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ADDENDUM: NON-COOPERATIVE FISHER–KPP SYSTEMS:

TRAVELING WAVES AND LONG-TIME BEHAVIOR

LÉO GIRARDIN

Abstract. The solution to a problem left open in the original paper [1] and
solved afterwards is presented. Additionally, a few conflicting notations and a
typo are corrected.

1. Extinction in the critical case λPF (L) = 0

The critical case λPF (L) = 0, for which extinction still occurs, was unsolved
at the time of writing of [1]. It was solved later on thanks to an hint of Adrian
Lam, who pointed out that the argument used to establish the upper estimates of
[1, Theorem 1.2] can actually be used again to solve the extinction case.

Consequently, [1, Theorem 1.3] should be corrected as follows. The conjecture
following [1, Theorem 1.3] and the discussion in [1, Section 4.1.1] can now safely be
ignored.

Theorem. [Extinction or persistence dichotomy]

(1) Assume λPF (L) < 0. Then all bounded nonnegative classical solutions of
(EKPP ) set in (0,+∞)× R converge asymptotically in time, exponentially
fast, and uniformly in space to 0.

(2) Assume λPF (L) > 0. Then there exists ν > 0 such that all bounded positive
classical solutions u of (EKPP ) set in (0,+∞)×R satisfy, for all bounded
intervals I ⊂ R,

(

lim inf
t→+∞

inf
x∈I

ui (t, x)

)

i∈[N ]

≥ ν1N,1.

Consequently, all bounded nonnegative nonzero classical solutions of (SKPP )
are valued in

N
∏

i=1

[ν, gi (0)] .

(3) Assume λPF (L) = 0 and

span (nPF (L)) ∩ K ∩ c
−1 ({0}) = {0} .

Then all bounded nonnegative classical solutions of (EKPP ) set in (0,+∞)×
R converge asymptotically in time and uniformly in space to 0.
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Proof. The third case is proved as follows.
Let u be a bounded nonnegative classical solution. Using its boundedness, we

can define for all T > 0

CT = inf {C > 0 | CnPF (L) ≥ u (T, x) for all x ∈ R} .

Subsequently, fix temporarily T > 0 and let v = CTnPF (L)−u. Since λPF (L) = 0,
v satisfies

v (T, x) ≥ 0 for all x ∈ R,

∂tv −D∂xxv − Lv = c [u] ◦ u in (0,+∞)× R.

Since the nonnegativity of c (H2) implies c [u]◦u ≥ 0, it follows from the maximum
principle that

v ≥ 0 in [T,+∞)× R,

that is

CTnPF (L) ≥ u in [T,+∞)× R,

whence CT ′ ≤ CT for all T ′ ≥ T . In other words, (CT )T>0 is a nonincreasing
family.

Next, let us verify that it is in fact a decreasing family if and only if u is nonzero.
Of course, if u = 0, then CT = 0 for all T > 0.
Now, assume that there exist T > 0 and T ′ > T such that, for all t ∈ [T, T ′],

Ct = CT . Let v = CTnPF (L)− u. By optimality of CT ′ ,

min
i∈[N ]

inf
x∈R

vi (T
′, x) = 0.

If there exists x ∈ R such that

v (T ′, x) = CT ′nPF (L) − u (T ′, x) ∈ ∂K,

then by the strong maximum principle

v = 0 in [T, T ′]× R.

This leads to c [u] ◦ u = 0 on one hand and to u = CTnPF (L) on the other hand,
whence by assumption on c we deduce CT = 0. Therefore u = 0 in [T, T ′]×R and
then in (0,+∞)× R.

On the contrary, if such an x ∈ R does not exist, then by optimality of CT ′ ,
there exists w ∈ ∂K and (xn)n∈N

such that, as n → +∞,

xn → ±∞ and v (T ′, xn) → w.

Defining the sequence

un : (t, x) 7→ u (t, x+ xn)

and using classical parabolic estimates to extract a locally uniform limit u∞, we
find that v∞ = CTnPF (L)− u∞ satisfies

∂tv∞ −D∂xxv∞ − Lv∞ ≥ 0 in [T, T ′]× R,

v∞ ≥ 0 in [T, T ′]× R,

v∞ (T ′, 0) = w ∈ ∂K,

and then again by the strong maximum principle we find v∞ = 0 and subsequently
u = 0.

Hence either u = 0 or the family (CT )T>0 is decreasing. Let

C∞ = lim
T→+∞

CT ≥ 0.
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Assuming by contradiction that C∞ > 0, defining the sequence

un : (t, x) 7→ u (t+ n, x)

and its locally uniform limit u∞, we can repeat the argument and obtain that the
family (DT )T>0, where

DT = inf {D > 0 | DnPF (L) ≥ u∞ (T, x) for all x ∈ R} ,

is decreasing, which directly contradicts the fact that DT = C∞ for all T > 0. This
ends the proof. �

2. Conflicting notations, typos

2.1. Conflicting notations. In [1, Section 1.5.1], “The cane toads equation with

non-local competition”, the notation θN denotes the mesh size of the partition θ−θ

N−1 .

However in [1, Section 1.5.2], “The cane toads equation with non-local mutations
and competition”, it denotes both the mesh size and the last point of the partition
(θi)i∈[N ]. In order to solve this conflict, the mesh size should be denoted δθ instead.

Similarly, in [1, Section 1.5.3], “The Gurtin–MacCamy equation with diffusion
and overcrowding effect”, the mesh size should be denoted δa instead of aN+1.

2.2. Typo. On page 153, first line, Aε should be replaced by A.
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