and Farquhar as separate 'nation/states' from

Hawaii and Seychelles, respectively, because they are extremely isolated and have

807 little or no human population. In practical terms, this meant different values for a few

808 nation/state scale indicators that ended up having relatively small effect sizes, anyway

809 (Fig. 1b): Population, tourism visitations, and in the case of NW Hawaiian Island, fish

- 810 landings.
- 811

Nation/states	Average biomass	(± SE)
American Samoa	235.93	(± 17.75)
Australia	735.01	(± 136.85)
Belize	981.16	(± 65.32)
Brazil	663.35	(± 115.17)
British Indian Ocean Territory (Chagos)	2975.58	(± 603.99)
Cayman Islands	464.09	(± 25.41)
Colombia	846.07	(± 162.49)
Commonwealth of the Northern Mariana Islands	505.54	(± 99.3)
Comoros Islands	305.62	(± 38.73)
Cuba	2107.37	(± 466.34)
Egypt	552.73	(± 70.18)
Farquhar	2665.48	(± 492.62)
Federated States of Micronesia	377.90	NA (n=1)
Fiji	1464.54	(± 144.39)
Florida	1661.35	(± 198.42)
French Polynesia	1077.20	(± 101.4)
Guam	118.98	(± 16.81)
Hawaii	380.45	(± 25.11)
Indonesia	275.76	(± 19.89)
Israel	445.16	(± 105.13)
Jamaica	275.77	(± 50.75)
Kenya	335.25	(± 65.81)
Kiribati	1219.93	(± 93.2)
Madagascar	409.48	(± 46.1)
Maldives	688.64	(± 97.07)
Marshall Islands	707.72	(± 174.38)
Mauritius	166.93	(± 73.7)
Mayotte	631.43	(± 68.25)
Mexico	1930.81	(±737.09)

Mozambique	461.01	(± 60.14)
Netherlands Antilles	428.01	(± 53.99)
New Caledonia	1460.27	(± 143.18)
NW Hawaiian Islands	729.71	(± 46.33)
Oman	282.79	(± 70.22)
Palau	3212.26	(± 332.02)
Panama	373.78	(± 85.41)
Papua New Guinea	566.70	(± 31.76)
Philippines	202.62	NA (n=1)
Pacific Remote Island Areas (PRIA), USA	641.47	(± 79.25)
Reunion	172.32	(± 30.67)
Seychelles	446.99	(± 46.6)
Solomon Islands	1280.30	(± 216.74)
Tanzania	346.29	(± 41.51)
Tonga	1149.97	(±151.27)
United Arab Emirates	81.35	(± 28.66)
Venezuela	1472.39	(± 496.95)

813 Extended Data Table 3| List of Bright and Dark Spot locations, population status,

814 and protection status.

Bright or Dark	Nation/State	Location	Populated	Protection
	British Indian Ocean Territory	Chagos	Unpopulated	Unfished (hig compliance)
	Commonwealth of	Agrihan	Unpopulated	Fished
	the Northern Mariana Islands	Guguan	Unpopulated	Fished
	Indonesia	Raja Ampat 1	Populated	Restricted
		Raja Ampat 2	Populated	Restricted
		Kalimantan	Populated	Restricted
Bright	Viriboti	Tabueran 1	Populated	Fished
	KIIIDali	Tabueran 2	Populated	Fished
	Papua New Guinea	Karkar	Populated	Restricted
		Baker	Unpopulated	Restricted
	PKIA	Jarvis Island	Unpopulated	Restricted
		Choiseul	Populated	Fished
	C - 1 I - 1 1 -	Isabel	Populated	Fished
	Solomon Islands	Makira	Populated	Fished
		New Georgia	Populated	Fished
	Australia	Lord Howe	Populated	Unfished (hig
		Hawaii	Populated	Fished
		Kauai 1	Populated	Fished
		Kauai 2	Populated	Fished
		Lanai	Populated	Fished
		Maui 1	Populated	Fished
		Maui 2	Populated	Fished
	Hawaii	Molokai	Populated	Fished
	Hawall	Oahu 1	Populated	Fished
		Oahu 2	Populated	Fished
		Oahu 3	Populated	Fished
		Oahu 4	Populated	Fished
Dark		Oahu 5	Populated	Fished
		Oahu 6	Populated	Fished
		Karimunjawa	Populated	Fished
	Indonesia	- Karimunjawa 2	Populated	Unfished (low compliance)
		_ Karimunjawa 3	Populated	Unfished (lov compliance)
		Pulau Aceh	Populated	Fished
		Montego Bay	Populated	Unfished (low compliance)
	Jamaica	Montego Bay	Populated	Fished

