
HAL Id: hal-01925360
https://hal.science/hal-01925360v1

Submitted on 16 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-intrusive sparse subspace learning for parametrized
problems

Domenico Borzacchiello, Jose Aguado, Francisco Chinesta

To cite this version:
Domenico Borzacchiello, Jose Aguado, Francisco Chinesta. Non-intrusive sparse subspace learn-
ing for parametrized problems. Archives of Computational Methods in Engineering, In press,
�10.1007/s11831-017-9241-4�. �hal-01925360�

https://hal.science/hal-01925360v1
https://hal.archives-ouvertes.fr

Non-intrusive sparse subspace learning for
parametrized problems

Domenico Borzacchiello José V. Aguado
Francisco Chinesta

Abstract

We discuss the use of hierarchical collocation to approximate the numerical so-
lution of parametric models. With respect to traditional projection-based reduced
order modeling, the use of a collocation enables non-intrusive approach based on
sparse adaptive sampling of the parametric space. This allows to recover the low-
dimensional structure of the parametric solution subspace while also learning the
functional dependency from the parameters in explicit form. A sparse low-rank
approximate tensor representation of the parametric solution can be built through
an incremental strategy that only needs to have access to the output of a determin-
istic solver. Non-intrusiveness makes this approach straightforwardly applicable to
challenging problems characterized by nonlinearity or non affine weak forms. As
we show in the various examples presented in the paper, the method can be inter-
faced with no particular effort to existing third party simulation software making
the proposed approach particularly appealing and adapted to practical engineering
problems of industrial interest.

Reduced order modeling; Non-intrusiveness; Low rank approximations; Sparse
identification; Sparse subspace learning; Hierarchical collocation

1 Introduction

1.1 Motivation
Models are often defined in terms of one or several parameters regardless of the na-
ture of the phenomenon they describe. Parameters allow to adaptively adjust a general
model to a wide range of different scenarios governed by the same physical laws. In
continuum mechanics, for instance, models are expressed mathematically as partial dif-
ferential equations (PDE) representing the balance or the conservation laws governing
the evolution of the fundamental variables that describe the state of a system. Numer-
ical methods for the solution of such differential models have reached in many cases
a remarkable degree of maturity, enabling the development of a variety of simulation
software. This technological advancement has resulted in a massive usage of the simu-
lation tools at the industrial scale, mainly as a means of solving practical problems such
as design, optimization or inverse identification [1]. In this context, the user is usually
interested in assessing the adequacy of a particular configuration with regard to a given

1

design or performance criterion. This means in practice that the user decides, based on
simulation results, whether a particular design fulfills or not the product specifications,
or, in an optimization context, whether the process performance is improved or wors-
ened by a specific setup. The decision-making process based on simulation commonly
referred to as simulation-based engineering [2, 3].

In spite of the simplicity of this concept, simulation-based engineering may be
somehow limited by the need of evaluating multiple configurations before converg-
ing to a satisfactory result, that is, a design that fulfills the product specifications or
a setup that optimizes the process performance. This practice, in which simulations
have to be carried out for several changing configurations is the foundation of multi-
query simulation. Each query (i.e. configuration evaluation) requires allocating some
time to prepare a new simulation, execute it and analyze the results. Delays due to
communication and information exchange in collaborative work projects should also
be taken into account. This may render the design, or optimization, process very time
consuming, thus only allowing for the evaluation of few configurations. Even though
simulation-based engineering can be to some extent automated, the amount of configu-
rations that can be evaluated within reasonable time remains very low when compared
to the amount of potential configurations, which is potentially disproportionate [4].

In this paper, we shall assume that the ensemble of potential configurations of the
system under study can be explicitly defined in terms of a set of parameters varying
in a given interval. These parameters may be related to the material’s behavior, the
geometry or boundary conditions definition, for instance. In addition, parameters are
assumed to be uncorrelated, which provides the parametric domain with a cartesian
structure. We shall note by µ ∈ M ⊂ RD a D-tuple parameter array in the parametric
domainM. Since real applications are usually defined in terms of several parameters,
parametrized problems can be seen in fact as high-dimensional problems, due to the
need of large-scale exploration a high-dimensional parametric domain. This explains
why brute-force approaches based on extensive “grid search” are generally precluded.

1.2 Computational methods for parametrized problems
Many methods have been developed in order to address the problem of dimensionality
by proposing strategies for parsimonious exploration of the parametric domain. Design
of Experiments (DoE), widely used in the industry, is a very practical approach that can
help reducing the number of simulations based on a series of statistical indicators [5].
In the context of optimization, the parametric domain exploration may be guided by
some optimization algorithm, such as gradient-based methods or any of their numerous
variants [6]. The optimization algorithm has to be chosen carefully, according to the
properties and structure of the cost function at hand.

An alternative approach for addressing parametrized problems is based on reduced
order modeling methods (ROM). Since most of the time is consumed in multi-query
simulation, ROM methods are designed so as to reduce the computational complexity
of evaluating a given configuration. This is usually achieved by splitting the compu-
tational cost by means of an “offline-online” strategy. The key idea behind ROM is
to build a problem-specific, low-dimensional subspace, that may either be learnt from
available simulation data or computed by setting up an optimization problem. In the

2

next subsections we briefly review both approaches as well as the bottlenecks in their
practical implementation.

1.2.1 A posteriori reduced order modeling

Approaches based on learning from available simulation results are also known as a
posteriori ROM methods. They typically require inspection of the parametric domain
in the offline stage. This consists in carrying out simulations for different parameter
samples using a full-order solver (based on finite elements for instance). Data collected
in the learning stage is used to extract a reduced basis which is assumed to span the
entire solution subspace for any parameter choice [7, 8, 9]:

∀µ ∈ M : u(x;µ) ≈ uN(x;µ) ∈ VN := span{φi(x)}Ni=1, (1)

where u(x;µ) and uN(x;µ) stand for the solution of some parametrized model and its
approximation onto the low-dimensional subspace, namely VN . In the adopted nota-
tion, the semicolon symbol is used to differentiate physical coordinates, x, from pa-
rameters µ.

Note that in practice VN is contained in WM , an approximation space of dimension
M used by the full-order solver. Provided that N � M, a reduced-order model can be
built by projecting the residual of eq. (1) in the sense of Galerkin, onto the reduced
subspace VN . In this way the parametric solution is implicitly expressed by the set of
reduced equations in terms of the coordinates of the solution onto the low-dimensional
subspace.

Therefore in the online stage, if the solution is required for a new parameter con-
figuration, a small algebraic system needs to be solved. Although this strategy results
in a remarkable computational time save, a number of questions remain open:

• Sampling. Offline sampling of the parametric space is of critical importance.
On one hand, sampling has to be fine enough to ensure that the structure of
the underlying subspace is captured within the level of desired accuracy. On
the other hand, extensive sampling is usually unachievable in high-dimensional
problems. In the context of the reduced basis method, an error estimator is used
so as to guide the sampling process [10]. Error estimation evaluation in nonlinear
problems is still object of ongoing studies [11].

• Affinity. Parameters must define an affine transformation. If that is not the
case, the advantages of the offline-online strategy are compromised. Interpola-
tion techniques have been proposed so as to overcome this issue [12], although
a careful treatment is needed in order to preserve the spectral properties of the
full-order operators [13].

• Nonlinearity. Nonlinear problems are a particular example of loss of affinity.
Indeed, the evaluation of the non-linear terms entails a computational complexity
which is in the order of that of the original non-reduced model [14]. Several
approaches exist including empirical interpolation techniques [15, 16], hyper-
reduction [17, 18], empirical quadrature rules [19] and collocation approaches
[20].

3

• Intrusiveness. ROM methods implementation in third-party simulation software
is quite intrusive since it requires access to the discrete operators arising from the
discretization of the partial differential equations, which is not always possible
[21].

1.2.2 A priori reduced order modeling

A priori ROM methods propose an alternative approach for parametrized problems.
They are designed so as to compute the solution of the parametrized problem as an
explicit function of the parameters. Therefore, a priori ROM methods do not produce
a reduced system of equations but the parametric solution itself. Note that in this
regard, parameters are treated exactly the same as if they were coordinates. Hence, we
shall drop the semicolon indicating the parametric dependence and note: u(x,µ). As a
consequence, the computational domain becomes of higher dimension, as it must cover
not only the physical and/or time coordinates, but also the parametric domain [22].
Since grid-based discretization is precluded in higher dimensional problems, tensor
subspaces must be introduced to represent parametric solutions efficiently [8, 23, 24].
Several tensor subspaces have been proposed, see [25] for details. For the sake of
brevity, we shall only present here the canonical tensor subspace, which lies at the
basis of the Proper Generalized Decomposition (PGD) method [26, 27, 28]. Hence, the
parametric solution is sought as:

u(x,µ) ≈ uN(x,µ) ∈ TN := span{ φi
0(x) φi

1(µ1) · · · φi
D(µD) }Ni=1, (2)

where TN is the subspace of tensors with canonical rank equal to N. Note that in prac-
tice TN ⊂ WM0 ⊗WM1 ⊗ · · · ⊗WMD , where WMd is a generic approximation space (finite
element like) of dimension Md, with 0 ≤ d ≤ D. In addition, φi

d are separated functions
of each coordinate, usually called modes. Recall that this particular structure is possi-
ble thanks to the cartesian structure that has been assumed for the parametric domain.
Note that the complexity of the tensor subspace defined in Eq. (2) grows linearly with
the number of dimensions, while the complexity of a grid-based discretization grows
exponentially.

While a posteriori ROM methods extract a subspace from data, a priori methods
are designed so as to build a tensor subspace by setting up an optimization problem,
that is, no sampling of the parametric domain is in principle required. In particular,
PGD allows building a tensor subspace such as the one shown in Eq. (2) progressively
by computing rank-one corrections, i.e. by building a series of nested subspaces:

T1 ⊂ T2 ⊂ · · · ⊂ TN where TN := TN−1 + T1. (3)

In order to compute each rank-one correction, the weak form of the PDE at hand is re-
garded as an optimization problem where the set of admissible solutions is constrained
to T1. This yields a nonlinear optimization problem due to the tensor multiplicative
structure of the subspace, see Eq. (2), which can be efficiently solved by applying
an alternating directions algorithm [29]. In this algorithm, the optimization is per-
formed alternatively along each dimension until convergence [30, 31]. In this way,
the algorithm splits a high-dimensional problem into a series of low-dimensional ones,
achieving linear complexity in the dimensionality of the problem.

4

A priori ROM allows fast online exploration of several configurations, since evalu-
ating a single parameter choice demands no more than reading a look-up table. There-
fore, parametric solutions can be used as a black-box simulation database, to be easily
integrated as a part of complex systems such as real time simulators [32] or Simula-
tion Apps [33]. Other applications in which parametric solutions fit perfectly are fast
process optimization [34] and real-time inverse identification and control [35].

