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In this paper, we deal with the problem of adaptive radar detection of point-like targets in presence of noise with unknown spectral properties. As customary, we assume that a set of data sharing the same properties of the noise in the cell under test is available. To cope with a limited number of training data, a Bayesian framework is adopted at the design stage. In order to come up with detectors with good rejection capabilities, the possible presence of a fictitious signal under the null hypothesis is modeled probabilistically, as opposite to the conventional ABORT-like approach. Several detectors are devised for the problem at hand, with different complexities. The performance assessment, conducted by means of Monte Carlo simulations, reveals that a good trade-off between detection power and selectivity can be achieved, even assuming a limited number of training data.

I. INTRODUCTION

R ESEARCH activity in the area of adaptive radar detec- tion of targets embedded in Gaussian or non-Gaussian disturbance has received a great attention in the last decades. Most of the published works follow the lead of the seminal paper by Kelly [START_REF] Kelly | An adaptive detection algorithm[END_REF], where the generalized likelihood ratio test (GLRT) is used to conceive an adaptive decision scheme capable of detecting coherent pulse trains in presence of Gaussian disturbance with unknown spectral properties. Other classical examples of detection algorithms include the adaptive matched filter (AMF) [START_REF] Robey | A CFAR adaptive matched filter detector[END_REF] and the adaptive normalized matched filter [START_REF] Conte | Asymptotically optimum radar detection in compound gaussian noise[END_REF], also known as adaptive coherence estimator [START_REF] Scharf | Adaptive matched subspace detectors and adaptive coherence estimators[END_REF]. More generally, such problem has been extensively studied and a large number of solutions are available in the open literature, see [START_REF] Gini | Selected list of references on radar signal processing[END_REF] for a list of references.

Since most of the previously quoted solutions suppose exact knowledge of the signal array response vector, they may experience a performance degradation when the actual steering vector is not aligned with the nominal one. Therefore, it is of interest to take into account possible steering vector mismatches at the The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Hongbin Li.
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O. Besson is with the Départment Electronique Optronique Signal, Université de Toulouse, Toulouse 31055, France (e-mail: olivier.besson@isae-supaero.fr). design stage of the detector. To this end, coherent returns can be roughly classified into mainlobe and sidelobe signals [START_REF] Pulsone | Adaptive beamformer orthogonal rejection test[END_REF], [START_REF] Fabrizio | Spatial adaptive subspace detection in OTH radar[END_REF] • a sidelobe signal (sidelobe interferer) is a coherent signal from a "direction significantly different" to that in which the radar system is steered: it can be due, for example, to a strong target located in a sidelobe direction or to the retransmission of a modulated signal (for the purpose of degrading the reception of the signal of interest); • a mainlobe target is instead a coherent signal backscattered from the nominal direction or a direction slightly different from the nominal one as a consequence of an imperfect modeling of the nominal steering vector, where the mismatch may be due to multipath propagation, array calibration uncertainties, beampointing errors, etc. Thus, the effectiveness of the detector depends on its ability to detect the presence of what is classified as mainlobe target, limiting the number of "false alarms" due to sidelobe interferers.

An effective approach to deal with this problem has been introduced in [START_REF] Pulsone | Adaptive beamformer orthogonal rejection test[END_REF], where the adaptive beamformer orthogonal rejection test (ABORT) is proposed; such a detector takes into account rejection capabilities at the design stage. The idea of the ABORT is to modify the null hypothesis, which usually states that data under test contains noise only, so that it possibly contains a fictitious signal which, in some way, is orthogonal to the assumed target's signature. Doing so, if a mismatched signal is present, the detector will be less inclined to declare a detection, as the null hypothesis will be more plausible than in the case where, under the null hypothesis, the test vector contains noise only. The extension of this idea to the case of signals belonging to known subspaces of the observables has been dealt with in [START_REF] Fabrizio | Spatial adaptive subspace detection in OTH radar[END_REF], as a possible means to maintain an acceptable detection loss for slightly mismatched mainlobe targets. It is important to observe that in the detector proposed in [START_REF] Pulsone | Adaptive beamformer orthogonal rejection test[END_REF] the fictitious signal is assumed to be orthogonal to the nominal steering vector in the "quasi-whitened" space, i.e., after whitening of the data through the sample covariance matrix computed over the secondary data set. The same approach is also proposed in [START_REF] Fabrizio | Spatial adaptive subspace detection in OTH radar[END_REF], where the quasi-whitening transformation is presented as a way to face with the absence of knowledge about the interference subspace. Following the above mentioned approach, in [START_REF] Bandiera | An ABORT-like detector with improved mismatched signals rejection capabilities[END_REF] it is assumed that the useful and the fictitious signals are orthogonal in the "truly" whitened observation space, i.e., after whitening with the true noise covariance matrix. The resulting detector, called the whitened-ABORT (W-ABORT), exhibits good selectivity properties at the price of a performance loss for matched signals.

