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Dynamics of fibered endomorphisms of P*

Christophe Dupont and Johan Taflin*
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Abstract

We study the structure and the Lyapunov exponents of the equilibrium measure
of endomorphisms of P¥ preserving a fibration. We extend the decomposition of the
equilibrium measure obtained by Jonsson for polynomial skew products of C2. We
also show that the sum of the sectional exponents satisfies a Bedford-Jonsson formula
when the fibration is linear, and that this function is plurisubharmonic on families of
fibered endomorphisms. In particular, the sectional part of the bifurcation current is
a closed positive current on the parameter space.
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1 Introduction

Let f be a holomorphic endomorphism of P* of degree d > 2 which preserves a rational
fibration parametrized by a projective space i.e. there exist a dominant rational map
7: P ——5 P and a holomorphic map 6: P" — P such that

mof=0om. (1.1)

The generic fiber of 7 has dimension ¢ := k — r. Another way to express ([LI]) is that
f permutes the fibers of 7 and this permutation is given by 6. We are interested in the
relationships between the dynamics of f and the one of 6.

This type of maps has been recently used to exhibit interesting dynamical phenomena
in P? (see [Duj16], [ABDT16], [BT17], [Duji7], [Tafi7]). All these examples, except [BT17],
come from polynomial skew products of C2, whose dynamical properties have been studied
by Jonsson in [Jon99]. It is therefore interesting for future examples to extend the results
of [Jon99] to a broader framework. Our initial motivation was to study the particular case
where 7 is the standard linear fibration defined by 7[y : z] = [y] with y := (yo,...,y.) €
C*! and z = (2o, ... ,2¢g—1) € C%. However, some of the techniques can be extended to
a more general setting. In what follows, we choose the setting of each result in order to
avoid unnecessary technical details. We refer to the end of this introduction for the possible
scope of the techniques, in particular when k = 2 thanks to the works of Dabija-Jonsson

, and Favre-Peirera on endomorphisms of P? preserving a
(D.Jog], [D.110]) : p p g

fibration, a foliation or a web.
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Green currents and Lyapunov exponents — The maps f, m and 6 are given by
homogeneous polynomials and a simple computation shows that f and 6 have the same
degree. Both maps have a Green current, T and Tj respectively, which are positive closed
(1,1)-currents with continuous local potentials. Their self-intersections are well-defined
and their supports define dynamically meaningful filtrations

Ji(f) =supp(T}) and _7;(6) = supp(T}),

forie {1,...,k} and j € {1,...,r}. The equilibrium measures of f and 6 are defined by
pp = ij“' and pg = Ty. Since f and 6 are semi-conjugated by m, a natural question is
whether there exists a relation between T} and the pull back of Ty by 7. Our first result
gives such a relationship if ¢ > ¢g. More precisely, we will see in Section 2] how to define
7Ty and if S denotes the result normalized by its mass,

o Ty
Tl

then we have the following result.

Theorem 1.1. Let f: P* — P and 6: P" — P" be two endomorphisms of degree d > 2.
Assume there exists a dominant rational map 7: PF ——s P" whose indeterminacy set I1()
is disjoint from Zq(f) and such that 0 om = wo f. Then for j € {1,...,r}, the current
S is well-defined, satisfies ST # TJZ and T}Hj = TJ? A S7. In particular, pf = TJ? ANS" and
Tsfbf = Ho-

Let us emphasize that the proof only relies on the properties of the currents 7' and
Ty and is coordinate free. Using the classification obtained in [D.JO§]|, one can check easily
that the assumption Z,(f)NI(m) = @ is always satisfied when & = 2, in which case ¢ = 1.
This is also the case for the standard linear fibration in any dimension (see Lemma [5.1).
In general, we know no example where this assumption does not hold.

The main point in Theorem [L.1lis the formula py = TJ? A S" which can be seen as a
generalization of the decomposition of pf obtained by Jonsson [Jon99] for polynomial skew
products of C2. Indeed, for jg-almost every a € P" the fiber L, := 7—1(a) has dimension
q and we can define the probability measure

T
“T Tl

Corollary 1.2. Let ¢: P¥ — R be a continuous function. Under the assumptions of
Theorem [L1] we have

/Pk ¢(x)dpy(x) = /PT ( 5 (w)dua(x)> dpie(a).

The other results in this paper can also be seen as consequences of the formula py =
T}? A S™ and the main technical difficulties come from the fact that the currents S and [L,]
are singular. As a direct consequence of Theorem [Tl we obtain in the following result
that if pp is absolutely continuous with respect to Lebesgue measure (i.e. 6 is a Lattés
mapping of P", see [BD05|) then sy is absolutely continuous with respect to the trace
measure opg 1= TJ? A wgy,- Here, wpk (resp. wpr) is the Fubini-Study form on P* (resp. PT)

normalized such that wﬁik (resp. wp,) is a probability measure.

Corollary 1.3. Under the assumptions of Theorem [L1, if g << wp, then py << org.
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That applies for Desboves mappings of P2, studied in [BDMOQT7, Section 4] and [BT17],
they indeed induce a Lattés mapping on a pencil of lines. Let us note that when k = 2, the
property py << or, implies that the smallest exponent of s is minimal, equal to %log d,
see Theorem 3.6]. In particular the Lyapunov exponents of Desboves mappings
are Ay > g = %log d, with d = 4. The following Theorem generalizes that semi-extremal
property to fibered endomorphisms satisfying j1g << wp,. It is a consequence of = pg
and holds for more general smooth dynamical systems.

Theorem 1.4. Let f, m and 6 be as in Theorem [L1. If A is a Lyapunov exponent of
multiplicity m for pg then A is a Lyapunov exponent of multiplicity at least m of py.

Standard linear fibration — For the next results, we restrict ourselves to the cases
where 7 is the standard linear fibration where the result below is already new when k = 2
and 7 = 1. The indeterminacy set I(r) of 7 corresponds to {y = 0} ~ P?! and each
fiber L, = 7~ 1(a) is a linear projective space P? in which I(7) can be identified with the
hyperplane at infinity, i.e. L, \ I(7) ~ C9. If f preserves the fibration defined by 7 then f
acts on each periodic fibers as a regular polynomial endomorphism of C4. This class of maps
have been studied by Bedford-Jonsson in [BJ00]. In particular, they obtained a formula for
the sum of the Lyapunov exponents of the equilibrium measure. More precisely, let R be
a regular polynomial endomorphism of C? of degree d i.e. R extends to an endomorphism
of P? of degree d. We denote by Tg, Critg and Gg respectively the Green current, the
critical set and the Green function in C¢ of R. The restriction of R to the hyperplane at
infinity P?\ C? ~ P9~ ! is an endomorphism of P?~! and we denote by Ag the sum of the
Lyapunov exponents of its equilibrium measure.

Theorem 1.5 (Bedford-Jonsson [BJ00|). Let R be a regular polynomial endomorphism of
C? of degree d. The sum Ag of the Lyapunov exponents of its equilibrium measure satisfies

Ag =logd + Ao + (TE" A [Critg], GR).

