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Dynamics of fibered endomorphisms of Pk

Christophe Dupont and Johan Taflin∗

November 16, 2018

Abstract

We study the structure and the Lyapunov exponents of the equilibrium measure

of endomorphisms of Pk preserving a fibration. We extend the decomposition of the

equilibrium measure obtained by Jonsson for polynomial skew products of C2. We

also show that the sum of the sectional exponents satisfies a Bedford-Jonsson formula

when the fibration is linear, and that this function is plurisubharmonic on families of

fibered endomorphisms. In particular, the sectional part of the bifurcation current is

a closed positive current on the parameter space.
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1 Introduction

Let f be a holomorphic endomorphism of Pk of degree d ≥ 2 which preserves a rational
fibration parametrized by a projective space i.e. there exist a dominant rational map
π : Pk

99K P
r and a holomorphic map θ : Pr → P

r such that

π ◦ f = θ ◦ π. (1.1)

The generic fiber of π has dimension q := k − r. Another way to express (1.1) is that
f permutes the fibers of π and this permutation is given by θ. We are interested in the
relationships between the dynamics of f and the one of θ.

This type of maps has been recently used to exhibit interesting dynamical phenomena
in P

2 (see [Duj16], [ABD+16], [BT17], [Duj17], [Taf17]). All these examples, except [BT17],
come from polynomial skew products of C2, whose dynamical properties have been studied
by Jonsson in [Jon99]. It is therefore interesting for future examples to extend the results
of [Jon99] to a broader framework. Our initial motivation was to study the particular case
where π is the standard linear fibration defined by π[y : z] = [y] with y := (y0, . . . , yr) ∈
C
r+1 and z = (z0, . . . , zq−1) ∈ C

q. However, some of the techniques can be extended to
a more general setting. In what follows, we choose the setting of each result in order to
avoid unnecessary technical details. We refer to the end of this introduction for the possible
scope of the techniques, in particular when k = 2 thanks to the works of Dabija-Jonsson
([DJ08], [DJ10]) and Favre-Peirera ([FP11], [FP15]) on endomorphisms of P2 preserving a
fibration, a foliation or a web.

∗Research partially supported by ANR project Fatou ANR-17-CE40-0002-01.
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Green currents and Lyapunov exponents – The maps f, π and θ are given by
homogeneous polynomials and a simple computation shows that f and θ have the same
degree. Both maps have a Green current, Tf and Tθ respectively, which are positive closed
(1, 1)-currents with continuous local potentials. Their self-intersections are well-defined
and their supports define dynamically meaningful filtrations

Ji(f) := supp(T i
f ) and Jj(θ) := supp(T j

θ ),

for i ∈ {1, . . . , k} and j ∈ {1, . . . , r}. The equilibrium measures of f and θ are defined by
µf := T k

f and µθ := T r
θ . Since f and θ are semi-conjugated by π, a natural question is

whether there exists a relation between T i
f and the pull back of Tθ by π. Our first result

gives such a relationship if i > q. More precisely, we will see in Section 2 how to define
π∗Tθ and if S denotes the result normalized by its mass,

S :=
π∗Tθ
‖π∗Tθ‖

,

then we have the following result.

Theorem 1.1. Let f : Pk → P
k and θ : Pr → P

r be two endomorphisms of degree d ≥ 2.
Assume there exists a dominant rational map π : Pk

99K P
r whose indeterminacy set I(π)

is disjoint from Jq(f) and such that θ ◦ π = π ◦ f. Then for j ∈ {1, . . . , r}, the current
Sj is well-defined, satisfies Sj 6= T j

f and T q+j
f = T q

f ∧ Sj. In particular, µf = T q
f ∧ Sr and

π∗µf = µθ.

Let us emphasize that the proof only relies on the properties of the currents Tf and
Tθ and is coordinate free. Using the classification obtained in [DJ08], one can check easily
that the assumption Jq(f)∩ I(π) = ∅ is always satisfied when k = 2, in which case q = 1.
This is also the case for the standard linear fibration in any dimension (see Lemma 5.1).
In general, we know no example where this assumption does not hold.

The main point in Theorem 1.1 is the formula µf = T q
f ∧ Sr which can be seen as a

generalization of the decomposition of µf obtained by Jonsson [Jon99] for polynomial skew

products of C2. Indeed, for µθ-almost every a ∈ P
r the fiber La := π−1(a) has dimension

q and we can define the probability measure

µa :=
T q
f ∧ [La]

‖π∗Tθ‖r
.

Corollary 1.2. Let φ : Pk → R be a continuous function. Under the assumptions of
Theorem 1.1 we have

∫

Pk

φ(x)dµf (x) =

∫

Pr

(∫

La

φ(x)dµa(x)

)
dµθ(a).

The other results in this paper can also be seen as consequences of the formula µf =
T q
f ∧S

r and the main technical difficulties come from the fact that the currents S and [La]
are singular. As a direct consequence of Theorem 1.1, we obtain in the following result
that if µθ is absolutely continuous with respect to Lebesgue measure (i.e. θ is a Lattès
mapping of P

r, see [BD05]) then µf is absolutely continuous with respect to the trace
measure σT q

f
:= T q

f ∧ ωr
Pk . Here, ωPk (resp. ωPr) is the Fubini-Study form on P

k (resp. P
r)

normalized such that ωk
Pk (resp. ωr

Pr) is a probability measure.

Corollary 1.3. Under the assumptions of Theorem 1.1, if µθ << ωr
Pr then µf << σT q

f
.
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That applies for Desboves mappings of P2, studied in [BDM07, Section 4] and [BT17],
they indeed induce a Lattès mapping on a pencil of lines. Let us note that when k = 2, the
property µf << σTf

implies that the smallest exponent of µf is minimal, equal to 1
2 log d,

see [Duj12, Theorem 3.6]. In particular the Lyapunov exponents of Desboves mappings
are λ1 > λ2 = 1

2 log d, with d = 4. The following Theorem generalizes that semi-extremal
property to fibered endomorphisms satisfying µθ << ωr

Pr . It is a consequence of π∗µf = µθ
and holds for more general smooth dynamical systems.

Theorem 1.4. Let f, π and θ be as in Theorem 1.1. If Λ is a Lyapunov exponent of
multiplicity m for µθ then Λ is a Lyapunov exponent of multiplicity at least m of µf .

Standard linear fibration – For the next results, we restrict ourselves to the cases
where π is the standard linear fibration where the result below is already new when k = 2
and r = 1. The indeterminacy set I(π) of π corresponds to {y = 0} ≃ P

q−1 and each
fiber La = π−1(a) is a linear projective space P

q in which I(π) can be identified with the
hyperplane at infinity, i.e. La \ I(π) ≃ C

q. If f preserves the fibration defined by π then f
acts on each periodic fibers as a regular polynomial endomorphism of Cq. This class of maps
have been studied by Bedford-Jonsson in [BJ00]. In particular, they obtained a formula for
the sum of the Lyapunov exponents of the equilibrium measure. More precisely, let R be
a regular polynomial endomorphism of Cq of degree d i.e. R extends to an endomorphism
of P

q of degree d. We denote by TR, CritR and GR respectively the Green current, the
critical set and the Green function in C

q of R. The restriction of R to the hyperplane at
infinity P

q \ Cq ≃ P
q−1 is an endomorphism of Pq−1 and we denote by Λ0 the sum of the

Lyapunov exponents of its equilibrium measure.

Theorem 1.5 (Bedford-Jonsson [BJ00]). Let R be a regular polynomial endomorphism of
C
q of degree d. The sum ΛR of the Lyapunov exponents of its equilibrium measure satisfies

ΛR = log d+ Λ0 + 〈T q−1
R ∧ [CritR], GR〉.

We give a generalization of this formula in the fibered setting. To this aim, we introduce
some notations. If π ◦ f = θ ◦π then we denote by Λf (resp. Λθ) the sum of the Lyapunov
exponents of µf (resp. µθ). Theorem 1.4 implies that Λf = Λθ + Λσ where Λσ is the sum
of the Lyapunov exponents of µf in the direction of the fibers. The indeterminacy set
I(π) ≃ P

q−1 is invariant by f thus fI(π) can be seen as an endomorphism of Pq−1 and we
denote by Λ0 the sum of the Lyapunov exponents of this restriction.

