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Abstract

The sonic environment of the urban public space is often experienced
while walking through it. Nevertheless, city dwellers are usually not ac-
tively listening to the environment when traversing the city. Therefore,
sound events that are salient, i.e. stand out of the sonic environment,
are the ones that trigger attention and contribute highly to the percep-
tion of the soundscape. In a previously reported audiovisual perception
experiment, the pleasantness of a recorded urban sound walk was con-
tinuously evaluated by a group of participants. To detect salient events
in the soundscape, a biologically-inspired computational model for audi-
tory sensory saliency based on spectrotemporal modulations is proposed.
Using the data from a sound walk, the present study validates the hy-
pothesis that salient events detected by the model contribute to changes
in soundscape rating and are therefore important when evaluating the
urban soundscape. Finally, when using the data from an additional ex-
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periment without a strong visual component, the importance of auditory
sensory saliency as a predictor for change in pleasantness assessment is
found to be even more pronounced.

Keywords: Auditory Saliency; Sensory Saliency; Listening Experiment;
Computational Model; Granger Causality

1 Introduction

People often experience an urban public space while walking through it. The
perceived quality of walking routes through the urban environment may af-
fect their usability and thereby promote an active lifestyle [1]. Pleasant routes
may also promote the choice of walking as a travel mode [2] and thereby help
reducing inner city car traffic and its negative influence on the living environ-
ment. Walking through an agreeable environment may even become a mentally
restoring activity [3]. The soundscape—the sonic environment as perceived or
experienced and/or understood by a person or people, in context [4]—is part
of this experience [5] and is important for the perceived quality of the walking
routes. The sonic environment itself relates to the physical (acoustic) envi-
ronment which constitutes the sound at the receiver from all sound sources as
modified by the environment [4].

It has been shown that sounds that are noticed influence soundscape per-
ception [6]. While walking through an urban environment, people in general
pay little attention to details in their surroundings unless asked to do so [7].
Most environmental sounds may therefore remain unnoticed and hence would
not contribute to the cognitive appraisal of the sonic environment [8]. Sublim-
inal environmental sound might still contribute to the overall affect, emotion,
and stress but would not trigger conscious changes in pleasantness rating [9].

However, some sound events have higher probability to be noticed depending
on how much they stand out of the sonic environment. The term saliency is
used to refer to the degree to which an event stands out of the environment
[10]; therefore, such sounds are deemed salient. Correspondingly, salient sound
events trigger people’s attention and evoke a reaction depending on cognitive
appraisal: from the fight-or-flight response to fast approaching car honking to
the appreciation of the bird singing in the tree [11].

Auditory saliency could be divided into two non-excluding dimensions: sen-
sory and semantic saliency. Sensory saliency is determined by the enhanced
sensitivity or tuning of the human hearing system to specific sound features [12].
On the other hand, semantic saliency requires recognition of the sound and in-
congruency within the environment [13]. Sensory saliency has been investigated
by explicitly identifying features that alter behavior [12] or by inspection of the
spectrogram using methods similar to the ones used to model visual saliency
[14].

The tuning of the auditory system can nowadays be measured using sev-
eral brain imaging techniques. Therefore, responses and findings obtained using
brain imaging can serve as a basis for the features used for calculating auditory
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saliency. In [15] it was shown that tonotopically-localized regions of the brain
respond to spectrotemporal modulations, i.e. ripple sounds that have simultane-
ous modulation in amplitude and frequency domain. In this study we therefore
use a biologically-inspired computational model for auditory sensory saliency
which evaluates the similarity of the input to spectrotemporal modulations.

This paper explores the hypothesis that sensory salient events trigger changes
in the appraisal of the sonic environment. Two laboratory experiments, an
audiovisual and an audio-only experiment, in which people continuously rated
the pleasantness of the sonic environment recorded during a city walk [16], are
used for verifying this hypothesis. More specifically, this paper evaluates if the
sensory saliency, computed using the proposed model, increases the probability
that the participants in the experiments will change their pleasantness rating of
the sonic environment.

In Section 2, the audiovisual listening experiment carried out in a laboratory
context is briefly presented and the obtained dataset and calculated metrics are
discussed. In Section 3, the layout and the implementation of the computational
saliency model are discussed. Section 4 outlines the metrics and the statisti-
cal methods used in the analysis and presents the results for the audiovisual
experimental dataset. Finally, using the same methodology, the results for the
audio-only experimental dataset are presented and discussed in Section 5.

2 Evaluating pleasantness of a sound walk

A listening experiment was conducted where participants were asked to contin-
uously assess the pleasantness of the sound environment which was a recorded
soundwalk. Five paths covering Paris boulevards, streets, passageways and
parks were chosen as a representative of the urban sound environment. The
walks were recorded in both directions to capture the transition between the
environments. For the complete explanation of the experiment we refer to [16].

There were 30 participants in the experiment. They were recruited inside
the university (students and university staff) with no relation to any soundscape
study. The group consisted of 18 women and 12 men, with a mean age of 33 years
(SD = 14). The participants were naive to the tested hypotheses, and received
a small monetary compensation for participation. Prior to the experiment, all
of the participants gave their informed written consent.

The same experiment was also carried out in situ, walking on the same
paths, asking for pleasantness at different locations [17]. The use of audiovisual
stimuli was preferred above the use of only sound stimuli, in order to be able to
compare the real pleasantness (measured in situ) with the pleasantness measured
in laboratory. The results were found to be comparable, and the continuous
pleasantness measured in laboratory has been considered ecologically valid.

Ten recorded sound scenes corresponding to urban walks in Paris through
different types of areas (boulevards, streets and park) were played back inside a
semi-anechoic room through a transaural system. The sampling frequency used
was 48 kHz and the duration of each scene was 185 s. The recorded sounds were
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reproduced with the corresponding videos on a large screen in the laboratory.
Participants evaluated the sound pleasantness on a continuous scale by moving
a marker bar with the mouse. The sampling frequency of the mouse movement
measurement was 8 Hz (1480 samples for 185 seconds sound duration).