Aside from the question of the parametric domain sampling, which is completely
encompassed by a priori methods, both a priori and a posteriori approaches share es-
sentially the same unresolved questions and challenges already discussed above: in-
trusiveness, affinity and by extension nonlinearity. The only differences rely on the
technicality intrinsic to a tensor framework. The requirement for affinity translates in
the need of a tensor structure in the problem setting. Without this, the alternated op-
timization of the modes cannot be performed in linear complexity. The same issue
is encountered with non-linear problems: the tensor structure of the non-linear terms
is in general not known a priori, and therefore, their evaluation becomes extremely
expensive (comparable to that of a grid-based discretization). This issues make the in-
tegration of a priori ROM methods in third-party simulation software seems impractical
unless major modifications in the original code are implemented.

1.3 Contributions and paper structure
From the discussion in the previous sections the following conclusion can be drawn:
the main bottleneck of projection-based reduced order modeling can be resumed in that
not only the solution must be reducible but also the problem formulation must have a
proper structure.

In an attempt to encompass this limitation, we propose a sparse subspace learn-
ing (SSL) method for computing parametric solutions, based on the following main
ingredients:

• Collocation approach in the parametric domain to circumvent the need of affinity
or tensor structure in the problem setting, since the method is no longer based on
Galerkin projection.

• Hierarchical basis providing nested collocation points (i.e. greedy sampling) and
built-in error estimation capabilities.

• Incremental subspace learning to extract a low-rank approximation throughout
the greedy collocation refinement process.

• Sparse adaptive sampling to extend hierarchical collocation to higher dimen-
sions.

The SSL method is able to produce parametric solutions based only on the output
of a deterministic solver to which the parameters are fed as an input. SSL can be cou-
pled, in principle, to any third-party simulation software. The affinity of the parameter
transformations is no longer an issue, as well as the treatment of nonlinearity which
is entirely handled by the direct solver. Parametric sampling is intrinsically parallel.

5

Although this feature is not explored in this paper, it makes this approach compatible
with parallel and high performance computing.

The rest of the paper is organized as follows. In section 2 we illustrate the im-
plementation of SSL and a detailed application example. In section 3 we extend the
discussion to transient and pseudo-transient problems. Multi-parametric problems are
treated in section 4, where a practical application to a three dimensional transient car
crash model with four parameters is also presented. In the given examples we use both
academic and commercial software to point out the ease of integrating the proposed
approach using existing simulation software in a black-box fashion. Technical details
on the incremental subspace learning are available in appendix A.

2 Sparse Subspace Learning
In this section we introduce the main contribution of this paper, the sparse subspace
learning (SSL) method.

2.1 Underlying idea
Consider the solution of a parametrized problem is the scalar field u(x,µ), with x ∈ Ω

and µ ∈ M, the physical and parametric domains respectively. Given the approxima-
tion spaces

WNs := span{φi(x)}Ns
i=1 and ZNµ

:= span{ψ j(µ)}Nµ

j=1,

its numerical approximation can be expressed as:

u(x,µ) ≈ uh(x,µ) :=
Ns∑
i=1

Nµ∑
j=1

S i jφ
i(x)ψ j(µ) .

The scalars S i j are representation coefficients computed trough numerical method after
appropriate discretization of the equations governing the problem in consideration. The
complexity of this representation is Ns × Nµ, with Ns and Nµ being the number of
degrees of freedom in the physical and parametric space.

In the framework of parametric reduced order modeling, the notion of reducibility
of the solution has a two-fold meaning [36, 37]. In particular, it requires that the matrix
of representation coefficients S have two structural properties:

• Sparsity. This roughly translates into asking that most of the coefficients in S
vanish, or in practice that there are a few dominant components whose magni-
tude is much greater than the rest. The sparsity, ζ, is defined as the number of
vanishing coefficients of S per row. Hopefully, ζ ∼ Nµ.

• Low-rank. The parametric solution lives in a lower dimensional subspace of
WNs , that is, r � min (Ns,Nµ). This basically consists in the assumption that
only few columns of S are linearly independent.

6

Through a collocation strategy it is possible to determine the low rank structure, by
extracting a reduced basis from the solutions at sampled points, while simultaneously
capturing the functional dependency from the parameters, in order to have numerical
parametric solution in explicit form. Parametric collocation approach seeks to compute
representation coefficients S i j as a linear combination of sampling or measurements of
the sought function evaluated at particular points {xi} and

{
µl

}
:

Mil := uh(xi,µl) .

Data can be structured into a matrix M which is a collection of output of a deterministic
solver (sometimes called the snapshots matrix), each column containing the solution
computed for a specific value of input parameters µ. In the following we assume that
the solver output is a reliable approximation of the true solution within a controllable
tolerance, that is, the discretization of the physical space Ns is sufficient to guarantee
the desired accuracy.

In practice, the relation between the representation and measurements coefficients
is given by a linear application that writes as:

SR = M ,

where the matrix R is a linear operator mapping the rows of S into the rows of M.
Once the snapshots matrix is available, the representation coefficients are obtained by
applying R−1 to the rows of M. This operation is potentially costly since R is a large
dense matrix that needs updating each time the parametric space is refined (i.e. new
columns are appended to the snapshots matrix). The transformation matrix results from
the choice of the representation basis and the sampling points, since

R jl = ψ j(µl) .

Therefore, an optimal choice of the sampling strategy to select the points
{
µl

}
and the

representation basis ψ j(µ) would lead ideally to the highest possible sparsity s while
giving rise to an operator R that is easily invertible and updatable as the sampling
is refined. This concept is exploited in the next section using hierarchical parametric
collocation.

2.2 Discovering sparsity through hierarchical collocation
The most intuitive way to apply collocation in the parametric space is by using an
interpolative basis. This choice results into

S ≡M

because the linear operator R is the identity matrix in this case. Although the num-
ber of sampling can be adjusted to control the convergence in the parametric sampling{
µl

}
, interpolative basis do not in general yield sparsity of the solution. On the other

hand, spectral basis, such as polynomials or trigonometric functions, guarantee spar-
sity, provided that the solution have the required regularity to be represented in the
chosen basis. When that is the case, spectral coefficients decrease exponentially with

7

the order of approximation [38]. The price to pay for sparsity is that the operator R is
full, because spectral basis are not interpolative. This implies that the computational
cost needed to compute the representation coefficients becomes impractical for large
systems and high dimensional parametric problems, for which the number of required
sampling is high and each sampling evaluation is costly. Furthermore, if refinement is
needed, R must be updated and a new linear system has to be solved again.

To circumvent this problem there are two possible approaches:

• Subsampling. By choosing the number of representation functions ψ j(µ) to be
higher than the number of sampled solutions (S has more columns than M) one
obtains an over-determined system. Through an appropriate regularization and
choice of the sampling points, which must be incoherent with respect of repre-
sentation basis [39], a unique solution can be determined. This is the approach
followed by Sparsity Promoting techniques [40] Compressed Sampling [41] and
Basis Pursuit [42]. In practice, regularization is ensured by asking the maximum
sparsity in the solution, which is equivalent in minimizing the zero-norm of each
column in S. This problem is NP-hard and therefore a surrogate norm is chosen
instead of the norm zero, often the norm-1, leading to a smooth convex func-
tional. The minimization step can be performed using many of the techniques
specifically developed for this problem [43, 44]. Once all the coefficients are
computed the ones with the lowest magnitude are simply purged. Although this
approach is extremely efficient in terms of the number of sampling measurements
needed, the computation of these coefficients becomes exponentially harder as
the number of parameters increases [45].

• Hierarchical Collocation. In this approach the representation coefficients are
not computed all at once but through and incremental procedure based on multi-
level sampling. This idea is used in Sparse Grid [46] and Stochastic Collocation
[47] using a hierarchical sampling based on a sequence of nested sets of points.
In this way the operator R is quasi-interpolative because it is block-triangular.
This means that the computation of the sparse coefficients in S does not require
the solution of an algebraic system, or the minimization of a nonlinear functional,
but can be computed relatively easily directly from the solution samplings.

Hierarchical sampling is the approach followed in this paper. This is based on the
definition of a hierarchy of collocation points sets. At level k of the sampling hierarchy,
the corresponding set of points has N(k)

µ elements.

P(k) ≡
{
µl

}N(k)
µ

l=1

In hierarchical collocation the point sets are nested:

· · · ⊂ P(k−1) ⊂ P(k) ⊂ P(k+1) ⊂ · · · ∀k ∈ N ,

This implies that each level contains the N(k−1)
µ points of the previous level plus N(k)

µ −

N(k−1)
µ additional points. The subsets of new points that are progressively added are

called hierarchical refinements:

H (k) ≡ P(k) \ P(k−1) ∀k ∈ N+ .

8

The nested structure of sampling sets also entails that the subspaces

Z(k) := span{ψ j(µ)}N
(k)
µ

j=1

are also nested:
· · · ⊂ Z(k−1) ⊂ Z(k) ⊂ Z(k+1) ⊂ · · · ∀k ∈ N .

In hierarchical collocation the basis functions are quasi-interpolative in the sense that,
for a given a hierarchical level k and N(k−1)

µ < j ≤ N(k)
µ

ψ j(µl)

= 0 if µl ∈ P

(k−1)

= δ jl if µl ∈ H
(k)

, 0 otherwise
(4)

This is essential in order to ensure the block triangular structure of the matrix R, which
is the key feature in order to have an easy direct solution of the linear system for the
determination of the representation coefficients. Indeed, in reason of the particular
structure of R, back substitution can be used to compute the columns of S:

• For the first level k = 0, 0 < j ≤ N(0)
µ , the representation coefficient are simply

equivalent to the snapshots : Mi j = S i j, ∀i = 1, . . . ,Ns

• For subsequent levels k > 0, N(k−1)
µ < j ≤ N(k)

µ , the following explicit formula is
used

S i j = Mi j −

N(k−1)
µ∑
l=1

S il ψ
l(µ j) ∀i = 1, . . . ,Ns (5)

The previous equation is applied recursively over the hierarchical levels using few
simple algebraic operations and without the need of updating the previously computed
S i j coefficients. Indeed, the second term in the right hand side of (5) corresponds to
the predicted values from interpolation of the previously computed snapshots uh(x,µ j)
onto the sampling points of the new hierarchical refinement

M̄i j =

N(k−1)
µ∑
l=1

S il ψ
l(µ j) ∀i = 1, . . . ,Ns , µ j ∈ H

(k) ; k ∈ N+ (6)

Therefore, we conclude that the representation coefficients S i j are simply recovered as
the difference between the actual function values Mi j and the predictions M̄i j:

S i j = Mi j − M̄i j .

For this reason, in the context of hierarchical collocation, the representation coeffi-
cients S i j are also called the surplus coefficients. The corresponding functions

s(x;µ j) =

Ns∑
i=1

S i jφ
i(x)

9

are consequently named the surplus functions.
The matrix R is never formed or inverted in practice, which is why the method is

easily implemented in a greedy incremental way. The termination criterion is simply
based on the convergence of the surplus functions in a given norm, like for instance the
euclidean norm ∥∥∥s(x;µ j)

∥∥∥
2

=

√√√ Ns∑
i=1

S 2
i j .