	Rio Bueno	Populated	Fished
Kenya	Diani	Populated	Fished
Madagascar	Toliara	Populated	Fished
Monuitino	Anse Raie	Populated	Fished
Mauritius	Grand Sable	Populated	Fished
	Licionalzi	Unnonvloted	Unfished (high
	LISIAIISKI	Unpopulated	compliance)
NW Hawaii	Pearl &	Unnonulated	Unfished (high
	Hermes 1	Unpopulated	compliance)
	Pearl &	Unnonulated	Unfished (high
	Hermes 2	Unpopulated	compliance)
Reunion	Reunion	Populated	Fished
Seychelles	Bel Ombre	Populated	Restricted
	Dongovo	Dopulated	Unfished (high
	Doligoyo	ropulated	compliance)
Tonzonio	Chapwani	Populated	Fished
Talizallia	Mtwara	Populated	Fished
	Stone Town,	Dopulated	Fished
	Zanzibar	ropulated	FISHEU
Venezuela	Chuspa	Populated	Fished

- 817 Extended Data Table 4| List of fish families included in the study, their common
- 818 name, and whether they are commonly targeted in artisanal coral reef fisheries.
- 819 Note: Targeting of reef fishes can vary by location due to gear, cultural preferences,
- 820 and a range of other considerations.
- 821

Fish family	Common family name	Fishery target
Acanthuridae	Surgeonfishes	Target
<mark>Balistidae</mark>	Triggerfishes	Non-target
Diodontidae	Porcupinefishes	Non-target
<mark>Ephippidae</mark>	Batfishes	Target
Haemulidae	Sweetlips	Target
<mark>Kyphosidae</mark>	Drummers	Target
Labridae	Wrasses and Parrotfish	Target >20cm
<mark>Lethrinidae</mark>	Emperors	Target
Lutjanidae	Snappers	Target
<mark>Monacanthidae</mark>	Filefishes	Non-target
Mullidae	Goatfishes	Target
<mark>Nemipteridae</mark>	Coral Breams	Target
Pinguipedidae	Sandperches	Non-target
Pomacanthidae	Angelfishes	Target >20cm
<mark>Serranidae</mark>	Groupers	Target
<mark>Siganidae</mark>	Rabbitfishes	Target
<mark>Sparidae</mark>	Porgies	Target
<mark>Synodontidae</mark>	Lizardfishes	Non-target
Tetraodontidae	Pufferfishes	Non-target
Zanclidae	Moorish Idol	Non-target

823 Extended Data Table 5 | Travel time estimates by land cover type. Adapted from

824 Nelson⁴⁰

825

Global Land Cover Global Class	Speed associated (km/h)
Tree Cover, broadleaved, deciduous & evergreen, closed;	1
regularly flooded Tree Cover, Shrub, or Herbaceous Cover	
(fresh, saline, & brackish water)	
Tree Cover, broadleaved, deciduous, open	1.25
(open= 15-40% tree cover)	
Tree Cover, needle-leaved, deciduous & evergreen, mixed	1.6
leaf type; Shrub Cover, closed-open, deciduous &	
evergreen; Herbaceous Cover, closed-open; Cultivated and	
managed areas; Mosaic: Cropland / Tree Cover / Other	
natural vegetation, Cropland / Shrub or Grass Cover	
Mosaic: Tree cover / Other natural vegetation; Tree Cover,	1.25
burnt	
Sparse Herbaceous or sparse Shrub Cover	2.5
Water	20
Roads	60
Track	30
Artificial surfaces and associated areas	30
Missing values	1.4

- 827 Extended Data Table 6 | Variance Inflation Factor Scores (VIF) for continuous
- 828 data before and after removing variables due to colinearity. X = covariate
- removed.
- 830