2.1 Perceptual dataset of pleasantness rating

The perceptual dataset consisted of 300 collected mouse traces from each com-
bination of participant and sound. In order to create a single trace for each
sound sample from 30 participants, the data was averaged. As it can be seen in
Figure 1, the reaction time response varied highly between participants; there-
fore, an average metric would not provide a relevant reference and the data of
each single participant would need to be considered. Furthermore, it was found
that some of the traces were broken when the mouse was not positioned above
the scale. This was later accounted for by retaining only the participant-sound
combinations that had less than 25% of missing data.

(a) (b)

Figure 1: Recorded trace of answers for sound sample T1OE: (a) raw data from
all 30 participants and (b) average data with standard deviation. Missing data
from the traces was not taken into account when calculating the average.

2.2 Probability of change in pleasantness rating

The perceptual evaluation data consisted of slider traces as shown in Figure 1.
As it can be seen, these included long periods without participant’s reaction.
As hypothesized, the change of the pleasantness rating would happen when the
participant’s attention is triggered by the salient event [18]. Therefore, a metric
was created representing the probability of the change in the pleasantness rating.

This metric was calculated by taking the absolute value of the finite difference
of the pleasantness rating ψ. This difference was calculated for each of the
samples in the signal of the length D equal to 1480 samples (Equation 1).
Additionally, the difference signal was also rectified with threshold T equal to
0.001, i.e. very small changes were not taken into account.
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Due to the nature of the numerical difference and in order to maintain the
same length as the original signal, the initial sample was set to have a difference
equal to zero (Equation 1). Such calculation process produced a non-avoidable
62.5 ms delay (half a period of the 8 Hz sampling frequency) between the change
signal and the original pleasantness rating.

dψ|n∈{1,2,...,D}[n] =

{
1, |ψ[n]− ψ[n− 1]| > T

0, otherwise

dψ[0] = 0

(1)

The probability of the pleasantness rating change (Pdψ) was subsequently
calculated with a sliding window w across the signal dψ (Equation 2). The
duration of the sliding window was 2 seconds (L equal to 16 samples) with a
step of 250 ms (S totaling 2 samples), thus making the sampling frequency of
the final output equal to 4 Hz.

Pw(dψ) =

w+L∑
n=w

dψ[n]

L
w ∈ {0, S, 2S, . . . ,D − L}

(2)

Furthermore, if the signal inside a sliding window consisted of more than
50% of missing data, this portion of the output was labeled as missing. Finally,
the mask (0 – perceptual data present, 1 – no data recorded) was stored in
order to remove the same portions when comparing probability of change to
other metrics.

2.3 Recordings of the sonic environment

The sound samples used in the listening experiment were 10 recorded urban
sequences of three minute duration, recorded with a binaural system (two om-
nidirectional microphones inserted in the ears of the experimenter) during five
trips traveled in both directions in the 13th district of Paris, in April 2015.

The left and right channels were recorded with slightly different sensitivities
which needed to be accounted for. As the absolute value was not important
in the analysis, a relative (mutual) calibration was performed. Therefore, the
left and right channel of the sound file were equalized by fixing the lower level
channel (left in this case) and adjusting (lowering) the higher level channel by
the ratio of the root-mean-square values of the calibration signals.

2.4 Sound pressure amplitude

The amplitude of the sound pressure was calculated on the mutually calibrated
left and right channels separately to emulate the saliency calculation procedure
(Section 3.5). No calibration of the absolute sound pressure was performed since
the relative pressure was sufficient for the performed statistical analyses. The
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extraction of the sound pressure signal started from the monaural signal which
was firstly weighted with an A-weighting digital filter. The A-weighting was
chosen as it is a standardized modification of the sound signal based on hu-
man perception that is used extensively in environmental noise and soundscape
studies [19, 20, 21].

In the next step, the equivalent level was calculated using a time window
with a length of 6000 samples to achieve the same 8 Hz sampling frequency as
the pleasantness rating (Section 2.1). Left and right levels were then logarithmi-
cally summed to a single level and converted back to sound pressure amplitude.
Finally, a windowing procedure was applied—an average sound pressure was
calculated inside a 250 ms window which was shifted with a 250 ms time step
until the end of the signal.

3 Computational model for auditory saliency

A biologically-inspired computational model for auditory saliency is created for
calculating the sensory saliency of the input sound. The model is comprised
of two stages: the auditory periphery stage and the brain (central) processing
stage. The input sound is fed first to a simplified auditory periphery model that
uses Gammatone periphery [22] and simulates the peripheral processing up to
the level of the auditory brainstem [23]. The output of the periphery model at
each tonotopic region, i.e. central frequency, is then used as an input to the
simulation of brain processing: spectrotemporal modulation content reacted to
in the auditory cortex [24] followed by a sensory activation stage based on leaky
integration [25].

Although most recent research employs spectrotemporal modulation features
in models that focus exclusively on speech [26, 27], previous models also inves-
tigated sensory saliency of mixtures of environmental sounds including noise,
animal sounds, music, sirens, etc. [28, 29]. Moreover, studies that investigated
the perception of spectrotemporal modulations have analyzed complex mixtures
of sounds (harmonic complexes, tones in noise, amplitude and frequency mod-
ulated tones, etc.) [30, 31, 32], although often with a focus on the analysis and
reconstruction of speech signals. However, most urban sounds from sources such
as road traffic, birds or airco units, have their dominant frequency contributions
in the same frequency range as speech.