Alternatively the `2 − norm or the infinity norm can be also used. The algorithm is
stopped when the norm of all the surplus functions in a hierarchical level falls below a
given tolerance εh. This constructive approximation is described in algorithm 1.

Algorithm 1 Hierarchical sampling: HS

1: Set S i j ≡ Mi j for k = 0
2: for k = 1 to Lmax do
3: Compute predictions M̄i j using Eq. (6)
4: Run Mi j = uh(xi,µ j) . “True” solution
5: Compute S i j = Mi j − M̄i j . Surplus coefficients
6: Check

∥∥∥s(x;µ j)
∥∥∥ < εh for all µ j in current level

7: end for

To discover the sparsity in the parametric space, algorithm 1 requires the solution at
all sampling points, even though only few relevant surplus coefficients are retained in
the end. Reduction is obtained “a posteriori”, by pruning negligible coefficients once
the snapshots Mi j are already computed. This means that most of snapshots are not
actually used because they lead to small coefficients S i j which are inevitably pruned.
In order to avoid computing useless direct solutions, it is possible to introduce the of
concept adaptive sampling.

In hierarchical multivariate interpolation and quadrature, this concept has been ex-
tensively investigated and rigorous error estimation strategies exist in order to adapt
the sampling procedure while retaining a given accuracy [48, 49, 50]. In the present
study the functions that we are trying to approximate are the solutions of parametric
partial differential equations. Therefore residual can be computed explicitly at new
sampling points from the prediction M̄i j given by the interpolation of previous hierar-
chical levels and used to define a sampling strategy based on a proper error estimator.
In practice the residual based error estimation checks whether the predicted values are
accurate enough. In case of positive outcome a new direct solution is not required and
the corresponding sampling point can be simply skipped. Based on this basic sampling
adaptivity strategy, the adaptive algorithm 2 can be constructed.

The benefits of the adaptive strategy will be further discussed in the examples pre-
sented in section 2.4.3.

10

Algorithm 2 Adaptive Hierarchical Sampling: AHS

1: Set S i j ≡ Mi j for k = 0
2: for k = 1 to Lmax do
3: Compute predictions M̄i j using Eq. (6)
4: Compute Ei j = e(M̄i j) . Residual error estimation
5: if Ei j > εtol then
6: Run Mi j = uh(xi,µ j) . M̄i j as first guess solution
7: Compute S i j = Mi j − M̄i j . Surplus coefficients
8: else
9: Set S i j = 0

10: end if
11: Check

∥∥∥s(x;µ j)
∥∥∥ < εh for all µ j in current level

12: end for

2.3 Incremental subspace learning
Although the hierarchical collocation approach provides many advantages, the final
parametric solution is not optimal in terms of its compactness. As a matter of fact, the
number surplus functions needed to approximate the parametric solutions is in princi-
ple equal to the number of hierarchical collocation points. In most applications, it is
likely that a low rank approximation of the solution exists. The structure of the low-
dimensional subspace for the hierarchical surpluses can be learned using approximate
low-rank tensor decomposition techniques on the matrix S. This is especially impor-
tant when one is interested in solving large problems, which may lead to thousands
of full-order solves, especially when multi-parametric problems are to be addressed.
Indeed, the storage of the matrix S can be limited by memory availability when solving
large-scale problems. In what follows, we shall denote a matrix A with values in the
field Km×n either by A|m×n, the first time it is introduced, or simply A, in subsequent
appearances. Therefore the representation coefficient matrix at hierarchical level k is
S
|Ns×N(k)

µ
. After k hierarchical refinements, we seek a matrix approximation of rank-r

given by

Sk ≈ UkΣkV∗k, (7)

where U|Ns×r and V
|N(k)

µ ×r are orthonormal matrices and Σ|r×r is a diagonal matrix with
nonnegative coefficients. Because of sparsity, the rank of Sk after k refinements is at
most equal to the number of nonzero columns, that is, N(k)

µ − ζ. The decomposition
in equation (7) can be computed in practice by either truncating the singular value
decomposition of S to the r highest singular values [51], or using randomized singu-
lar value decomposition (rsvd) [52], or constructive incremental approximations like
parafac [53] and candecomp [54]. Low rank approximation can be performed as a
post-processing step in “batch mode”, after convergence of the sparse learning sam-
pling. However, this approach is expensive in terms of both memory requirements
and computational cost because it implies storing an manipulating S throughout the
whole process of parametric refinement. On the other hand the size of S grows dy-
namically thought the adaptive hierarchical sampling procedure as additional columns

11

are appended each time the parametric space is refined and new surplus functions are
computed. Therefore the tensor decomposition technique should enable incremental
updating after each refinement on order computations from scratch. In this way hier-
archical collocation can be coupled with a subspace extraction step that is performed
on-the-fly as new surpluses are computed. The idea of incremental subspace learning
is presented in several works and it is mostly used to compress continuously streaming
data flows with application to computer vision and pattern recognition where on batch
subspace extraction is unfeasible due to the sheer size of the datasets [55, 56, 57].
Once a matrix update ∆k+1 is appended to the matrix Sk the following factorization is
considered [58]:

Sk+1 =
[

Sk ∆k+1

]
≈

[
Uk Jk+1

] [Σk Lk+1

0 Kk+1

] [
Vk 0
0 I

]∗
(8)

where Lk+1 = U∗k∆k+1, Kk+1 = J∗k+1Hk+1, Hk+1 = (I − UkU∗k)∆k+1, Jk+1 is an orthogonal
basis for Hk+1 and I is the identity matrix. The middle factor can be further decomposed
as [

Σk Lk+1

0 Kk+1

]
≈ Ũk+1Σ̃k+1Ṽ∗k+1, (9)

and finally the low rank decomposition is updated :

Uk+1 =
[

Uk J
]

Ũk+1 , (10)

Vk+1 =

[
Vk 0
0 I

]
Ṽk+1 , (11)

and

Σk+1 = Σ̄k+1. (12)

The low-rank tensor approximation in equation (9), can be obtained by means of any of
the above mentioned techniques. The computational cost of the update only depends on
the size of ∆ and not on the full dataset size. In this work we employ rsvd to perform
this operation and to allow the rank to change throughout the refinement levels k. The
resulting incremental version of the rsvd is therefore referred to as irsvd. For the
sake of concision, implementation details are reported in appendix A.

The irsvd can be seen as an incremental subspace learning technique as it allows
to update the low rank representation dynamically as new snapshots in the solutions
are computed. It can be combined with hierarchical adaptive sampling into a sparse
subspace learning (ssl) approach, in which the sampling of the parametric space si-
multaneously used to build reduced basis and discover the sparse structure of the sub-
space. The use of a low rank representation for S is not only beneficial in terms of
memory usage but it also simplifies the hierarchical sampling algorithm. Indeed, when
S is approximated using the canonical tensor decomposition (7), the interpolation of

12

Algorithm 3 Sparse Subspace Learning: SSL

1: For k = 0 S i j ≡ Mi j.
2: Compute S0 ≈ U0Σ0V0

∗ . rsvd
3: for k = 1, 2, . . . do
4: Compute predictions M̄i j using Eqs. (13),(14)
5: Compute Ei j = e(M̄i j) . Residual error estimation
6: if Ei j > εtol then
7: Run Mi j = uh(xi,µ j) . M̄i j as first guess solution
8: Compute S i j = Mi j − M̄i j . Surplus coefficients
9: else

10: Set S i j = 0
11: end if
12: if All

∥∥∥s(x;µ j)
∥∥∥

2
< εh then

13: break
14: else
15: Update Sk ≈ UkΣkVk

∗ . irsvd
16: end if
17: end for

the surplus functions onto the sampling point of a new hierarchical level can be per-
formed more efficiently. Instead of recombining the columns of S we interpolate the
right (parametric) singular vectors V:

V̄i j =

N(k−1)
µ∑
l=1

Vilψ
l(µ j) (13)

and obtain the predictions at new sampling points as:

M̄ = UΣV̄∗ (14)

The cost of the interpolation step depends on the numerical rank r of the approxima-
tion which is much smaller than the number of surplus functions Ns in many practical
applications. The resulting procedure is detailed in algorithm 3.

2.4 Parametric lid driven cavity flow
We consider a classic benchmark problem in computational fluid dynamics: the lid-
driven cavity flow (fig 1). The choice of the benchmark is motivated by its mathemati-
cal features that typically need a careful treatment in the framework of projection based
parametric reduced order modeling, like nonlinearity and non-convexity [59]. There-
fore it can be considered as a minimal working example to showcase the features of
the sparse subspace learning approach. In particular we consider low Reynolds steady
laminar flow governed by the equations : µ u · ∇ u − ∆u + ∇ p = 0

∇ · u = 0
, (15)

13

x = 0 x = 1

y = 1

y = 0

y

x

ux , uy = 0 ux , uy = 0

ux , uy = 0

uy = 0
ux = 16x2(1 � x)2

Figure 1: Schematics for the 2D lid driven cavity flow.

with u(x, µ) and p(x, µ) being the velocity and pressure fields and µ =
ρVL
η

being the
Reynolds number. For this problem we seek a numerical approximation for u(x, µ),
(x, µ) ∈ [0, 1]2 × [0, 1000].

2.4.1 Deterministic solver

For a given choice of the Reynolds number the flow is solved with a high order mixed
finite element formulation [60]. A cartesian mesh of 40 elements per direction is used.
The nonlinearity is handled using a pseudo-transient method. Starting from an initial
guess, that can be the corresponding Stokes flow for example, equation are integrated
in time using a stable time-stepping algorithm until the steady state. Convergence is
assessed using by checking the relative residual norm of eq. (15) and the `2 norm of
the difference of the velocity field between two successive iterations.

2.4.2 Choice of the parametric basis

In low Reynolds number regime it can be reasonably assumed that the flow is laminar
and that the solution of the equations (15) varies smoothly with the parameter µ. In this
case we can adopt a high order polynomial basis to represent u(x, µ) in the parametric
space for Reynolds numbersM ≡ [0, 1000].

When using polynomial approximation an optimal choice for the sampling is de-
fined by the set of Gauss-Chebychev-Lobatto (GCL) points

P(k) ≡

{0, 1000} if k = 0{
µ j = 500(cos(2 j−1

2k) + 1)∀ j = 1, . . . , 2k−1
}
∪ P(0) if k > 0

The corresponding parametric basis is constructed using hierarchical Lagrangian inter-

14

=

S R M

0 50 100 150 200 250 300 350 400 450 500
nz = 88405

0

50

100

150

200

250

300

350

400

450

500

Figure 2: Heatmap plot showing the magnitude of both sampling points Mi j and rep-
resentation coefficients S i j, evidencing the sparsity of the solution of the parametric
lid-driven cavity flow in the space spanned by hierarchical polynomial function. The
block triangular structure of the matrix R is also shown.

polation. For a given hierarchical level k and N(k−1)
µ < j ≤ N(k)

µ :

ψ j(µ) ≡ L(k)
j (µ) =

∏
µi∈P

(k)\µ j

µ − µi

µ j − µi
∀µ j ∈ H

(k)

2.4.3 Results

In order to get better insight on the structure of the sparse representation of the solution
in the parametric space, algorithm 1 is run first without adaptiveness in the sampling.
Figure 2 shows a heatmap plot of the elements in the representation S and measure-
ments M matrices to give a qualitative visualization of the sparsity of the of first with
respect to the second. Indeed, more than half of the elements in S can be pruned with-
out significant effect on the solution, that is with a relative approximation error less
than 10−6. The same figure shows the block diagonal structure of the interpolation op-
erator R obtained from the quasi-interpolative feature of the hierarchical polynomial
basis used in this example.