Mainlobe and/or sidelobe targets have also been represented using the tools of subspace detection in [START_REF] Gini | Matched subspace CFAR detection of hovering helicopters[END_REF]- [START_REF] Kraut | Adaptive subspace detectors[END_REF] or constraining the corresponding steering vector to belong to a cone [START_REF] Maio | Robust adaptive radar detection in the presence of steering vector mismatches[END_REF]- [START_REF] Besson | Detection of a signal in linear subspace with bounded mismatch[END_REF].

Another class of receivers designed to deal with the problem of steering vector mismatches is that of the so-called two-stage detectors, i.e., detection architectures composed by cascading two detectors with different behaviors: the overall one declares the presence of a target if the cell under test survive both detection thresholdings, see [START_REF] Richmond | Performance of the adaptive sidelobe blanker detection algorithm in homogeneous clutter[END_REF]- [START_REF] Bandiera | Advanced radar detection schemes under mismatched signal models[END_REF]. Furthermore, the detector proposed in [START_REF] Kalson | An adaptive array detector with mismatched signal rejection[END_REF] is a special case of the more general class of tunable (possibly space-time) detectors which have been shown to be an effective means to attack detection of mainlobe targets or rejection of sidelobe ones [START_REF] Kalson | An adaptive array detector with mismatched signal rejection[END_REF], [START_REF] Bandiera | One-and two-stage tunable receivers*[END_REF].

Most of the above papers rely on the assumption that a set of secondary data, namely radar returns free of signals components, but sharing certain properties of the noise in the data under test, is available. Such secondary data are usually used to come up with fully-adaptive detection schemes. However, it has been evidenced that the homogeneous assumption for the secondary data is an idealized situation [START_REF] Klemm | Principles of Space-Time Adaptive Processing[END_REF], [START_REF] Melvin | Space-time adaptive radar performance in heterogeneous clutter[END_REF], and that nonhomogeneous environments are more commonly encountered. This fact calls, in turn, for the necessity to design adaptive algorithms capable of working with a number of secondary data as small as possible. To this aim, the tools of Bayesian estimation can be adopted, which allow to obtain general and flexible models, without very restrictive assumptions [START_REF] De Maio | Adaptive radar detection: A Bayesian approach[END_REF]- [START_REF] Hao | Bayesian radar detection with orthogonal rejection[END_REF]; however, the quoted papers mainly deal with the problem of modeling the noise characteristics rather than the signal ones. [START_REF] Coluccia | A tunable W-ABORT-like detector with improved detection vs. rejection capabilities trade-off[END_REF] is a first attempt to introduce randomness in the fictitious signal.

In this paper, we use Bayesian statistics to address the problem of adaptive radar detection of point-like targets under steering vector mismatches. More in detail, we extend the ABORT framework of [START_REF] Pulsone | Adaptive beamformer orthogonal rejection test[END_REF], [START_REF] Bandiera | An ABORT-like detector with improved mismatched signals rejection capabilities[END_REF] to the case where also the useful and the fictitious signals (in addition to the disturbance covariance matrix) are modeled as random quantities with some preassigned a priori distribution. We treat both the case where the useful and the interfering signals are orthogonal in the original space and the case where they are orthogonal in the whitened observation space. We propose ad hoc detection strategies based upon the likelihood ratio principle in which the unknown quantities are estimated according to several criteria. The performance assessment, carried out by Monte Carlo simulation, shows that some of the proposed solutions can provide good selectivity properties while retaining an optimal performance for matched signals. Remarkably, they are especially attractive when the number of secondary data is very small and the conventional detectors cannot be used.