We give a generalization of this formula in the fibered setting. To this aim, we introduce
some notations. If 7o f = 0o then we denote by Ay (resp. Ag) the sum of the Lyapunov
exponents of fiy (resp. pg). Theorem [[4]implies that Ay = Ag + A, where A, is the sum
of the Lyapunov exponents of py in the direction of the fibers. The indeterminacy set
I(m) ~ P4~ is invariant by f thus f I(x) can be seen as an endomorphism of P?~! and we
denote by Ay the sum of the Lyapunov exponents of this restriction.

Since f preserves the fibration, the set Crity is not irreducible. Some irreducible com-
ponents of Crity are foliated by fibers of 7 and constitute the “fibered” part of Crity. The
remaining part is its “sectional” part. Indeed, as the standard linear fibration 7 is a sub-
mersion outside I(7), we have a decomposition in terms of currents [Crit¢] = [Co] + [Co]
where [Cu] := 7*[Critg] and [Cy] is the current of integration on the sectional part of Crity
(see Lemma [5.3).

Finally, we define the relative Green function as the unique lower semicontinuous func-
tion G: P — [0, +o0] such that dd°G = Ty — S and min G = 0.

Theorem 1.6. Let f be an endomorphism of P* of degree d > 2 which preserves the
standard linear fibration. Then

Ay =logd+ Ao+ (T§~1 NS A[Co], G).

In particular, Ay > % log d.



The idea of the proof is to apply the formula of Bedford-Jonsson to each n-periodic
fiber of f. Since the current S™ can be seen as the limit of the average of the currents of
integration on the n-periodic fibers, we obtain the above formula at the limit. However,
in order to implement that idea, we need some additional care since the currents involved
are singular.

Families of fibered endomorphisms — We now consider a family (f))xens of endo-
morphisms of P* which preserves the standard linear fibration 7 i.e. there exists a family
(0x)aenr of endomorphisms of P" such that 7o f) = ) o w. The family (f))xeas induces a
dynamical system f(\, z) := (\, fa(z)) on M x P* whose critical set Crity is the gluing of
the critical sets of fy, A € M. In the same way, there exists a positive closed (i, 7)-current

T} on M x P* whose slices are equal to T}k. In [BB07| Bassanelli and Berteloot established

a formula between the currents [Crits] and ij“' and the dd® of Ay: A — Ay, where Ay, is
the sum of the Lyapunov exponents of 117, (see also [Pha05]). They proved that

dd°Ay = p.(Tf A [Crity]),

where p: M x P¥ — M is the projection. This current is called the bifurcation current
Tgis(f) and its support coincides with several bifurcation phenomena in the family (f)xen
(see [BBD13]).

Similar objects can be defined for the family (6))xcns and again, it is natural to inquire
into their interplays with the ones defined for (fy)aeas. Since this family preserves the
fibration, as above the set Crity is not irreducible and we have [Critf] = [Cwo] + [Cs]| where
[Coo] := II*[Critg] with II(A,z) = (A, 7w(x)). This decomposition induces a decomposition
of Tpit(f) in a fibered part and a sectional part. The result below states that the fibered
part of Tgit(f) coincides with Tp;e(6).

Theorem 1.7. Let M be a complex manifold and consider two holomorphic families
(f\)rem and (0x)xerr of endomorphisms of PF and P respectively such that wo fy = 0yox
where 7 is the standard linear fibration. The (1,1)-current Tgit o (f) = Trit(f) — Trir(0)
is positive. Moreover, if S" := II*Ty then

TBif(é?) = p*(Tg ASTA [Coo]), TBifp(f) = p*(Tg ASTA [Cg])

A different way of seeing this result is the following. By Theorem [[4] we know that
Ay = Ay — Ay is the sum of the Lyapunov exponents of ;1y which are not in the Lyapunov
spectrum of 9. Theorem [[L7] yields that A, is a plurisubharmonic function on M and gives
a formula of dd°A, in terms of currents on M x PF,

dd°Ng = p«(TF A S" N [Co]).

Notice that Astorg-Bianchi initiated in [AB18] the study of bifurcations for skew products
of C? and proved in that setting that A, is plurisubharmonic.

Following an idea coming from [AB18§]|, for each n > 1 we can consider the bifurcation
current associated to the dynamics of the family (fx)xeas on the n-periodic fibers. To be
more precise, if A € M and a € P are such that 6)(a) = a then we denote by A(f;\L‘La)
the sum of Lyapunov exponents of ff‘ 1, seen as a polynomial endomorphism of L, ~ P,
Then we define

1

Aon(A) = o

Z A(fr,) and  Tgirn(f) = ddAgp.

0% (a)=a



It is easy to see that if all the cycles of the family (6))rens can be followed holomorphically
on M then A, is plurisubharmonic. Actually, this holds in general and we can express
the current Tgif »(f) in terms Tgifpn(f).

Corollary 1.8. Let (fx)aem, (Oa)renm and m be as in Theorem [L7. For each n > 1 the
function Ag p, is plurisubharmonic and

Tsit o (f) = Jgrolo Twitn(f).

Moreover, if [Perg | denotes the current of integration on {(A,a) € M xP"|0%(a) = a} by
taking into account multiplicities, then

p*(TJ? NII*[Perg ] A [Co])
Tgitn = 7 :

The first part of this result was obtained in [ABI8, Corollary 4.8] in the special case
of skew products of C? under the hypothesis that dd°Ay = 0. And, as observed by Astorg-
Bianchi, a consequence of Corollary [[.§ is that if the dynamics on (f))xeps bifurcates on
one periodic fiber then, asymptotically when n — oo, it bifurcates on a positive proportion
of the n-periodic fibers.

Final remarks and outline of the paper — To conclude this introduction, let us
explain in which setting results similar to Theorem [[LT]and Theorem [[L4] could be obtained.
First, observe that the assumption that the base space is P" is unnecessary as long as
dim(I (7)) < g—1. Indeed, if 7 is a dominant meromorphic map between P¥ and a compact
complex manifold X of dimension r with dim(I (7)) < ¢—1, (¢ = k—r), then the restriction
of 7 to a generic linear subspace of dimension r in P¥ gives a surjective holomorphic map
from P" to X. Then by results in [DHPOS| Section 2 & 3|, X is projective and then by
[Laz84], X is isomorphic to P". Observe that this argument uses the smoothness of the
base. The case with a singular base might appear naturally but goes beyond the scope of
this paper.

Another natural setting is the following. Assume that f is an endomorphism of P* which
preserves a family (Lg)qcx of algebraic sets of dimension g and of degree o parametrized
by a complex manifold X of dimension r, i.e. there exists an endomorphism 6 of X such
that f(L,) = Lg(y)- Tt is natural to expect that under some assumptions on the family
(La)acx and if @ possesses an equilibrium measure jig, the measure p15 can be written as

Py = T]? A ST where
L,
S” ::/[ ]d,ug(a).
X «

Indeed, it is easy to check, using the classifications in [DJ10] and [FPI5] and the proof
of Theorem [[T] that this is the case when k& = 2 and the family (L,).ex defines a web
with algebraic leaves. However, in some of these examples S = T'. This holds for (ii)-(iv)
in [DJI0, Theorem A| and for (ii) in [EPI5, Theorem E]. Otherwise, S # Ty in these
theorems.