As a second step we solve the same problem with adaptive sampling. This can be
introduced in a straightforward and non-intrusive way. Indeed, most of well designed
iterative solvers (linear and nonlinear) perform a check on the initial guess solution
before actually start running. If the convergence criterion is already met by the first
attempt solution, the solver does not perform any iteration and returns the initial guess
as the correct solution. Following this rationale, the predictions from hierarchical M̄i j

interpolation offers an optimal initial guess to initialize the deterministic solver at a
new sampling point. If this solution is good enough the solver is not run and the
corresponding surplus coefficient is automatically set to zero. This strategy avoids the
delicate task of defining a specific error estimation approach for each new problem
by leaving this issue to the deterministic solver which can be therefore easily plugged
in the SSL algorithm. Running algorithm 2 confirms this idea. In figure 3 we report
the magnitude of the hierarchical surpluses as a function of the simulation number
(simulation are ordered in the sense of hierarchical levels). These decay very fast until

15

0 100 200 300 400 500 600

Simulation

10
-20

10
-15

10
-10

10
-5

10
0

E
rr

o
rE

s
ti
m

a
to

r

j

ks
(µ

j
)k

1

Figure 3: The norm of the sparse surplus functions s(x, µ j) decreases with the refine-
ment in the parametric space. The stagnation observed is due to the fact that the con-
vergence tolerance in the direct solver is set to 10−8, while the point with zero (to the
machine precision) surplus coefficients correspond to the simulations that were skipped
by the adaptive algorithm.

they reach a plateau around the level of 10−8. This phenomenon is explained by the
fact that convergence criterion tolerance was set to this value, therefore the presence
of the plateau indicates that the parametric sampling reached the level of precision of
the direct solver. The points that are set to zero (to the machine precision) correspond
to the cases where the adaptive algorithm skipped the solution and automatically set
the corresponding surplus to zero. In this case, more than half of the solution were not
computed at all.

As the parametric sampling is refined, the sparse surplus coefficients S i j converge
and the prediction M̄i j becomes an increasingly better initial guess for Mi j. This im-
plies that the convergence in the parametric space also accelerates the convergence on
the deterministic iterative solver which require less and less iterations to reach con-
vergence. To quantify this idea, we represented a measure of the computational work
associated to each direct solution performed by the solver as a function of the magni-
tude of the surplus coefficients, figure 4. We assume, as a measure of the computational
work, the number of iterations required by the pseudo-transient solver to converge to
the steady state. In this way we make this measure platform independent. In figure 4
the surplus coefficients are shown to be linearly correlated to the computational work
in the asymptotic convergence regime. Since polynomial approximation guarantees
exponential convergence of the S i j coefficients, the linear decay of the computational
work with the surplus coefficients implies that even though the number of sampling
points increase the overall computational work per hierarchical level decreases.

The numerical rank obtained in the final approximation using a tolerance of 10−7

in the irsvd algorithm is r = 9. Both space functions and parameters functions are
represented in figure 5. For further details see appendix A.

16

10-10 10-5 100 105100

101

102

103

104

105

106

Level 0
Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7
Level 8
Level 9

W
j

ks(µj)k1

Figure 4: The surplus norm of surplus functions s(x, µ j) correlates linearly with the
amount of computational work W j required to compute direct solutions Mi j using the
predictions M̄i j as initial guess in the nonlinear solver. The computational work is
measured by the number of nonlinear iterations required by the direct solver to compute
a solution. Since the computational work decays linearly with the magnitude of the
surplus functions, and the latter decays exponentially with the order of the spectral
approximation, we observe that the overall computational work per hierarchical level
decreases when the hierarchical sampling reaches its asymptotic convergence regime.

3 Time dependent models
Parametric solutions of transient, or pseudo-transient, models can also be computed in
the SSL framework. A first possibility consists in considering a space-time discretiza-
tion

uh(x, t,µ) :=
NsNt∑
i=1

Nµ∑
j=1

S i jφ
i(x, t)ψi(µ) , (16)

in which the set of functions φi(x, t) forms a representation basis in the space-time
domain, (x, t) ∈ Ω × [0,T]. This allows applying exactly what has been described
in section 2. In particular, a subspace for the hierarchical surpluses may be found as
shown in section 2.3.

An alternative approach consists in splitting space and time into separated dimen-
sions, which yields:

uh(x, t,µ) :=
Ns∑
i=1

Nt∑
j=1

Nµ∑
k=1

S i jkφ
i(x)ϕ j(t)ψk(µ) , (17)

where the set of functions φi(x), ϕ j(t) and ψk(µ) form a representation basis in the
physical space x ∈ Ω, time interval t ∈ [0,T] and parametric space µ ∈ M, respectively.
The scalars S i jk are representation coefficients forming a third-order tensor.

Both Eq. (16) and (17) are in principle equivalent, as they yield a total complexity
of Ns × Nt × Nµ. However, Eq. (17) allows seeking for a tensor subspace, which is

17

S
p
a
ce

F
u
n
ct

io
n
s
v

i(
x
)

1

0 200 400 600 800 1000
Re

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

R
i(R

e
)

1

2

3

4

5

6

7

8

9

P
a
ra

m
et

ri
c

F
u
n
ct

io
n
s

R
i(

µ
)

2 3

4 5 6

987

Figure 5: Sparse Subspace Learning solution for the parametric lid-driven cavity steady
state laminar flow for Reynolds number between 0 and 1000. The space modes are
given by vi(x) =

∑
n Uniφn(x). The first nine modes are visualized by streamlines and

intensity of the corresponding field. The corresponding parametric functions are also
reported. These are defined as Ri(µ) =

∑
n Vmiψm(µ). In this example the tolerance

criterion used for the direct solver convergence was 10−8, while the truncation criterion
adopted for the determination of the numerical rank r in the irsvd algorithm is 10−7.

likely to be more compact in terms of representation than its matrix counterpart. We
shall elaborate on the tensor subspace approach in next lines. For the sake of clarity,
we shall denote a tensor� with values in the field Kn1×n2×n3 either by�|n1,n2,n3 (the first
time it is introduced) or simply �, in subsequent appearances.

Suppose that the hierarchical collocation approach allowing for a sampling of the

18

parameter domain is applied exactly in the same manner as described in section 2. As a
result, we get a three-dimensional tensor �|n1,n2,n3 , containing the hierarchical surpluses,
where n1 is typically the number of degrees of freedom related to the space discretiza-
tion, n2 is the number of time steps and n3 is the total number of collocation points at
convergence. We seek a tensor decomposition of rank-(r1, r2, r3) given by

� =

r1∑
i=1

r2∑
j=1

r3∑
k=1

σi jkui
1 ⊗ u j

2 ⊗ uk
3 , (18)

which using the tensor multiplication [[25], sec. 2.5], can also be written as follows:

� = � ×1 U1 ×2 U2 ×3 U3 , (19)

where the factor matrices U1|n1×r1 , U2|n2×r2 and U3|n3×r3 are usually orthonormal and
define linear transformations in each direction. They can be regarded as the singular
vectors in each direction. On the other hand, �|r1×r2×r3 is called the core tensor, and its
entries express the level of interaction between the different singular vectors.

A tensor decomposition such as Eq. (19) is usually computed with the hosvd
algorithm [61], based on the application of the svd on successive matricizations of the
original data. Briefly:

S(d) = UdΣdV∗d, d = 1, 2, 3. (20)

The core tensor is computed:

Σ(d) = ΣdV∗d(U1 ⊗ · · · ⊗ Ud−1 ⊗ Ud+1 ⊗ · · · ⊗ UD). (21)

Which in our case means that the core can be computed either as

Σ(1) = Σ1V∗1(U2 ⊗ U3), (22)

Σ(2) = Σ2V∗2(U1 ⊗ U3), or (23)

Σ(3) = Σ3V∗3(U1 ⊗ U2). (24)

Applying the hosvd may be expensive in terms of both memory requirements and
computational cost, especially if the input data does not fit in fast memory. For this
reason, we propose to replace the standard svd by the the irsvd, already presented in
section A.2. In this manner, the factor matrices can be updated in order to account for
the data stream.

3.1 Application to Sheet Metal Forming Simulation
In this example we apply SSL to transient stamping simulation of a hotformed auto-
motive b-pillar. The objective is to assess the process sensitivity to the friction between
the metal blank and the stamping tooling (punch and dye). Then numerical solution
is sought in Ω × T × M, where the space domain Ω is shown in figure 6, the time
interval is defined as T ≡ [0, 8][s] and M ≡ [0.05, 0.3] is the parametric space of
friction coefficients. Frictional contacts are modeled using Coulomb’s friction law. Di-
rect simulations were run on 4 hierarchical levels using the commercial software Pam-
Stamp 2G. The metal blank is modeled using quadrilateral shell elements with 1.5mm

19

initial uniform thickness. The stress-strain relation for steel is modeled by means of
Krupkowsky’s law taking into account the strain hardening during the metal forming
process. The punch and the dye are assumed as rigid elements. From each simulation
we export displacements, plastic strain, thickness and thinning fields, each requiring a
separate tensor approximation.

For the displacement field, for instance, the final solution numerical rank is (6, 5, 3),
ensuring reasonable accuracy for this application (less than 1% error on the predicted
displacement). Other fields produce similar results. Figure 6 shows space, time and
parametric modes for the displacement field, while three particular solutions for the
thinning are shown in figure 7.

