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Abstract

This work presents a simple technique for real-time monitoring of ther-
mal processes. Real-time simulation-based control of thermal processes is
a big challenge because high-fidelity numerical simulations are costly and
cannot be used, in general, for real-time decision making. Very often,
processes are monitored or controlled with a few measurements at some
specific points. Thus, the strategy presented here is centered on fast
evaluation of the response only where it is needed. To accomplish this,
classical harmonic analysis is combined with recent model reduction tech-
niques. This leads to an advanced harmonic methodology, which solves
in real-time the transient heat equation at the monitored point.

In order to apply the reciprocity principle, harmonic analysis is used in
the space-frequency domain. Then, Proper Generalized Decomposition, a
reduced order approach, pre-computes a transfer function able to produce
the output response for a given excitation. This transfer function is com-
puted offline and only once. The response at the monitoring point can
be recovered performing a computationally inexpensive post-processing
step. This last step can be performed online for real-time monitoring of
the thermal process. Examples show the applicability of this approach
for a wide range of problems ranging from fast temperature evaluation to
inverse problems.

Real-time; Heat Transfer; Monitoring; Model Reduction; Proper Generalized
Decomposition; Harmonic Analysis

1 Introduction

Many thermal manufacturing processes require monitoring temperature and,
moreover, being able to determine from these measurements if the process is
running as designed. Typically these measurements are provided by some sen-
sors (e.g. thermocouples) strategically placed. Consider, for instance, an in-
dustrial thermal process involving an external excitation, a heat source, moving
on the surface of the considered part. This is typical of composite manufactur-
ing processes. Today it is still a challenge to post-process these temperature
measurements to monitor in real-time the correct evolution of this process, or
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to control the heat source, or to identify defects, material properties or power
oscillations, etc. This paper proposes a methodology that circumvents some
inherent difficulties and provides a fast strategy to determine temperature at a
desired monitoring point. More precisely, the approach presented here allows
to compute in real-time temperature at a point of interest given an arbitrary
transient heat source traveling along a Neumann or Robin boundary.

The strategy proposed revolves on the reciprocity principle [27] extensively
used in mechanics, dynamics, electromagnetic or wave scattering problems.
Note that, in general, this principle is not applicable for the heat equation
because of the lack of symmetry introduced by the first time derivative. This
paper proposes to adopt the reciprocity principle also to the heat equation. For
this, the heat equation is recast in the frequency domain. Details and proofs on
this novel approach are presented here.

Another novelty is to apply the Proper Generalized Decomposition method
(PGD) [2,11] to the frequency-domain heat equation. Combined with the reci-
procity principle, this then allows real-time evaluation of the temperature at a
specific point of a thermal system in the online stage. More specifically, the PGD
computes for all range of frequencies a generalized transfer function solution of
the frequency-domain heat equation.

Thus a strategy based on an offline and online phase is designed. In the
offline phase the previously cited generalized transfer function is computed at
the desired monitoring point. Then, given the external heat source excitation, a
convolution is used to determine online and in real-time the temperature at the
desired monitoring point for any instant. As it will be shown, the online approx-
imation is so fast that it can be used for control purposes in real-time and on
deployed devices. This opens vast possibilities related to real-time simulation-
based monitoring and control [10].

Representations in the frequency domain are appealing for analyzing re-
sponses of structures subjected to dynamic excitations. It is a powerful ap-
proach to study the response of structural systems when initial conditions can
be neglected; that is, far enough from the initial transient response. This frame-
work, which was integrated into the finite element framework from the very
beginning, has been, and still is, extensively used. It is well described in most
of the textbooks, some of them linked to many generations of scientists and
engineers [7, 12, 19, 45]. This approach is still today an active research area be-
cause several challenges are still open. For instance, separated representations
in the frequency domain were considered in [6,13,21–24,36–38] for the so-called:
variational theory of complex rays. Obviously, there have been many attempts
considering such descriptions within the model reduction framework; the inter-
ested reader can refer to [18] and the references therein. This however is not
the aim of the present paper, thus, no exhaustive state-of-the-art on this topic
is presented.

Finally, it is important to note that in spite of the large amount of scientific
contributions using a frequency domain description in solid dynamics, this ap-
proach is not standard, to the author’s knowledge, for thermal models subjected
to dynamical forced thermal loads. Certainly, time domain approximations of
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thermal models are both efficient and robust and, moreover, model order re-
duction is successfully applied in this setting [8,9,16,17,28,32,35,44]. Whereas
frequency domain approaches for thermal studies are scarce [15,30,33,39,41].

2 Monitoring temperature at a surface point

This section analyzes the representation of temperature at an arbitrary point
of the boundary under an arbitrary transient external excitation, for instance,
a traveling external heat source such as a moving laser. More specifically, the
representation of the solution at the point of interest is first studied by means
of a Green’s function in the space-time domain. Then the applicability of the
reciprocity principle for the transient heat equation with a forced excitation is
discussed both in time and frequency domain. The use of reciprocity (only valid
in the frequency domain) allows determining a representation of temperature at
the desired point for any arbitrary external heat source.