Covariate	starting VIF	ending VIF
Market gravity (log)	1.9	1.5
nearest settlement gravity	1.4	1.3
Population growth	1.4	1.3
Climate stress	2.7	2.0
Ocean productivity	6.5	2.2
Sedimentation	6.0	Х
Tourism	2.5	Х
Control Corruption	10.5	Х
GDP	8.2	Х
HDI	5.5	3.3
Population size	1.9	1.8
Reef fish landings	3.1	2.2
Rule of Law	33.8	Х
Voice and	3.2	3.2
Accountability		

832 Extended Data Table 7 | Model selection of potential gravity indicators and

833 components.

834

Model	Covariates	AIC	Delta
			AIC
M2	Gravity of nearest city	2666.4	0
M1	Gravity of all cities in 500km	2669.5	3.1
M3	Travel time to nearest city	2700.0	33.6
M5	Gravity of nearest small peri-urban area (40 people/km2)	2703.9	37.5
M11	Total Population in 500km radius	2712.0	45.6
M9	Travel time to the nearest large peri-urban area (75 people/km2)	2712.1	45.7
M6	Travel time to nearest small peri-urban area (40 people/km2)	2713.8	47.4
M8	Gravity to the nearest large peri-urban area (75 people/km2)	2722.9	56.5
M7	Population of nearest small peri-urban area (40 people/km2)	2792.7	126.3
M4	Population of the nearest city	2812.8	146.5
M10	Population of the nearest large peri-urban area (75 people/km2)	2822.2	155.8
M0	Intercept only	2827.7	161.27

- 852 to account for the differences incurred by travelling over different surfaces (e.g. water,
- 853 roads, tracks-see Methods). We developed gravity measures for the nearest human
- 854 settlement and for the nearest major market (defined as provincial capitals, ports, and
- 855 other large, populated places- see Methods). b) Gravity isoclines along gradients of
- 856 population size and travel time.
- 857

858 Extended Data Figure 2 | Marginal relationships between reef fish biomass and

859 **site-level social drivers.** a) local population growth, b) market gravity, c) nearest

860 settlement gravity, d) tourism, e) nation/state population size, f) Human development

- 861 Index, g) high compliance marine reserve (0 is fished baseline), h) restricted fishing
- 862 (0 is fished baseline), i) low compliance marine reserve (0 is fished baseline), j) voice
- and accountability, k) reef fish landings, l) ocean productivity; m) depth (-1=0-4m,
- 0=4-10m, 1=>10m), n) reef flat (0 is reef slope baseline), o) reef crest flat (0 is reef
- slope baseline), p) lagoon/back reef flat (0 is reef slope baseline). All X variables are
- standardized. ** 95% of the posterior density is either a positive or negative direction
 (Box 1); * 75% of the posterior density is either a positive or negative direction.

870 871 Extended Data Figure 3 | Market gravity and fish biomass. Relationship between 872 market gravity and a) reef fish biomass; b) targeted reef fish biomass (using fish families targeted by artisanal fisheries specified in Extended Data Table 2); c) non-873 874 target reef fish biomass. The strong relationship between gravity and reef fish biomass 875 is very similar for the biomass of fishes generally targeted by artisanal fisheries, but 876 very different for non-target fishes. This suggests that the relationship between market 877 gravity and fish biomass is primarily driven by fishing, rather than other potential 878 human impacts of urban areas (sedimentation, nutrients, pollution, etc.).

879 Extended Data Figure 4| Correlation plot of candidate continuous covariates before accounting for colinearity (Extended Data Table 7).

- 880 Colinearity between continuous and categorical covariates (including biogeographic region, habitat, protection status, and depth) were analysed
- using boxplots.

884

Extended Data Figure 5 | Model fit statistics. Bayesian p Values (BpV) for the full
model indicating goodness of fit, based on posterior discrepancy. Points are Freeman-

887 Tukey differences between observed and expected values, and simulated and expected

values. Plot shows no evidence for lack of fit between the model and the data.

- 891 Extended Data Figure 6 Box plot of deviation from expected as a function of the
- 892 presence or absence of key social and environmental conditions expected to
- 893 produce bright spots.
- 894