The proposed model evaluates the spectrotemporal content in all frequency
bands evaluated by the periphery model, therefore, not focusing only on the
range specific to human vocalizations. Similarly to previously proposed models
that extract indicators of temporal structure of the soundscape in relation to
music [33], this model extracts the spectrotemporal modulation content from
the acoustic input as a relevant soundscape indicator of the tuning of a human
brain to spectrotemporal modulations [24, 15].
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3.1 Spectrotemporal modulations

The created saliency model is inspired by the observation of the sensitivity of
the human auditory cortex to spectrotemporal modulations [15, 30, 32]. Rip-
ples, i.e. sound signals that have simultaneous sinusoidal modulation in time
and frequency domain, can be considered as prototypes of this spectrotemporal
modulation. Using functional magnetic resonance imaging (fMRI), it was shown
in [15] that they excite particular, spatially separate regions in the auditory cor-
tex.

The modulation function M(t, x) of such ripple sound is shown in Equation
3. There, modulations are given as amplitude modulation (AM) ω on time axis
t, frequency modulation (FM) Ω on octave band axis x with the modulation
depth ∆m usually set to 1.

M(t, x) = 1 + ∆m · sin(ωt+ Ωx) (3)

For the creation of ripple sounds in the digital domain, the frequency axis f
is discretized with Nf discrete frequencies, according to the number of octaves
Noct calculated from the start and end frequency, with the number of separate
divisions of octave band axis x as shown in Equation 4.

x ∈
{

0,
1

Nx
,

2

Nx
, . . . , Noct

}
Noct =

⌈
log2

(
fend
fstart

)⌉
; Nx =

Nf
Noct

(4)

With this, the term Ωx in Equation 3 becomes a constant and the carrier
on a frequency band c is only an amplitude modulated function Sc(t) shown in
Equation 5. There, xc is given as an octave band number on a frequency band
fc, corresponding to one value from the discretized octave band axis in Equation
4, and βc is a randomly selected phase. Finally, the complete ripple sound S(t)
is calculated by summing over all the AM modulated frequency band signals as
displayed in Equation 6.

Sc(t) = M(t, xc) · sin(2πfct+ βc) (5)

S(t) =

Nf∑
c=1

Sc(t) (6)

3.2 Auditory periphery stage

The saliency model is created to be able to separate the spectrotemporal content
from the input sound into ripples. Firstly, the input sound (sampled at 48 kHz)
is passed through a filter simulating the outer/middle ear transfer function.
This is modeled using a band-pass filter between 0.6 and 4 kHz simplifying the
transfer functions of the human middle ear [34]. The next step, which represents
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cochlear processing, is modeled using a filterbank of Nf filters. This filterbank
consists of 120 Gammatone filters [35] created across the hearing range with
central frequency division according to [36]. The central frequencies of these
filters provide the basis fc values for the Equation 5 as well as the later stages
of the model.

The final step of the auditory periphery model is a simplification of the
brainstem response. The input signal to the brainstem stage is demodulated by
squaring the content from each frequency band, in a manner similar to simple
nonlinear functions used in other periphery models [37, 30]. According to [38],
the demodulation procedure positions the AM content around the DC value
and therefore, in combination with low-pass filtering, it could be separated from
the rest of the signal contents. Finally, the output signal is also downsampled
which is allowed according to the Nyquist theorem. The parameters used for
demodulation and downsampling in this study were a cut-off frequency of 152
Hz for the low-pass filter and an output sampling frequency equal to 320 Hz.
This cut-off frequency is high enough to cover the main peak in the frequency
response of the inferior colliculus neurons [39].

3.3 Auditory cortex stage

The auditory cortex stage is modeled based on the analysis of the amplitude
and frequency modulation content from the signal according to basic ripples
(Equations 3-5). Since the ripple can be expressed with a separate AM and FM
portion, the auditory cortex stage is based on two simulation stages: detection
of AM using resonator filters and FM using carrier frequency dependent time
delays.

Firstly, the AM content is extracted using a filterbank of constant-gain
single-pole resonator filters. The transfer function of such filters in discrete-
time Z-transform domain is presented in Equation 7. The parameters of the
filter are the resonator pole radius Rp and the resonance frequency Fr, where
Fs equals the sampling frequency of the input. In this study, a filterbank was
created with 10 resonator filters all having the pole radius Rp equal to 0.0001.
This assured that the actual pole radius Rr was close to the minimum possible
which maximally reduces the duration of the impulse response. The resonance
frequencies of the filters were logarithmically spaced from 1 to 10 Hz, i.e. ω was
spaced from 2π to 20π cycles.

H(z) = G
1− z−2

1− 2Rr cos(Θr)z−1 +R2
rz
−2

G =
1−R2

r

2

Rr = 1− 2π

Fs
(1−Rp)

Θr =
2π

Fs
Fr

(7)
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For each AM/FM combination the time delay δc(ω,Ω) on frequency band c
is calculated according to Equation 8. This enables calculating the first step of
FM using buffers with a length equal to the time delay in each of the frequency
bands fc.

δc(ω,Ω) =
Ω

ω
· xc (8)

Now, consider a ripple sound with AM ω0 cycles and FM Ω0 cycles/octave
(Section 3.1) as an input to the auditory periphery stage of the saliency model
(Section 3.2). The (perfect) output of the auditory periphery would then consist
of a sinusoid on each frequency band fc with angular frequency ω0 and delay
equal to δc,0(ω0,Ω0) (Equation 8).

We then analyze every signal on fc only with a single resonator (Equation 7)
which has 2πFr equal to ω0 and Rp equal to 1. The output is then fed to the Nf
buffers each with a delay corresponding to δc,0. The output consists of sinusoids
with angular frequency ω0 and delays δc,0 over frequencies fc. These delayed
sines are then fed to the overlapping summation which is shown in Equation 9.
As it can be seen, for a single output band q a window of length U is applied over
the frequency band axis c and the time signals (sines in this case) are summed
together. Afterwards, the window is shifted to the next frequency band with
step T and the summation is repeated.