Finally, let us mention that results of Dinh-Nguyén-Truong [DNT12|, [DNT15] suggest
that one might expect some of the results above (as m.p1f = 119 and Theorem [[4]) to extend
to the case of dominant meromorphic self-maps of compact Kéhler manifolds with large
(or dominant) topological degree which preserve meromorphic fibrations.

The paper is organized as follows. In Section 2] we give some technical results on the
pull-back and the intersection of currents. In Section Bl and Section @ we prove Theorem




[L1l Corollary M3l and Theorem [[4] respectively. In Section Bl we restrict ourselves to the
cases where 7 is the standard linear fibration and we establish our generalized Bedford-
Jonsson formula in that context. Section [0l is devoted to bifurcations of such maps.

Acknowledgements — The authors would like to thank Charles Favre for useful com-
ments on the preliminary version of this paper.

2 Basics on pluripotential theory

In Section Bl and Section [6] we will intersect currents supported by fibers of a rational map
7: P¥ ——s P" and singular currents or functions. Moreover, we will need that the result
depends continuously on the fiber. It seems complicated to obtain these statements for
an arbitrary dominant rational map 7. The aim of the first part of this section is to give
two results in that direction when 7 is the standard linear fibration. In a second part, we
explain how to define the pull-back 7*7 of a positive closed (1,1)-current 7 on P" by a
rational map and how to define its self-intersections (7*7)7 in the setting of Theorem [LT}

2.1 Continuous families of currents

Let 7: P¥ ——» P" be the standard linear fibration defined by n[y : z] = [y] where y :=
(Y0, ---,yr) €C"™and z = (20,...,24-1) € C4. We recall that the indeterminacy set I ()
of 7 corresponds to {y = 0} ~ P4~ ! and each fiber L, := 7—1(a) is a projective space in
which I(7) can be identified with the hyperplane at infinity, i.e. L, \ I(7w) ~ CY.

In the following two results, we consider an integer 0 < [ < k and a family (R,)sepr
of positive closed (k — I,k — [)-currents in P¥ such that a — R, is continuous. We also
consider an open set U C P* and an upper semicontinuous function v: U — [—00, 0] such
that dd“v = Ty — T5, where T} and T5 are two positive closed (1, 1)-currents where T5 has
continuous local potentials.

Lemma 2.1. Assume there exist two analytic subsets X, Y C P* such that v is continuous
on U\X and such that for alla € P" we have supp(R,) C L,NY and dim(L,NXNY) < [—1.
Then, for all a € P" the current vR, is well-defined on U and depends continuously on a.

Proof. The facts that vR, is well-defined and that its mass is locally uniformly bounded
with respect to a follow easily from the Oka inequality obtained by Fornaess-Sibony [FFS95].
In order to give some details, we freely use the terminology coming from [FS95]. Let a € P"
and z € U. Since dim(L,NXNY) < [—1, there exists an (k—1{,) Hartogs figure H disjoint
from L,NXNY such that its hull Hisa neighborhood of x in U. By continuity of a +— L,
there exists a neighborhood V of a such that L,NXNYNH = & for all ' € V. Since v < 0
and ddv = T1 — T5 where T5 has continuous local potential, up to a continuous function
v is equal to a plurisubharmonic function on H and [F'S95, Proposition 3.1] implies that
vRy is well-defined for all a’ € V. Moreover, again possibly by exchanging v by v + ¢ with
¢ continuous, we can assume that vR, < 0 and dd(vR, ) > 0 on H. Hence, we can apply
the Oka inequality [FS95] Theorem 2.4|. If K is a compact set contained in the interior of
H then there exists a constant C' > 0 such that for all @’ € V

[vRar ||l < ClloRa||mr-

Since a — R, is continuous and v is continuous on Uy cysupp(Ry )N H, we obtain that the
mass of v R, is uniformly bounded on K for a’ € V and we conclude using the compactness
of P".



To prove the continuity of a — vR,, let (a,)n>1 be a sequence in P" converging to ay.
Since vR, has locally uniformly bounded mass, we can assume that vR,, converges to a
current R'. We must have

suppR’ C limsup(supp(R,,)) C limsup(L,, NY) C L, NY.
n—0o0 n—oo
On the other hand, by continuity of a — R, and since v is continuous on U \ X, we have
that R' = vR,, outside L, NY N X which has dimension smaller than or equal to [ — 1.
Hence, the support theorem of Bassanelli [Bas94] for currents T such that T' and dd°T
have order 0 implies that R’ = vR,, on U. 0

Lemma 2.2. Let (v,)n>1 a sequence of probabilities in P" which converges to v. Let us
define R = fRadl/ and R, = fRadyn. If vR, is well defined on U and a — vR, is
continuous then vR, and vR are well-defined on U and satisfy vR, = vaadun, vR =
vaadV and lim,,_,~, VR, = vR.

Proof. Let ¢ be a (I,1) smooth form with compact support in U. We can assume that the
support of ¢ is contained in a small ball B C U on which v = u; — us where uy, uo are
plurisubharmonic on B and ws is continuous. Hence, there exists a decreasing sequence
(u1,5)>1 of continuous plurisubharmonic functions on B converging pointwise to u;. Define
vj = u1j — ug. Since vR, is well defined then (v;R,,¢) decreases to (vRq, @) by [ES95,
Corollary 3.3]. In particular, if we define v;(a) := (v;R,, ¢) and ¢(a) := (vR,,¢) then
1; decreases pointwise to ¢» which is a continuous function since a — vR, is continuous.
Hence, by Dini’s theorem 1); converges uniformly to 1.

On the other hand, by monotone convergence theorem (v;R,¢) decreases to (vR, $)
which is potentially equal to —oo. But, by definition of R we have

lim (v;R,¢) = lim [ (vjRq,¢)dv(a) = lim [ jdv = [ Ydv = / (VRq, ¢)dv(a),
j—o0 j—oo Jpr j—oo Jpr Pr r

ie. vR = vaadu. The same holds for R,,, and then lim,, o, vR,, = vR since a — vR, is

continuous. Ol

2.2 Pull-back of (1, 1)-currents by rational maps

In this subsection, m: P¥ --s P" is a dominant rational map with dim(I(7)) < ¢ — 1.

As 7 is not supposed to be a submersion on P¥\ I(7), the definition of the pull-back
operator m* on currents requires some work. However, we will only consider currents given
by wedge products of positive closed (1, 1)-currents with continuous local potentials, which
greatly simplifies the problem. If 7 is a positive closed (1,1)-current on P" which is equal
locally to dd‘u then my, ;)7 can be defined locally on P*\ I(7) as dd®uom. Méo [Méa96]

" )T is continuous. Moreover, since I(7) has codimension at least

|PE\I(m
2, the trivial extension of w

proved that 7 +— =
B\ I
denote by 7*7. We summarize in the following proposition the properties about pull-back
we shall need in the sequel. Recall that if Ry and Ry are two positive closed currents on
P* of bidegree (1,1) and (4, j) respectively then the wedge product Ry A Ry is well-defined

if the local potentials of R; are integrable with respect to Ry A w]l;,:] (see e.g. [BT82)).