Since f preserves the fibration, the set Critf is not irreducible. Some irreducible com-
ponents of Critf are foliated by fibers of π and constitute the “fibered” part of Critf . The
remaining part is its “sectional” part. Indeed, as the standard linear fibration π is a sub-
mersion outside I(π), we have a decomposition in terms of currents [Critf ] = [C∞] + [Cσ]
where [C∞] := π∗[Critθ] and [Cσ] is the current of integration on the sectional part of Critf
(see Lemma 5.3).

Finally, we define the relative Green function as the unique lower semicontinuous func-
tion G : Pk → [0,+∞] such that ddcG = Tf − S and minG = 0.

Theorem 1.6. Let f be an endomorphism of P
k of degree d ≥ 2 which preserves the

standard linear fibration. Then

Λσ = log d+ Λ0 + 〈T q−1
f ∧ Sr ∧ [Cσ], G〉.

In particular, Λσ ≥ q+1
2 log d.
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The idea of the proof is to apply the formula of Bedford-Jonsson to each n-periodic
fiber of f. Since the current Sr can be seen as the limit of the average of the currents of
integration on the n-periodic fibers, we obtain the above formula at the limit. However,
in order to implement that idea, we need some additional care since the currents involved
are singular.

Families of fibered endomorphisms – We now consider a family (fλ)λ∈M of endo-
morphisms of Pk which preserves the standard linear fibration π i.e. there exists a family
(θλ)λ∈M of endomorphisms of Pr such that π ◦ fλ = θλ ◦ π. The family (fλ)λ∈M induces a
dynamical system f(λ, x) := (λ, fλ(x)) on M × P

k whose critical set Critf is the gluing of
the critical sets of fλ, λ ∈M. In the same way, there exists a positive closed (i, i)-current
T i
f on M ×P

k whose slices are equal to T i
fλ
. In [BB07] Bassanelli and Berteloot established

a formula between the currents [Critf ] and T k
f and the ddc of Λf : λ 7→ Λfλ where Λfλ is

the sum of the Lyapunov exponents of µfλ (see also [Pha05]). They proved that

ddcΛf = p∗(T
k
f ∧ [Critf ]),

where p : M × P
k → M is the projection. This current is called the bifurcation current

TBif(f) and its support coincides with several bifurcation phenomena in the family (fλ)λ∈M
(see [BBD18]).

Similar objects can be defined for the family (θλ)λ∈M and again, it is natural to inquire
into their interplays with the ones defined for (fλ)λ∈M . Since this family preserves the
fibration, as above the set Critf is not irreducible and we have [Critf ] = [C∞]+ [Cσ] where
[C∞] := Π∗[Critθ] with Π(λ, x) = (λ, π(x)). This decomposition induces a decomposition
of TBif(f) in a fibered part and a sectional part. The result below states that the fibered
part of TBif(f) coincides with TBif(θ).

Theorem 1.7. Let M be a complex manifold and consider two holomorphic families
(fλ)λ∈M and (θλ)λ∈M of endomorphisms of Pk and P

r respectively such that π ◦fλ = θλ ◦π
where π is the standard linear fibration. The (1, 1)-current TBif,σ(f) := TBif(f) − TBif(θ)
is positive. Moreover, if Sr := Π∗T r

θ then

TBif(θ) = p∗(T
q
f ∧ Sr ∧ [C∞]), TBif,σ(f) = p∗(T

q
f ∧ Sr ∧ [Cσ]).

A different way of seeing this result is the following. By Theorem 1.4, we know that
Λσ = Λf −Λθ is the sum of the Lyapunov exponents of µf which are not in the Lyapunov
spectrum of µθ. Theorem 1.7 yields that Λσ is a plurisubharmonic function on M and gives
a formula of ddcΛσ in terms of currents on M × P

k,

ddcΛσ = p∗(T
q
f ∧ Sr ∧ [Cσ]).

Notice that Astorg-Bianchi initiated in [AB18] the study of bifurcations for skew products
of C2 and proved in that setting that Λσ is plurisubharmonic.

Following an idea coming from [AB18], for each n ≥ 1 we can consider the bifurcation
current associated to the dynamics of the family (fλ)λ∈M on the n-periodic fibers. To be
more precise, if λ ∈ M and a ∈ P

r are such that θλ(a) = a then we denote by Λ(fnλ|La
)

the sum of Lyapunov exponents of fnλ|La
seen as a polynomial endomorphism of La ≃ P

q.
Then we define

Λσ,n(λ) :=
1

ndrn

∑

θn
λ
(a)=a

Λ(fnλ|La
) and TBif,n(f) := ddcΛσ,n.

4



It is easy to see that if all the cycles of the family (θλ)λ∈M can be followed holomorphically
on M then Λσ,n is plurisubharmonic. Actually, this holds in general and we can express
the current TBif,σ(f) in terms TBif,n(f).

Corollary 1.8. Let (fλ)λ∈M , (θλ)λ∈M and π be as in Theorem 1.7. For each n ≥ 1 the
function Λσ,n is plurisubharmonic and

TBif,σ(f) = lim
n→∞

TBif,n(f).

Moreover, if [Perθ,n] denotes the current of integration on {(λ, a) ∈M ×P
r | θnλ(a) = a} by

taking into account multiplicities, then

TBif,n =
p∗(T

q
f ∧Π∗[Perθ,n] ∧ [Cσ])

drn
.

The first part of this result was obtained in [AB18, Corollary 4.8] in the special case
of skew products of C2 under the hypothesis that ddcΛθ = 0. And, as observed by Astorg-
Bianchi, a consequence of Corollary 1.8 is that if the dynamics on (fλ)λ∈M bifurcates on
one periodic fiber then, asymptotically when n→ ∞, it bifurcates on a positive proportion
of the n-periodic fibers.

Final remarks and outline of the paper – To conclude this introduction, let us
explain in which setting results similar to Theorem 1.1 and Theorem 1.4 could be obtained.
First, observe that the assumption that the base space is P

r is unnecessary as long as
dim(I(π)) ≤ q−1. Indeed, if π is a dominant meromorphic map between P

k and a compact
complex manifold X of dimension r with dim(I(π)) ≤ q−1, (q = k−r), then the restriction
of π to a generic linear subspace of dimension r in P

k gives a surjective holomorphic map
from P

r to X. Then by results in [DHP08, Section 2 & 3], X is projective and then by
[Laz84], X is isomorphic to P

r. Observe that this argument uses the smoothness of the
base. The case with a singular base might appear naturally but goes beyond the scope of
this paper.

Another natural setting is the following. Assume that f is an endomorphism of Pk which
preserves a family (La)a∈X of algebraic sets of dimension q and of degree α parametrized
by a complex manifold X of dimension r, i.e. there exists an endomorphism θ of X such
that f(La) = Lθ(a). It is natural to expect that under some assumptions on the family
(La)a∈X and if θ possesses an equilibrium measure µθ, the measure µf can be written as
µf = T q

f ∧ Sr where

Sr :=

∫

X

[La]

α
dµθ(a).

Indeed, it is easy to check, using the classifications in [DJ10] and [FP15] and the proof
of Theorem 1.1, that this is the case when k = 2 and the family (La)a∈X defines a web
with algebraic leaves. However, in some of these examples S = Tf . This holds for (ii)-(iv)
in [DJ10, Theorem A] and for (ii) in [FP15, Theorem E]. Otherwise, S 6= Tf in these
theorems.

Finally, let us mention that results of Dinh-Nguyên-Truong [DNT12], [DNT15] suggest
that one might expect some of the results above (as π∗µf = µθ and Theorem 1.4) to extend
to the case of dominant meromorphic self-maps of compact Kähler manifolds with large
(or dominant) topological degree which preserve meromorphic fibrations.

The paper is organized as follows. In Section 2, we give some technical results on the
pull-back and the intersection of currents. In Section 3 and Section 4, we prove Theorem
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1.1, Corollary 1.3 and Theorem 1.4 respectively. In Section 5, we restrict ourselves to the
cases where π is the standard linear fibration and we establish our generalized Bedford-
Jonsson formula in that context. Section 6 is devoted to bifurcations of such maps.

Acknowledgements – The authors would like to thank Charles Favre for useful com-
ments on the preliminary version of this paper.

