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This paper refers to the Pythagorean theorem and the use of physical artifacts (called mathematical 

machines), which are related to one of the proofs of the theorem. It aims to discuss the didactical use 

of these kinds of artifact, paying attention to students’ work with them and the role of the teacher. It 

presents a laboratory approach to this theorem developed within the Theory of Semiotic Mediation 

in mathematics education for 13-year-old students in Italy. The analysis shows that manipulation of 

the machine only does not imply the emergence of the mathematical meanings embedded in the 

machine. It also pays attention to the different graphical representations of the artifact and their role 

in the learning process.   
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Introduction 

The Pythagorean theorem is a traditional content in the mathematics curriculum of the secondary 

school, not only in Italian school (Moutsios-Rentzos, Spyrou & Peteinara, 2014). This theorem is 

often proposed in the geometrical domain at the beginning, and it is soon converted into formulas and 

related to algebraic calculations. There exist several proofs of this theorem1, some of them are 

proposed as visual proofs. On this topic, Bardelle (2010) analyses how university students in 

approaching a visual proof of that theorem try to look for the algebraic relation among sides starting 

from their knowledge of the theorem rather than getting the relationships between the components of 

the given figure. On the other hand, different exhibits are constructed basing on this kind of proofs, 

and they are also associated with and spread as gadgets (Eaves, 1954). In our work, we ask if and 

how it is possible to approach the Pythagorean theorem starting from artifacts which embed one of 

its proofs (Rufus, 1975), taking into account the role of manipulation, with 7-grade students (13-year 

old students). At the same time, we are interested in reinforcing the geometrical meaning of equivalent 

figures, which makes this theorem a particular case.  

In this paper, we introduce the theoretical background for the didactical use of physical artifacts 

(called mathematical machine2, Maschietto & Bartolini Bussi, 2011), then we present the teaching 

experiment.  

Theoretical framework 

In this section, we outline the theoretical framework of our work, based on the Theory of Semiotic 

Mediation (Bartolini Bussi & Mariotti, 2008) and the cognitive processes in geometry fostered by the 

                                                 

1 http://www.cut-the-knot.org/pythagoras/index.shtml Accessed 20th March 2017. 

2 Mathematics Laboratory at the University of Modena e Reggio Emilia: www.mmlab.unimore.it. Accessed 20th March 

2017. 



task of reproducing artifacts. The teaching experiment is designed according to the methodology of 

mathematics laboratory (Maschietto & Trouche, 2010) with different kinds of artifacts.  

Mathematics laboratory 

The teaching experiment is proposed and analyzed within the Theory of Semiotic Mediation 

(Bartolini Bussi & Mariotti, 2008, TSM), grounded in the Vygotskian notion of semiotic mediation 

and role of artifact in cognitive development. Following to the TSM, the teacher chooses the artifacts 

evoking particular mathematical meanings and uses them to mediate those meanings, proposing tasks 

to be accomplished by those artifacts. The tasks are organized in terms of didactical cycles with group 

work, individual work and collective discussions (mathematical discussions) orchestrated by the 

teacher. The cycle usually starts with the exploration of the chosen artifact, above all in small group 

work, structured following fundamental questions as: “How is the machine made?”, “What does the 

machine make?” and “Why does it make it?”. In general, the first two questions try to take in account 

students’ processes of instrumental genesis (Rabardel & Bourmaud, 2003). In the mathematics 

laboratory, students’ processes of formulation of conjectures and argumentation are strongly 

motivated and supported by the third question. The mathematical meanings emerge from the use of 

the artifacts, the interactions among peers and between peers and the teacher, who has the role of an 

expert guide. In all the activities, students are involved in a semiotic activity (producing gestures, 

words, drawings, called artifact signs) that the teacher makes evolving into mathematical signs (i.e., 

linked to mathematical contents) by the means of pivot signs. In this sense, the teacher uses the artifact 

as an instrument of mediation for mathematical meanings. 