The remainder of the paper is organized as follows. Section II is devoted to the problem formulation while Section III addresses the design of the proposed detectors. Section IV presents the performance assessment and, finally, Section V contains the conclusions of the work.

II. PROBLEM FORMULATION

We assume the radar is equipped with a linear array formed by antennas that collect samples from the range cell under test (CUT). The signal received from the CUT could be noise only or a noisy version of the signal backscattered by the target that we model as a coherent target echo. As customary, we suppose that a set of secondary data, free of signal components, but sharing the same statistical properties of the remaining disturbance in the CUT, is available. Secondary data are usually chosen as range cells surrounding the CUT in order to preserve the homogeneity assumption.

We denote by , , the vector containing the returns from the CUT and by , , the secondary data. The problem of detecting the possible presence of a coherent return from a given cell (in range, doppler, and azimuth) is formulated in terms of the following hypothesis testing problem [START_REF] Kelly | An adaptive detection algorithm[END_REF] where

• stands for the signal of interest (known steering vector of the target) and denotes its amplitude, modeled as a complex normal random variable, i.e., , with possibly very large. • and are conditionally independent and identically distributed random vectors drawn from a complex Gaussian distribution with zero mean and unknown, positive definite covariance matrix . More precisely,

. As to , it is assumed to follow a (complex) inverse Wishart distribution with ( ) degrees of freedom and mean , i.e.,

where and denote the determinant and the exponential of the trace of the matrix between braces, respectively, and is given by with denoting the Euler's Gamma function. Note that an inverse Wishart distribution for is a conjugate distribution with respect to the Gaussian model for , which will make derivation of posterior distributions relatively easy. Such a choice is also a convenient way to introduce colored loading in a Bayesian framework. In the following we assume however that , i.e., a noninformative prior, which corresponds to diagonal loading (DL). This has the advantage of not requiring knowledge of the mean of , and at the same time DL is known to be very effective in low sample support [START_REF] Abramovich | Modified GLRT and AMF framework for adaptive detectors[END_REF]. For brevity we will use the notation . • As anticipated in Section I, is introduced to enhance the selectivity of the detector. In fact, it makes the detector less inclined to declare the presence of the nominal signal ( hypothesis) in case of mismatches. is modeled as an unknown random vector taking on values either orthogonal to (

) or conditionally orthogonal to in the whitened space (i.e.,

), where denotes conjugate transpose.

III. DETECTOR DESIGNS

In this section, we propose several detectors that implement a ratio of conditional likelihoods where the conditioning (random) quantities are replaced by proper Bayesian estimates. We consider both orthogonal to and orthogonal to ; for the former case several alternatives are devised.

A. Case of Orthogonal to

Let us first consider the problem under and denote by an matrix whose columns form an orthonormal basis for the subspace orthogonal to , i.e., and , with the identity matrix of order . Since , it follows that for some . The joint likelihood function of , is thus given by

where . We assume that follows a Bernoulli-Gaussian distribution i.e., its probability density function (pdf) is given by (4) where is the Euclidean norm, is the Dirac delta, stands for the probability that , and is possibly very large. We denote this distribution as . An equivalent and possibly more convenient way to represent is to write where is a binary variable, and . From (4), follows a Bernoulli distribution with parameter , i.e., : we denote this distribution as . With some slight abuse, we will write , keeping in mind that is binary. Moreover, is independent of : the latter is Gaussian distributed, with mean zero and covariance matrix , i.e., . We will indifferently use the parametrization in terms of or in terms of , depending on which one is more convenient.