Vq =

q+1+U∑
c=q+1

sin(ωt+ δc)

q ∈ {0, T, 2T, . . . , Nf − U + 1}

(9)

This procedure reduces the number of output bands to Nout calculated from
the number of frequency bands Nf , window size U and step T . In this study, an
overlapping summation over one octave band with a half-octave step was used.
As there were 120 frequency bands coming from the auditory periphery stage
with 12 bands inside each octave, the number of output bands amounted to 19.

Nout =

⌈
Nf − U + 1

T

⌉
(10)

It can be proven mathematically that the summation of any number of sinu-
soidal signals of the same angular frequency gives either another sinusoid with
this angular frequency or no response because of the cancellation due to oppo-
site phases. This is the theoretical baseline of the final calculation step of the
auditory cortex stage—calculation of the amplitude across the buffer with the
length corresponding to ω. In turn, this step ensures that the rippling effect in
the output is smoothed to a constant value. When the modulation content of the
input coincides with the delay, as in our example with ω0 and Ω0 corresponding
to delay δc,0, the output produces the highest value.

In this study, five frequency modulations were selected with linear spacing
from 0 to 1 Hz/octave, i.e. Ω was spaced from 0 to π cycles/octave. To reduce
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the long delays that can occur for high values of Ω/ω, the modulation axis x in
Equation 4 was wrapped. Since the delays in the first octave are the smallest
due to the lowest values of xc, they were repeated for all other octaves according
to Equation 11.

xoct ∈
{

0,
1

Nx
,

2

Nx
, . . . , 1

}
Noct =

⌈
log2

(
fend
fstart

)⌉
; Nx =

Nf
Noct

x ∈ {xoct, . . . , xoct}

(11)

To summarize, in the auditory cortex stage the input, i.e. the modulation
content of the signal, is expanded across ripple-like functions while the output of
any of the AM/FM combinations peaks if the input is a matching spectrotem-
poral modulation.

3.4 Sensory activation stage

The sensory activation stage simulates the excitation and inhibition processes
in the brain which are found to be important for human attention and gating
[40, 41, 42]. To model the excitation and inhibition in the sensory activation
stage of the model [43], a leaky integrator implementation is used [44]. The
mathematical expression of leaky integration in discrete-time domain is provided
in Equation 12. As it can be seen, the current output signal zout on time step n
depends on the previous output on step n−1 and the αi portion of the difference
between the current input zin and the previous output.

zout[n] = zout[n− 1] + αi (zin[n]− zout[n− 1]) (12)

Equation 13 shows the mathematical expression for calculating the value αi.
It is calculated based on the time constant for integration time τi and sampling
frequency Fs which is a measure of time spacing between the two samples in
discrete-time domain. Additionally, different time constants τi could be given
for rise and fall of the signal, therefore αi would change if the difference between
the current input and previous output in Equation 12 is greater or lower than
zero.

αi = 1− e−
1

Fsτi (13)

In the model, excitation and inhibition are determined according to the
expressions shown in Equation 14. Firstly, excitation e is calculated on the input
ain. The current excitation therefore depends on the current input evaluated
with leaky integration (Equation 12). Afterwards, inhibition g is evaluated
on the excitation signal also with the leaky integration function, however with
different values of αi (Equation 13). Corresponding to the previous work [45, 46],
the values of τi used for excitation were 0.05 s and 2 s for rise and fall time
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respectively. Additionally, inhibition time constants were given as 1.8 s and 10
s for rise and fall time respectively.

e[n] = leaky(ain[n])

g[n] = leaky(e[n])
(14)

The effect of the sensory activation stage aout is determined as an interplay
between the excitation and inhibition and calculated according to Equation 15.
Firstly, the difference between the excitation signal e and the inhibition signal
g delayed by m samples and multiplied with a constant K is calculated [46].
Secondly, the output is rectified using maximum rectification, an approach found
in neuronal circuits of the neocortex [47] and widely used in neural network
research [48]. In this study, the buffer length m was set to be 3 samples (9.375
ms, i.e. an approximation of 0.01 s up to a sampling frequency step) and no
multiplication was applied (K equal to 1) [46].

aout[n] = max(e[n]−K · g[n−m], 0) (15)

The computational saliency model generates several output values, i.e. on
each time sample NAM×Nout×NFM values are calculated. As noted previously,
we used 10 amplitude and 5 frequency modulations, as well as the 19 output
bands in the model. These 950 separate outputs were compressed into a single
value on each time sample using a simple summation. This ensured that, when
evaluating the continuous input to the model, the output saliency becomes a
single-valued time signal Y .

3.5 Saliency computed from the recordings

The saliency model does not have an implementation of binaural hearing char-
acteristics, therefore, left and right channel for each sound were evaluated sep-
arately. Consequently, the saliency signal Y was computed for the left Yleft
and right Yright channels separately which needed to be combined into a single
saliency value. The saliency computed from the model implementation discussed
in previous paragraphs can be in the range [0,∞). Therefore, a sigmoid function
[49] was used to confine the saliency value into [0, 0.5) as shown in Equation 16.
With the implementation and parameters listed in Sections 3.2, 3.3 and 3.4, the
calculations were performed faster than real time on a conventional PC.

Y =
1

1 + e−(Yleft+Yright)
− 0.5 (16)

As discussed, the output of the computational model was produced with a
sampling frequency of 320 Hz. This enabled capturing the complete range of
the amplitude modulations as well as the transients in the response over time.
However, the computed saliency was additionally downsampled to 8 Hz to be
directly comparable to the dataset of pleasantness ratings (Section 2.1). Finally,
the average saliency was calculated within a moving window to enable a direct
comparison to the probability of the change in pleasantness rating (Section
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2.2). Conversely to the probability which predicts the response in the next
two seconds (2 s time window), saliency was calculated within a window of 250
ms while the step between the windows was the same 250 ms, i.e. a sampling
frequency of 4 Hz. This windowing procedure also directly corresponded to the
calculation of the sound amplitude (Section 2.4).