2 Basics on pluripotential theory

In Section 5 and Section 6, we will intersect currents supported by fibers of a rational map
π : Pk

99K P
r and singular currents or functions. Moreover, we will need that the result

depends continuously on the fiber. It seems complicated to obtain these statements for
an arbitrary dominant rational map π. The aim of the first part of this section is to give
two results in that direction when π is the standard linear fibration. In a second part, we
explain how to define the pull-back π∗τ of a positive closed (1, 1)-current τ on P

r by a
rational map and how to define its self-intersections (π∗τ)j in the setting of Theorem 1.1.

2.1 Continuous families of currents

Let π : Pk
99K P

r be the standard linear fibration defined by π[y : z] = [y] where y :=
(y0, . . . , yr) ∈ C

r+1 and z = (z0, . . . , zq−1) ∈ C
q. We recall that the indeterminacy set I(π)

of π corresponds to {y = 0} ≃ P
q−1 and each fiber La := π−1(a) is a projective space in

which I(π) can be identified with the hyperplane at infinity, i.e. La \ I(π) ≃ C
q.

In the following two results, we consider an integer 0 ≤ l ≤ k and a family (Ra)a∈Pr

of positive closed (k − l, k − l)-currents in P
k such that a 7→ Ra is continuous. We also

consider an open set U ⊂ P
k and an upper semicontinuous function v : U → [−∞, 0] such

that ddcv = T1 − T2, where T1 and T2 are two positive closed (1, 1)-currents where T2 has
continuous local potentials.

Lemma 2.1. Assume there exist two analytic subsets X,Y ⊂ P
k such that v is continuous

on U\X and such that for all a ∈ P
r we have supp(Ra) ⊂ La∩Y and dim(La∩X∩Y ) ≤ l−1.

Then, for all a ∈ P
r the current vRa is well-defined on U and depends continuously on a.

Proof. The facts that vRa is well-defined and that its mass is locally uniformly bounded
with respect to a follow easily from the Oka inequality obtained by Fornæss-Sibony [FS95].
In order to give some details, we freely use the terminology coming from [FS95]. Let a ∈ P

r

and x ∈ U. Since dim(La∩X∩Y ) ≤ l−1, there exists an (k− l, l) Hartogs figure H disjoint
from La∩X∩Y such that its hull Ĥ is a neighborhood of x in U. By continuity of a 7→ La,
there exists a neighborhood V of a such that La′∩X∩Y ∩H = ∅ for all a′ ∈ V. Since v ≤ 0
and ddcv = T1 − T2 where T2 has continuous local potential, up to a continuous function
v is equal to a plurisubharmonic function on Ĥ and [FS95, Proposition 3.1] implies that
vRa′ is well-defined for all a′ ∈ V. Moreover, again possibly by exchanging v by v+ φ with
φ continuous, we can assume that vRa′ ≤ 0 and ddc(vRa′) ≥ 0 on Ĥ. Hence, we can apply
the Oka inequality [FS95, Theorem 2.4]. If K is a compact set contained in the interior of
Ĥ then there exists a constant C > 0 such that for all a′ ∈ V

‖vRa′‖K ≤ C‖vRa′‖H .

Since a 7→ Ra is continuous and v is continuous on ∪a′∈V supp(Ra′)∩H, we obtain that the
mass of vRa′ is uniformly bounded on K for a′ ∈ V and we conclude using the compactness
of Pr.
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To prove the continuity of a 7→ vRa, let (an)n≥1 be a sequence in P
r converging to a0.

Since vRa has locally uniformly bounded mass, we can assume that vRan converges to a
current R′. We must have

suppR′ ⊂ lim sup
n→∞

(supp(Ran)) ⊂ lim sup
n→∞

(Lan ∩ Y ) ⊂ La ∩ Y.

On the other hand, by continuity of a 7→ Ra and since v is continuous on U \X, we have
that R′ = vRa0 outside La ∩ Y ∩X which has dimension smaller than or equal to l − 1.
Hence, the support theorem of Bassanelli [Bas94] for currents T such that T and ddcT
have order 0 implies that R′ = vRa0 on U.

Lemma 2.2. Let (νn)n≥1 a sequence of probabilities in P
r which converges to ν. Let us

define R :=
∫
Radν and Rn :=

∫
Radνn. If vRa is well defined on U and a 7→ vRa is

continuous then vRn and vR are well-defined on U and satisfy vRn =
∫
vRadνn, vR =∫

vRadν and limn→∞ vRn = vR.

Proof. Let φ be a (l, l) smooth form with compact support in U. We can assume that the
support of φ is contained in a small ball B ⊂ U on which v = u1 − u2 where u1, u2 are
plurisubharmonic on B and u2 is continuous. Hence, there exists a decreasing sequence
(u1,j)j≥1 of continuous plurisubharmonic functions on B converging pointwise to u1. Define
vj := u1,j − u2. Since vRa is well defined then 〈vjRa, φ〉 decreases to 〈vRa, φ〉 by [FS95,
Corollary 3.3]. In particular, if we define ψj(a) := 〈vjRa, φ〉 and ψ(a) := 〈vRa, φ〉 then
ψj decreases pointwise to ψ which is a continuous function since a 7→ vRa is continuous.
Hence, by Dini’s theorem ψj converges uniformly to ψ.

On the other hand, by monotone convergence theorem 〈vjR,φ〉 decreases to 〈vR, φ〉
which is potentially equal to −∞. But, by definition of R we have

lim
j→∞

〈vjR,φ〉 = lim
j→∞

∫

Pr

〈vjRa, φ〉dν(a) = lim
j→∞

∫

Pr

ψjdν =

∫

Pr

ψdν =

∫

Pr

〈vRa, φ〉dν(a),

i.e. vR =
∫
vRadν. The same holds for Rn, and then limn→∞ vRn = vR since a 7→ vRa is

continuous.

2.2 Pull-back of (1, 1)-currents by rational maps

In this subsection, π : Pk
99K P

r is a dominant rational map with dim(I(π)) ≤ q − 1.
As π is not supposed to be a submersion on P

k \ I(π), the definition of the pull-back
operator π∗ on currents requires some work. However, we will only consider currents given
by wedge products of positive closed (1, 1)-currents with continuous local potentials, which
greatly simplifies the problem. If τ is a positive closed (1, 1)-current on P

r which is equal
locally to ddcu then π∗

|Pk\I(π)
τ can be defined locally on P

k \ I(π) as ddcu ◦π. Méo [Méo96]

proved that τ 7→ π∗
|Pk\I(π)

τ is continuous. Moreover, since I(π) has codimension at least

2, the trivial extension of π∗
|Pk\I(π)

τ to P
k is again a positive closed (1, 1)-current that we

denote by π∗τ. We summarize in the following proposition the properties about pull-back
we shall need in the sequel. Recall that if R1 and R2 are two positive closed currents on
P
k of bidegree (1, 1) and (j, j) respectively then the wedge product R1 ∧R2 is well-defined

if the local potentials of R1 are integrable with respect to R2 ∧ ω
k−j
Pk (see e.g. [BT82]).

Proposition 2.3. Let π : Pk
99K P

r be a dominant rational map whose indeterminacy set
has a dimension smaller than or equal to q − 1. If τ is a positive closed (1, 1)-current of
mass 1 on P

r then ‖π∗τ‖ is equal to the algebraic degree deg(π) of π. If τ has continuous
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local potentials then the self-intersections (π∗τ)j are well-defined for j ∈ {1, . . . , r}. The
currents (π∗τ)j coincide with the trivial extension of the standard pull-back of τ j if τ is
smooth. Moreover, if (un) is a sequence of continuous functions which converges uniformly
to 0 then the currents τn := τ + ddcun satisfy limn→∞(π∗τn)

j = (π∗τ)j .