The teaching experiment on the Pythagorean theorem is carried out with the use of two mathematical 

machines (M1 and M2 in Figure 1)3. They were analyzed in terms of their semiotic potential (Bartolini 

Bussi & Mariotti, 2008), corresponding to a semiotic relationship between an artifact and: on the one 

hand the personal meanings emerging from its use to accomplish a task; on the other hand, the 

mathematical meanings evoked by its use. 

The analysis of the semiotic potential considers three components: mathematical content, historical 

references and utilization schemes (Rabardel & Bourmaud, 2003). This kind of analysis is essential 

for the choice of the artifact and the identification of mathematical meanings evoked by it.   

M1:                    M2:  

Figure 1: The mathematical machines proposed to the classes (M1 on the left, M2 on the right) 

                                                 

3 http://www.macchinematematiche.org/index.php?option=com_content&view=article&id=162&Itemid=243&lang=it. 

Accessed 20th March 2017. 

http://www.macchinematematiche.org/index.php?option=com_content&view=article&id=162&Itemid=243&lang=it


Semiotic potential of the artifacts 

The mathematical machine M1 (Figure 1, on the left) is a wooden artifact, composed of a square 

frame and four triangular prisms, with right triangles as the base that are congruent each other. The 

fundamental relationship between the prisms and the square inside the frame (red square in Figure 1) 

is that the sum of the legs of the right triangles (base of the prism) is equal to the side of the square 

frame. This artifact shows a proof of the theorem (Rufus, 1975). For making evident the interior 

squares as figures, we have added a red paper into the frame.  

The scheme of use of this mathematical machine is quite simple: shift the prisms into the square 

frame, without raising them from the base and without superposing them (this condition is evident 

because of the height of the prisms and the frame). The mathematical meanings involved in this 

artifact are: geometrical figures as right triangle and square, the area of those figures, and equivalence 

of area by addition/subtraction of congruent parts. The property of the triangles to be right-angled is 

obtained by the support of the square frame, and that represents the hypothesis of the theorem 

embedded in the machine itself. The movement of the prisms is bound by the frame, which ensures 

the invariance of the sum of the areas of the triangles and the squares or, in other words, the invariance 

of the area of the squares, whatever it is. Two tasks can be proposed: the first one is to place the 

prisms for obtaining square hole(s), the second one is to pass to a configuration (M1 in Figure 1, in 

the center) to the other one (M1 in Figure 1, on the right). 

In our experiment, we asked the students to reproduce 1:1 the first mathematical machine on paper 

(four triangles and square corresponding to the interior of the frame), after its manipulation and 

description. This choice was due to the fact that we had only one wooden model in the classroom and 

we wanted to propose the task about the configurations with a model for each small group. In such a 

way, the students constructed a new artifact. We want to pay attention to the two elements that 

characterize the semiotic potential of the reproduction of the machine: the negligible thickness for all 

the components of the machine and the lack of the frame. The first element can force the students to 

transfer implicit constraints of the manipulation of the wooden machine into a control of the reciprocal 

position of the right triangles to avoid their superposition (Figure 2, on the right). The second element 

fosters to make evident the range of the movement of the right triangles on the big square base (Figure 

2, on the left). In this way, making explicit the mathematical components of the utilization schemes 

is supposed to reinforce the link to mathematics evoked by the machine. 

     

Figure 2: configurations by manipulating the paper machine 

Drawings and geometrical figures 

In the first activities with the artifact, the students are asked to answer the question “how the machine 

is made”, with the request of representing it. As we have written above, in this case, the students had 



to physically reproduce 1:1 the machine (while, in general, they should draw the machine in their 

homework or worksheet, which often is not squared paper). In the TSM framework, drawing the 

artifact corresponds to individual production of artifact signs, strictly dependent on student’s 

knowledge and his interpretation of the artifact. However, with respect to the TSM, we aim to pay 

more attention to our request of drawing. Following Duval (2005), this is a task of geometrical 

construction involving student’s visualization and how geometrical properties are identified (see also 

Vendeira & Coutat, 2017). Our tasks involve the two kinds of visualizations that Duval distinguishes 

as iconic and non-iconic:  

A visualisation is iconic when, for instance, it represents positions or shape of real-world. It is non-

iconic while it is organised to internal constraints and gives access to all cases possible. (Duval, 