4 Extension to high-dimensional parametric problems
In higher dimensional problems the extension of hierarchical sampling is non trivial.
Sampling high-dimensional spaces using the strategy described so far is limited by the
curse of dimensionality. Indeed, the sampling points at a hierarchical level k would be
simply given by the tensor product of point samplings P(k)

d along each dimension d.
Assuming D dimensions, this writes:

P(k) = P
(k)
1 ⊗ P

(k)
2 ⊗ . . .P

(k)
D ≡

D⊗
d=1

P
(k)
d

Given that each point set is the union of all previous hierarchical refinements

P
(k)
d =

k⋃
h=0

H
(h)
d ,

The D-dimensional hierarchical refinement given by the tensor product rule would be :

H (k) ≡ P(k) \ P(k−1) =

D⋃
h=1

H (k)
h ⊗

D⊗
d=1
d,l

P
(k−1)
d

 ∪
D⊗

d=1

H
(k)
d ∀k ∈ N+

The tensor product rule implies that hierarchical refinements grow exponentially
with the dimension D of the problem. To alleviate this issue we adopt Smolyak’s
rule to construct higher dimensional refinement sets [62]. This replaces the traditional
tensor product rule by the following expression:

H (k) ⊃ H (k)
s =

⋃
|h|1=k

D⊗
d=1

H
(hd)
d ,∀k ∈ N+ (25)

with h ≡ {h1, . . . , hd, . . . , hD}. The complexity Smolyak’s rule grows polynomially
with the dimensionality of the parametric hypercube, instead of exponentially, while
retaining the same accuracy on the approximation of the function, provided that the
high order mixed derivatives are bounded [46]. Therefore the method is not subject to

20

Die
Punch

Frontal

Lateral

(a) Mode 1 (b) Mode 2 (c) Mode 3

�80 �60 �40 �20 0

Punch stroke (mm)

0 2 4 6 8

�0.4

�0.2

0

0.2

0.4

Time (sec)

Mode 1 Mode 2 Mode 3 Mode 4

(a) Time modes

0.1 0.2 0.3

�0.4

�0.2

0

0.2

0.4

Friction coe�cient (-)

(b) Parameter modes

Figure 7: First four normalized time modes of the displacement field.

The D-dimensional hierarchical refinement given by the tensor product rule
would be :

H(k) ⌘ P(k) \ P(k�1) =

D[

h=1

2
64H(k)

h ⌦
DO

d=1
d 6=l

P(k�1)
d

3
75 [

DO

d=1

H(k)
d 8k 2 N+

The tensor product rule implies that hierarchical refinements grow exponen-
tially with the dimension D of the problem. To alleviate this issue we adopt
Smolyak’s rule to construct higher dimensional refinement sets [Smolyak]. This
replaces the traditional tensor product rule by the following expression:

H(k) � H(k)
s =

[

|h|1=k

DO

d=1

H(hd)
d , 8k 2 N+ (17)

with h ⌘ {h1, . . . , hd, . . . , hD}. Smolyak hierarchical refinement grow subex-
ponetially and the problem complexity scales as o(Nlog(N)D�1) instead of ND

while retaining the same accuracy on the approximation of the function, pro-
vided that the high order mixed derivatives are bounded [Sparse Grid]. This
concept has been successfully used in the framework of sparse grid interpolation
and quadrature [], with a variety of di↵erent basis functions including hierarchi-
cal polynomials and wavelet functions [] and extended to dimensionally adaptive
strategies []. Note that changing the `�1 norm for a di↵erent norm in equation
(17) yields di↵erent sampling strategies. Using the infinity norm (maximum

21

�80 �60 �40 �20 0

Punch stroke (mm)

0 2 4 6 8

�0.4

�0.2

0

0.2

0.4

Time (sec)

Mode 1 Mode 2 Mode 3 Mode 4

(a) Time modes

0.1 0.2 0.3

�0.4

�0.2

0

0.2

0.4

Friction coe�cient (-)

(b) Parameter modes

Figure 7: First four normalized time modes of the displacement field.

The D-dimensional hierarchical refinement given by the tensor product rule
would be :

H(k) ⌘ P(k) \ P(k�1) =

D[

h=1

2
64H(k)

h ⌦
DO

d=1
d 6=l

P(k�1)
d

3
75 [

DO

d=1

H(k)
d 8k 2 N+

The tensor product rule implies that hierarchical refinements grow exponen-
tially with the dimension D of the problem. To alleviate this issue we adopt
Smolyak’s rule to construct higher dimensional refinement sets [Smolyak]. This
replaces the traditional tensor product rule by the following expression:

H(k) � H(k)
s =

[

|h|1=k

DO

d=1

H(hd)
d , 8k 2 N+ (17)

with h ⌘ {h1, . . . , hd, . . . , hD}. Smolyak hierarchical refinement grow subex-
ponetially and the problem complexity scales as o(Nlog(N)D�1) instead of ND

while retaining the same accuracy on the approximation of the function, pro-
vided that the high order mixed derivatives are bounded [Sparse Grid]. This
concept has been successfully used in the framework of sparse grid interpolation
and quadrature [], with a variety of di↵erent basis functions including hierarchi-
cal polynomials and wavelet functions [] and extended to dimensionally adaptive
strategies []. Note that changing the `�1 norm for a di↵erent norm in equation
(17) yields di↵erent sampling strategies. Using the infinity norm (maximum

21

0.1 0.2 0.3

�0.4

�0.2

0

0.2

0.4

Friction coe�cient (-)

Time

F
ri

ct
io

n
co

e�
ci

en
t

Figure 7: .

24

Figure 6: Order reduction of the stamping solution: normalized space, time and pa-
rameter modes of the displacement field.

the curse of dimensionality at least in the space of smooth functions. This concept has
been successfully used in the framework of sparse grid interpolation and quadrature
[63], with a variety of different basis functions including hierarchical polynomials and
wavelet functions [64] and extended to dimensionally adaptive strategies [65]. Note
that changing the `1 norm for a different norm in equation (25) yields different sam-
pling strategies. Using the infinity norm (maximum norm) the classical tensor-product

21

Time
F
ri

ct
io

n
co

e�
ci

en
t

Figure 7: The figures shows the solutions for three different friction coefficients 0.05
(top), 0.175 (middle) and 0.3 (bottom) at times t = 2.32 s (left), t = 5.41 s (center) and
t = 8.50 s (right).

sampling is obtained. An alternative approach is represented by the hyperbolic-cross
sampling [66].

4.1 Application to Stokes flow around parametric NACA four dig-
its airfoil

In this section we show an application of the Sparse Subspace Learning method to the
problem of steady state viscous incompressible and inertialess flow around a NACA
four-digits airfoil. The geometry of the airfoil is known in analytical closed form as
a function of four parameters: the chord c, the maximum thickness t, the maximum
camber m and the position of maximum camber as a fraction of the chord p.

In dimensionless form, the problem only depend on three parameters if the chord
is chosen as reference unit length. Therefore the parametric solution of this problem is
sought in the three-dimensional space

{t,m, p} ∈ [0.06, 0.15] × [0, 0.1] × [0.34, 0.5]

22

reference mapping deformed

Figure 8: Airfoil shape variation with respect to a reference shape (NACA 0012 airfoil)
are take into account by deforming a reference triangular mesh (leftmost panel). The
nodes in the original mesh are moved according to a displacement field u solution of
the elliptic problem (27) with imposed Dirichlet boundary condition prescribing the
right shape on the airfoil boundary (central panel). An exemple of a typical mesh is
shown in the rightmost panel.

The velocity and pressure fields are governed by Stokes equations:∆v − ∇p = 0
∇ · v = 0

(26)

paired with appropriate boundary condition prescribing no-slip at the airfoil boundary
v(x = xb) = 0 and uniform asymptotic velocity v∞ = cos(α)i + sin(α)j; with the angle
of attack α = 10◦ for this case. The airfoil shape variation is taken into account through
the mapping

x(x0) = x0 + u(x0)

where x0 is the coordinate in a reference (undeformed) domain, x is the physical coor-
dinate in the transformed domain and u is a displacement field. In practice the mapping
is found through the solution of the elliptic problem for the u:

c1u + c2∆x0 u + c3∇x0 [∇x0 · u] = 0 (27)

with prescribed Dirichlet boundary conditions on the airfoil boundaries in order im-
pose the correct shape to the deformed domain. The subscript x0 indicates that the
derivatives are taken with respect to the coordinates in the reference domain.

The reference shape is chosen as the symmetric profile NACA 0012. The reference
domain is then meshed using triangular elements. Equation (27) is solved on this do-
main to find the mapping u corresponding to a given shape of the family NACA 4-digits
airfoils and the reference mesh is deformed accordingly, as shown in figure 8. The co-
efficients appearing in this equation are chosen on empirical basis as c1 = 50, c2 = 1,
c3 = 24.5. The values are selected in order to avoid severe distorsion of the mesh. The
Stokes problem is then solved on the deformed mesh using Crouziex-Raviart mixed
finite elements formulation.

There are two bottlenecks associated to this problem in the framework of projection
based parametric reduced order modeling:

23

0.35

0.1

0.4

p

0.14

0.45

m

0.05 0.12

t

0.5

0.1
0.08

0 0.06

0.35

0.1

0.4

p

0.14

0.45

m

0.05 0.12

t

0.5

0.1
0.08

0 0.06

full sampling sparse sampling sparse adaptive sampling

Figure 9: Comparison between tensor product sampling strategy (leftmost panel),
sparse grid sampling using Smolyak’s rule (central panel) and sparse adaptive sampling
(rightmost panel). Note how the sampling along p is automatically refined in proximity
of the values m = 0.1. This is because for m = 0 (symmetric profile) the position of
maximum camber p does not affect the shape profile. On the contrary for cambered
airfoils the value of the parameter p has a strong effect on the shape and therefore on
the flow solution, therefore more sampling points are needed in this region.

• The parametric mapping u(x0, t,m, p) needs to be determined from the solution
of equation (27). The difficulty in this step is associated to the parametrization
of the Dirichlet boundary conditions describing the airfoil shape that are not
expressed in a tensor format and an approximate decomposition must be sought.

• Even if a separated variable approximation of u(x0, t,m, p) can be obtained with
reasonable accuracy, the weak form associated to problem (26) is not necessarily
affine with respect to parameters {t,m, p}.

A strategy to recover affine approximations in terms of geometrical parameters can be
found in [67].

In this case the use of collocation does not require an affine approximation of the
linear operators arising from the problem discretization, since the proposed method
only relies on the output of the deterministic solver. This takes values of {t,m, p} as
input and computes the Stokes flow around the corresponding airfoil using a triangular
mesh generated through equation (27). A sparse and low rank approximation of both
the flow solution and the mapping are constructed simultaneously.

The sampling algorithm is run until all hierarchical surpluses fall below 10−8 and
the truncation threshold for the rank was taken as 10−15. In figure 9 we present a com-
parison between three possible sampling strategies. With respect to classical tensor
product of 1D sampling points, Smolyak’s rule requires only a 0.6% of all points and
adaptive Smolyak’s rule only 0.03%. The final solution approximate rank (for the pre-
scribed precision) is 16. To assess the validity of the solution we compared results
of the reduced parametric model to the results of the direct solver for some parameter
combinations giving specific airfoils in the NACA 4-digits family. Results are pre-
sented in figure 10 and confirm that the accuracy of the model is around 10−8. Note
that error is sensibly smaller close to the location of the sampling points.

24

NACA 2412 NACA 6409

NACA 6515 NACA 6406

Figure 10: Error maps of the reduced order parametric solution with respect to di-
rect solutions for specific airfoils shapes of the NACA four-digits family. The error is
globally around 10−8 everywhere in the parametric space except in proximity of the
collocation points where the error is remarkably smaller.