Proof. Let τ be a positive closed (1, 1)-current of mass 1 on P
r. As we have said, in [Méo96]

Méo proved that π∗
|Pk\I(π)

τ depends continuously on τ. On the other hand, since I(π) has

codimension at least 2, the trivial extension, denoted by π∗τ, is a positive closed (1, 1)-
current on P

k. Moreover, as in the proof of Lemma 2.1, the Oka inequality obtained in
[FS95] implies that the mass of π∗τ is bounded independently of τ. Hence, τ 7→ π∗τ is also
continuous. Indeed, if (τn)n≥1 is a sequence of positive closed (1, 1)-currents converging to
τ then (π∗τn)n≥1 has uniformly bounded mass on P

k and using the continuity of π∗
|Pk\I(π)

each limit value R has to be equal to π∗
|Pk\I(π)

τ on P
k \ I(π). Finally, R = π∗τ since

I(π) has codimension at least 2. To see that ‖π∗τ‖ is in fact independent of τ, observe
that if τ = ωPr + ddcu where u is a continuous function, then u ◦ π is in L1(Pk) and
〈ddc(u ◦ π), ωk−1

Pk 〉 = 0. Moreover, (π∗τ) − (π∗ωPr) = ddc(u ◦ π) so ‖π∗τ‖ = ‖π∗ωPr‖. The
general case follows by continuity since smooth forms are dense in the space of positive
closed (1, 1)-currents on P

r. Since ‖π∗τ‖ is independent of τ, we obtain that it is equal to
deg(π) by taking an hyperplane in P

r.
We now assume as in the statement that dim(I(π)) ≤ q− 1. Let R be a positive closed

(j, j)-current on P
k with j ∈ {1, . . . , r}. If τ has continuous local potentials then π∗τ has

continuous local potentials except on I(π), i.e. the set of points where these local potentials
are unbounded is contained in I(π). Hence, using the assumption on dim(I(π)) we can

deduce from [FS95] that these local potentials are integrable with respect to R∧ωk−j
Pk and

thus (π∗τ)∧R is well-defined. In particular, (π∗τ)j is well-defined for j ∈ {1, . . . , r+1}. The
fact that these currents coincide with the trivial extension of π∗

|Pk\I(π)
(τ j) if τ is smooth

and j ∈ {1, . . . , r} follows exactly as above. Observe however that for j = r + 1, π∗(τ r+1)
vanishes whereas (π∗τ)r+1 has mass deg(π)r+1 and thus differs from 0. This implies that the
support of (π∗τ)r+1 is contained in I(π) and thus dim(I(π)) ≥ q−1 i.e. dim(I(π)) = q−1.

We prove the last assertion by induction. The case j = 1 follows from the first part of
this proof. Assume the assertion is true for j − 1 with j ∈ {2, . . . , r}. Observe that since
(un) converges uniformly to 0, Pk \ I(π) is covered by open sets Ω where we can write
π∗τ = ddcv and π∗τn = ddcvn where (vn) is a sequence of continuous functions converging
uniformly to v. Hence, if φ is a smooth form with compact support on Ω then

〈(π∗τn)
j − (π∗τ)j , φ〉 = 〈ddc(vn(π

∗τn)
j−1 − v(π∗τ)j−1), φ〉

= 〈v((π∗τn)
j−1 − (π∗τ)j−1), ddcφ〉+ 〈(vn − v)(π∗τn)

j−1, ddcφ〉.

The inductive hypothesis implies that the first term in this sum converges to 0. The second
term also converges to 0 since (vn − v) converges uniformly to 0. Hence, any limit value
of (π∗τn)

j has to be equal to (π∗τ)j on P
k \ I(π) and this equality extends to P

k since
dim(I(π)) ≤ q − 1.

Remark 2.4. The degree deg(π) of π is not necessary equal to 1. If f preserves the fibration
defined by π then the fibration defined by π ◦ f is still preserved by f and if f has degree
d then deg(π ◦ f) = ddeg(π). Another example in our setting is the binomial pencil of P2

considered in [DJ08] and [FP11] where the degree is an arbitrary integer.

Remark 2.5. During the above proof, we have shown that dim(I(π)) ≥ q − 1. This fact
also follows from the definition of I(π) as the common zeros of the r + 1 homogeneous
polynomials defining π.
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3 Structure of the Green currents

This section is devoted to the proofs of Theorem 1.1, Corollary 1.2 and Corollary 1.3.
Let f be an endomorphism of Pk of degree d ≥ 2. Recall that the Green current Tf of

f can be defined as

Tf = lim
n→∞

1

dn
fn∗ωPk .

We refer to [DS10] for a detailed study of this current. In what follows, we will use that
Tf has Hölder local potentials and if l ∈ {1, . . . , k} then its self-intersection T l

f satisfies

T l
f = limn→∞ d−lnfn∗ωl

Pk .

Proof of Theorem 1.1. First observe that since I(π) ∩ Jq(f) = ∅, a cohomological argu-
ments implies that the dimension of I(π) is at most q − 1 and π satisfies the assumption
of Proposition 2.3. Using this proposition, we define

R := deg(π)−1π∗ωPr and S := deg(π)−1π∗Tθ

which are two positive closed (1, 1)-currents of mass 1. We also deduce from I(π)∩Jq(f) =
∅ that there exists a neighborhood U of I(π) such that Jq(f)∩U = ∅. Since R is a smooth
form on P

k \ I(π), there is a constant C > 0 such that R ≤ CωPk on P
k \ U and thus

T q
f ∧ Rj ≤ CjT q

f ∧ ωj
Pk on P

k for 1 ≤ j ≤ r. Applying the operator d−n(q+j)fn∗ to this
inequality gives

T q
f ∧

(
1

dnj
fn∗Rj

)
≤ CjT q

f ∧

(
1

dnj
fn∗ωj

Pk

)
.

The equidistibution results for f and the fact that Tf has continuous local potentials

(see [DS10]) imply that the right-hand side converges to CjT q+j
f . On the other hand, as

π ◦ fn = θn ◦ π we have by Proposition 2.3

T q
f ∧

(
1

dnj
fn∗Rj

)
= T q

f ∧

(
1

deg(π)jdnj
fn∗π∗ωj

Pr

)
= T q

f ∧ π∗
(

1

deg(π)jdnj
θn∗ωj

Pr

)
.

Recall that d−nθn∗ωPr = Tθ + ddcun where un are continuous functions converging uni-
formly to 0. Hence, by Proposition 2.3 the sequence above converges to T q

f ∧ Sj and thus

T q
f ∧ Sj ≤ CjT q+j

f . Moreover, T q
f ∧ Sj is invariant by d−(q+j)f∗ and T q+j

f is extremal in
the cone of such currents (see [Sib99] when q + j = 1 and [DS09] for the general case) so
T q
f ∧ Sj = T q+j

f .

The proof of Sj 6= T j
f for j ∈ {1, . . . , r} simply comes from the fact (observed in the

proof of Proposition 2.3) that Sr+1 is supported in I(π) which has dimension at most
q− 1. On the other hand, since Tf has Hölder local potentials, it follows from [Sib99] that

T j
f ∧ Sr+1−j gives no mass to analytic sets of dimension q − 2 + j ≥ q − 1.

Finally, in order to prove the last assertion, observe that since I(π) ∩ Jq(f) = ∅, the

current T q+j
f = T q

f ∧ Sj satisfies

π∗(T
q
f ∧ Sj) = deg(π)−jπ∗(T

q
f ∧ π∗T j

θ ) = deg(π)−j(π∗T
q
f ) ∧ T

j
θ . (3.1)

The current π∗T
q
f is positive and closed of bidegree (0, 0) on P

r thus it is a positive multiple
of [Pr]. Since π∗ preserves the mass of measures, the equation (3.1) with j = r implies
π∗T

q
f = deg(π)r[Pr] and thus π∗(T

q+j
f ) = deg(π)r−jT j

θ . In particular, π∗µf = µθ.

9



Proof of Corollary 1.2. We shall use the formula µf = T q
f ∧ Sr. The proof would have

been straightforward if π were a submersion on P
k \ I(π) and the current T q

f were smooth.
However, since Tf has continuous local potentials, we can use regularization as follows.

Let φ : Pk → R be a continuous function. The critical set Critπ of π is by definition
the union of I(π) with the set of points in P

k \ I(π) where the differential of π has rank
strictly less than r. This set is algebraic so the measure µf gives no mass to it. Hence, if
χn : P

k → [0, 1] are smooth functions with compact support in P
k \ Critπ which converge

locally uniformly to 1 on P
k \ Critπ then 〈µf , φ〉 = limn→∞〈µf , χnφ〉. Moreover, for µθ-

almost all a ∈ P
r the algebraic set La := π−1

|Pk\I(π)
(a) has dimension q and La ∩ Critπ has

dimension q − 1. In particular, the current [La] has mass deg(π)r and coincides with the
trivial extension of π∗

|Pk\Critπ
δa. This implies that if Ψ is a smooth (q, q)-form on P

k then

the function π∗(χnφΨ) on P
r is equal µθ-everywhere to a 7→ 〈Ψ ∧ [La], χnφ〉.