We will investigate three approaches. In the first one, joint estimation of (or and ) and will be conducted, while in a second approach, we will marginalize with respect to , leaving estimation of only. The third method entails an approach à la AMF where detection is carried out on only, assuming is known: an estimate of based on only is then substituted for in the detection statistic.

1) Joint Estimation of and : First observe that under the joint posterior distribution of , , and is given by [START_REF] Gini | Selected list of references on radar signal processing[END_REF] where denotes proportional to.

Let us now derive the conditional posterior distributions of , , and . Since [START_REF] Pulsone | Adaptive beamformer orthogonal rejection test[END_REF] with

(7a) (7b)
It ensues that the posterior distribution of is Gaussian (8) Similarly [START_REF] Gini | Matched subspace CFAR detection of hovering helicopters[END_REF] which implies that [START_REF] Sangston | Structures for radar detection in compound gaussian clutter[END_REF] with given in [START_REF] Gini | Vector subspace detection in compound-gaussian clutter. Part I: Survey and new results[END_REF], shown at the bottom of the page. Finally, we have [START_REF] Scharf | Matched subspace detectors[END_REF] with [START_REF] Kraut | Adaptive subspace detectors[END_REF] This conditional posterior distribution is a complex inverse Wishart distribution with degrees of freedom and parameter matrix .

(

) 11 
Therefore, the conditional distributions , , and all belong to known families and are easy to simulate. This suggests the use of a Gibbs sampler which enables one to obtain the minimum mean-square error (MMSE) estimates of , , and . The Gibbs sampler is summarized in Table I, where it is shown how to sample , , and , thus obtaining the sequences , , and , respectively, using the previously introduced posterior distributions. The MMSE estimates can be obtained by averaging the samples of and after the so-called burning period of duration , i.e., and Under , the likelihood function is given by ( 14)

The posterior distribution of and is then [START_REF] Bandiera | Adaptive CFAR radar detection with conic rejection[END_REF] Since [START_REF] Besson | Detection of a signal in linear subspace with bounded mismatch[END_REF] it follows that [START_REF] Richmond | Performance of the adaptive sidelobe blanker detection algorithm in homogeneous clutter[END_REF] Accordingly, it is straightforward to show that [START_REF] Maio | Rao test for adaptive detection in gaussian interference with unknown covariance matrix[END_REF] where [START_REF] Greco | Radar detection and classification of jamming signals belonging to a cone class[END_REF] The above posterior distributions allow one to obtain the MMSE estimates of , under by resorting again to a Gibbs sampler; accordingly, the corresponding estimates are denoted by and . Based on the above computed estimates, the test is given by [START_REF] Richmond | The theoretical performance of a class of space-time adaptive detection and training strategies for airborne radar[END_REF] where is a threshold to be set according to the desired probability of false alarm (

). This detector will be referred to in the following as one-step detector with rejection in the orthogonal initial space (1S-OIS).

2) Marginalizing With Respect to : An alternative approach consists in marginalizing with respect to the covariance matrix, so as to leave estimation of only under and only under . To be more specific, let us marginalize the likelihood function in (3) with respect to ultimately obtaining [START_REF] Pulsone | A computationally-efficient twostep implementation of the GLRT[END_REF], shown at the bottom of the page, where is given by [START_REF] Greco | Radar detection and classification of jamming signals belonging to a cone class[END_REF]. A straightforward calculation shows that [START_REF] Richmond | Performance of a class of adaptive detection algorithms in nonhomogeneous environments[END_REF] (21) with . Therefore, [START_REF] Bandiera | Advanced radar detection schemes under mismatched signal models[END_REF] with [START_REF] Kalson | An adaptive array detector with mismatched signal rejection[END_REF] The posterior distribution of , is thus [START_REF] Bandiera | One-and two-stage tunable receivers*[END_REF] It ensues that the conditional posterior distribution of is still Bernoulli [START_REF] Klemm | Principles of Space-Time Adaptive Processing[END_REF] with

(27a) (27b) (27c)
As for the conditional posterior distribution of , we have from (25) [START_REF] De Maio | Adaptive radar detection: A Bayesian approach[END_REF] As expected, when , follows its prior Gaussian distribution. However, when , one has a product of Gaussian and Student distributions. In order to obtain the MMSE estimates of and , one could again investigate a Gibbs sampler. For the sampling of , we suggest a Metropolis-Hastings [START_REF] Robert | Monte Carlo statistical methods[END_REF] approach with a proposal distribution that would be a Student distribution, which amounts, in fact, to ignoring the exponential term in [START_REF] De Maio | Adaptive radar detection: A Bayesian approach[END_REF].