2.1 Model problem in the space-time domain

Formally, the problem under consideration can be described as follows. Given
a time interval I :=]0, T [ (where T can be chosen arbitrarily large) and a body
Ω ⊂ Rd, d ≤ 3, whose boundary ∂Ω is partitioned into Dirichlet, ΓD, and
Robin/Neumann, ΓN , frontiers such that ∂Ω = ΓD ∪ΓN and ΓD ∩ΓN = ∅. The
temperature evolution u(x, t), for x ∈ Ω and t ∈ I, is described by the transient
heat equation:

ρcp∂tu−∇ ·K∇u = 0 in Ω× I,

u = uD on ΓD × I,

n ·K∇u = −`(u− uext) + q on ΓN × I,

u = u0 on Ω× {0},

(1)

where ρ is density (kg/m3), cp is specific heat capacity (J/(kg K)), K is the
thermal conductivity matrix (W/(m K)) and ` is the heat transfer coefficient
(W/(m2 K)), uext is the external temperature (K), n is the exterior unit normal
to ΓN (dimensionless) and q = q(x, t), for (x, t) ∈ ΓN × I, is the inflow forcing
excitation (W/m2). The international system of units of measurement is also
employed for length (m) and time (s).

As noted in the introduction, q is typically the heat flux imposed by a laser.
The objective in what follows is to determine a (fast) computable representation
of the temperature at an arbitrary boundary point x0 ∈ ΓN and at any instant
t0, with 0 < t0 < T .

Since the problem is linear, (1) can be further simplified. For instance,
thermal diffusivity (thermal conductivity divided by density and specific heat
capacity) can be considered the only material constant in the partial differential
equation. Moreover, the increment of temperature with respect to the external

3



one, i.e. (u − uext), can be defined as the unknown of the problem (that is, in
practice, impose uext = 0).

Finally, for the clarity of the presentation, the model problem studied is
further simplified. However, these simplifications (considering unitary values of
the coefficients) do not compromise the validity of the following developments.

More precisely, the following assumptions are used to define the model prob-
lem: homogeneous Dirichlet boundary conditions, canonical dimensionless form
with an isotropic homogeneous material, and no convective heat exchanges.
Note however, that these simplifications, are only done to simplify the pre-
sentation and do not hinder the application of the proposed methodology to
real problems described by (1) as it will be shown in Section 5. Under these
circumstances, problem (1) becomes

∂tu−∇2u = 0 in Ω× I,

u = 0 on ΓD × I,

n · ∇u = q on ΓN × I,

u = u0 on Ω× {0}.

(2)

2.2 Green’s function and reciprocity in the space-time do-
main

The objective is to obtain the solution at an arbitrary point and time, (x0, t0).
Ideally the desired value u(x0, t0) could be readily evaluated if the adjoint
Green’s function were known. The adjoint Green’s function is the solution
of 

∂tG+∇2G = 0 in Ω×]0, t0[,

G = 0 on ΓD×]0, t0[,

n · ∇G = δ(x− x0)δ(t− t0) on ΓN×]0, t0[,

G = 0 on Ω× [t0, T [,

(3)

where the notation of G(x, t;x0, t0) clearly identifies the parametric dependence
on (x0, t0).

The representation of the desired temperature is then

u(x0, t0) =

∫
ΓN

∫ t0

0

G(x, t;x0, t0) q(x, t)dtdΓ +

∫
Ω

u0(x)G(x, 0;x0, t0)dΩ.

See Appendix A for a detailed presentation. However, in general, the compu-
tation of the Green’s function is by no means a trivial task, for instance when
confronted to an arbitrary domain or inhomogeneous material properties. Con-
sequently, this approach is not used in practice.

An alternative, extensively employed in dynamics, is to use the reciprocity
property [4,27,43]. However, it is also well-known that it is not applicable to the
heat equation because the operator is not self-adjoint. In order to recall this,
the variational problem equivalent to (2) is presented: find u ∈ S such that

B(u, v) = L(q; v) ∀v ∈ V, (4)
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with the appropriate spaces introducing the required regularity in space and
time [31,42]

V :=
{
v : v(·, t) ∈ H1(Ω), v(x, ·) ∈ L2(I), v = 0 on ΓD × I

}
∩
{
v : v(·, t) ∈ H−1(Ω), v(x, ·) ∈ H1(I)

}
,

S :=
{
v : v ∈ V, v(x, 0) = u0

}
,

and

B(u, v) =

∫
Ω

∫
I

v ∂tu dtdΩ +

∫
Ω

∫
I

∇u · ∇v dtdΩ,

L(q; v) =

∫
ΓN

∫
I

qv dtdΓ.

Given two different exitations q1 and q2, the corresponding solutions of Eq.
(4) can be denoted u1 and u2, respectively. Since both u1 and u2 belong to S
the following expressions are also verified:

B(u1, u2) = L(q1;u2) and B(u2, u1) = L(q2;u1). (5)

However, the bilinear form is non-symmetric because of the time derivative,
that is B(u, v) 6= B(v, u). Thus, subtracting both expressions in Eq. (5) attests
that standard reciprocity is not satisfied because the left hand side terms do not
cancel out. In conlusion,

L(q1;u2) 6= L(q2;u1).