On the other hand, the current Tf has continuous local potentials so there exists a
continuous function g such that Tf = ωPk + ddcg. Let (gl)l≥1 be a sequence of smooth
functions converging uniformly to g and define Tl := ωPk +ddcgl. The uniform convergence
implies that if R is a positive closed (r, r)-current then T q

l ∧R converges to T q
f ∧R. Hence,

µf = T q
f ∧ Sr implies

〈µf , φ〉 = lim
n→∞

〈µf , χnφ〉 = lim
n→∞

lim
l→∞

〈T q
l ∧ Sr, χnφ〉 = lim

n→∞
lim
l→∞

〈µθ, π∗(χnφT
q
l )〉/deg(π)

r

= lim
n→∞

lim
l→∞

∫

Pr

〈T q
l ∧

[La]

deg(π)r
, χnφ〉dµθ(a) = lim

n→∞

∫

Pr

〈T q
f ∧

[La]

deg(π)r
, χnφ〉dµθ(a)

=

∫

Pr

〈T q
f ∧

[La]

deg(π)r
, φ〉dµθ(a),

where the last equality comes from the fact that for µθ-almost all a, La∩Critπ has dimension
q − 1 and T q

f ∧ [La] gives no mass to such sets.

By the Radon-Nikodym theorem, the following result implies Corollary 1.3.

Corollary 3.1. Under the assumptions of Theorem 1.1, if there exists a positive ωr
Pr-

integrable function h such that µθ = hωr
Pr then there exists A > 0 such that µf ≤ A (h ◦

π)σT q
f
. In particular, µf << σT q

f
.

Proof. Let R := deg(π)−1π∗ωPr as in the proof of Theorem 1.1. The same theorem gives
that µf = deg(π)−rT q

f ∧ (π∗µθ) =
h◦π

deg(π)r T
q
f ∧Rr. On the other hand, we have seen in the

proof of Theorem 1.1 that T q
f ∧Rr ≤ CrσT q

f
thus µf ≤

(
C

deg(π)

)r
(h ◦ π)σT q

f
.

4 Lyapunov exponents

This section is dedicated to the proof of Theorem 1.4. The main ingredients are the formula
π∗µf = µθ, the fact that these measures put no mass on proper analytic sets and the local
uniform convergence in Oseledec Theorem. We refer the reader to [BP13, Chapter 5–6] for
the details on Oseledec theorem we shall need.

Proof of Theorem 1.4. First, let us set some notations. Let Critθ be the critical set of
θ. We denote by P̂

r := {(yn)n∈Z ∈ P
r | θ(yn) = yn+1} the natural extension and by θ̂

the left-shift on P̂
r. The projection proj : P̂r → P

r defined by proj((yn)n∈Z) = y0 sat-
isfies θ ◦ proj = proj ◦ θ̂. The measure µθ has a unique lift µ̂θ which is invariant by θ̂
and such that projθ∗µ̂θ = µθ. In what follows, if ŷ is in P̂

r we will write y0 instead of
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proj(ŷ). The measure µ̂θ inherits several properties from µθ. Since µθ is ergodic and inte-
grates the quasi-plurisubharmonic functions, it follows that µ̂θ is ergodic, gives no mass to
∪p∈Zθ̂

p(proj−1(Critθ)) and integrates the functions log ‖Dθ±1‖. In particular, for µ̂θ-almost
all ŷ = (yn)n∈Z the differentials

Dŷθ
−n := (Dy−n

θn)−1, Dŷθ
n := Dy0θ

n

are well defined for n ≥ 1. Moreover, by Oseledec theorem, there exist distincts numbers
Λ1, . . . ,Λs ∈ R and a θ̂-invariant set Y ⊂ P̂

r, included in (Pr \Critθ)
Z, such that µ̂θ(Y ) = 1

and for each ŷ ∈ Y the tangent space Ty0P
r admits a splitting Ty0P

r =
⊕s

i=1 Vi(ŷ) which
satisfies

Dy0θ(Vi(ŷ)) = Vi(θ̂(ŷ)) and lim
n→±∞

1

n
log ‖Dŷθ

n(u)‖ = Λi

uniformly for u ∈ Vi(ŷ) with ‖u‖ = 1. By definition, the multiplicity of Λi is the dimension
mi of Vi(ŷ). Moreover, the subspaces Vi(ŷ) can be characterized by Vi(ŷ) \ {0} = {u ∈
Ty0P

r \ {0} | limn→±∞ n−1 log ‖Dŷθ
n(u)‖ = Λi}.

The natural extension P̂
k, the map f̂ and the measure µ̂f are defined in the same way

with respect to f and since π ◦ f = θ ◦ π, the map π lifts to a map π̂ : P̂k → P̂
r such

that π̂ ◦ f̂ = θ̂ ◦ π̂. The uniqueness of the lift µ̂θ of µθ and the fact that π∗µf = µθ imply
that π̂∗µ̂f = µ̂θ. In particular, the set π̂−1(Y ) has full µ̂f -measure. The measure µ̂f also

admits a Oseledec decomposition on a f̂ -invariant set Z of full µ̂f -measure. And since the
measure µf gives no mass to proper analytic sets, if Critπ denotes the critical set of π (i.e.
the union of I(π) with the set of points in P

k \ I(π) where the differential of π has rank
strictly less than r) then the f̂ -invariant set

X := Z ∩ π̂−1(Y ) ∩ (Pk \ (Critf ∪ Critπ))
Z

also has full µ̂f -measure.
Now, fix i ∈ {1, . . . , s} and for x̂ ∈ X consider the subspace of Tx0P

k defined by

Wi(x̂) = (Dx0π)
−1(Vi(π̂(x̂))).

As X is disjoint from the critical sets of f and π, these subspaces have dimension mi + q
and define a Df -invariant distribution i.e. Dx0f(Wi(x̂)) = Wi(f̂(x̂)). Therefore, Oseledec
theorem applies to the measurable cocycle defined by the action of Df on Wi(x̂) and
induces µ̂f -almost everywhere a decomposition Wi(x̂) =

⊕l
j=1 Fij(x̂) for some integer

l ≥ 1. Since this cocycle is a sub-cocycle of the standard one, each Fij(x̂) is associated to
a Lyapunov exponent λj of µf and satisfies

Fij(x̂) \ {0} = {v ∈Wi(x̂) \ {0} | lim
n→±∞

n−1 log ‖Dx̂f
n(v)‖ = λj}.

In particular, dim(Fij(x̂)) is bounded by the multiplicity of λj . Now we show that if Fij(x̂)
is not contained in kerDx0π then λj = Λi, that property will be sufficient to conclude.
So let x̂ ∈ X and j ∈ {1, . . . , l} such that Fij(x̂) 6⊂ kerDx0π. In particular, there exists
v ∈ Fij(x̂) \ kerDx0π and so

Λi = lim
n→+∞

1

n
log ‖Dx̂(θ

n ◦ π)(v)‖ = lim
n→+∞

1

n
log ‖Dx̂(π ◦ fn)(v)‖

≤ lim
n→+∞

1

n
log ‖Dx̂f

n(v)‖ = λj .
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Here, the inequality comes from I(π) ∩ supp(µf ) = ∅ and thus, there exists C > 0 such
that ‖Dxπ(v)‖ ≤ C‖v‖ for all x ∈ supp(µf ) and v ∈ TxP

k.
For the converse inequality, observe that since the subspaces Wi(x̂) and Fij(x̂) depends

measurably on x̂, there exist a constant c > 0 and B ⊂ X with µ̂f (B) > 0 such that for each
x̂ ∈ B there is a subspace E(x̂) ⊂ Fij(x̂) of positive dimension satisfying E(x̂)∩kerDx0π =
{0} and ‖Dx0π(v)‖ ≥ c‖v‖ for all v ∈ E(x̂). By Poincaré recurrence theorem, for µ̂f -almost

all x̂ ∈ X there exists an increasing sequence (kn)n≥1 of integers such that f̂kn(x̂) ∈ B for

all n ≥ 1. Therefore, if vn ∈ Fij(x̂) is such that ‖vn‖ = 1 and Dx̂f
kn(vn) ∈ E(f̂kn(x̂)) then

λj = lim
n→+∞

1

kn
log ‖Dx̂f

kn(vn)‖ ≤ lim
n→+∞

1

kn
log ‖Dx̂(π ◦ fkn)(vn)‖

= lim
n→+∞

1

kn
log ‖Dx̂(θ

kn ◦ π)(vn)‖ ≤ Λi.