2008, p.49) 

Concerning the role of visualization as an argument in proof, Duval (2005) analyzes the proof of the 

Pythagorean theorem corresponding to our first mathematical machine (as given by Rufus, 1975). He 

claims that the visualization is not complete if it only considers the two configurations (see Figure 1), 

because the relationship between the big square and the hypotenuse of the right triangles on one hand, 

and the two other squares and the legs of the same right triangles on the other hand are supposed 

known for the reader. This is grounded on the relationship between a conjecture and a figure. But if 

an arrow from left to right, for instance, connects the two representations, the transformation from 

one representation to another is realized. Nevertheless, the comparison of the areas of the squares is 

not directly possible, but it has to consider a computation (i.e., the difference between the big square 

and the four triangles) for paying attention to invariant elements in that transformation. In our 

machines, the transformation of representations corresponds to the movement of the four triangles, 

nevertheless with the loss of their simultaneous view. 

Research questions 

In this paper, we are interested in the didactical use of the mathematical machines for the Pythagorean 

theorem. Our research questions are: 

1. Is it possible, and how, to approach the Pythagorean theorem with the mathematical machines 

described above?  

2. Does the sequence of movements with the machines give a sufficient representation of the theorem 

for its understanding?  

3. Which kinds of visualization are related to the tasks of drawing M1?  

Methodology 

According to our theoretical framework, the didactical methodology is the mathematics laboratory 

with artifacts. The tasks for students are organized in didactic cycles (Bartolini Bussi & Mariotti, 

2008), consisting of small group work (GW), individual activities (IW), and collective mathematical 

discussions (CW). In the classrooms, other technologies are available, such as the Interactive 

Whiteboard with its software for making animations of the machines, and the simulations of the 

second machine made with Dynamic Geometry Software from the web. In the specific case of two 

classes involved in the experiments, the platform Edmodo was used. Therefore, the teaching 



experiment proposes a learning environment in which material and digital technologies are present. 

In general, it is structured in three phases, as follows: 

Phase A: 1) GW: Exploration of the first mathematical machine M1 (Figure 1); 2) CW: sharing of 

the description of the M1; 3) GW: construction of the M1 by paper; 4) GW: study of the possible 

configurations of the four triangles of M1 (Figure 2); 5) IW: representation of M1 on workbook; 6) 

CW: identification of relationships (invariants) between the components of M1. 

Phase B: 7) History of the Pythagorean theorem and Pythagorean triples; 8) GW: Generalization of 

the theorem by different puzzles. 

Phase C: 9) CW: Exploration of the second mathematical machine M2 and its reproduction with 

paper; 10) GW: Preparation of posters on the two mathematical machines. 

The teaching experiments have started in 2013, and have involved six Italian classes of 13-years old 

students and two teachers, co-authors of this paper.  

The analysis is carried out on students’ worksheets, videos, photos and IWB files.  

Findings 

In this section, we refer to phases A focusing on the task of drawing the machine M1.  

Steps 1-3. Work with the material model in small group and its reproduction  

During the first three steps, the students worked in small group with the task of describing the machine 

M1 and collecting the elements (for instance, the types of triangles, the length of the sides) useful for 

its reproduction with colored paper. Before the reproduction, a collective discussion allowed students 

sharing their explorations and agreeing on a written description of the machine, with the measure of 

its sides. In particular, the right triangles were described as equivalent and some students recalled the 

Tangram game. Then, the students obtained the reproduction scale 1:1 by measuring and using tools 

for drawing (above all, rules and set square).  

After this, the students had to fill a worksheet with the properties of the two figures, square and right 

triangle, constituting the machine. The manipulation of this new paper machine was guided by the 

task of looking for “square holes”. But this task requires being conscious of the two schemes of use: 

the triangles must remain in the big square and do not overlap each other (Figure 2). During students’ 

work, the configuration with the two square holes (Figure 1, M1 in the center) often appears first with 

respect to the configuration with the square alone (Figure 1, M1 on the right). This could be because 

the sides of the square are not parallel to the side of the square frame.  