Therefore, in the space-time domain neither a Green’s function approach or
a reciprocity property can be used in practice to determine temperature at a
given point and instance of the surface, say (x0, t0) ∈ ΓN × I.

2.3 Space-frequency problem for an arbitrary excitation

Another alternative for studying this forced excitation problem is to consider
harmonic analysis. In order to work in the frequency domain the Fourier trans-
form and its inverse are used, namely

v̂(x, ω) = F [v] =

∫ +∞

−∞
v(x, t) e−iωtdt (6a)

and

v(x, t) = F−1[v̂] =
1

2π

∫ +∞

−∞
v̂(x, ω) eiωtdω. (6b)

Remark 1 (Fourier transform properties). Fourier transforms have been largely
studied and they hold a large number of properties (viz. linearity, translation,
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etc). In what follows it is important to recall that, in general, v̂ ∈ C; but, for an
even function in time ve, i.e. ve(x,−t) = ve(x, t), F [ve] = v̂e ∈ R; whereas, for
an odd function in time vo, i.e. vo(x,−t) = −vo(x, t), F [vo] is imaginary, i.e.
F [vo] ∈ iR. For an odd function in time vo, v̂o is redefined as the imaginary
part of F [vo]. Thus, F [vo] = iv̂o with v̂o ∈ R.

Applying the Fourier transform to problem (2) it becomes
iωû−∇2û = 0 in Ω,

û = 0 on ΓD,

n · ∇û = q̂ on ΓN .

(7)

Remark 2 (Long-term forced solution). Note that the harmonic solution is only
concerned with the long-term forced solution and consequently it does not depend
on the initial condition. Standard approaches should be used for evaluating the
transient regime, which, in practice, decays rapidly to the obtained long-term
solution.

The variational form associated to the strong form problem described in (7)
reads: find û ∈ H1

ΓD
:=
{
v ∈ H1(Ω) : v = 0 on ΓD

}
such that(

∇û,∇v̂
)

+ iω
(
û, v̂
)

=
〈
q̂, v̂
〉
∀v̂ ∈ H1

ΓD
, (8)

where(
û, v̂
)

=

∫
Ω

û v̂∗dΩ ,
(
∇û,∇v̂

)
=

∫
Ω

∇û · ∇v̂∗dΩ and
〈
û, v̂
〉

=

∫
ΓN

û v̂∗dΓ (9)

denote, respectively, the L2 scalar product of functions û and v̂ in Ω and its
traces over ΓN . Note also, that v̂∗ indicates the complex conjugate of v̂, since
both û and v̂ are, in general, in C.

It is important to observe that Eq. (8) is non-Hermitian but it is symmetric,
the later property proves sufficient and also crucial for reciprocity.

2.4 Arbitrary excitation implies solving two problems with
real excitation

Given any arbitrary excitation, q(x, t), it can always be decomposed in the sum
of an even and odd function, namely

q(x, t) = qe(x, t) + qo(x, t) =
1

2

(
q(x, t) + q(x,−t)

)
+

1

2

(
q(x, t)− q(x,−t)

)
.

Recalling the Fourier transform properties: F [q] = q̂ = F [qe] +F [qo] = q̂e + iq̂o
with q̂e(x, ω) ∈ R and q̂o(x, ω) ∈ R. Moreover, it is important to notice that,
the decomposition of q(x, t) in the sum of an even and odd excitation produces
two identical problems with a real excitation whose solutions are the real and
the imaginary part of the solution of (7). More precisely, because of the linearity
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of (7) and Remark 3, the solution of û of (7) can also be decomposed as û =
ûe + iûo, which in turn are the solutions of

iωûe −∇2ûe = 0 in Ω,

ûe = 0 on ΓD,

n · ∇ûe = q̂e on ΓN ,

and


iωûo −∇2ûo = 0 in Ω,

ûo = 0 on ΓD,

n · ∇ûo = q̂o on ΓN .

(10)

Then, in the time domain the original solution can be recovered by means of the
inverse Fourier transform, namely u = F−1[û] = F−1[ûe] +F−1[iûo] = ue + uo.

In summary, it is possible to find the solution of (7) —or (8)— for any
arbitrary excitation q̂ solving twice the same problem but with different real
excitations, one corresponding to q̂e(x, ω) and the other to q̂o(x, ω).

Remark 3 (Imaginary excitation). Suppose u is solution of the following prob-
lem 

iωu−∇2u = 0 in Ω,

u = 0 on ΓD,

n · ∇u = q on ΓN .

Then, v = iu is solution of
iωv −∇2v = 0 in Ω,

v = 0 on ΓD,

n · ∇v = iq on ΓN .

Hint: replace u = −iv in the first problem and obtain the second one. Obvi-
ously, this follows directly from linearity but it is explicitly recalled for didactic
purposes.