4 Predicting change in pleasantness assessment

This study investigates whether salient sounds in the environment trigger changes
in the appraisal of the sonic environment. On the one hand, people’s appraisal
of a walk in the city was measured using a continuously monitored pleasantness
rating within the laboratory experiment (Section 2). On the other hand, the
saliency of the sound recorded during the walk was calculated using a proposed
biologically-inspired computational model for auditory saliency (Section 3).

In order to test the hypothesis that the salient events as evaluated by the
computational model are the ones that trigger changes of pleasantness rating,
an additional metric was used: A-weighted sound pressure amplitude (Section
2.4). Therefore, the analysis involved three types of signals: the probability of
change in pleasantness assessment, the computed saliency and the sound pres-
sure amplitude (Figure 2). Finally, using the same approach, the relationship
between sound pressure and computed saliency was also investigated.

The first comparison was between the computed saliency and the proba-
bility that people change their pleasantness rating when listening to the same
sound. Additionally, sound pressure amplitude as a predictor for the change was
analyzed in order to reject the hypothesis in case it was found to be a better
predictor for the change in rating than the saliency itself. Finally, the potential
existence of a prediction relationship between sound amplitude and saliency was
investigated.

Each combination of three signals was evaluated separately for each participant-
sound combination and an example of these data is shown in Figure 3.a and b.
It should be noted that the saliency and amplitude signals were the same for
each sound, nevertheless, the probability of change varied across participant
and sound. For example, sometimes a participant changed his/her answer con-
stantly over a period of time as shown by the probability of change equal to one
between 75 and 100 seconds in Figure 3.a. On the other hand, data for a dif-
ferent participant displays only a small probability of change over time (Figure
3.b between 25 and 100 seconds) since the participant was changing the rating
only sometimes and during a long period of time.

Two additional datasets are represented in Figure 3 to compare the sound
events in the recordings. Firstly, the spectrograms of the left and right channel
of binaural recordings which were used to calculate the sound amplitude trace
(Section 2.4) are shown in Figure 3.c and d. The other dataset comprises the
sound events which were labeled by listening to the binaural recordings. Addi-
tionally, the transition between the recorded environments is also shown in the
top banners in Figure 3.e and f.
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Sound amplitude

Computed saliency

Change in
pleasantness

Figure 2: Three signal types used in the prediction analysis: output of the
computational saliency model (Computed saliency), probability of the change
in participant’s reaction (Change in pleasantness rating) and time evolution of
the A-weighted sound pressure amplitude (Sound amplitude).

For the sound named T3OE, i.e. the recording that starts in a small street
and finishes in a large boulevard, there are several labeled events that can be
seen in the calculated saliency trace. In the first place, the sounds of a meal
(clanking of the cutlery and plates, voices, etc.) coming from the building
above the recorded path are recognized in the model while the participant 7 also
changed the pleasantness rating in this time frame. Furthermore, the squeaking
around 50 second time stamp is also recognized by the model as a salient event,
however, this participant did not change the pleasantness rating then. The
highest saliency comes from a loud car pass-by before the 100 second mark
which is also easily recognizable in the spectrogram. Finally, the difference
between the calculated saliency and the level could be seen from the second
140 onward where the level stays up while the saliency model is reacting to
individual sound events (speech, motorbike and squeaking brakes).

Sound T5OE covers the transition between the three environments: the
recording started in a boulevard, then continued in a small pedestrian passage-
way until the end in another boulevard. When listening to the sound recording,
the first clearly noticeable event is a sound of a woman walking in high heels.
This is also reflected in the change of the rating of participant 16. Similar to the
recording T3OE, in the sound T5OE between seconds 25 and 75, loud traffic
noise is also visible in the sound amplitude and the spectrogram but not in the
calculated saliency trace. Several events are recognized by the saliency model
in this time frame—one of which is a bird around the second 70. Moreover, a
honk of a car is a clearly dominant event in the calculated saliency trace around

13



(a) (b)

(c) (d)

(e) (f)

Figure 3: (a) and (b): Example of signal traces for the three types of data (prob-
ability of change in pleasantness rating, saliency calculated from the computa-
tional model and sound pressure amplitude) shown for two participant-sound
combinations. (c) and (d): Spectrogram of the binaural recordings (left chan-
nel in top graph, right channel in bottom graph) corresponding to the sound
amplitude signal trace above. (e) and (f): Markings of the recorded environ-
ment (filled banner) and sound events labeled from listening to the binaural
recordings.

the second 110. However, loud bird around the second 125 is not recognized by
the model as a salient event even though this event produced the change in the
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pleasantness rating of participant 16. Contrary to this, birds singing around the
second 175 are marked as salient by the computational model.

4.1 Granger causality

To assess the hypothesis that the auditory saliency computed by the proposed
saliency model can be used as a predictor for changes in the appraisal of the
sonic environment, a Granger causality analysis was performed [50]. Granger
causality is a measure of one signal being predicted by another: if a signal X1

“Granger-causes” a signal X2, then past values of X1 should contain information
that helps to predict X2 above and beyond the information contained in past
values of X2 alone [51].

Granger causality has been used extensively in econometric studies [52] and
in the recent years to analyze brain imagining datasets [53]. Additionally, some
studies related to sound (music) also analyzed other types of data using Granger
causality: D’Ausilio et al. investigated causal relationship among musicians
using the recorded movement kinematics during an execution of a musical piece
[54], while Dean et al. studied continuously rated perception of arousal in
relation to the varying intensity change of a musical piece [55]. Similarly, this
study relates the perceptual data from a listening experiment to the varying
indicators (saliency and sound amplitude) extracted from the listened sounds.

In this study, a Granger causality analysis was performed for each participant-
sound combination between the metrics shown in Figure 2. Granger causality
lag (LAG) was set to be up to 500 ms, a representative of delays found in brain
imaging studies [56, 57]. As the exact reaction time of the participants was
unknown, an additional time shift between the signals (SHIFT) was included in
the analysis. To remove the risk of not covering the minimum possible reaction
time which could be below 250 ms [58], a zero time shift was also included.
On the other hand, the largest time shift was selected to be 1.5 seconds, in
accordance with the largest reaction time found for multi-sensory stimuli [59].