)7 to P* is again a positive closed (1,1)-current that we

Proposition 2.3. Let w: P* —=» P7 be a dominant rational map whose indeterminacy set
has a dimension smaller than or equal to q — 1. If T is a positive closed (1,1)-current of
mass 1 on P" then ||7*7|| is equal to the algebraic degree deg(m) of w. If T has continuous



local potentials then the self-intersections (7*7)7 are well-defined for j € {1,...,r}. The
currents (7*7) coincide with the trivial extension of the standard pull-back of 77 if T is
smooth. Moreover, if (uy) is a sequence of continuous functions which converges uniformly
to 0 then the currents T, ‘= T + dduy, satisfy lim,, o (7*7,)) = (7*7)7.

Proof. Let T be a positive closed (1,1)-current of mass 1 on P". As we have said, in [Méo906]
Méo proved that W&,k\ 1(m7 depends continuously on 7. On the other hand, since I(7) has
codimension at least 2, the trivial extension, denoted by 7*7, is a positive closed (1,1)-
current on P*. Moreover, as in the proof of Lemma 1] the Oka inequality obtained in
[FS95] implies that the mass of 77 is bounded independently of 7. Hence, 7+ 7*7 is also
continuous. Indeed, if (7,,)n>1 is a sequence of positive closed (1, 1)-currents converging to
7 then (7*7,,)p>1 has uniformly bounded mass on P* and using the continuity of Wﬁpk\ 1)
7 on P*\ I(n). Finally, R = 7*7 since

%
PR\ I (T
I(m) has codimension at least 2. To see t‘ha\t (H;'*TH is in fact independent of 7, observe
that if 7 = wpr + dd°u where u is a continuous function, then u o 7 is in L'(P*) and
(dd°(u o ﬂ),w]’;;1> = 0. Moreover, (7*7) — (7*wpr) = dd(u o ) so ||7*7|| = ||7*wpr||. The
general case follows by continuity since smooth forms are dense in the space of positive
closed (1,1)-currents on P". Since ||7*7|| is independent of 7, we obtain that it is equal to
deg(m) by taking an hyperplane in P".

We now assume as in the statement that dim(7(7)) < g — 1. Let R be a positive closed
(4, )-current on P* with j € {1,...,r}. If 7 has continuous local potentials then 7*7 has
continuous local potentials except on I(7), i.e. the set of points where these local potentials

are unbounded is contained in I(7). Hence, using the assumption on dim(/(7)) we can

each limit value R has to be equal to w

deduce from [FS95] that these local potentials are integrable with respect to R A w]];,:] and
thus (7*7) AR is well-defined. In particular, (7*7)7 is well-defined for j € {1,...,r+1}. The
fact that these currents coincide with the trivial extension of W&,k\ () (77) if T is smooth
and j € {1,...,r} follows exactly as above. Observe however that for j = r + 1, 7*(7" 1)
vanishes whereas (7*7)"*! has mass deg(7)"*! and thus differs from 0. This implies that the
support of (7*7)"*1 is contained in I(7) and thus dim(I (7)) > ¢—1i.e. dim(I(7)) = ¢— 1.

We prove the last assertion by induction. The case j = 1 follows from the first part of
this proof. Assume the assertion is true for j — 1 with j € {2,...,r}. Observe that since
(u,) converges uniformly to 0, P \ I(7) is covered by open sets € where we can write
71 = dd‘v and 77, = dd“v, where (v,) is a sequence of continuous functions converging
uniformly to v. Hence, if ¢ is a smooth form with compact support on §2 then

(T m)) — (w*7), 6) = (dd°(vp(n" 7)™ — w(7*7)'71), 9)
= (w((7* 1) 7 — (7* 7)), ddC o) + ((vp — v) (7 7,) T, ddC ).

The inductive hypothesis implies that the first term in this sum converges to 0. The second
term also converges to 0 since (v, — v) converges uniformly to 0. Hence, any limit value
of (7*7,)7 has to be equal to (7*7)7 on P\ I(r) and this equality extends to P* since
dim(I(m)) <q— 1. O

Remark 2.4. The degree deg(m) of 7 is not necessary equal to 1. If f preserves the fibration
defined by 7 then the fibration defined by wo [ is still preserved by f and if f has degree
d then deg(m o f) = ddeg(r). Another example in our setting is the binomial pencil of P?
considered in [DJOS] and [FP11] where the degree is an arbitrary integer.

Remark 2.5. During the above proof, we have shown that dim(I(m)) > q — 1. This fact
also follows from the definition of I(m) as the common zeros of the r + 1 homogeneous
polynomials defining .



3 Structure of the Green currents

This section is devoted to the proofs of Theorem [Tl Corollary and Corollary
Let f be an endomorphism of P* of degree d > 2. Recall that the Green current Ty of
f can be defined as

Ty = lim —f Wpk .

TL*)OO

We refer to [DS10] for a detailed study of this current. In what follows, we will use that
Ty has Holder local potentials and if [ € {1,...,k} then its self-intersection T} satisfies

Tj = limy oo d™ " [ why
Proof of Theorem[L. First observe that since I(m) N _Z,(f) = &, a cohomological argu-

ments implies that the dimension of I(7) is at most qg—1 and 7 satisfies the assumption
of Proposition 23] Using this proposition, we define

R :=deg(m) ‘n*wpr and S :=deg(m) 1n*Ty

which are two positive closed (1, 1)-currents of mass 1. We also deduce from I(m)N_Z,(f) =
@ that there exists a neighborhood U of I(m) such that #,(f)NU = @. Since R is a smooth
form on P*\ I(r), there is a constant C' > 0 such that R < Cwpr on P¥\ U and thus

TANR < CjT]? A why, on P¥ for 1 < j < r. Applying the operator d—™Mat) fr* 4o this

inequality gives
1 . .
q nx pj s all n*x
Tf/\<_dnjf R>§C’Tf/\<—dn]f >

The equidistibution results for f and the fact that T} has continuous local potentials

see imply that the right-hand side converges to CITI . On the other hand, as
f
mo f" =0"om we have by Proposition

1 , 1 1 .
T4 — v RJ Tq — ™l Tq e ]T .
fA<dwf f ) (deg< ! ”P) h <deg<w>fdw ”P)

Recall that d~"0™ wpr = Ty + dd‘u,, where u,, are continuous functions converging uni-
formly to 0. Hence, by Proposition I?EI the sequence above converges to T}I A S7 and thus

T}? AST < C]T}HJ Moreover, is invariant by d—(4t7) f* and T}Hj is extremal in
the cone of such currents (see NS%@“ when ¢ + 7 = 1 and [DS09] for the general case) so
TINST =T

The proof of S/ # TJZ for j € {1,...,r} simply comes from the fact (observed in the
proof of Proposition E3)) that S"*! is supported in I(7) which has dimension at most
g — 1. On the other hand, since Ty has Hélder local potentials, it follows from [Sib99] that

A S™H1=7 gives no mass to analytic sets of dimension ¢ — 24 j > ¢ — 1.