2.5 Reciprocity in space-frequency holds for a real excita-
tion

Given two real harmonic excitations q̂1 and q̂2, the corresponding solutions of
(8) are denoted by û1 and û2, respectively. Then, since both solutions belong
to H1

ΓD
, the following expressions hold:(

∇û1,∇û2

)
+ iω

(
û1, û2

)
=
〈
q̂1, û2

〉
, (11a)(

∇û2,∇û1

)
+ iω

(
û2, û1

)
=
〈
q̂2, û1

〉
. (11b)

Substracting (11b) from (11a) gives(
∇û1,∇û2

)
−
(
∇û2,∇û1

)
+ iω

[(
û1, û2

)
−
(
û2, û1

)]
=
〈
q̂1, û2

〉
−
〈
q̂2, û1

〉
, (12)

which clearly shows that reciprocity is satisfied in the frequency domain, namely〈
q̂1, û2

〉
=
〈
q̂2, û1

〉
, (13)

7



if the following conditions hold(
∇û1,∇û2

)
=
(
∇û2,∇û1

)
and

(
û1, û2

)
=
(
û2, û1

)
, (14)

which is precisely the case when both q̂1 and q̂2 are real. See Appendix B for a
detailed proof of Eqs. (13).

Remark 4 (Reciprocity with convective heat flux). In the general case when
convective heat fluxes are considered, see (1), reciprocity also holds. Linearity is
exploited solving for (u−uext) instead of the original temperature u. Accordingly,
equations (11) are modified as follows:(

∇û1,∇û2

)
+ iω

(
û1, û2

)
+
〈
`û1, û2

〉
=
〈
q̂1, û2

〉
,(

∇û2,∇û1

)
+ iω

(
û2, û1

)
+
〈
`û2, û1

〉
=
〈
q̂2, û1

〉
.

Subtracting again these two previous equations the same equation (12) is ob-
tained (recall the symmetry of the L2 scalar products of functions). Thus reci-
procity also holds for convective heat flux following the proof in Appendix B.

2.6 Using reciprocity to monitor temperature

Recall that the final objective is to monitor temperature at a given point for
an arbitrary external excitation, i.e. evaluate u(x0, t0) for (x0, t0) ∈ ΓN × I.
For this purpose, it is necessary to determine û(x0, ω) for an arbitrary external
excitation, q̂, in the space-frequency domain. The conclusion of Section 2.4 is
that two problems, which are shown in strong form by (10), with real excitations
q̂e and q̂o, such that q̂ = q̂e + iq̂o, must be solved to find û(x0, ω) = ûe(x0, ω) +
iûo(x0, ω).

Suppose, that for each frequency, ω ∈ R, one could also determine the
corresponding solution ĥ(x, ω;x0) under a Dirac flux imposed at the monitoring
point x0, δ(x− x0), namely

iωĥ−∇2ĥ = 0 in Ω,

ĥ = 0 on ΓD,

n · ∇ĥ = δ(x− x0) on ΓN .

(15)

Since all the excitations are real, reciprocity, see (13), holds and consequently〈
δ(x− x0), ûe

〉
=
〈
q̂e, ĥ

〉
and

〈
δ(x− x0), ûo

〉
=
〈
q̂o, ĥ

〉
,

that is,

ûe(x0, ω) =
〈
ĥ(·, ω;x0), q̂e(·, ω)

〉
and ûo(x0, ω) =

〈
ĥ(·, ω;x0), q̂o(·, ω)

〉
,

which implies that

û(x0, ω) =

∫
ΓN

ĥ(x, ω;x0) q̂(x, ω) dΓ. (16)
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See Remark 5 for a detailed deduction of (16).
Once the temperature is monitored at the desired point in the space-frequency

domain, the inverse Fourier transform is employed to obtain the desired final
representation of temperature in the space-time domain. That is, the objective
is to determine

u(x0, t) = F−1
[
û(x0, ω)

]
=

∫
ΓN

F−1
[
ĥ(x, ω;x0) q̂(x, ω)

]
dΓ.

This expression can be further simplified using the convolution theorem [14,20],
recall

F−1
[
ĥ(x, ω;x0) q̂(x, ω)

]
=

∫ t

0

h(x, τ ;x0) q(x, t− τ)dτ,

where

h(x, τ ;x0) = F−1[ĥ] =
1

2π

∫ +∞

−∞
ĥ(x, ω;x0) eiωtdω. (17)

Thus, the representation of the temperature at the desired point x0 ∈ ΓN is

u(x0, t) =

∫
ΓN

∫ t

0

(
1

2π

∫ +∞

−∞
ĥ(x, ω;x0) eiωtdω

)
q(x, t− τ) dτdΓ,

which can be written in a more compact form and for any instance t0 ∈ I =]0, T [
as

u(x0, t0) =

∫ t0

0

〈
h(x, τ ;x0), q(x, t0 − τ)

〉
dτ. (18)

Recall that q ∈ R.
This is a compact and useful expression, it only requires knowledge of the

external imposed excitation q up to the desired monitored instant t0 (causality).
Moreover, and this is a major point and advantage, (18) does not reflect the
decomposition of the excitation in even and odd contributions. Thus, if the
transfer function, h(x, τ ;x0), is known, (18) can be applied directly for any
arbitrary excitation q(x, t).