25

4.2 Application to crash simulations

Rigid Obstacle

64 Km/h

[mm]

A

B C D

Figure 11: Parametric simulation of the crash model for the NCAP Offset Deformable
barrier frontal impact test. Final deformation corresponding to different combination of
the parameters : (A) µ1 = 2.34 mm, µ2 = 2.09 mm, µ3 = 2.362.34 mm, µ4 = 1.61 mm;
(B) µ1 = 3.74 mm, µ2 = 2.09 mm, µ3 = 3.78 mm, µ4 = 1.61 mm; (C) µ1 = 3.74 mm,
µ2 = 0.84 mm, µ3 = 3.78 mm, µ4 = 0.64 mm; (D) µ1 = 2.34 mm, µ2 = 0.84 mm,
µ3 = 2.34 mm, µ4 = 0.64 mm.

Parametric modeling is of capital importance in simulation based engineering ap-
plications such as process and product optimization, identification, control and uncer-
tainty quantification. Reduced order modeling offers a practical way to alleviate the
curse of dimensionality that is inevitably encountered in high-dimensional parametric
problems. In industrial practice the need of simulation code certification has somehow
slowed down the process of integrating high fidelity simulation software with reduced
order modeling tools. This is partly due to the intrusiveness of most of reduced order
modeling approaches, which inevitably require modification of the original code to a
certain extent.

In this last section we show the results of parametric crash simulations performed
using the commercial code Pam Crash. The reason behind the choice of this problem is
very well related with the intrusiveness issue. In crash simulation, parametric modeling
is extremely important in order to have a quick assessment of parameter sensitivity
and performance/safety estimators before the actual physical model is built and tested.

26

The “digital twin” approach is a cost-wise efficient way to have a quick sweep of the
parameter state space and identify the optimal configurations in the pre-design step.
These will be eventually verified using high performance simulation and ultimately
certified by experimental testing.

Crash simulation code include binary actions that are external to the core PDE
solver, such as plasticity or contact detection. In particular the last is extremely time
consuming and can take up to 90% of the simulation time. In general such “control
actions” are present in most simulation software, which is seldom limited to a simple
core PDE solver.

Traditional reduced order modeling requires a redefinition of the control actions.
For instance the very concept of contact detection changes when the problem is for-
mulated in terms of a reduced basis with global support, due to the intrinsically local
nature of contacts.

A non-intrusive approach allows to leave control actions to a lower level, inside
the deterministic solver, since the reduced parametric model is built only on the solver
output. For the same reason, it is also possible to build reduced models for specific
quantity of interests extracted from simulation results.

In the example reported in this section, crash simulations were run using the com-
mercial software Pam Crash. The tested configuration correspond to the NCAP Offset
Deformable barrier frontal impact, shown in figure 11. The car is driven at 64km/h
and with 40% overlap into a deformable barrier which represents the oncoming ve-
hicle. The test replicates a crash between two cars of the same weight, both travel-
ling at a speed of 50km/h. In particular safety can be assessed with respect to the
geometrical parameters in the model. In this case we considered four parameters,
µ ≡ {µ1, µ2, µ3, µ4}, corresponding to the thicknesses of different parts (inner rail, outer
rail, lower-outer rail and front frame).

The reduced parametric displacement field is sought in the tensor form

uh(x, t,µ) =

rs∑
i=1

rt∑
j=1

rµ∑
k=1

Ci jkφ
i(x)ϕ j(t)ψk(µ) , (28)

Simulation were scripted using Python and a Matlab generic interface was used to
recover the simulation results and build the reduced model. Globally, 401 simulations
were run in parallel, each taking approximately one hour on 32 cores. The final de-
formations corresponding to different choices of the parameters are shown in figure
11.

The model was exported using the pxdmf format for canonical tensor representa-
tions developed in the framework of PGD [68]. This allows the visualization and the
post-processing of the solution in real time using open source software Paraview. This
solution can be easily explored for sensitivity analysis or uncertainty quantification
with respect to the parameters.

5 Concluding remarks
We showed the application of hierarchical adaptive sampling in the parametric space
combined with an incremental tensor approximation technique in order to learn the

27

low-rank and sparsity features characterizing the solution of parametric models. We
tested the proposed approach through numerical experimentation on different models,
including time dependent and multi-parametric problems. Results show that the col-
location strategy can be easily integrated with existing deterministic solvers in a non-
intrusive way, as the method does not require access and manipulation of the solver
internal operators or routines. This feature enables reduced order modeling for prob-
lems which are not straightforwardly compatible with traditional projection-based ap-
proaches requiring the appropriate format in the problem setting. Approximating a
parametric solution in explicit form not only requires the construction of a reduced
basis but also the determination of the parametric modes. When these have a sparse
representation, the number of coefficients needed to accurately describe the functional
dependency of the solution in the parametric space is typically small, although this is in
general higher than the numerical rank of the approximation. Therefore, in agreement
with other studies [69], we observed that if the number of direct runs sampling is fixed,
the offline/online approach yields a more accurate solution (when the structure of the
problem makes it possible) than an explicit offline solution. However, as pointed out
in [70], in many applications the hierarchical collocation approach is sufficient to have
reasonable accuracy for an explicit representation of the solution, or a given quantity
of interest, without the need of solving a reduced system each time a new query is
demanded.

In many engineering applications, the proposed approach is particularly suitable
for delivering fast performance estimators, allowing for quick parametric sweeps so
as to assess sensitivity with respect to the parameters, find optimality or evaluate and
quantify uncertainty in the data.

Acknowledgments
The authors of the paper would like to acknowledge Jean-Louis Duval, Jean-Christophe
Allain and Julien Charbonneaux from the ESI group for the support and data for crash
and stamping simulations.

A Incremental Random Singular Value Decomposition

A.1 Randomized singular value decomposition
Suppose we are given the input data matrix S, which in our case contains the hierar-
chical surpluses, and assume that a rank-r approximation like in Eq. (7) wants to be
computed. There are two main ideas behind the rsvd:

• The first is to realize that a partial SVD can be readily computed provided that
we are able to construct a low-dimensional subspace that captures most of the
range of the input data matrix.

• The second is to observe that such low-dimensional subspace can be computed
very efficiently using a random sensing method.

28

Let us start with the first of the aforementioned ideas. Suppose that we are given a
matrix Q|m×p with r ≤ p � n orthonormal columns such that the range of S is well
captured, i.e.:

‖S −QQ∗S‖ ≤ ε, (29)

for some arbitrarily small given tolerance ε. Then, the input data is restricted to the
subspace generated by its columns, that is: B|p×n = Q∗S. Observe at this point that we
implicitly have the factorization A ≈ QB. Next, we compute an SVD factorization of
the matrix B = ŨΣ̃Ṽ∗, where factors are defined as Ũ|p×p, Σ̃|p×p and Ṽ|n×p. This oper-
ation is much less expensive than performing the SVD on the initial data set because
the rank is now restricted to the rows of B. Finally, in order to recover the r dominant
components, we define an extractor matrix P|p×r and set: U = QŨP, Σ = PtΣ̃P and
V = ṼP. In summary, given Q, it is straightforward to compute a SVD decomposition
at a relatively low cost O(mnp + (m + n)p2).

Now we address the second question, that is, how to compute the matrix Q. We
first draw a random Gaussian test matrix, Ω|n×p. Then, we generate samples from the
data matrix, i.e. Y|m×p = AΩ. Observe that if the rank of input data matrix was exactly
r, the columns of Y would form a linearly independent set spanning exactly the range
of S, provided that we set p = r. Since in general the true rank will be greater than r,
we must consider an oversampling parameter by setting p = r + α. This will produce
a matrix Y whose range has a much better chance of approximating well the range of
the input data matrix. Finally, Q can be obtained from the orthogonalization of Y. In
fact, it can be shown that the following error bound is satisfied

‖S −QQ∗S‖ ≤
[
1 + 9

√
p min{m, n}

]
σr+1, (30)

with a probability in the order of O(1 − α−α). That is, the failure probability decreases
superexponentially with the oversampling parameter [52].

Remark 1 (On the optimal decomposition) Observe that the standard SVD produces
Q|m×r such that

‖S −QQ∗S‖ = σr+1,

but at a higher cost O(mn min{m, n}).

A prototype version of the randomized SVD is given in the Algorithm 4.
Neglecting the cost of generating the Gaussian random matrix Ω, the cost of gen-

erating the matrix Q is in the order of O(mnp + mp2) flops. In consequence, the com-
putational cost of the entire rsvd procedure remains as O(mnp + (m + n)p2). The
algorithmic performance of the rsvd can be further improved by introducing a num-
ber of refinements at the price of worsening slightly the error bounds. In particular, the
most expensive steps in the rsvd algorithm consist in forming matrices Y and B, which
require in the order ofO(mnp) flops. The first can be reduced toO(mn log(p)) by giving
some structure to the random matrixΩ, while the second can be reduced toO((m+n)p2)
via row extraction techniques, which leaves the total cost O(mn log(p) + (m + n)p2).
The interested reader can find further details on these refinements as well as on their
impact on the assessment in [52].

29

Algorithm 4 Randomized singular value decomposition: rsvd

Require: S|m×n, r, α . Data matrix, rank and oversampling parameter
Set p = r + α

1: Draw Ω|n×p . Random Gaussian test matrix
2: Generate samples Y|m×p = SΩ
3: Compute Q|m×p = orthogonalize(Y) . Captures range of S
4: Restrict B|p×n = Q∗S
5: Compute [Ũ|p×p,Σ|p×p,V|n×p] = svd(B) . Standard deterministic SVD
6: Set U|m×p = QŨ

return U|m×r,Σ|r×r,V|n×r . Retain r first components

A.2 Incremental randomized singular value decomposition
In this section we present an incremental variant of the randomized SVD algorithm,
discussed in section A.1. The objective is twofold: (i) to be able to learn a subspace for
the hierarchical surpluses as they are streamed from the sparse sampling procedure; (ii)
to perform it at a computational cost that scales reasonably with the number of samples.

Let us assume that we want to compute a rank-r approximation of some streamed
data, and that we have chosen an oversampling parameter α such that p = r + α,
as in section A.1. Let us denote by S0|m×n the old data matrix, whereas S|m×n′ is the
new data columns such that the total data is now S1|m×(n+n′) = [S0 | S]. We would like to
compute an approximated SVD decomposition S1 ≈ U1Σ1V∗1 at a cost which is roughly
independent on n, the number of columns of the old data. For the sake of completeness,
recall that U1|m×p, Σ1|p×p and V1|(n+n′)×p.