Let us now turn to the hypothesis. From ( 14), we can infer that [START_REF] De Maio | Adaptive radar detection: A Bayesian approach[END_REF] with given by ( 19), (30a) (30b) and . The posterior distribution of is thus [START_REF] Bidon | A Bayesian approach to adaptive detection in non-homogeneous environments[END_REF] If one assumes a flat prior for , i.e., , then follows a Student distribution and the MMSE estimate of is simply . On the other hand, with a Gaussian prior for , the posterior is a product of Gaussian and Student distributions. The MMSE estimator cannot be obtained in closed-form but Markov chain Monte Carlo (MCMC) methods have to be looked for, with a Metropolis-Hastings strategy to draw samples from [START_REF] Bidon | A Bayesian approach to adaptive detection in non-homogeneous environments[END_REF]. For the sake of simplicity, we assume that is very large and we simply approximate the MMSE estimate of by .

Finally, the above estimates can be used in the following test statistic [START_REF] Besson | Covariance matrix estimation with heterogeneous samples[END_REF] where indicates equivalence of the statistics for the hypothesis testing problem, and the last line follows from [START_REF] Pulsone | A computationally-efficient twostep implementation of the GLRT[END_REF] and [START_REF] De Maio | Adaptive radar detection: A Bayesian approach[END_REF]. This detector will be referred to in the following as marginalized one-step detector with rejection in the orthogonal initial space (M-1S-OIS).

3) A Two-Step Approach: A third possibility which is worth investigating is a 2-step approach, where is estimated from the secondary data only. This estimate is then substituted for in a test statistic build on only. More precisely, since , it follows that the MMSE estimate of from is simply [START_REF] Bandiera | Knowledge-aided covariance matrix estimation and adaptive detection in compound-gaussian noise[END_REF] which corresponds to a diagonally loaded version of the sample covariance matrix. Let us consider the posterior distribution of . From using ( 4) and ( 6), it follows that [START_REF] Bandiera | Adaptive detection of distributed targets in compound-gaussian noise without secondary data: A Bayesian approach[END_REF] where

(35a) (35b)
Therefore, follows a Bernoulli-Gaussian distribution, i.e., [START_REF] Coluccia | A tunable W-ABORT-like detector with improved detection vs. rejection capabilities trade-off[END_REF] 

With

given by ( 37), shown at the bottom of the page. As a consequence, the MMSE estimate of , conditioned on , is [START_REF] Robert | Monte Carlo statistical methods[END_REF] The MMSE estimate of (conditioned on ) is, see [START_REF] Richmond | Performance of the adaptive sidelobe blanker detection algorithm in homogeneous clutter[END_REF] (39)

These estimates can now be used to construct the following test statistic [START_REF] Besson | Adaptive processing with signal contaminated training samples[END_REF] In contrast to the two previous methods, no MCMC simulation method is required here and the resulting detection scheme remains rather simple. This detector will be referred to in the following as two-step detector with rejection in the orthogonal initial space (2S-OIS).

B. Case of

Orthogonal to Let us now consider the alternative hypothesis that is orthogonal to in the whitened space. Since the subspace spanned by is the orthogonal complement of the one spanned by , it follows that where . This case is going to differ from the previous one since, as will be shown shortly: the likelihood function under will include terms of the form , i.e., a combination of terms that appear in both Wishart and inverse Wishart distributions, thus precluding the implementation of a fully Bayesian approach based on the whole data , .