However this expression presents a major drawback: the inverse Fourier
transform of ĥ, solution to problem (15), must be known. This implies solving
(15) for each frequency ω in the range needed by the arbitrary excitation. Thus,
in general, the representation (18) cannot be used in practical problems.

The next section circumvents this drawback and proposes a methodology to
obtain an expression for the generalized transfer function ĥ, solution of (15), for
the all range of realistic frequencies. This expression can then be substituted in
(18) to determine the desired temperature. Moreover, (18) can be evaluated in
real-time.

Remark 5 (Reconstruction of solution). To determine (16) it is important to
recall that q̂e and q̂o are real. Thus, the scalar products on ΓN ,

û(x0, ω) = ûe(x0, ω)+iûo(x0, ω) =
〈
ĥ(·, ω;x0), q̂e(·, ω)

〉
+i
〈
ĥ(·, ω;x0), q̂o(·, ω)

〉
,
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can be rewritten as

û(x0, ω) =

∫
ΓN

ĥ(x, ω;x0) q̂e(x, ω) dΓ + i

∫
ΓN

ĥ(x, ω;x0) q̂o(x, ω) dΓ

=

∫
ΓN

ĥ(x, ω;x0)
(
q̂e(x, ω) + iq̂o(x, ω)

)
dΓ =

∫
ΓN

ĥ(x, ω;x0) q̂(x, ω) dΓ,

and do not present any complex conjugate. In fact, it is important to note that

û(x0, ω) =

∫
ΓN

ĥ(x, ω;x0) q̂(x, ω) dΓ =
〈
ĥ(·, ω;x0), q̂(·, ω)

∗〉 6= 〈ĥ(·, ω;x0), q̂(·, ω)
〉
.

Remark 6 (Inverse Fourier Transform of the generalized transfer function).

The inverse fourier transform of the generalized transfer function, ĥ(x, ω;x0),
see (17) is computed using the FFT algorithm. Only periodic signals with a
finite number of harmonics can be exactly represented with the discrete Fourier
transform, and thus non-periodic signals involving a continuous spectrum of
frequencies can only be approximated. The range of frequencies included in the
generalized transfer function must be chosen accordingly.

Remark 7 (Convective heat flux). In the general case described in (1), when
convective fluxes are present, the computation of the generalized transfer func-
tion is modified. As noted in Remark 4, reciprocity also holds when convective
fluxes are considered. Thus, the generalized transfer function problem originally
described by (15) must have on the Neumann boundary the convective heat flux,
namely 

iωĥ−∇2ĥ = 0 in Ω,

ĥ = 0 on ΓD,

n · ∇ĥ = −`ĥ+ δ(x− x0) on ΓN .

The same development as before can be applied and, consequently, equations
(16) and (18) also hold.

3 Computing the generalized transfer function

This section is aimed at computing a generalized transfer function, ĥ(x, ω;x0),
for a desired and predefined range of frequencies, Iω. This transfer function
needs to be computed only once, and preferably offline. Since it is determined
in the frequency domain, its inverse Fourier transform is later evaluated in
order to use equation (18) as a simple and inexpensive post-process of any given
excitation q(x, t).

A major contribution of the PGD approach is to view the frequency, ω, as a
new coordinate [10]. Thus, instead of solving problem (15) for each frequency,
the objective is to solve, only once, a more general problem with ω as an extra
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coordinate, namely find ĥ(x, ω;x0) satisfying
iωĥ−∇2ĥ = 0 in Ω× Iω,

ĥ = 0 on ΓD × Iω,

n · ∇ĥ = δ(x− x0) on ΓN × Iω,

(19)

where Iω is the predefined range of variation of ω. There is a price to pay, the
increased dimensionality. However, as shown numerically in [10] and references
therein, the complexity of the PGD does not grow exponentially with the space
dimension. On the contrary, numerical evidence shows that it scales linearly
for a moderate number of dimensions. This is obvious for each resolution of
the greedy algorithm. This is precisely what happens in this problem when ω
is introduced as an extra coordinate. However, for large number of dimensions
(> 100) or in non-symmetric problems the number of terms required for a given
precision is sensible to the number of dimensions.

The weak problem equivalent to (19) is obtained using a weighted residual

argument, namely, find ĥ for all v̂ in the selected appropriate functional space
such that

A(ĥ, v̂) = L(v̂) (20a)

with

A(ĥ, v̂) :=

∫
Iω

(
∇ĥ,∇v̂

)
dω +

∫
Iω

iω
(
ĥ, v̂
)
dω (20b)

L(v̂) :=

∫
Iω

v̂∗(x0, ω)dω. (20c)

Note that formally, the required functional spaces must account for the singu-
larity of the Dirac flux. Nevertheless, in practice, the Dirac delta is mollified
and this allows to use the standard finite element functional setup.