In order to do so, suppose that we are given a non-truncated SVD approximation
of the old data, i.e. S0 ≈ U0Σ0V∗0, with U0|m×p, Σ0|p×p and V0|n×p. Suppose that we
also dispose of the matrix of random samples Y0|m×p. Then, in order to account for the
new data we only need to generate a random Gaussian test matrix Ω|n′×p and perform
a small product which only involves the new data:

Y1 = Y0 + SΩ. (31)

The matrix Q1|m×p can be obtained from the orthogonalization of Y1 at a cost that re-
mains stable, as it does not depend on n nor n′. Next, input data has to be restricted to
the range of Q1. Recalling that we already dispose of a non-truncated SVD approxi-
mation of the old data:

B1 ≈ Q∗1
[

U0Σ0V∗0 S
]

=
[

Q∗1U0Σ0 Q∗1S
]︸ ︷︷ ︸

B̃

[
V∗0 0
0 In′×n′

]
, (32)

where In′×n′ is the identity matrix of size n′. Similarly to section A.1, observe that Eq.
(32) yields a factorization S1 ≈ Q1B̃. Hence, if we compute a SVD decomposition of
the factor B̃,

B̃ = ŨΣ1Ṽ∗, with Ũ|p×p, Σ1|p×p and Ṽ|(p+n′)×p, (33)

30

we can conclude the algorithm by setting:

U1 = Q1Ũ and V1 =

[
V0 0
0 In′×n′

]
Ṽ. (34)

A prototype version of the incremental randomized SVD is given in the Algorithm
5.

Algorithm 5 Incremental randomized singular value decomposition: irsvd

Require: S|m×n′ , U0|m×p, Σ0|p×p, V0|n×p, Y0|m×p . Streamed data, old factors and old
samples

1: Draw Ω|n′×p

2: Correct samples Y1|m×p = Y0 + SΩ
3: Compute Q1|m×p = orthogonalize(Y1)
4: Form B̃|p×(p+n′) =

[
Σ0 U∗0S

]
5: Compute [Ũ|p×p,Σ1|p×p, Ṽ|(p+n′)×p] = svd(B̃)
6: Set U1|m×p and V1|(n+n′)×p as indicated in Eq. (4)

return U1,Σ1,V1 and Y1 . Do not truncate: retain all p components

Observe that the cost of the irsvd algorithm is driven by O((m+n)p2) when choos-
ing n′ ∼ p, while if one chooses n′ � p, the cost matches the standard rSVD, that is
O(mn′p). A more detailed analysis of the flop count indicates that in fact, the only de-
pendence on n of the algorithm is due to the cost of updating the right singular vectors
in Eq. (34). On the other hand, the reader should keep in mind that, for the applications
targeted in this paper, the number of rows of the input dataset (degrees of freedom after
discretization of a PDE) is at least one or two orders of magnitude bigger than the num-
ber of columns (solution snapshots). As a consequence, the cost of the irsvd turns out
to be roughly independent on n. A final consideration that should not be neglected is
that, for data sets that do not fit in the core memory, the cost of transferring data from
slow memory dominates the cost of the arithmetics. This can be generally avoided with
the incremental algorithm presented in this section.

A.3 A numerical example: order reduction applied to the lid-driven
cavity problem

In this section, we provide numerical evidence on the performance of the irsvd, as
described in section A.2. In particular, we apply irsvd on the set of hierarchical
surpluses, Sldc, coming from the solution of the lid-driven cavity problem, as described
in 2.4. The size of the data matrix is m = 14, 082 rows and n = 513 columns. An
overkill value of the oversampling parameter is taken, α = r (i.e. p = 2 r).

Firstly, we show that the low-rank singular value decomposition given by the irsvd
tends to both the standard svd and the rsvd as the number of processed columns
approaches the number of columns of the entire dataset. To that end, we choose a rank
r = 20 and a fixed bandwidth n′ = 5. Figure 14 shows the evolution of the singular
values as the number of processed columns increases. It can be noticed that, in fact,
after a relatively low number of columns are processed (say 20), the singular values are

31

already very close to the reference ones. This is simply because when coupling irsvd
with the hierarchical sampling the surpluses that come from higher hierarchical levels
are naturally associated to the first singular vectors. On the contrary, lower hierarchical
levels yield smaller surpluses, as the hierarchical sampling method converges. When
the entire dataset is processed, the irsvd yields a SVD that matches the standard one,
see Figure 12f.

In order to further assess the convergence of the irsvd towards the standard svd
decomposition, the energy error between both decompositions is measured:

εr =

√∑r
i=1 (σirsvd − σsvd)2∑r

i=1 σ
2
svd

, (35)

for a given rank r. Figure 13 shows the evolution of εr for several bandwidth. It can be
observed that the bandwidth hardly influences the convergence results.

Next, the computational cost of the irsvd must be assessed. Figure 14a shows the
runtime (denoted by τ) of the irsvd, i.e. Algorithm 5, as a function of the bandwidth.
The runtime is computed as the average of three executions. Results confirm that,
as discussed in section A.2, the computational cost is independent on the bandwidth
size. Besides, it can be observed that greater ranks yield greater runtimes. In fact,
the computational complexity should depend quadratically on the rank. This quadratic
scaling is confirmed by Figure 14b, which shows the normalized rank r̃ = r/r0 (with
r0 = 10) against the normalized runtime τ̃ = τ/τ0, where τ0 is the runtime associated
to r0. It can be seen that for all bandwidth the normalized runtime scales super-linearly
with the normalized rank (linear scaling is depicted for reference).

Finally, it is worth to highlight that in many practical applications the cost of irsvd
turns out to be independent on n, the total number of columns of the data set. This
is simply because usually m � n and then the computational complexity reduces to
O(mp2). In other words, the cost only starts being influenced by n when n ∼ m. Figure
15 shows the runtime of each irsvd call, averaged over three runs. For the sake of
clarity, runtimes have been normalized to their mean value, while the vertical axis
scale is chosen so we can observe ±50% deviations from the mean. Results show that
runtime deviates very few from the mean. Moreover, the cost of each call remains fairly
constant as the number of processed columns increases, which confirms the discussion
above.

References
[1] F. Zorriassatine, C. Wykes, R. Parkin, and N. Gindy. A survey of virtual proto-

typing techniques for mechanical product development. Proceedings of the In-
stitution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,
217(4):513–530, 2003.

[2] J.T. Oden, T. Belytschko, J. Fish, T.J.R. Hughes, C. Johnson, D. Keyes, A. Laub,
L. Petzold, D. Srolovitz, and S. Yip. Simulation-based engineering science: rev-
olutionizing engineering science through simulation. Report of the NSF Blue

32

Ribbon Panel on Simulation-Based Engineering Science. National Science Foun-
dation, Arlington, VA, 2006.

[3] S.C. Glotzer, S. Kim, P.T. Cummings, A. Deshmukh, M. Head-Gordon, G. Kar-
niadakis, L. Petzold, C. Sagui, and M. Shinozuka. International assessment of
research and development in simulation-based engineering and science. Panel
Report. World technology evaluation center, Inc., Baltimore, MD, 2009.

[4] R.E. Bellman. Dynamic Programming. Courier Dover Publications, New York,
republished edition, 2003.

[5] D.C. Montgomery. Design and analysis of experiments. John Wiley & Sons,
Hoboken, NJ, 8th edition, 2013.

[6] E.K.P. Chong and S.H. Zak. An introduction to optimization. Wiley series on
discrete mathematics and optimization. John Wiley & Sons, Hoboken, NJ, 4th
edition, 2013.

[7] A. Antoulas, D.C. Sorensen, and S. Gugercin. A survey of model reduction meth-
ods for large-scale systems. Contemp. Math., 280:193–220, 2001.

[8] R.A. Bialecki, A.J. Kassab, and A. Fic. Proper Orthogonal Decomposition and
Modal Analysis for acceleration of transient FEM thermal analysis. Int. J. Numer.
Meth. Engng., 62(6):774–797, 2005.

[9] A. Quarteroni, A. Manzoni, and F. Negri. Reduced Basis Methods for Partial
Differential Equations: An Introduction. Modeling and Simulation in Science,
Engineering and Technology. Springer, Basel, 1st edition, 2015.

[10] D.B.P. Huynh, G. Rozza, S. Sen, and A.T. Patera. A successive constraint lin-
ear optimization method for lower bounds of parametric coercivity and infsup
stability constants. C.R. Math., 345(8):473–478, 2007.

[11] C. Daversin and C. Prud’homme. Simultaneous empirical interpolation and re-
duced basis method for non-linear problems. C.R. Math., 353(12):1105–1109,
2015.

[12] M. Barrault, Y. Maday, N.C. Nguyen, and A.T. Patera. An “empirical interpola-
tion method”: application to efficient reduced-basis discretization of partial dif-
ferential equations. C.R. Acad. Sci. I-Math., 339(9):667–672, 2004.

[13] C. Farhat, T. Chapman, and P. Avery. Structure-preserving, stability, and accu-
racy properties of the energy-conserving sampling and weighting method for the
hyper reduction of nonlinear finite element dynamic models. Int. J. Numer. Meth.
Engng., 102:1077–1110, 2015.

[14] S. Chaturantabut and D.C. Sorensen. Nonlinear model order reduction via Dis-
crete Empirical Interpolation. SIAM J. Sci. Comput., 32(5):2737–2764, 2010.

33

[15] M.A. Grepl, Y. Maday, N.C. Nguyen, and A.T. Patera. Efficient reduced-basis
treatment of non-affine and nonlinear partial differential equations. ESAIM Math.
Model. Num., 41(3):575–605, 2007.

[16] Y. Maday, N.C. Nguyen, A.T. Patera, and S.H. Pau. A general multipurpose
interpolation procedure: the Magic Points. CPPA, 8(1):383–404, 2009.

[17] D. Ryckelynck. A priori hypereduction method : an adaptive approach. J. Com-
put. Phys., 202(1):346–366, 2005.

[18] D. Amsallem and C. Farhat. An online method for interpolating linear parametric
reduced-order models. SIAM J. Sci. Comput., 33(5):2169–2198, 2011.

[19] J. Hernández, M.A. Caicedo, and A. Ferrer. Dimensional hyper-reduction of
nonlinear finite element models via empirical cubature. Comput. Meth. Appl.
Mech. Engrg., 313:687–722, 2017.

[20] M.L. Rapún, F. Terragni, and J.M. Vega. Lupod: Collocation in POD via LU
decomposition. J. Comput. Phys., 335:1–20, 2017.

[21] D. Kumar, M. Raisee, and C. Lacor. An efficient non-intrusive reduced ba-
sis model for high dimensional stochastic problems in CFD. Comput. Fluids,
138:67–82, 2016.

[22] E. Prulière, F. Chinesta, and A. Ammar. On the deterministic solution of mul-
tidimensional parametric models using the Proper Generalized Decomposition.
Math. Comput. Simul., 81(4):791–810, 2010.

[23] W. Hackbusch. Tensor spaces and numerical tensor calculus. Springer Series
in Computational Mathematics. Springer-Verlag, Berlin-Heidelberg, 1st edition,
2012.

[24] L. Grasedyck, D. Kressner, and C. Tobler. A literature survey of low-rank tensor
approximation techniques. arXiv:1302.7121, 2013.

[25] T.G. Kolda and B.W. Bader. Tensor decompositions and applications. SIAM Rev.,
51(3):455–500, 2009.

[26] A. Ammar, B. Mokdad, F. Chinesta, and R. Keunings. A new family of solvers for
some classes of multidimensional partial differential equations encountered in ki-
netic theory modeling of complex fluids. Part II: transient simulation using space-
time separated representations. J. Non-Newtonian Fluid Mech., 144(2-3):98–121,
2007.