Finally, in order to prove the last assertion, observe that since I(7) N _#,(f) = @, the
current Tgﬂ = TJ? A S7 satisfies
ﬂ*(Tg NST) = deg(ﬂ)_jw*(T}I AT T)) = deg(m) ™ (W*TJ?) NTY. (3.1)

The current 7, T} is positive and closed of bidegree (0,0) on P" thus it is a positive multiple
of [P"]. Since m. preserves the mass of measures, the equation ([BJ]) with j = 7 implies

m.Tf = deg(m)"[P"] and thus ﬂ*(T}]ﬂ) deg(m)"~IT]. In particular, mji; = pp. O



Proof of Corollary[Z.2 We shall use the formula ;1 = T}] A S". The proof would have

been straightforward if 7 were a submersion on P¥\ I(7) and the current 7 }1 were smooth.
However, since Ty has continuous local potentials, we can use regularization as follows.
Let ¢: P — R be a continuous function. The critical set Crit, of 7 is by definition
the union of I(7) with the set of points in P* \ I(7) where the differential of 7 has rank
strictly less than r. This set is algebraic so the measure iy gives no mass to it. Hence, if
Xn: P¥ — [0,1] are smooth functions with compact support in P¥ \ Crit, which converge
locally uniformly to 1 on P*\ Crit, then <,uf ¢) = limp o0 (e r, Xn@). Moreover, for puy-

almost all a € P” the algebraic set L, has dimension ¢ and L, N Crit,; has

lP’k I(m ( )
dimension ¢ — 1. In particular, the current| [L\ ]( I)las mass deg(m)” and coincides with the
P\ Crit q. This implies that if ¥ is a smooth (g, ¢)-form on P* then
the function 7, (x,¢V) on P is equal pg-everywhere to a — (¥ A [Lg], xn®)-

On the other hand, the current 7 has continuous local potentials so there exists a
continuous function g such that Ty = wpr + dd®g. Let (g;);>1 be a sequence of smooth
functions converging uniformly to g and define T} := wpr + dd®g;. The uniform convergence
implies that if R is a positive closed (r,r)-current then qu A R converges to T}I A R. Hence,

T

trivial extension of 7

Py = T]? A S" implies
_ . _ . . q r _ . . q r
(g 0) = lim (up, xnd) = lim lm (TEA ST, xn¢) = lim lim (g, . (xnd 7)) / deg ()

~ tm tim [ (A hdus(a) = tim [ (798 P ) dpa(a)

n—00 l—00 Jpr deg(m) Pr deg(m)
La]
= [ (T} A La d
T A ot dldata).
where the last equality comes from the fact that for pg-almost all a, L,NCrit; has dimension
g—1and T}? A [Lq) gives no mass to such sets. O

By the Radon-Nikodym theorem, the following result implies Corollary

Corollary 3.1. Under the assumptions of Theorem [I1], if there exists a positive wp,-
integrable function h such that pg = hwp. then there exists A > 0 such that py < A(ho
) s In particular, py << o7

Proof. Let R := deg(m) !7*wpr as in the proof of Theorem [l The same theorem gives

that pp = deg(w)*"T}’ (m*pg) = de]gz:)r T# A R". On the other hand, we have seen in the

proof of Theorem [[T] that Tq AR < C”JTq thus py < <deg( ))T (hom) o7y O

4 Lyapunov exponents

This section is dedicated to the proof of Theorem [[L4l The main ingredients are the formula
Tully = [, the fact that these measures put no mass on proper analytic sets and the local
uniform convergence in Oseledec Theorem. We refer the reader to [BP13| Chapter 5-6] for
the details on Oseledec theorem we shall need.

Proof of Theorem . First, let us set some notations. Let Crity be the critical set of
. We denote by P" := {(yn)nez € P"[0(yn) = Ynt1} the natural extension and by )
the left-shift on P". The projection proj: P" — P’ defined by proj((yn)nez) = yo sat-
isfies @ o proj = proj o 9. The measure ip has a unique lift g which is invariant by )
and such that projy,its = pe. In what follows, if ¥ is in P we will write Yo instead of

10



proj(y). The measure [y inherits several properties from pg. Since pg is ergodic and inte-
grates the quasi-plurisubharmonic functions, it follows that fig is ergodic, gives no mass to
UpezP (proj~!(Crity)) and integrates the functions log || DOF!||. In particular, for fig-almost
all ¥ = (yn)nez the differentials

D" == (D, 0" ", Dyf" := Dy, 0"

are well defined for n > 1. Moreover, by Oseledec theorem, there exist distincts numbers
A1,...,As € Rand a 6-invariant set Y C P, included in (P"\ Critg)?%, such that fig(Y) = 1
and for each § € Y the tangent space T, [P" admits a splitting T,,,P" = @;_, V;(y) which
satisfies

~

Dy, 0(Vi(5) = Vi(B(5) and T = log]| D" (w)] = A;

uniformly for u € V;(y) with |lu]| = 1. By definition, the multiplicity of A; is the dimension
m; of Vi(y). Moreover, the subspaces V;(y) can be characterized by V;(y) \ {0} = {u €
TyoP™ \ {0} | limy, s 400 ™ log || D™ (u)|| = A;}.

The natural extension P* , the map fand the measure jiy are defined in the same way
with respect to f and since m o f = 6 o w, the map = lifts to a map 7: Pt — P such
that 7 o J/C\: 0o 7. The uniqueness of the lift jig of py and the fact that mpup = pg imply
that 7.jif = fp. In particular, the set 77(Y) has full /i;-measure. The measure fif also
admits a Oseledec decomposition on a J/”\—invariant set Z of full fij-measure. And since the
measure /¢ gives no mass to proper analytic sets, if Crit, denotes the critical set of 7 (i.e.
the union of I(7) with the set of points in P* \ I(7) where the differential of 7 has rank
strictly less than r) then the f—invariant set

X :=2Zna Y (Y)n (P*\ (Crit; U Crit,))”

also has full is-measure.
Now, fix i € {1,...,s} and for € X consider the subspace of T,,P¥ defined by

Wi(®) = (Daem) ™' (Vi(7(2))).

As X is disjoint from the critical sets of f and 7, these subspaces have dimension m; + ¢

o~

and define a D f-invariant distribution i.e. Dy, f(W;(Z)) = W;(f(Z)). Therefore, Oseledec
theorem applies to the measurable cocycle defined by the action of Df on W;(Z) and
induces fig-almost everywhere a decomposition Wj(z) = @2.:1 F;j(x) for some integer
[ > 1. Since this cocycle is a sub-cocycle of the standard one, each Fj;(Z) is associated to
a Lyapunov exponent \; of uy and satisfies

Fy(@)\ {0} = {v € Wi@\ {0} | _Tim_n~log | Dz"(0)]] = Aj}.

In particular, dim(F;;(Z)) is bounded by the multiplicity of \;. Now we show that if Fj;(Z)
is not contained in ker D, 7 then \; = A;, that property will be sufficient to conclude.
Solet € X and j € {1,...,1} such that Fj;(Z) ¢ ker Dy m. In particular, there exists
v € F3j(7) \ ker Dyym and so

1 1
A= lim =log | Ds(0" — lim =log|Ds n
im —log||Dz(0" o m)(v)l| = lim —log [ Da(m o f*)(v)]

n—-+4o0o

n—+oco n

1
< lim -~ log [Daf"(w)] = A

11



Here, the inequality comes from I(7) Nsupp(ps) = @ and thus, there exists C' > 0 such
that || D,7(v)|| < C|v| for all x € supp(py) and v € T,P*.