The PGD approach assumes that the solution of (20), ĥ(x, ω;x0), can be

approximated by a rank-n separable function, ĥn(x, ω;x0), namely,

ĥ(x, ω;x0) ≈ ĥn(x, ω;x0) =

n∑
s=1

Xs(x)W s(ω) = ĥn−1(x, ω;x0)+Xn(x)Wn(ω),

(21)
where, for s = 1, . . . , n, Xs ∈ H1

ΓD
and W s ∈ L2(Iω). Note that all these

functions give values in C.
A greedy algorithm [26] is used to construct this approximation, that is, to

determine the unknown functions Xs and W s in Eq. (21). In other words, a pro-
gressive scheme is designed to compute each new term with all the information
at hand. The sequence is stopped with an appropriate error estimator [1,25,29].
Note that each new term implies the computation of a product of unknown func-
tions, Xn and Wn. Thus a nonlinear scheme must be designed. It is standard
to use a fixed point alternating direction algorithm because it has proven robust
in former works [10, 11]. To simplify notation each iterate approximating Xn
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and Wn is denoted by R and S. Hence, the nonlinear problem to solve for each
new term of ĥn(x, ω;x0) is obtained substituting in (21) in (20a), in order to
compute R and S (iterates of Xn and Wn) such that

A(RS, v̂) = L(v̂)−A(ĥn−1, v̂) (22)

with trial functions on the tangent manifold

v̂ = v̂R(x)S(ω) +R(x) v̂S(ω) ∀v̂R ∈ H1
ΓD

and ∀v̂S ∈ L2(Iω).

The alternating direction scheme, detailed below, consists in, for instance, up-
dating the space function R from a given S assumed known, and then compute
S from the just updated function R. This iteration continues until reaching
convergence of both R and S. That is, the two stages for each iteration are:

1. Find R ∈ H1
ΓD

(S assumed known) such that

A(RS, v̂R S) = L(v̂R S)−A(ĥn−1, v̂R S) ∀v̂R ∈ H1
ΓD
. (23a)

2. Find S ∈ L2(Iω) (R assumed known) such that

A(RS,R v̂S) = L(R v̂S)−A(ĥn−1, R v̂S) ∀v̂S ∈ L2(Iω). (23b)

Then at convergence, Xn and Wn are updated by R and S.

3.1 Updating the space function

For each new term in the series defined by (21) and each iteration described
by (23), equation (23a) must be solved. Taking advantage of the separated
structure of the solution and also of A(·, ·), see (20b), equation (23a) can be
rewritten as, find R ∈ H1

ΓD
for all v̂R ∈ H1

ΓD
(S assumed known) such that

αS
(
∇R,∇v̂R

)
+ iβS

(
R, v̂R

)
= γS v̂∗R(x0)−

n−1∑
s=1

αS
s

(
∇Xs,∇v̂R

)
+ iβS

s

(
Xs, v̂R

)
,

(24)
where the coefficients, which must be computed for each instance of S, are
defined as

αS =
(
S, S

)
Iω

, βS =
(
ω S, S

)
Iω

, γS =
(
1, S

)
Iω

,

αS
s =

(
W s, S

)
Iω

, and βS
s =

(
ωW s, S

)
Iω
.

Bear in mind that in previous definitions
(
·, ·
)
Iω

denotes the L2 scalar product
of complex functions in Iω.

After the corresponding discretization of the spatial domain with a standard
combination of piecewise linear shape functions, the system of linear equations
induced by (24) presents a conductivity and a mass matrix. These matrices
are computed only once because they are constant for each iteration and for
each term. Moreover, it is important to note that they are symmetric but non-
Hermitian, which will preclude, for instance, Cholesky or conjugate gradient
schemes.
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3.2 Updating the frequency function

Similarly, the second stage, described by equation (23b), can also be rewritten
using separated structure of the solution and also of A(·, ·) as, find S ∈ L2(Iω)
for all v̂S ∈ L2(Iω) (R assumed known from the previous stage) such that

αR
(
S, v̂S

)
Iω

+iβR
(
ω S, v̂S

)
Iω

= γR
(
1, v̂S

)
Iω
−

n−1∑
s=1

αR
s

(
W s, v̂S

)
Iω

+iβR
s

(
ωW s, v̂S

)
Iω
,

(25)
where the coefficients, which must be computed for each instance of R, are
defined as L2 products over the spatial domain,

αR =
(
∇R,∇R

)
, βR =

(
R,R

)
, γR = R∗(x0),

αR
s =

(
∇Xs,∇R

)
, and βR

s =
(
Xs, R

)
.

The lack of derivatives with respect to ω in the problem (19) induces an
point-wise algebraic equation for S. Piecewise discontinuous approximations of
S will induce uncoupled scalar equations. Whereas continuous approximations
over the one-dimensional range of frequencies lead to a symmetric but non-
Hermitian matrix on the left-hand-side of (25), as in the previous case.

4 Extension to multi-parametric and inverse prob-
lems

The approach presented here has a potentiality that exceeds real-time monitor-
ing of temperature at a given location and can also be used for other thermal
studies such as optimization, inverse analysis, non-destructive testing, etc. Here,
two simple extensions are presented.