Similarly to the previous section, we again assume that follows a Bernoulli-Gaussian distribution. Under , the likelihood of is thus given by with the prior distributions still given by and ( 4). The posterior distribution of , is hence (41) with given by [START_REF] Greco | Radar detection and classification of jamming signals belonging to a cone class[END_REF]. In this case, we have In contrast to the case , the posterior distribution does no longer belong to a known family (due to the terms in and in the trace) and therefore it does not seem feasible to draw samples from it. Accordingly, marginalization with respect to is not feasible.

In order to circumvent this problem, we again turn to a 2-step approach à la AMF, i.e., i) assume is known and devise a test from only and ii) replace by its MMSE estimate from the training samples. The latter is still given by [START_REF] Bandiera | Knowledge-aided covariance matrix estimation and adaptive detection in compound-gaussian noise[END_REF].

Let us now turn to the first step which consists of deriving a test based on only, assuming that is known. Under , is given by (44). It follows that the MMSE estimate of , which we denote as , is simply

Under , recalling that , the posterior distribution of is still given by ( 17) and consequently the MMSE of is simply

For the sake of simplicity, we will set in the previous equation, which amounts to a flat prior for . The decision statistic takes the following form (50)

We would like to emphasize that this last approach is quite simple, as the MMSE estimate of (based on only) and the MMSE estimates of or (conditioned on ) are given in closed-form. This detector will be referred to in the following as two-step detector with rejection in the orthogonal whitened space (2S-OWS).

IV. PERFORMANCE ANALYSIS

The performance analysis is conducted by Monte Carlo simulation. We resort to independent trials to evaluate the thresholds necessary to ensure a preassigned value of and to independent trials to compute the probabilities to decide for when a useful signal is present . We consider a scenario with and . We generate , as independent random vectors ruled by a complex Gaussian distribution with zero mean and (deterministic) covariance matrix

, where the clutter covariance matrix is Gaussian-shaped, namely it is Toeplitz with first row ; the power of the thermal noise is , so that the clutter-to-noise ratio (CNR) is 10 dB.

The steering vector of the target assumes a normalized Doppler frequency , a velocity such that the target competes with noise. The amplitude of the target is generated as a complex normal random variable; the signal to noise ratio is defined as and simulation results are reported as a function of the SNR.

The thresholds of the detectors are set to guarantee a chosen by considering a noise-only hypothesis ( ), since we are interested in assessing the performance of the receivers in terms of detection power (for matched steering vector) as well as their selectivity (for mismatched steering vector). The values of the main parameters used to implement the detectors are reported in the Table II.

For comparison purposes we consider some natural competitors for the problem at hand. Obvious references are the Kelly's detector [START_REF] Kelly | An adaptive detection algorithm[END_REF] and the W-ABORT [START_REF] Bandiera | An ABORT-like detector with improved mismatched signals rejection capabilities[END_REF]. Furthermore, we consider also a generalization of the W-ABORT, hereafter referred to as TW-ABORT, which exhibits improved detection power vs selectivity trade-off, provided its tuning parameter is chosen in the appropriate range (see [START_REF] Coluccia | A tunable W-ABORT-like detector with improved detection vs. rejection capabilities trade-off[END_REF]).

The case is shown in Fig. 1 for two representative values of the parameter in its lower and higher region (so as to assess the performance in the whole range omitting redundant intermediate values). As mentioned, for the sake of comparison we report also the Kelly's detector, the W-ABORT, and the TW-ABORT (with ). From Fig. 1 it is apparent that the Bayesian detectors are generally very powerful with superior performance especially at low to intermediate SNR; the 2S-OWS is always better than all other competitors, including the Kelly's detector even at high SNR; the M-1S-OIS conversely shows a performance degradation, more severe for higher . The comparison confirms the smaller loss of TW-ABORT with respect to the Kelly's detector compared to the W-ABORT.

Lower values of are critical since for the matrix becomes singular hence all detectors involving such a matrix cannot be computed; in fact, as approaches the performances of the competitors severely degrade. Fig. 2 reports the at the onset of the critical region, i.e., for and : it is apparent that, although the classical detectors are still computable, 1 their performance are not acceptable when the number of secondary data is small. It is therefore quite interesting that the performances of the proposed detectors are conversely satisfactory also when a limited number of training data is available, and show a certain robustness to variations of .