For the converse inequality, observe that since the subspaces W;(z) and Fj;(Z) depends
measurably on z, there exist a constant ¢ > 0 and B C X with fig(B) > 0 such that for each
T € B there is a subspace E(Z) C F;;(Z) of positive dimension satisfying E(&)Nker D, m =
{0} and || Dy, m(v)|| > c|jv|| for all v € E(Z). By Poincaré recurrence theorem, for jip-almost
all T € X there exists an increasing sequence (ky)n>1 of integers such that f*(%) € B for
all n > 1. Therefore, if v, € Fj;(Z) is such that ||v,| = 1 and Dz f* (v,,) € E(f* (%)) then

. 1 k . 1 k
— m — D= f'n < m — D~ n
)‘J li K log H z (Un)H > nh &, log H m(” of )(Un)H

n

~ tim_ é log || Da (0% o 7)(va)|| < As.
Here, the first equality comes from the fact that the convergence in Oseledec theorem is
uniform on the unit sphere of F;;(Z). The last inequality uses a similar argument as well
as the uniform bound || D,m(v)|| < C|jv|| for « € supp(us) and the fact that v, ¢ ker Dy m
since Dz fkn(v,) € E(f*n(2)).

We have shown that if Fj;j(Z) ¢ ker Dy m then A\; = A;. Thus there is a unique
j € {1,...,1} with this property. As dim(W;(z)) = m; + ¢ and dim(ker D, ,7) = ¢, the
dimension of F;;(Z) has to be at least m,. O

5 Generalized Bedford-Jonsson’s formula

In this section, we assume that the fibration 7 is the standard linear fibration 7: P¥ —-» P"
defined by n[y : 2] = [y] where y := (y0,...,y-) € C"" and 2z = (20,...,2,-1) € CZ. We
first analyse some basic properties of maps preserving such a fibration and then we give a
proof of Theorem

As we have said in the introduction, the indeterminacy set of 7w corresponds to {y =
0} ~ P? ! and each fiber L, := 7 !(a) is a projective space P? in which I(7) can be
identified with the hyperplane at infinity, i.e. L,\I(7) ~ C9.If f: P¥ — P preserves such
a fibration then it lifts to a polynomial endomorphism F of C**1 of the form

F(y,z) = (©(y), R(y, 2)),

where y € C™!, z € C? and O, R are homogeneous polynomials. The map © is a lift of
the endomorphism 6 of P" such that § o m = w o f. The inequality [|©(y)|loo < ||[F(y, 2)]co
implies that the functions

o1 1
Ge(y) := lim —Tlog||®"(y)llo and Gr(y,2):= lim —7log|[F™(y, 2)lle,
satisfy Go(y) < Gr(y, 2). The difference of these functions goes down to P* and we define
it as the relative Green function of f, Gly : z| .= Gr(y, z) — Go(y). It is the unique lower
semicontinuous function such that

dd°G =Ty —S and minG = 0.

Here, T is the Green current of f and S := 7*Tj. It is easy to check that G is invariant
(i.e. d'Go f = @), continuous on P* \ I(7) and {G = +oo} = I(n). As we will see in
the proof of the next lemma, I(7) is an attracting set for f and G encodes the speed of
convergence toward it. In particular, the assumptions of Theorem [IT] are satisfied.

12



Lemma 5.1. If f preserves the linear fibration w: P* —=» PT, then #,(f)N1I(7) = @.

Proof. Using the notations introduced above, we will prove that if € > 0 is small enough
then the region

Ue:={ly : 2] € P*[ |lylloc < ell2lloc}
satisfies f(Uc) C U,jo. In particular Ny>1f™"(Ue) = I(7). Let us define

a:= max [|[O(y)|lec and F:= min [|R(0,2)-
[ylloo=1 llzlloc=1

Since f is a well-defined endomorphism of P*, we have § > 0. Thus, if [y : 2] € U, then
1Ol < allylld < ac’|lz]|% and [[R(y, 2)lloo = Bl2[1% — vellz]1%,

where + is the sum of the moduli of the coefficients of R(y, z) — R(0, z). Therefore, if € > 0
is small enough and [y : z] € U, then

10®)lloe < acll|zllos < €(B —7e)ll2lI5% /2 < €l Ry, 2)loo /2,

which gives f[y: z] € T/Q

On the other hand, if H is a generic linear subspace of P* of dimension 7 then HNI () =
@ thus H NU, = @ for ¢ > 0 small enough. Hence, we can regularize the current of
integration [H] to obtain a positive closed (g,¢q) smooth form w of mass 1 supported in

P*\ U,. Equidistribution results for smooth forms (see [DS10]) give T}] = limy, 00 d" " f™@.

The fact that f(U.) C U, implies that supp(TJ?) NUe = @ and thus _Z,(f)NI(r)=2. O

Remark 5.2. The fact that I(7) is an attracting set of dimension q — 1 implies directly
by that _Z4(f) N I(r) = @. However, we will use the same proof as above in a
parametric setting (see Lemma [6]).

The next result follows easily from the fact that f preserves the fibration defined by 7.

Lemma 5.3. The critical current of f admits a decomposition
[Crity] = [Co] + [Cs],

where [Cx] = 7*[Critg] and [Cy| is the current of integration on an algebraic set, called
the sectional part of Crity.

Proof. If p: CFt1\ {0} — P* is the standard projection then the critical current of f
can be defined by p*[Crity] = dd®log|det DF'|. The fact that F' has the form F(y,z) =
(©(y), R(y, z)) implies that det DF' = det DO X det D,R where D,R denotes the ¢ x ¢
matrix formed by the partial derivatives of R in the zp,...,z,—1 directions. Hence,

[Critf] = [Coo] + [Ca]

where p*[C,| = dd°log|det D, R| and p*[Co] = dd°log | det DO|. It is easy to check that
[Cso] = 7*[Critg]. O

If a is a m-periodic point of # then f&a can be identified to a regular polynomial

endomorphism of C? ~ L, \ I(m) as follows. Since 6"(a) = a, there exists A = (ag,...,a,) €
C+! such that a = [ag : - - : a,] and ©"(A) = A. Hence, if [y : 2] € P* belongs to L, \ I(7)
then there exists a unique Z € C? such that [y : z] = [4: Z] and JlLo\i(ry can be identified
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with R,(Z) := Rgn-1(4)0 -0 Ra(Z) where Rs(Z) := R(A, Z). With the same notations,
Gly: 2] =Gr(A,Z) — Go(A) and, as ©"(A) = A implies Gg(A) = 0, we have

1
Gly:z] = hm o max(log ||R£L(Z)HOO,O),

which is exactly the Green function associated to the polynomial mapping R,,. Hence, using
this identification the equilibrium measure of f&a is T}I A [Lg]. The critical current of f&a
is [Critn] A [Lg] if @ is not a critical point of 6™ (i.e. if the wedge product is well-defined).
In fact, without any assumption on a, since [Crits] = Z?:_()l [*[Crits] one can check
using Lemma that the critical current associated to the restriction of f™ to L, ~ P4
corresponds to <Z?:_01 fi*[C(,]> A [Lq) + d™[I(r)]. Hence, the Bedford-Jonsson formula for

regular polynomial endomorphisms of C? (see Theorem [[1)) yields the following result.