4.1 Multi-parametric models

As a simple demonstrator, thermal conductivity is chosen as an extra parameter.
The underlying idea, already exploited in [10, 34], is to solve multi-parametric
models capitalizing the advantages of the PGD framework. A multi-parametric
model is an extension of the procedure detailed in the previous section. Besides
frequency as an extra-coordinate the generalized transfer function can encom-
pass other parameters as extra coordinates. For instance, parameters character-
izing the geometry, the constitutive behavior or the boundary conditions could
be incorporated. The PGD methodology allows to compute efficiently a multi-
parametric solution defined in a high-dimensional space (spatial coordinates,
frequency and other parameters). Multi-parametric models are of great inter-
est in science and engineering because they make possible real-time simulation,
optimization and inverse analysis, as illustrated in [3, 10].

For instance, the thermal example that motivates this work can also be
posed as an inverse analysis to find the actual conductivity of a certain material
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from the temperature provided by a thermocouple placed at location x0. Then,
independently of the inverse identification method used, it is obvious that fast
identification procedures can be envisaged if an approximation of temperature
at the monitoring point x0 for any instance t can be computed in real-time for
any conductivity k, i.e. u(x0, t, k).

This approach can also be used for non-destructive testing. The monitored
temperature being different from the computed one (obtained with the undam-
aged material parameters) triggers the inverse analysis to determine the “dam-
aged” material parameter, which can be solved readily because a generalized
solution for any material parameter is available.

The inverse problem is not solved in detail at this point because it is outside
the scope of this work. Nevertheless, here, the generalized solution for any
conductivity is provided. Once this solution is known, any standard inverse
algorithm could be implemented. The key point is to determine the generalized
transfer function, ĥ, for any value of the conductivity k ∈ Ik, where Ik is
the desired range of conductivities. Problem (19) is now rewritten with the
new parameter, conductivity, considered as an extra-coordinate. Thus the new
problem consist in finding ĥ(x, ω, k;x0) that satisfies

iωĥ−∇ · (k∇ĥ) = 0 in Ω× Iω × Ik,

ĥ = 0 on ΓD × Iω × Ik,

n · k∇ĥ = δ(x− x0) on ΓN × Iω × Ik.

The PGD approach must now determine an approximation ĥn(x, ω, k;x0) to
the solution of the previous problem, namely

ĥ(x, ω, k;x0) ≈ ĥn(x, ω, k;x0) =

n∑
s=1

Xs(x)W s(ω)Ks(k),

where extra separated functions must be determined; more precisely, those di-
rectly linked to conductivity, namely Ks(k) for s = 1, . . . , n. The same greedy
approach described earlier can be applied with now an extra stage in the non-
linear solve to determine each Ks(k). Once the multi-parametric solution has
been computed, it can be postprocessed in the same way explained in Section
2.6 in order to recover the solution at x0 and any time t. The objective is
that temperature at the monitoring point x0 for any instance t can be com-
puted in real-time for any conductivity k; that is, equation (18) is extended to
approximate u(x0, t, k), namely

u(x0, t, k) = F−1[û](x0, t, k) =

∫ t

0

〈
h(x, τ, k;x0), q(x, t0 − τ)

〉
dτ, (26)

where h = F−1[ĥ].
As noted earlier, the crucial point is to determine a reasonable approxima-

tion of the generalized transfer function ĥ(x, ω, k;x0). The example presented
in Section 5 is extended to demonstrate that such an approximation can be
evaluated.
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4.2 Inverse problem: an amplitude time-modulated cali-
bration of excitation

This inverse problem considers that the amplitude of the power given by a laser
varies with time because of uncontrolled power supply and has to be calibrated.
Suppose an excitation defined by α(t)q(x, t) where, as assumed in previous
sections, q(x, t) is given (and, thus, known) while its amplitude, which varies
with time α(t) is not know. Temperature at the monitoring point x0 for any
instance t is obtained following the procedure described in Section 2.4 for this
new excitation and equation (18) becomes

u(x0, t) =

∫ t

0

α(t0 − τ)

∫
ΓN

h(x, τ ;x0) q(x, t− τ) dΓdτ.

Then, given a discretization of the unknown function α(t), for instance

α(t) =

nfit∑
j=1

αiNi(t), (27)

where Ni(t) are known interpolation functions, the coefficients α ∈ Rnfit can
be determined by a least-squares technique. This implies solving the normal
equations Aα = b.

Given the series of instants {t1, t2, . . . , tm} (with m ≥ nfit) at which temper-
ature is going to be measured, the matrix of the normal equations is determined
once and for all, during the offline phase, as

A = [aij ] =

[ m∑
r=1

ψi(tr)ψj(tr)

]
with

ψi(tr) =

∫ tr

0

Ni(tr − τ)

∫
ΓN

h(x, τ ;x0) q(x, tr − τ) dΓdτ.