Here, the first equality comes from the fact that the convergence in Oseledec theorem is
uniform on the unit sphere of Fij(x̂). The last inequality uses a similar argument as well
as the uniform bound ‖Dxπ(v)‖ ≤ C‖v‖ for x ∈ supp(µf ) and the fact that vn /∈ kerDx0π

since Dx̂f
kn(vn) ∈ E(f̂kn(x̂)).

We have shown that if Fij(x̂) 6⊂ kerDx0π then λj = Λi. Thus there is a unique
j ∈ {1, . . . , l} with this property. As dim(Wi(x̂)) = mi + q and dim(kerDx0π) = q, the
dimension of Fij(x̂) has to be at least mi.

5 Generalized Bedford-Jonsson’s formula

In this section, we assume that the fibration π is the standard linear fibration π : Pk
99K P

r

defined by π[y : z] = [y] where y := (y0, . . . , yr) ∈ C
r+1 and z = (z0, . . . , zq−1) ∈ C

q. We
first analyse some basic properties of maps preserving such a fibration and then we give a
proof of Theorem 1.6.

As we have said in the introduction, the indeterminacy set of π corresponds to {y =
0} ≃ P

q−1 and each fiber La := π−1(a) is a projective space P
q in which I(π) can be

identified with the hyperplane at infinity, i.e. La \I(π) ≃ C
q. If f : Pk → P

k preserves such
a fibration then it lifts to a polynomial endomorphism F of Ck+1 of the form

F (y, z) = (Θ(y), R(y, z)),

where y ∈ C
r+1, z ∈ C

q and Θ, R are homogeneous polynomials. The map Θ is a lift of
the endomorphism θ of Pr such that θ ◦ π = π ◦ f. The inequality ‖Θ(y)‖∞ ≤ ‖F (y, z)‖∞
implies that the functions

GΘ(y) := lim
n→∞

1

dn
log ‖Θn(y)‖∞ and GF (y, z) := lim

n→∞

1

dn
log ‖Fn(y, z)‖∞,

satisfy GΘ(y) ≤ GF (y, z). The difference of these functions goes down to P
k and we define

it as the relative Green function of f, G[y : z] := GF (y, z)−GΘ(y). It is the unique lower
semicontinuous function such that

ddcG = Tf − S and minG = 0.

Here, Tf is the Green current of f and S := π∗Tθ. It is easy to check that G is invariant
(i.e. d−1G ◦ f = G), continuous on P

k \ I(π) and {G = +∞} = I(π). As we will see in
the proof of the next lemma, I(π) is an attracting set for f and G encodes the speed of
convergence toward it. In particular, the assumptions of Theorem 1.1 are satisfied.
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Lemma 5.1. If f preserves the linear fibration π : Pk
99K P

r, then Jq(f) ∩ I(π) = ∅.

Proof. Using the notations introduced above, we will prove that if ǫ > 0 is small enough
then the region

Uǫ := {[y : z] ∈ P
k | ‖y‖∞ < ǫ‖z‖∞}

satisfies f(Uǫ) ⊂ Uǫ/2. In particular ∩n≥1f
n(Uǫ) = I(π). Let us define

α := max
‖y‖∞=1

‖Θ(y)‖∞ and β := min
‖z‖∞=1

‖R(0, z)‖∞.

Since f is a well-defined endomorphism of Pk, we have β > 0. Thus, if [y : z] ∈ Uǫ then

‖Θ(y)‖∞ ≤ α‖y‖d∞ ≤ αǫd‖z‖d∞ and ‖R(y, z)‖∞ ≥ β‖z‖d∞ − γǫ‖z‖d∞,

where γ is the sum of the moduli of the coefficients of R(y, z)−R(0, z). Therefore, if ǫ > 0
is small enough and [y : z] ∈ Uǫ then

‖Θ(y)‖∞ ≤ αǫd‖z‖∞ ≤ ǫ(β − γǫ)‖z‖d∞/2 ≤ ǫ‖R(y, z)‖∞/2,

which gives f [y : z] ∈ Uǫ/2.

On the other hand, ifH is a generic linear subspace of Pk of dimension r then H∩I(π) =
∅ thus H ∩ Uǫ = ∅ for ǫ > 0 small enough. Hence, we can regularize the current of
integration [H] to obtain a positive closed (q, q) smooth form ω̃ of mass 1 supported in
P
k\Uǫ. Equidistribution results for smooth forms (see [DS10]) give T q

f = limn→∞ d−nqfn∗ω̃.

The fact that f(Uǫ) ⊂ Uǫ implies that supp(T q
f )∩Uǫ = ∅ and thus Jq(f)∩ I(π) = ∅.

Remark 5.2. The fact that I(π) is an attracting set of dimension q − 1 implies directly
by [Taf18] that Jq(f) ∩ I(π) = ∅. However, we will use the same proof as above in a
parametric setting (see Lemma 6.1).

The next result follows easily from the fact that f preserves the fibration defined by π.

Lemma 5.3. The critical current of f admits a decomposition

[Critf ] = [C∞] + [Cσ],

where [C∞] = π∗[Critθ] and [Cσ] is the current of integration on an algebraic set, called
the sectional part of Critf .

Proof. If ρ : Ck+1 \ {0} → P
k is the standard projection then the critical current of f

can be defined by ρ∗[Critf ] = ddc log |detDF |. The fact that F has the form F (y, z) =
(Θ(y), R(y, z)) implies that detDF = detDΘ × detDzR where DzR denotes the q × q
matrix formed by the partial derivatives of R in the z0, . . . , zq−1 directions. Hence,

[Critf ] = [C∞] + [Cσ]

where ρ∗[Cσ] = ddc log |detDzR| and ρ∗[C∞] = ddc log |detDΘ|. It is easy to check that
[C∞] = π∗[Critθ].

If a is a n-periodic point of θ then fn|La
can be identified to a regular polynomial

endomorphism of Cq ≃ La\I(π) as follows. Since θn(a) = a, there exists A = (a0, . . . , ar) ∈
C
r+1 such that a = [a0 : · · · : ar] and Θn(A) = A. Hence, if [y : z] ∈ P

k belongs to La \I(π)
then there exists a unique Z ∈ C

q such that [y : z] = [A : Z] and fn|La\I(π)
can be identified
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with Rn(Z) := RΘn−1(A) ◦ · · · ◦RA(Z) where RA(Z) := R(A,Z). With the same notations,
G[y : z] = GF (A,Z)−GΘ(A) and, as Θn(A) = A implies GΘ(A) = 0, we have

G[y : z] = lim
l→∞

1

dln
max(log ‖Rl

n(Z)‖∞, 0),

which is exactly the Green function associated to the polynomial mapping Rn. Hence, using
this identification the equilibrium measure of fn|La

is T q
f ∧ [La]. The critical current of fn|La

is [Critfn ]∧ [La] if a is not a critical point of θn (i.e. if the wedge product is well-defined).
In fact, without any assumption on a, since [Critfn ] =

∑n−1
i=0 f

i∗[Critf ] one can check
using Lemma 5.3 that the critical current associated to the restriction of fn to La ≃ P

q

corresponds to
(∑n−1

i=0 f
i∗[Cσ]

)
∧ [La] + dn[I(π)]. Hence, the Bedford-Jonsson formula for

regular polynomial endomorphisms of Cq (see Theorem 1.5) yields the following result.

Lemma 5.4. Let a ∈ P
r be such that θn(a) = a. If Λ0 (resp. Λ(fn|La

)) denotes the sum of
the Lyapunov exponents of f|I(π) (resp. fn|La

) with respect to its equilibrium measure then

Λ(fn|La
) = n log d+ nΛ0 +

n−1∑

i=0

〈T q−1
f ∧ [Cσ] ∧ [Lθi(a)], G〉.