Lemma 5.4. Let a € P" be such that 0™(a) = a. If Ay (resp. A(f&a)) denotes the sum of
the Lyapunov exponents of fir) (resp. f&a) with respect to its equilibrium measure then

n—1

A(ff,) =nlogd +nho + Y (TF ANCo] A [Lgi(), G)-
=0

Proof. Since the dynamics of R,, on the hyperplane at infinity can be identified to the one
of f™ on I(r), the discussion above and the Bedford-Jonsson formula give

n—1
A(f1,) = nlogd +nho + <T}’1 A <Z Vi [Co]> A [La), G> .
=0

We conclude by using

— iLa iL(I
ety oty a Ll e R,

where the first equality follows from the invariance of Ty and G, and the second one from
the invariance of the fibration. O

Observe that since 7 is a submersion on P* \ I(7), we have

T

S = (L) =0 = [ [Loldho(a)

on PE\ I(m). As I(n) has dimension ¢ — 1, these equalities extends to P*. This allows us
to use the continuity results obtained in Section [2] to prove the following result.

Lemma 5.5.

A= Jim o S0 AU

0" (a)=a

Proof. By Lemma [1] there exists a neighborhood Q of I(r) such that U := PF\ Q
contains _Z,(f). Since f preserves the fibration defined by 7, its differential preserves the
subbundle ker D of the tangent bundle over P* \ I(7). Hence, we can define on U the
Jacobian |Jac, f| of Df in the direction of ker D7 with respect to a smooth metric. The
function u := log |Jac, f| is bounded from above on U and is locally the sum of a potential
on [Cy,] and a smooth function. In particular, it satisfies dd“u = [Cy] + (17 — T3) on U,
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where T and T3 are two positive smooth forms. Since A, = Ay — Ay (see the remark after
Theorem [[3)) and m,uf = p1p, we have Ay = (ug,u). On the other hand, v is continuous
on U\ C, and dim(L, N Cy) = ¢ — 1. Hence, by Lemma 2.1l with v = u, X = C, and
Y = P*, we have that for each a € P" the current u[L,] is well defined on U and depends
continuously on a. Moreover, since Ty has continuous local potentials, a — u[Lg] A T}I is
also continuous. Therefore, using that py = T]?/\Sr = TJ?/\ [Lg]dpg, we obtain by Lemma
that

> (T AL w), (5.1)

A = / (TH A (L), w)dpg = Tim
0" (a)=a

n—oo d'M
where the last equality comes from the equidistribution of periodic points of 0 towards
po (see [BDI9]). Let us recall that the measure T}I A [Lq] corresponds to the equilibrium
measure of the polynomial mapping f&a. Therefore, if A( f"za) denotes the sum of the
Lyapunov exponents of f&a with respect to this measure, we have by definition of u

n—1

(TF A [Laluo f1) = Y (FUTF A [La]) u)

1=0

i
L

A(f{r,) = (T N [La], log |Jacf|], |)

~
Il
o

3
—

(T4 A [Lyi(ay), ), (5.2)

~
Il
o

where the last equality comes from d—¢ f*TJ? = TJ? and d™?f[La4] = [Lg(q)]. Combining
EI) and (B2) gives Ay = limy, 00 nd% Zen(a):a A(f&a). O
We can now finish the proof of Theorem

Proof of Theorem [[d. Lemma 54 and Lemma imply

n—1
> (n logd +nAo(f) + Z(TJ?*1 A [Co) A [Lgiay)s G>>

1 ~1
= logd + Ao(f) + lim — > AT A G A L), G)
0" (a)=a
=logd + Ao(f) + (TF ' A S" N[Co),G),
where the last equality comes from Lemma 2] and Lemma applied with v = -G,
U =Pt X =I(n) and Y = [Cy]. To be more precise, as we have seen before a — u[Lg]
is continuous and dd°u = [C,] + (T1 — T3) on U where 77 and T are smooth. Hence,

a — [Cy] A [Lg] is continuous. Since dim(I(w) N C,) = g — 2, Lemma [2] implies that
a — G[Cy] A [Lg] is continuous. Thus, the continuity of the local potentials of T gives that
a — G[Cy]N|[Lg] /\Tjgf1 is continuous. And finally, Lemma Z2 gives (T9~'AS"A[C,], G) =
(TN [L) A [Cy), GYdpg = limy o0 [(TT L A[Lg) A [Cy), G)dpn, where puy, is the average
of the Dirac masses on the n-periodic points of 6. O

6 Sectional and fiber-wise bifurcation currents

In this section, we consider a family (f\)xear of endomorphisms of P¥ which preserves
the standard linear fibration i.e. there exists a family (0))xcps of endomorphisms of P"
such that 7o f\ = 0y o m, where 7 is defined in Section [l We denote by II: M x P* —-»
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M x P, f: M x P¥ — M x P* the maps II(\,z) = (A, 7(z)), f(\z) = (A, fr(z)) and by
ppr s M X P* — Pk, p: M x P — M the two projections.

It is possible to define a (1,1)-current in M x P¥ whose slices by p are exactly the Green
currents T, of fy, we refer to [DS06] for a definition of the slices in our situation. Indeed,
by [BB07] the following limit exists

1
Ty := nh_)rrgo d—nf"*(p]’f,kwpk),
and defines the Green current associated to the family (f\)aenrs. The approach of [BBOT]
consists to lift (locally) the family (f)) to a family (F)) of polynomial endomorphisms
of CF*! and show that potentials of the lift of d=" f"(pprewpr) converge locally uni-
formly to a function, called the Green function of the family (F)), which by defini-
tion is a potential of the lift of T%r. Moreover, since this convergence is locally uniform,
Ty has continuous local potentials, its self-intersections T} are well-defined and satisfy

T} = lim, oo d*"lf"*(pl’;kwfpk) for I € {1,...,k}. When | = k, this gives a (k, k)-current
ij“' on M x P¥ whose slices are the equilibrium measure of fy. A positive closed (k, k)-
current with this property is called an equilibrium current in [Pha05)]. Bassanelli-Berteloot

proved that the bifurcation current Tgi¢(f) := dd°Ay satisfies

Trit(f) = p(TF A [Crity)),

and Pham obtained this result in the more general setting of polynomial-like maps and
proved that Tff can be replaced by any equilibrium current, see [Pha05, pages 8-9].
Following [AB18| where the special case of polynomial skew products has been studied,
we are interested by the relationship between the bifurcation currents Tgi(f) associated
to (fa)aenm and Tgir(0) associated to (0x)repr when 0y o = wo fy. There are two reasons
to restrict ourselves to the linear fibration. The first one is that 7 is a submersion on
PF\ I(r). It implies in particular that the critical sets Crity, have a decomposition into a
"sectional" part and a "fibered" part, the latter being given by m~1(Crity, ) (see Lemma
[6:2)). The second reason is that the support of TJ?, which is the Green current of order ¢ of
the family (fx)aenrs, is disjoint from M x I (7). Indeed, it is easy to check that for all A € M
the map f) satisfies the condition _Z,(fx) NI(r) = @. However, for an arbitrary family it
is not clear whether this condition for each parameter implies supp(T;Z) NMxI(r)=2a.