To assess the selectivity of the proposed detectors, we simulated a target with a mismatched steering vector having normalized Doppler frequency , where (so the matched case analyzed above is trivially obtained for ). Fig. 3 reports the case : it is apparent that Bayesian detectors, besides being very powerful, can also be more selective than the Kelly's detector; a clear ranking can be identified, with M-1S-OIS the most selective (among the proposed detectors) and 2S-OWS the least selective, comparable to the Kelly's detector. In general, however, none of the detectors is as selective as the W-ABORT. The TW-ABORT confirms an improved power vs selectivity trade-off compared to W-ABORT and Kelly's detector. The relative performances for other values of the parameters are similar, hence figures are omitted. For and these considerations are confirmed, 1 Just the Kelly's detector and W-ABORT are reported in order not to burden too much the figure. except that the performance of the M-1S-OIS slightly worsens, as shown in Fig. 4 (the curves for are very similar hence omitted).

It is worth noticing that the superior detection power of the 2S-OWS is traded-off with less selectivity compared to the Kelly's detector, while the other proposed detectors are just slightly worse in (compared to the 2S-OWS) but much better in selectivity. As a whole, the analysis suggests that a palette of different trade-offs is possible, with the class of detectors based on the Bayesian approach exhibiting superior performance compared to the classical approaches; this is especially remarkable in case of a limited number of secondary data, when non-Bayesian approaches fail.

We investigated also the sensitivity of the detectors to errors in the parameters assumed for setting the threshold. In particular, we analyzed how the changes when assuming under a covariance matrix different from the real one. In fact, the superior performance of the proposed detectors could result, in principle, from a trade-off with the constant false alarm rate (CFAR) property, while the Kelly's detector and the W-ABORT are CFAR. To investigate this point, we set the threshold by using , where denotes a chosen one-lag correlation coefficient. Results for and are shown in Fig. 5, where the value of the true one-lag correlation of the clutter is reported in abscissa. It is apparent that the proposed detectors are quasi-CFAR (with respect to the one-lag correlation coefficient) for , with fairly limited departure of the curves from the straight line in for both sides of the mismatch, i.e., an assumed correlation higher or lower than the true one, respectively. As reduces, this property becomes weaker for all proposed detectors but for 1S-OIS, which is somewhat more robust to these variations; the case is reported in Fig. 6. Finally, for the sake of completeness, some results in terms of , selectivity, and sensitivity are reported in Fig. 7 for the case , i.e., when the number of training data is very limited. The simulations basically confirm the previous considerations, except for some degradation in the "CFAR property", which as already said is traded-off for whenever conventional approaches are not applicable.

V. CONCLUSIONS

In this paper, we have considered the problem of adaptive radar detection of point-like targets in presence of noise with unknown spectral properties. To cope with a limited number of training data, a Bayesian framework has been adopted at the design stage, modeling the noise covariance matrix according to a complex inverse Wishart distribution. In order to come up with detectors with good rejection capabilities, the possible presence of a fictitious signal under the null hypothesis has been modeled probabilistically, as opposite to the conventional ABORT-like approach. We have devised several detectors based on the ratio of conditional distributions under the two hypothesis, where the unknown random parameters are replaced by MMSE estimates based on one-step or two-step procedures. Both the case orthogonal to and orthogonal to have been addressed, obtaining four new detectors with different complexity and different behavior in terms of detection power vs selectivity trade-off. Simulation results have shown that satisfactory performance can be obtained even assuming a limited number of training data. Thus, the proposed detectors seem good candidates to conceive augmented schemes that also select training data by discarding possible contaminated returns. The selection processing might be based on the results contained in [START_REF] Aubry | Covariance matrix estimation via geometric barycenters and its application to radar training data selection[END_REF] or specifically designed within the Bayesian framework by following the lead of [START_REF] Besson | Adaptive processing with signal contaminated training samples[END_REF].
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