The time shift and Granger lag could also be related to the previous analysis
of the reaction and integration time when evaluating the connection between
the continuous level and evaluated pleasantness [16]. However, in the previous
study, the assessed time constants were on a larger scale up to several seconds
while here only the values around one second were investigated. Furthermore,
correlations for the previously reported results were found to be the highest
around lower values of SHIFT-LAG space which coincides with the ranges in-
vestigated in this study.

4.2 Unidirectional Granger causality

Three types of data signals (probability of change in pleasantness rating, saliency
calculated from the computational model and sound pressure amplitude) were
analyzed using a Granger causality analysis for the combinations shown in Fig-
ure 2. Granger causality is assessed by creating two vector autoregression (VAR)
models [51], the second one of which fits the prediction of the signal with the
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past values of itself and those of another signal. Accordingly, for this study, the
Akaike Information Criterion (AIC) of the second model was selected to be a
distinguishing factor when selecting the best model.

An example of the analysis process of one combination of data signals, i.e.
computed saliency and probability of change in rating, is shown in Figure 4.
Several VAR models across TIME-LAG space were evaluated, however, the top
graphs in Figure 4 indicate only the AIC values where Granger causality is
confirmed with asymptotic significance of p-value less than 0.05. Furthermore,
in the same figure the result of the selection process of unidirectional Granger
causality (UGC) is represented in the bottom graph.

Figure 4: Granger causality measures calculated for relationship between the
computed saliency and probability of change in rating for participant 20 and
sound sample T3EO. Evaluated time shifts (SHIFT) included delays up to 1.5
seconds and number of assessed lags (LAG) up to 500 ms. The Akaike infor-
mation criterion is displayed in the top part of the graph for Granger causality
confirmed with p < 0.05. The lower part of the graph represents unidirectional
Granger causality, i.e. indication of SHIFT-LAG combinations where causality
was confirmed in one direction and rejected in another (Equation 17).

UGC is calculated using Equation 17 where k denotes a single SHIFT-LAG
combination while A → B denotes the direction of analysis between signals
A and B. Consequently, UGC for one SHIFT-LAG combination between two
signals is confirmed only if Granger causality is confirmed in one direction and
rejected in another.

16



UGCk,A→B =

{
1, (pk,A→B < 0.05) ∧ (pk,B→A ≥ 0.05)

0, otherwise
(17)

4.3 Stationarity of the analyzed signals

The properties of Granger causality assume the stationarity of the analyzed
signals. Time signals are deemed stationary if the shift in time does not produce
a change in the shape of its probability distribution. In turn, statistical values
of mean, variance and covariance are constant over the length of the portion of
the signal and its position in time.

Since the data traces used do not appear immediately as such (Figure 3), it
was important to check their stationarity. An Augmented Dickey-Fuller (ADF)
test, i.e. a unit root test for stationarity, was used for this purpose [60]. Re-
gression models in the ADF test were built by adding a constant (assuming no
zero-mean of the signals) while simultaneously no trend was included. Further-
more, maximum checked lag was four samples, a reasonably higher number than
the maximum Granger causality lag of two samples. Finally, the AIC value of
the ADF test (not to be confused with the AIC for Granger causality) was used
to select the optimal lag for the significance check.

The results show that the computed saliency was stationary for all 10 sounds.
Similarly, the stationarity was confirmed for sound pressure amplitude of all
sounds except T2EO and T2OE, as well as T5OE. Moreover, the perceptual data
was stationary for all participants-sound combinations, except for participant 14
and sound T3EO, participant 21 and sounds T1OE and T2OE, and participant
22 and sound T1EO.

Although the majority of the signals were confirmed stationary, the main
limitation of the study is on the sound amplitude which is not stationary for
three out of the 10 evaluated sounds. It should be noted, however, that the
stationarity of the sound amplitude is confirmed when the difference of the
amplitude is used. Nevertheless, to keep a direct reference to this widely used
acoustical metric, it was decided to make the analysis on the sound pressure
amplitude.

4.4 Determining Granger causality across combinations

In order to summarize the large amount of data obtained for each participant-
sound-SHIFT-LAG combination, a single statistical measure was created. Firstly,
for each participant and sound, an unidirectional Granger causality in SHIFT-
LAG space was determined as explained in Section 4.2 and shown on Figure 4.
Next, a single model with the lowest AIC value was selected across SHIFT-LAG
combinations where UGC was confirmed. In case no UGC was found for this
participant-sound combination, the output was marked as negative. This pro-
cedure was repeated for all the signal types used in prediction analysis (Figure
2).
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The results for the computed saliency and the probability of change in rating
are shown in Figure 5. Counting the amount of times UGC was confirmed
across participants shows that the largest difference between the original and the
reverse direction of saliency predicting probability of change is found for sounds
T2EO and T2OE. For both sounds, UGC was confirmed for 14 participants in
the original, while only 3 and 4 participants respectively had the UGC confirmed
in the reverse direction. Looking at the recorded environment, it could be
observed that both sounds were recorded on a path which featured a transition
between a park, a passageway and a boulevard.

However, sounds T4EO and T4OE were also recorded on a path that in-
cluded a park environment. Nonetheless, for sound T4OE, UGC was confirmed
for the computed saliency predicting the change for 12 participants and in the
other direction for 3 participants. For sound T4EO, there were 10 participants
with UGC confirmed in both directions. As the sounds that people hear matter
for their perception in the parks [61], the observed difference between the results
for the same environment could come from the difference in the recorded sonic
environment: for sounds T2EO and T2OE, a park was located in a shielded
space between the buildings which allowed more prominent park sounds (birds
in this case) to be more noticeable in the recording, while for sounds T4EO and
T4OE, a park was an open area with large amount of visitors and a high level
of traffic noise.