Lemma 6.1. Let (fy)xem and 7 be as above. Then supp(T;Z) NMxI(r) =@ and
IL(T7) = [M x P"].

Proof. We will use the same arguments as for Lemma [5.] locally in the parameter space.
Let Ao be a fixed parameter in M. Since the region U, = {[y : 2] € P¥| ||y[loc < €[2]|oc} is a
trapping region for fy, for € > 0 small enough, then if /V is a small enough neighborhood
of A\g then f(N x U¢) C N x U,. Let @ denote the positive closed (g, q)-form supported in
P* \ U, obtained in the proof of Lemma 51l There exists a smooth (¢ — 1, — 1)-form ¢
on P* such that @ = wgpk + dd®¢p and there exists C' > 0 such that —Cwﬂqj,gl <o < Cwﬂqj,gl.
Let ppr: N x PP — P* be the canonical projection. As we have said in the beginning of
this Section,

1 * q—l) _ Tq_l.

: n*
Jim e I Phed”) = T

This and the inequalities —Cw]%;l <¢< Cw]%;l imply that lim,,_, d%qf"*(pﬁ;k ¢) =0 and
thus . .
lim —— f™ (ppr) = lim —— f"(ppiwi,) = T7.

n—oo dn4 n—oo "4
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Therefore, since supp(ph@) C N x (P¥\Ue) and f(N x Uc) C N x Ue, we have supp(T;Z) N

N xI(r) = @ on N x P* as desired. This implies that the current I, (TJ?) is a well-defined
positive closed (0,0)-current on M x P, i.e. it is equal to a[M x P"] for some a > 0.
Finally o = 1 since the fibers of II have degree 1. O

The next result follows exactly as Lemma [5.3]

Lemma 6.2. Let (fa)aem, (Ox)renm and m be as in Theorem [L7).  Then the current of
integration on the critical set Crity of the family (fx)xem has a decomposition

[Critf] = [Coo] + [00]7
where [Cso| = IT*[Critg] and [Cy] is the current of integration on an analytic set.

Remark 6.3. The fact that the critical set is not irreducible for the family (fx)xen implies
directly that the bifurcation current Tgie(f) admits a similar decomposition. For a general
family in one variable (i.e. k = 1), possibly by exchanging M by a branched cover, each
critical point can be followed individually thus Crity has as many irreducible components as
there are critical points. This gives rise to the decomposition of Tgie(f) into the currents
associated to the activation of each critical point (see [DF0S)).

The last ingredient to prove Theorem [[.7]is the following result about slicing.

Lemma 6.4. Let (fa)rem, (Ox)acm and m be as in Theorem [L7A If S := I1*(Ty) then
T}] A S is an equilibrium current for (fx)xenm-

Proof. Tt follows easily from the definition that if R is a positive closed current in M x PF
such that the slice Ry is well-defined and if u is a continuous function on supp(R) then
(uR)x = upyyxpe By and (dd“uR)y = dd®(ugyy«pr Ry). This implies that the slice (T}])A of
T}] is equal to ((Tf)x)? which is the Green current of order g of f). Moreover, Lemma
yields supp(Tg) N M x I(r) = @, therefore S = II*(Typ) has continuous local potentials on
supp(TJg). Thus the slice (T}J A ST)y is equal to ((Tf)r)? A (7*(Tp))" which is equal to
the equilibrium measure of f\ by Theorem [[] i.e. TJ‘Z A S" is an equilibrium current for
(fA)rem- O

Proof of Theorem[IZ4. We denote by p: M x P¥ — M and p: M x P" — M the two
projections. Observe that p = po Il on M x (P*\ I(r)). Since TJ? A S" is an equilibrium
current, it follows from Pham’s article [Pha05] that

dd°Ap = p(TF N S" A [Critg]) = p(TF A S" A [Cuc]) +pu(TF A S™ N [Co]),

where the last inequality comes from the decomposition obtained in Lemma 6.2l Moreover,
as Ay = Ag+ A,, in order to prove that dd°A, = p*(TJ? A S" N [Cy]) it is sufficient to prove
that dd°Ag = p« (T}? A S" A [Cx)). To this end, observe that by Lemma

p(T} AS™ A [Coc]) = pu(TL(T ATI*(Ty A [Critg]))) = pu(Ty A [Crity)).

On the other hand, Bassanelli-Berteloot formula applied to the family (6))xeas gives
dd°Ag = p«(Ty N [Critg]) which concludes the proof. O

Using this formula of Tgi¢ »(f), we can rely this current to the bifurcations in the fibers.
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Proof of Corollary[I.8 Define

1
Aon(N) = —2 > AffL,):

0% (a)=a

By Lemma for each A\ € M we have

Apg(N) = lim Ay, (N).

Moreover, by the Briend-Duval inequality on Lyapunov exponents, the function A, ()
is uniformly bounded from below by (qlogd)/2. It is also locally uniformly bounded from
above since Ay, (A) < glog(max,cpr (|| Dy frll)). On the other hand, Theorem [[7] implies
that dd°A, = p*(T]? N S" A [Cy]). Therefore, if [Perg,] denotes the current of integration
on {(A,a) € M xP"|0%(a) = a} (where we take into account the multiplicities) and we set
Sy, := II*[Perg ] /d"™™, in order to prove the corollary, it is sufficient to prove that dd°A,.,, =
Dx (TJ? NSy N[Cy]) for each n > 1. Indeed, this ensures that A, ,, is plurisubharmonic, hence
it converges to A, in Llloc (unique cluster value), hence Tgi (f) converges to Thifo(f).

To this end, let n > 1 and observe that outside a ramification locus ¥, € M of
codimension at least 1 the periodic points of 8y of period n can be followed holomorphically
i.e. each A € M\ ¥,, admits a neighborhood N and a family {v;};ecs of holomorphic maps
vj: N — P" such that [Perg,] = 3. ;[I';] on N x P" where I'; is the graph of 7;. If j € J
and ©(X,y) := (X, 0x(y)) then O(T';) is another graph T';; with j' € J. Hence, if we gather
the periodic points of a same cycle, we obtain a current

n—1

S pu (T AT [OF(T,)] A [C))
=0

which is equal to the bifurcation current of the family ( f;\L‘ L (A)) ren of endomorphisms of
j
Ly =P, ie. equal to dch(f;"ij(A)). Since this equality is true for every j € J, we

get the formula dd°A, , = p*(TJ? A Sp A [Cy]) on M\ X,,. To conclude, observe that none
of these currents gives mass to 3,. Indeed, as we have remarked before A, is uniformly
bounded from below by (gqlog d)/2 so dd°A,,, gives no mass to the proper analytic set ¥,,.
For the second current, the analytic set X,, := supp(S, A [C,]) has dimension m + ¢ — 1,
where m := dim(M), and its intersections with the fibers of p have dimension ¢ — 1.
Hence, the dimension of X, N p~1(%,) is strictly less than m + ¢ — 2 and the current
T}? A Sy N [Cy] gives no mass to this set since Tt has continuous local potentials. This
implies that p*(T}I A Sy A [Cs]) gives no mass to X, as desired. O
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