Individual Work for representing the two configurations in paper and pencil (Step 5) 

Although the students had correctly described the congruence of the four right triangles (and 

constructed those in the previous step) into the square, several representations were not correctly 

drawn. We summarize some elements of students’ drawings: 

1) Square base is not equal in the two configurations (Figure 3, on the right); 

2) All the four right triangles are not all congruent: a) in one confirmation itself (Figure 3, left, 

drawing on the left); b) between the two configurations (Figure 4); 

3) The “square with the hypotenuse as side” is not a square (Figures 3 and 4). 



The review of all the representations shows an important invariant of the machine was not taken into 

account by the students: the side of the square base is equal to the sum of the two legs. 

        

Figure 3: Students’ representations of the two configurations of M1 on their workbooks 

Figure 4: Student’ representations of the two configurations of M1 on his workbook 

Collective discussion with IWB  

The collective discussion had two phases: the teacher paid attention to the wrong representations of 

the configurations; he took into account the passage from acting on the machine (both wooden and 

paper) to identify the relationship between the two configurations. First, the teacher used a checklist 

with the geometrical properties of the components of the machine that had been shared in the previous 

discussion for comparing the different representations. After, he asked to make new representations 

on the workbooks. 

 

Figure 5: Collective work on IWB 

Then the machine is represented on the IWB from a photo (Fig. 5, on the left). The use of the IWB 

enables a new collective manipulation of the machine, in which the students passed from one 

configuration to another one by dragging the right triangles as they made with the material machine. 

An important part of the discussion focused on the argumentation that the holes were squares (Figure 

6, on the left). The collective use of digital machine allows students linking the manipulation of the 

triangles to the manipulation of Tangram pieces (Figure 6, on the right) and, so, emphasizing the 

conservation of the areas of the holes. The Pythagorean theorem becomes a particular case in the 

equivalence of areas. 

They are squares because you see the 

shape and the sides seem equal and the 

base of a triangle can be turned and it is 

equal to the other sides. 



        

Figure 6: Question on proof and conclusion of the collective work on IWB (screenshots) 

Discussion and concluding remarks     

This paper aims to study the approach to the Pythagorean theorem using some physical artifacts that 

are material representations of that theorem. Students’ answers to different task seem to confirm the 

assumption that the manipulation carried out by the students on the first mathematical machine is not 

enough for the emergence of mathematical meanings embedded in the machine. About our first 

research question, the analysis shows that those tasks allow fostering the production of signs, 

according to the theoretical framework of the TSM, and representations that can be used by the 

teacher for the mediation of mathematical meanings.  

The scheme of use of shifting triangles for obtaining different configurations can support the 

emergence of personal signs and show the Pythagorean theorem in the context of equivalence of 

areas. For instance, in the first task of describing M1, some students recall the Tangram. If this 

meaning is not available for the students, the teacher has to focus on areas through a written, and/or 

symbolic calculation. With respect to our second research question on the feasibility of approaching 

the theorem with artifacts, we can argue that the Tangram, or meaning related to it, can be considered 

a prerequisite. In this case, Tangram means equivalent areas and manipulation of pieces for obtaining 

equivalent figures. 

The comparison between the resolution of the tasks of making M1 by paper and representing M1 on 

workbook pays attention that the two tasks foster two different visualizations, as we have asked in 

our third research question. The first task solicits an iconic visualization of the two configurations, in 

which the shapes are drawn, but not their relationships inside the same configurations and between 

the two configurations. The second task seems to support a non-iconic visualization, because the 

students have to choose the measures of the sides of the figures (that are the parameters of M1) and 

make links between them. This choice has the potential of giving access to generalization to all the 

right triangles. However, it is not enough to draw twice a square and four triangles but the students 

have to represent their relationship, that is, an iconic visualization does not support the resolution as 

the wrong representations on workbooks show. Moreover, the students do not use the previous 

description of the components of M1.  

Within the TSM framework, when the teacher proposes the discussion about those representations, 

the students’ drawings are pivot signs for him. They are signs related to the artifact, but they are used 

for identifying and representing geometrical properties and invariants of M1. The potential of giving 

access to generalization is exploited by the teacher.  
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