The environment featured in recordings T1EO and T1OE, T3EO and T3OE,
T5EO and T5OE included boulevards, streets and passageways. Counting the
amount of participants for each sound, computed saliency was found to be a
better or equally good predictor in the original direction of UGC compared to
the reverse direction for five sounds. Only outlier was sound T3EO which had
a notable difference of 6 participants with the confirmed UGC in the original
direction and 12 in the reverse direction. Although for this sound the environ-
ments are the same but recorded in reverse, there is a less amount of noticeable
events in sound T3EO than for sound T3OE (Figure 3.e). Moreover, this record-
ing had a notable difference in the visual stimulus, i.e. a clouded sky and thus
a darker video, which could also influence the importance that the auditory
sensory saliency had on the rating of the participants [62].

As it can be seen from Figure 5, for almost 50% of the assessed combina-
tions the saliency is confirmed as a predictor of the change in soundscape rating.
However, this representation needs to be contrasted with the same analysis but
in the opposite direction (i.e. change in rating predicts the saliency). To ob-
tain such contrasting measure, a ratio of confirmed Granger causality across
participant-sound space was calculated by counting the participant-sound com-
binations where UGC is confirmed and by dividing by the total number of cases.
Moreover, the uncertainty on this measure was calculated using Equation 18.
There, A and B represent the data signals, r is the ratio of confirmed UGC
and ρ represents the uncertainty of the measure. On the one hand, when calcu-
lating the relationship with change in pleasantness, the degrees of freedom Ndf
equals 300, i.e. the total number of combinations that was used. On the other
hand, Ndf equals 10 when evaluating the 10 sound recordings between sound
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Figure 5: Audiovisual experiment: Unidirectional Granger causality (Equa-
tion 17) for both directions between computed saliency and probability of the
change in participants’ rating. Participant-sound combinations are marked as
confirmed where the model evaluated by the AIC value in the SHIFT-LAG com-
bination space exists for UGC (Figure 4). Dashed lines denote the participant-
sound combinations with missing data which were excluded from the analysis.

amplitude and computed saliency.

ρA→B =

√
rA→B(1− rA→B)

Ndf,A→B
(18)

The results shown in Table 1 demonstrate that there is a larger amount of
cases confirming Granger causality in the original direction for both computed
saliency and sound pressure amplitude. However, the sound amplitude is better
predicted by the computed saliency than vice versa. This could be a surprising
result since the saliency is evaluated later in time than the amplitude of the
sound itself. However, the saliency model is created to react better to the change
rather than the level itself, a fact exhibited in, for example, the audibility of
impulsive sounds [63]. It should also be noted that as there are only 10 sounds,
the UGC percentage in the last row of Table 1 could only be calculated in steps
of 10%, which is much more discrete than the other two relationships.

Table 1: Audiovisual experiment: Percentage of confirmed unidirectional
Granger causality across participant-sound combinations for three data signals:
Computed saliency (Y ), Probability of change in pleasantness rating (P ), Sound
pressure amplitude (E). The confidence intervals are calculated using Equation
18.

Unidirectional Granger causality, [%]
Original direction Reverse direction

Y → P 47.54± 2.88 32.79± 2.71
E → P 42.62± 2.86 38.11± 2.80
E → Y 0.00± 0.00 30.00± 14.49
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Furthermore, when comparing the values including their uncertainty, the
percentages are distinctly separated for the saliency as a predictor of the change
in pleasantness. For the sound amplitude, the intervals of uncertainty are over-
lapping and the percentages are not significantly different.

Table 1 also shows that there is a relatively low amount of combinations
where Granger causality is confirmed for the prediction of probability of change.
This could be due to various reasons, however, most notably the influence could
come from the fact that the experiment was performed in an audiovisual setting.
Therefore, the saliency of the event would not only be present in the sound but
also in the visual scene [64]. What is more, the non-explained portion of the
results could arise from the responses of the participants that are determined by
top-down attention [65], i.e. when the participants focused on the non-salient
portions of the stimuli.

Finally, the results show that for the prediction of the change in pleasantness
as evaluated by this dataset, the saliency of the signal computed by the pro-
posed model is a better predictor than the sound amplitude. Consequently, this
validates the hypothesis that the saliency of the sound predicts change better
than the sound amplitude in the appraisal of the perceived soundscape.

5 Prediction without a visual component

The experimental data that was used to investigate the relevance of the com-
puted saliency came from an audiovisual experiment where participants listened
to the sound recordings and at the same time watched the matching videos. This
setting provides the most difficult one for auditory sensory saliency, due to the
influence of the visual component [62, 5]. In order to evaluate the influence
of sensory saliency for the change in pleasantness rating in an easier setting, a
Granger causality analysis was also performed on a dataset from an audio-only
experiment.

The experimental data came from the same study as the audiovisual experi-
ment [16]. The group of participants in the audio-only experiment was, however,
different. The recruitment procedure was the same as explained in Section 2.
Initially, there were 11 women and 19 men with a mean age of 33 years (SD =
14). However, seven participants were eliminated from the analysis due to mea-
sured hearing loss and/or incoherent responses (very incomplete, constant or
random ratings). Therefore, only 23 participants were included in the analysis.

Contrary to the audiovisual experiment conducted in the same laboratory
setting, in the audio-only case, participants listened to 16 recordings with the
visual component reduced to a minimum by presenting only a blurred stationary
image of an urban environment on a screen. It should also be noted that the 16
recordings used in the audio-only experiment were specifically constructed from
the two audio files and therefore different from the ones used in the audiovi-
sual experiment. Therefore, comparison on a sound-by-sound instance between
the obtained results was impossible, however, the evaluation of the cumulative
results of the Granger causality analysis was attainable.
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The audio-only experimental dataset was evaluated using the same proce-
dure as explained in Sections 2-4. In particular, from the perceptual dataset,
the change in pleasantness assessment was calculated using Equation 2. More-
over, the sound amplitude was extracted from the recordings as explained in
Section 2.4. Finally, the saliency of the sound recordings was calculated using
the same proposed saliency model presented in Section 3. The dataset of three
signal types was then analyzed using the procedure explained in Section 4.