Proof. Since the dynamics of Rn on the hyperplane at infinity can be identified to the one
of fn on I(π), the discussion above and the Bedford-Jonsson formula give

Λ(fn|La
) = n log d+ nΛ0 +

〈
T q−1
f ∧

(
n−1∑

i=0

f i∗[Cσ]

)
∧ [La], G

〉
.

We conclude by using

f i∗(GT
q−1
f ∧ [La]) = GT q−1

f ∧
f i∗[La]

dqi
and

f i∗[La]

dqi
= [Lθi(a)],

where the first equality follows from the invariance of Tf and G, and the second one from
the invariance of the fibration.

Observe that since π is a submersion on P
k \ I(π), we have

Sr = (π∗Tθ)
r = π∗µθ =

∫

Pr

[La]dµθ(a)

on P
k \ I(π). As I(π) has dimension q − 1, these equalities extends to P

k. This allows us
to use the continuity results obtained in Section 2 to prove the following result.

Lemma 5.5.

Λσ = lim
n→∞

1

ndrn

∑

θn(a)=a

Λ(fn|La
).

Proof. By Lemma 5.1, there exists a neighborhood Ω of I(π) such that U := P
k \ Ω

contains Jq(f). Since f preserves the fibration defined by π, its differential preserves the
subbundle kerDπ of the tangent bundle over P

k \ I(π). Hence, we can define on U the
Jacobian |Jacσf | of Df in the direction of kerDπ with respect to a smooth metric. The
function u := log |Jacσf | is bounded from above on U and is locally the sum of a potential
on [Cσ] and a smooth function. In particular, it satisfies ddcu = [Cσ] + (T1 − T2) on U ,
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where T1 and T2 are two positive smooth forms. Since Λσ = Λf −Λθ (see the remark after
Theorem 1.5) and π∗µf = µθ, we have Λσ = 〈µf , u〉. On the other hand, u is continuous
on U \ Cσ and dim(La ∩ Cσ) = q − 1. Hence, by Lemma 2.1 with v = u, X = Cσ and
Y = P

k, we have that for each a ∈ P
r the current u[La] is well defined on U and depends

continuously on a. Moreover, since Tf has continuous local potentials, a 7→ u[La] ∧ T
q
f is

also continuous. Therefore, using that µf = T q
f ∧S

r =
∫
T q
f ∧[La]dµθ, we obtain by Lemma

2.2 that

Λσ =

∫

Pr

〈T q
f ∧ [La], u〉dµθ = lim

n→∞

1

drn

∑

θn(a)=a

〈T q
f ∧ [La], u〉, (5.1)

where the last equality comes from the equidistribution of periodic points of θ towards
µθ (see [BD99]). Let us recall that the measure T q

f ∧ [La] corresponds to the equilibrium
measure of the polynomial mapping fn|La

. Therefore, if Λ(fn|La
) denotes the sum of the

Lyapunov exponents of fn|La
with respect to this measure, we have by definition of u

Λ(fn|La
) = 〈T q

f ∧ [La], log |Jacf
n
|La

|〉 =
n−1∑

i=0

〈T q
f ∧ [La], u ◦ f i〉 =

n−1∑

i=0

〈f i∗(T
q
f ∧ [La]), u〉

=

n−1∑

i=0

〈T q
f ∧ [Lθi(a)], u〉, (5.2)

where the last equality comes from d−qf∗T q
f = T q

f and d−qf∗[La] = [Lθ(a)]. Combining

(5.1) and (5.2) gives Λσ = limn→∞
1

ndrn
∑

θn(a)=a Λ(f
n
|La

).

We can now finish the proof of Theorem 1.6.

Proof of Theorem 1.6. Lemma 5.4 and Lemma 5.5 imply

Λσ = lim
n→∞

1

ndrn

∑

θn(a)=a

(
n log d+ nΛ0(f) +

n−1∑

i=0

〈T q−1
f ∧ [Cσ] ∧ [Lθi(a)], G〉

)

= log d+ Λ0(f) + lim
n→∞

1

drn

∑

θn(a)=a

〈T q−1
f ∧ [Cσ] ∧ [La], G〉

= log d+ Λ0(f) + 〈T q−1
f ∧ Sr ∧ [Cσ], G〉,

where the last equality comes from Lemma 2.1 and Lemma 2.2 applied with v = −G,
U = P

k, X = I(π) and Y = [Cσ]. To be more precise, as we have seen before a 7→ u[La]
is continuous and ddcu = [Cσ] + (T1 − T2) on U where T1 and T2 are smooth. Hence,
a 7→ [Cσ] ∧ [La] is continuous. Since dim(I(π) ∩ Cσ) = q − 2, Lemma 2.1 implies that
a 7→ G[Cσ ]∧ [La] is continuous. Thus, the continuity of the local potentials of Tf gives that

a 7→ G[Cσ ]∧[La]∧T
q−1
f is continuous. And finally, Lemma 2.2 gives 〈T q−1∧Sr∧[Cσ], G〉 =∫

〈T q−1∧ [La]∧ [Cσ], G〉dµθ = limn→∞

∫
〈T q−1∧ [La]∧ [Cσ], G〉dµn, where µn is the average

of the Dirac masses on the n-periodic points of θ.

6 Sectional and fiber-wise bifurcation currents

In this section, we consider a family (fλ)λ∈M of endomorphisms of P
k which preserves

the standard linear fibration i.e. there exists a family (θλ)λ∈M of endomorphisms of P
r

such that π ◦ fλ = θλ ◦ π, where π is defined in Section 5. We denote by Π: M × P
k
99K
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M × P
r, f : M × P

k →M × P
k the maps Π(λ, x) = (λ, π(x)), f(λ, x) = (λ, fλ(x)) and by

pPk : M × P
k → P

k, p : M × P
k →M the two projections.

It is possible to define a (1, 1)-current in M×P
k whose slices by p are exactly the Green

currents Tfλ of fλ, we refer to [DS06] for a definition of the slices in our situation. Indeed,
by [BB07] the following limit exists

Tf := lim
n→∞

1

dn
fn∗(p∗

PkωPk),

and defines the Green current associated to the family (fλ)λ∈M . The approach of [BB07]
consists to lift (locally) the family (fλ) to a family (Fλ) of polynomial endomorphisms
of C

k+1 and show that potentials of the lift of d−nfn∗(p∗
PkωPk) converge locally uni-

formly to a function, called the Green function of the family (Fλ), which by defini-
tion is a potential of the lift of Tf . Moreover, since this convergence is locally uniform,
Tf has continuous local potentials, its self-intersections T l

f are well-defined and satisfy

T l
f = limn→∞ d−nlfn∗(p∗

Pkω
l
Pk) for l ∈ {1, . . . , k}. When l = k, this gives a (k, k)-current

T k
f on M × P

k whose slices are the equilibrium measure of fλ. A positive closed (k, k)-
current with this property is called an equilibrium current in [Pha05]. Bassanelli-Berteloot
proved that the bifurcation current TBif(f) := ddcΛf satisfies

TBif(f) = p∗(T
k
f ∧ [Critf ]),

and Pham obtained this result in the more general setting of polynomial-like maps and
proved that T k

f can be replaced by any equilibrium current, see [Pha05, pages 8-9].
Following [AB18] where the special case of polynomial skew products has been studied,

we are interested by the relationship between the bifurcation currents TBif(f) associated
to (fλ)λ∈M and TBif(θ) associated to (θλ)λ∈M when θλ ◦ π = π ◦ fλ. There are two reasons
to restrict ourselves to the linear fibration. The first one is that π is a submersion on
Pk \ I(π). It implies in particular that the critical sets Critfλ have a decomposition into a
"sectional" part and a "fibered" part, the latter being given by π−1(Critθλ) (see Lemma
6.2). The second reason is that the support of T q

f , which is the Green current of order q of
the family (fλ)λ∈M , is disjoint from M×I(π). Indeed, it is easy to check that for all λ ∈M
the map fλ satisfies the condition Jq(fλ) ∩ I(π) = ∅. However, for an arbitrary family it
is not clear whether this condition for each parameter implies supp(T q

f ) ∩M × I(π) = ∅.

Lemma 6.1. Let (fλ)λ∈M and π be as above. Then supp(T q
f ) ∩ M × I(π) = ∅ and

Π∗(T
q
f ) = [M × P

r].