[27] A. Nouy. A priori model reduction through Proper Generalized Decomposition
for solving time-dependent partial differential equations. Comput. Meth. Appl.
Mech. Engrg., 199:1603–1626, 2010.

34

[28] F. Chinesta, A. Leygue, F. Bordeu, J.V. Aguado, E. Cueto, D. Gonzalez, I. Alfaro,
A. Ammar, and A. Huerta. PGD-based Computational Vademecum for efficient
design, optimization and control. Arch. Comput. Methods Eng., 20(1):31–59,
2013.

[29] F. Chinesta, P. Ladevèze, and E. Cueto. A short review on model order reduc-
tion based on Proper Generalized Decomposition. Arch. Comput. Methods Eng.,
18(4):395–404, 2011.

[30] A. Ammar, F. Chinesta, P. Dı́ez, and A. Huerta. An error estimator for separated
representations of highly multidimensional models. Comput. Meth. Appl. Mech.
Engrg., 199(25-28):1872–1880, 2010.

[31] A. Uschmajew. Local convergence of the alternating least squares algorithm for
canonical tensor approximation. SIAM J. Matrix Anal. Appl., 33(2):639–652,
2012.

[32] C. Quesada, I. Alfaro, D. Gonzalez, E. Cueto, and F. Chinesta. PGD-based model
reduction for surgery simulation: solid dynamics and contact detection. Lect.
Notes Comput. Sc., 8789:193–202, 2014.

[33] J.V. Aguado, D. Borzacchiello, Ch. Ghnatios, F. Lebel, R. Upadhyay, C. Binetruy,
and F. Chinesta. A Simulation App based on reduced order modeling for manu-
facturing optimization of composite outlet guide vanes. Adv. Model. Simul. Eng.
Sci., 4(1), 2017.

[34] D. Borzacchiello, J.V. Aguado, and F. Chinesta. Reduced Order Modelling for ef-
ficient numerical optimisation of a hot-wall Chemical Vapour Deposition reactor.
Int. J. Numer. Method H., 27(4), 2016, in press.

[35] Ch. Ghnatios, F. Masson, A. Huerta, A. Leygue, E. Cueto, and F. Chinesta. Proper
Generalized Decomposition based dynamic data-driven control of thermal pro-
cesses. Comput. Meth. Appl. Mech. Engrg., 213-216:29–41, 2012.

[36] A. Cohen and R. DeVore. Approximation of high-dimensional parametric PDEs.
Acta Numer., 24:1–159, 2015.

[37] M. Bachmayr, A. Cohen, and W. Dahmen. Parametric PDEs: Sparse or low-rank
approximations? arXiv:1607.04444, 2016.

[38] J.P. Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

[39] E. Candès and J. Romberg. Sparsity and incoherence in compressive sampling.
Inverse Probl., 23(3):969, 2007.

[40] A. Gilbert and P. Indyk. Sparse recovery using sparse matrices. Proc. IEEE,
98(6):937–947, 2010.

[41] D.L. Donoho. Compressed sensing. IEEE T. Inform. Theory, 52(4):1289–1306,
2006.

35

[42] S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by basis
pursuit. SIAM Rev., 43(1):129–159, 2001.

[43] R. Tibshirani. Regression shrinkage and selection via the lasso. J. R. Stat. Soc.
Series B Methodol., pages 267–288, 1996.

[44] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. J.
R. Stat. Soc. Series B Stat. Methodol., 67(2):301–320, 2005.

[45] S.L. Brunton, J.L. Proctor, and J.N. Kutz. Discovering governing equations from
data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad.
Sci. USA, 113(15):3932–3937, 2016.

[46] H.J. Bungartz and M. Griebel. Sparse grids. Acta Numer., 13:147–269, 2004.

[47] F. Nobile, R. Tempone, and C.G. Webster. A sparse grid stochastic collocation
method for partial differential equations with random input data. SIAM J. Numer.
Anal., 46(5):2309–2345, 2008.

[48] D. Pflüger, B. Peherstorfer, and H.J. Bungartz. Spatially adaptive sparse grids for
high-dimensional data-driven problems. J. Complexity, 26(5):508–522, 2010.

[49] T. Gerstner and M. Griebel. Dimension-adaptive tensor-product quadrature. Com-
puting, 71(1):65–87, 2003.

[50] F. Nobile, R. Tempone, and C.G. Webster. An anisotropic sparse grid stochas-
tic collocation method for partial differential equations with random input data.
SIAM J. Numer. Anal., 46(5):2411–2442, 2008.

[51] G.H. Golub and C.F. Van Loan. Matrix computations. The Johns Hopkins Uni-
versity Press, Baltimore, MD, 3rd edition, 1996.

[52] N. Halko, P.G. Martinsson, and J.A. Tropp. Finding structure with random-
ness: Probabilistic algorithms for constructing approximate matrix decomposi-
tions. SIAM Rev., 53(2):217–288, 2011.

[53] R. A. Harshman. Foundations of the parafac procedure: Models and conditions
for an “explanatory” multi-modal factor analysis. UCLA Working Papers in Pho-
netics, 1970.

[54] J. D. Carroll and J. J. Chang. Analysis of individual differences in multidimen-
sional scaling via an n-way generalization of eckart-young decomposition. Psy-
chometrika, 35(3):283–319, 1970.

[55] Y. Li. On incremental and robust subspace learning. Pattern recognition,
37(7):1509–1518, 2004.

[56] H. Zhao, P. C. Yuen, and J. T. Kwok. A novel incremental principal component
analysis and its application for face recognition. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 36(4):873–886, 2006.

36

[57] A. Sobral, C. G. Baker, T. Bouwmans, and E. Zahzah. Incremental and multi-
feature tensor subspace learning applied for background modeling and subtrac-
tion. In International Conference Image Analysis and Recognition, pages 94–103.
Springer, 2014.

[58] M. Brand. Incremental singular value decomposition of uncertain data with miss-
ing values. Computer VisionECCV 2002, pages 707–720, 2002.

[59] A. Quarteroni and G. Rozza. Numerical solution of parametrized navier-stokes
equations by reduced basis methods. Numer. Methods Partial Differ. Equ.,
23(4):923–948, 2007.

[60] C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang Jr. Spectral methods in
fluid dynamics, 2012.

[61] L. De Lathauwer, B. De Moor, and J. Vanderwalle. A multilinear Singular Value
Decomposition. SIAM J. Matrix Anal. Appl., 21(4):1253–1278, 2000.

[62] S.A. Smoljak. Quadrature and interpolation formulae on tensor products of cer-
tain function classes. Dokl. Akad. Nauk SSSR, 148(5):1042–1045, 1963. Transl.:
Soviet Math. Dokl. 4:240-243, 1963.

[63] T. Gerstner and M. Griebel. Numerical integration using sparse grids. Numer.
Algorithms, 18(3):209–232, 1998.

[64] M. Dauge and R. Stevenson. Sparse tensor product wavelet approximation of
singular functions. SIAM J. Math. Anal., 42(5):2203–2228, 2010.

[65] J. Garcke. A dimension adaptive sparse grid combination technique for machine
learning. ANZIAM Journal, 48:725–740, 2007.

[66] D. Dũng, V.N. Temlyakov, and T. Ullrich. Hyperbolic cross approximation.
arXiv:1601.03978, 2016.

[67] A. Quarteroni, G. Rozza, and A. Manzoni. Certified reduced basis approximation
for parametrized partial differential equations and applications. J. Math. Indus.,
1(1):3, 2011.

[68] F. Bordeu. Pxdmf : A file format for separated variables problems version 1.6.
Technical report, Ecole Centrale de Nantes, 2013.

[69] P. Chen, A. Quarteroni, and G. Rozza. Comparison between reduced basis and
stochastic collocation methods for elliptic problems. J. Sci. Comput., 59(1):187–
216, 2014.

[70] B. Peherstorfer, S. Zimmer, and H.J. Bungartz. Model reduction with the reduced
basis method and sparse grids. In Sparse grids and applications, pages 223–242.
Springer Berlin Heidelberg, 2012.

37

About the authors

Domenico Borzacchiello, Jose V. Aguado and Francisco Chinesta
Institut de Calcul Intensif (ICI) at Ecole Centrale de Nantes
1 rue de la Noë, BP 92101, 44321 Nantes cedex 3, France
e-mail: {domenico.borzacchiello, jose.aguado-lopez, francisco.chinesta}@ec-nantes.fr
web: http://ici.ec-nantes.fr

38

Si
ng

ul
ar

va
lu

es

(a) Columns: 5 of 513

0 5 10 15 20
10−6

10−2

102

106

svd rsvd irsvd

(b) Columns: 10 of 513

0 5 10 15 20
10−6

10−2

102

106

(c) Columns: 15 of 513

0 5 10 15 20
10−6

10−2

102

106

(d) Columns: 20 of 513

0 5 10 15 20
10−6

10−2

102

106

(e) Columns: 100 of 513

0 5 10 15 20
10−6

10−2

102

106

(f) Columns: 513 of 513

0 5 10 15 20
10−6

10−2

102

106

Subspace dimension

Figure 12: Singular values evolution in terms of the cumulated number of columns pro-
cessed by the irsvd. Comparison is made against reference results given by standard
svd and rsvd, for rank r = 20 and bandwidth n′ = 5.

39

0 200 400 600
10−6

10−5

10−4

10−3

10−2

10−1

100

Processed columns

E
ne

rg
y

er
ro

r-
ε r

=
20

n′ = 5
n′ = 10
n′ = 15
n′ = 20

Figure 13: Energy error measuring the convergence of the singular values, for fixed
rank r = 20, as a function of the number of processed columns for different values of
the bandwidth n′.

5 10 15 20
0

0.05

0.1

Bandwidth - n′

A
ve

ra
ge

d
ru

nt
im

e
-τ

[s
]

r = 10 r = 20
r = 30 r = 40
r = 50

(a) Runtime is independent on the bandwidth
for all rank

1 2 3 4 5

2

4

6

8

10

Rank scaling - r̃

R
un

tim
e

sc
al

in
g

-τ̃

n′ = 5 n′ = 10
n′ = 15 n′ = 20
Linear scaling

(b) Runtime scales super-linearly with the rank
for all bandwidth

Figure 14: Assessment of computational performances of irsvd: bandwidth indepen-
dence and rank scaling.

40

R
un

tim
e

no
rm

al
iz

ed
to

th
e

m
ea

n

(a) n′ = 5

0 200 400 600

0.6

0.8

1

1.2

1.4

(b) n′ = 10

0 200 400 600

0.6

0.8

1

1.2

1.4

(c) n′ = 15

0 200 400 600

0.6

0.8

1

1.2

1.4

(d) n′ = 20

0 200 400 600

0.6

0.8

1

1.2

1.4

Processed columns

Figure 15: Assessment of computational performances of irsvd: data size indepen-
dence.

41