In order to confirm the applicability of the Granger causality analysis to
the new dataset, the obtained data traces were firstly tested for their station-
arity. The results of the Augmented Dicky-Fuller test confirmed that all sound
amplitude and computed saliency signals are stationary. For the perceptual
data traces, however, the stationarity was not confirmed for 12 out of the 368
participant-sound combinations. Therefore, although this presents a limitation
of the analysis, all the combinations were kept in the dataset, similar to the
analysis of the audiovisual data (Section 4.3).

The same SHIFT-LAG combinations were assessed in the analysis of the
audio-only experimental dataset. Therefore, the time shifts between the signals
included delays up to 1.5 seconds, while the assessed lags for Granger causality
were up to 500 ms. Although the multi-sensory reaction from the visual part
[59] was minimized in the audio-only case, it was decided to keep the analyzed
SHIFT-LAG space the same in order to obtain more comparable results.

The results from the unidirectional Granger causality analysis of the audio-
only dataset are shown in Figure 6 and Table 2. When comparing the same
representation (Figure 5) for the audiovisual experiment, it can be seen that
the reverse prediction for the Granger causality is confirmed in more cases than
for the audio-only experiment.

(a) (b)

Figure 6: Audio-only experiment: Unidirectional Granger causality (Equa-
tion 17) for both directions between computed saliency and probability of the
change in participants’ rating. Participant-sound combinations are marked as
confirmed where the model evaluated by the AIC value in the SHIFT-LAG com-
bination space exists for UGC (Figure 4). Dashed lines denote the participant-
sound combinations with missing data, which were excluded from the analysis.

The larger relative difference between the confirmed UGC in both directions
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Table 2: Audio-only experiment: Percentage of confirmed unidirectional
Granger causality across participant-sound combinations for three data signals:
Computed saliency (Y ), Probability of change in pleasantness rating (P ), Sound
pressure amplitude (E). The confidence intervals are calculated using Equation
18.

Unidirectional Granger causality, [%]
Original direction Reverse direction

Y → P 48.77± 2.89 21.53± 2.37
E → P 38.15± 2.80 18.53± 2.24
E → Y 0.00± 0.00 43.75± 15.69

is further substantiated using the values from Table 2. For instance, the relative
difference in the original and reverse direction of the prediction of the computed
saliency and the probability of change in pleasantness rating is 27.24%. On
the other hand, the difference between the original and reverse direction for
the sound pressure amplitude and the change in pleasantness rating is 19.62%.
Contrary to the previous results (Table 1), both these differences are inside
the confidence intervals, therefore it can be concluded that the prediction is
confirmed in both cases.

The most important comparison between the experiments, however, comes
from the confirmed UGC for the original direction between the computed saliency
and the sound amplitude respectively and the predicted change in pleasantness.
In particular, for the audio-only experiment, there is a 10.62% difference of the
confirmed instances between the saliency and the sound amplitude as predictors.
On the other hand, for the audiovisual experiment, this difference falls to 4.92%.
This result is in line with the idea that auditory sensory saliency should be more
relevant when assessing the environment using the acoustic stimulus alone. In
turn, this finding also shows the applicability of the proposed computational
model for calculating the sensory saliency of the sound environment.

6 Conclusions

In this paper we evaluated the hypothesis that auditory saliency triggers change
in pleasantness assessment of the soundscape. Recordings of walking trips
through urban environments were assessed in a previous audiovisual experiment
by their pleasantness [16]. In this study, the continuous rating obtained from
this experiment was used as a basis for determining the probability of change
in pleasantness rating over time.

The recordings from the audiovisual experiment were analyzed by the pro-
posed biologically-inspired auditory sensory saliency model. The model is based
on the fact that the human auditory cortex is sensitive to a range of spectrotem-
poral modulations [15, 30, 32]. Thus, the model evaluates the similarity of the
input to the spectrotemporal modulation content. Finally, at the last stage,
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the model utilizes sensory activation to interplay the excitation and inhibition
processes taking place in the neural circuits [40, 41, 42].

To test the hypothesis that the saliency of the sound as determined by
the saliency model is indeed a predictor of changes in pleasantness, the A-
weighted sound pressure amplitude, a common indicator used in soundscape
studies [19, 20, 21], was also calculated. The prediction between the signals was
then evaluated using a Granger causality analysis with a unidirectional causality
constraint.

It was found that saliency better predicts the probability of change than
sound amplitude. In particular, for 47.54% of combinations, the computed
sensory saliency predicts change in pleasantness while the opposite is confirmed
in 32.79% of cases. Sound amplitude was found to predict change in rating in
42.62% and 38.11% of combinations in each direction respectively, thus having
a smaller number of cases predicted and a smaller difference between the two
directions than with computed saliency.

Finally, to account for the effect of audiovisual interaction, which happens
even at the lowest stages of attention processing [62, 5], the data from the au-
diovisual experiment was compared to the data from an audio-only experiment
conducted in the same study [16]. The results show that computed sensory
saliency becomes an even better predictor for the change in pleasantness rat-
ing in comparison to sound amplitude, as shown by the 48.77% of confirmed
cases for the computed sensory saliency and only 38.15% of confirmed cases for
sound amplitude. This result also shows the applicability of sensory saliency as
evaluated by the proposed computational model in assessment of sound envi-
ronments.

To conclude, the proposed model could serve as an evaluation tool in other
urban soundscape studies. One of the studies, in which the model is currently
used, is the categorization of urban soundscapes. Other future studies could
also include evaluation of large datasets of environmental sound and comparison
with the indicators currently established in soundscape research. Finally, the
proposed saliency model could be extended with binaural hearing traits, to
better represent the processes of auditory perception taking place in the brain.
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