Proof. We will use the same arguments as for Lemma 5.1 locally in the parameter space.
Let λ0 be a fixed parameter in M. Since the region Uǫ = {[y : z] ∈ P

k | ‖y‖∞ < ǫ‖z‖∞} is a
trapping region for fλ0 for ǫ > 0 small enough, then if N is a small enough neighborhood
of λ0 then f(N × Uǫ) ⊂ N × Uǫ. Let ω̃ denote the positive closed (q, q)-form supported in
P
k \ Uǫ obtained in the proof of Lemma 5.1. There exists a smooth (q − 1, q − 1)-form φ

on P
k such that ω̃ = ωq

Pk + ddcφ and there exists C > 0 such that −Cωq−1
Pk ≤ φ ≤ Cωq−1

Pk .

Let pPk : N × P
k → P

k be the canonical projection. As we have said in the beginning of
this Section,

lim
n→∞

1

dn(q−1)
fn∗(p∗

Pkω
q−1
Pk ) = T q−1

f .

This and the inequalities −Cωq−1
Pk ≤ φ ≤ Cωq−1

Pk imply that limn→∞
1

dnq fn∗(p∗Pkφ) = 0 and
thus

lim
n→∞

1

dnq
fn∗(p∗

Pk ω̃) = lim
n→∞

1

dnq
fn∗(p∗

Pkω
q
Pk) = T q

f .
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Therefore, since supp(p∗
Pk ω̃) ⊂ N × (Pk \Uǫ) and f(N ×Uǫ) ⊂ N ×Uǫ, we have supp(T q

f )∩

N×I(π) = ∅ on N×P
k, as desired. This implies that the current Π∗(T

q
f ) is a well-defined

positive closed (0, 0)-current on M × P
r, i.e. it is equal to α[M × P

r] for some α > 0.
Finally α = 1 since the fibers of Π have degree 1.

The next result follows exactly as Lemma 5.3.

Lemma 6.2. Let (fλ)λ∈M , (θλ)λ∈M and π be as in Theorem 1.7. Then the current of
integration on the critical set Critf of the family (fλ)λ∈M has a decomposition

[Critf ] = [C∞] + [Cσ],

where [C∞] = Π∗[Critθ] and [Cσ] is the current of integration on an analytic set.

Remark 6.3. The fact that the critical set is not irreducible for the family (fλ)λ∈M implies
directly that the bifurcation current TBif(f) admits a similar decomposition. For a general
family in one variable (i.e. k = 1), possibly by exchanging M by a branched cover, each
critical point can be followed individually thus Critf has as many irreducible components as
there are critical points. This gives rise to the decomposition of TBif(f) into the currents
associated to the activation of each critical point (see [DF08]).

The last ingredient to prove Theorem 1.7 is the following result about slicing.

Lemma 6.4. Let (fλ)λ∈M , (θλ)λ∈M and π be as in Theorem 1.7. If S := Π∗(Tθ) then
T q
f ∧ Sr is an equilibrium current for (fλ)λ∈M .

Proof. It follows easily from the definition that if R is a positive closed current in M × P
k

such that the slice Rλ is well-defined and if u is a continuous function on supp(R) then
(uR)λ = u{λ}×PkRλ and (ddcuR)λ = ddc(u{λ}×PkRλ). This implies that the slice (T q

f )λ of

T q
f is equal to ((Tf )λ)

q which is the Green current of order q of fλ. Moreover, Lemma 6.1

yields supp(T q
f ) ∩M × I(π) = ∅, therefore S = Π∗(Tθ) has continuous local potentials on

supp(T q
f ). Thus the slice (T q

f ∧ Sr)λ is equal to ((Tf )λ)
q ∧ (π∗(Tθ)λ)

r which is equal to

the equilibrium measure of fλ by Theorem 1.1, i.e. T q
f ∧ Sr is an equilibrium current for

(fλ)λ∈M .

Proof of Theorem 1.7. We denote by p : M × P
k → M and p̃ : M × P

r → M the two
projections. Observe that p = p̃ ◦ Π on M × (Pk \ I(π)). Since T q

f ∧ Sr is an equilibrium
current, it follows from Pham’s article [Pha05] that

ddcΛf = p∗(T
q
f ∧ Sr ∧ [Critf ]) = p∗(T

q
f ∧ Sr ∧ [C∞]) + p∗(T

q
f ∧ Sr ∧ [Cσ]),

where the last inequality comes from the decomposition obtained in Lemma 6.2. Moreover,
as Λf = Λθ +Λσ, in order to prove that ddcΛσ = p∗(T

q
f ∧Sr ∧ [Cσ]) it is sufficient to prove

that ddcΛθ = p∗(T
q
f ∧ Sr ∧ [C∞]). To this end, observe that by Lemma 6.1

p∗(T
q
f ∧ Sr ∧ [C∞]) = p̃∗(Π∗(T

q
f ∧Π∗(T r

θ ∧ [Critθ]))) = p̃∗(T
r
θ ∧ [Critθ]).

On the other hand, Bassanelli-Berteloot formula applied to the family (θλ)λ∈M gives
ddcΛθ = p̃∗(T

r
θ ∧ [Critθ]) which concludes the proof.

Using this formula of TBif,σ(f), we can rely this current to the bifurcations in the fibers.
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Proof of Corollary 1.8. Define

Λσ,n(λ) :=
1

ndrn

∑

θn
λ
(a)=a

Λ(fnλ|La
).

By Lemma 5.5 for each λ ∈M we have

Λσ(λ) = lim
n→∞

Λσ,n(λ).

Moreover, by the Briend-Duval inequality on Lyapunov exponents, the function Λσ,n(λ)
is uniformly bounded from below by (q log d)/2. It is also locally uniformly bounded from
above since Λσ,n(λ) ≤ q log(maxx∈Pk(‖Dxfλ‖)). On the other hand, Theorem 1.7 implies
that ddcΛσ = p∗(T

q
f ∧ Sr ∧ [Cσ]). Therefore, if [Perθ,n] denotes the current of integration

on {(λ, a) ∈M ×P
r | θnλ(a) = a} (where we take into account the multiplicities) and we set

Sn := Π∗[Perθ,n]/d
rn, in order to prove the corollary, it is sufficient to prove that ddcΛσ,n =

p∗(T
q
f ∧Sn∧ [Cσ]) for each n ≥ 1. Indeed, this ensures that Λσ,n is plurisubharmonic, hence

it converges to Λσ in L1
loc (unique cluster value), hence TBif,n(f) converges to TBif,σ(f).

To this end, let n ≥ 1 and observe that outside a ramification locus Σn ⊂ M of
codimension at least 1 the periodic points of θλ of period n can be followed holomorphically
i.e. each λ ∈M \Σn admits a neighborhood N and a family {γj}j∈J of holomorphic maps
γj : N → P

r such that [Perθ,n] =
∑

j∈J [Γj ] on N ×P
r where Γj is the graph of γj. If j ∈ J

and Θ(λ, y) := (λ, θλ(y)) then Θ(Γj) is another graph Γj′ with j′ ∈ J. Hence, if we gather
the periodic points of a same cycle, we obtain a current

n−1∑

i=0

p∗(T
q
f ∧Π∗[Θi(Γj)] ∧ [Cσ])

which is equal to the bifurcation current of the family (fnλ|Lγj (λ)
)λ∈N of endomorphisms of

Lγj(λ) ≃ P
q, i.e. equal to ddcΛ(fnλ|Lγj (λ)

). Since this equality is true for every j ∈ J , we

get the formula ddcΛσ,n = p∗(T
q
f ∧ Sn ∧ [Cσ]) on M \ Σn. To conclude, observe that none

of these currents gives mass to Σn. Indeed, as we have remarked before Λσ,n is uniformly
bounded from below by (q log d)/2 so ddcΛσ,n gives no mass to the proper analytic set Σn.
For the second current, the analytic set Xn := supp(Sn ∧ [Cσ]) has dimension m+ q − 1,
where m := dim(M), and its intersections with the fibers of p have dimension q − 1.
Hence, the dimension of Xn ∩ p−1(Σn) is strictly less than m + q − 2 and the current
T q
f ∧ Sn ∧ [Cσ] gives no mass to this set since Tf has continuous local potentials. This

implies that p∗(T
q
f ∧ Sn ∧ [Cσ ]) gives no mass to Σn, as desired.
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