Then, the measured values of temperature, umeas(x0, tr), at x0 and for the
series of instants {t1, t2, . . . , tm} allow to compute, in the online phase, the
independent term

b = [bi] =

[ m∑
r=1

ψi(tr)umeas(x0, tr)

]
.

Finally the normal equations Aα = b are solved.

5 Numerical examples

5.1 Single-ply composite cylinder: verification of the pro-
posed methodology

Aiming to demonstrate the ability of the proposed method to monitor tran-
sient models, a 2D problem, which involves a heat flux moving over the outer
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Laser Trajectory

R = 1.00

t = 0.05

Figure 1: Single-ply composite cylinder: problem statement.

boundary of a cylinder, is proposed. The outer boundary is also subjected to
heat convection while the other boundaries are adiabatic. Figure 1 depicts the
problem statement. The initial boundary value problem formerly described as

ρcp∂tu−∇ · k∇u = 0 in Ω× I,

n · k∇u = −`(u− uext) + q on ΓOut × I,

n · k∇u = 0 on ∂Ω/ΓOut × I,

u = u0 on Ω× {0},

(28)

where ρ = 1kg/m3 is density, cp = 1J/(kg K) is specific heat capacity, k = 1
W/(m K) is isotropic thermal conductivity and ` = 1W/(m2 K) is the heat
transfer coefficient, uext = 298K is the external temperature, ΓOut is the outer
boundary where the laser impacts and with a radius of 1.0m,

q(ξ, t) = 500 exp
(
−50(2ξ − πt)2

)
W/m

2
(29)

is the inflow forcing excitation, and ξ is the local tangent coordinate along ΓOut.
The temperature is measured (i.e. the point where temperature is monitored) at
the middle point of the inner boundary. Finally, the thickness of the single-ply
is 0.05m.

The range of frequencies considered is f ∈ [−250, 250] Hz or, in terms of the
angular frequency used in all previous sections, ω ∈ Iω := [−500π, 500π]. Such
a large interval of frequencies has been chosen in order to be able to make a
fair comparison with the reference solution. The time-step of a signal and the
maximum frequency that can be computed from it are related by the Nyquist-
Shannon theorem [40] as follows:

fmax = 1/2∆t. (30)
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Figure 2: Single-ply composite cylinder: convergence of the generalized fre-
quency transfer function.

The FE reference solution is obtained with a standard time-marching Crank-
Nicolson scheme whose time-step is chosen for accuracy considerations. In prac-
tice, a time-step of 2ms is accurate enough, and thus the maximum frequency
to be considered is 250 Hz. With that frequency, the time signal recovered after
performing the inverse Fourier transform has the same time-step as the reference
solution.

The range [−250, 250] Hz is clearly an overkill because the frequency range
of the imposed heat flux q is in [−20, 20] Hz. This later range is determined
because a Fourier transform of the heat flux seen by a point on ΓOut reveals
that harmonics of frequency greater than 20 Hz transfer a negligible amount of
energy to the system.

Moreover, note that for a particular negative frequency, the transfer function
must be the complex conjugate of its symmetric (positive) counterpart. This is
also a consequence of the Nyquist-Shannon theorem. Here negative frequencies
are also computed to numerically verify that the PGD method reproduces a
symmetric real part and an anti-symmetric imaginary part.

As discussed in Section 3 and depicted in (21), PGD is used to determine

an approximation, say ĥn, of the transfer function, ĥ, solution of problem (19).
In fact, Figure 2 shows the relative residue of (20) as the number of modes n
increases. The normalized residue is computed using the L2 norm of the discrete
residue normalized by the norm of the rigth-hand-side of (20a).

For demonstration purposes tolerances are taken small, beyond engineering
accuracy. However, 19 terms induce negligible (below 10−8!) normalized relative
residues. The average number of fixed-point iterations is 25 (same tolerance of
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10−8). Since 19 terms are necessary to reduce the residual norm below 10−8,
the total amount of FE solves in the offline stage is around 475.

Note that spatial modes and frequency modes are localized. Figures 3 and 4
show respectively the first three spatial and frequency modes. These modes are
X1, W 1, X2, W 2, X3 and W 3. Since all of them are complex, the real part and
the imaginary part are depicted. As expected, the real part of the frequency
modes is symmetric, while the imaginary part is anti-symmetric.

Notice that a uniform spatial discretization is used with 770 bilinear quadri-
lateral elements of size 0.01m, this implies 930 nodes with scalar complex un-
knowns. A non-uniform discretization is used for frequency because it varies
more rapidly near the origin. The mesh consists of 500 C0-continuous linear
elements refined around the zero-frequency using a cubic polynomial ω3 for
the element length. Since frequency modes do not involve any derivative their
corresponding algebraic equation can be solved point-wise. However, a FE dis-
cretization is introduced to approximate the frequency separated functions in a
least-squares sense.

To further verify that the PGD approximation of the generalized transfer
function ĥn is reasonable, it is evaluated at the extreme frequencies 0 and 250
Hz and then compared with a direct finite element (FE) resolution of (15) for
those precise frequencies. Figure 5 depicts the difference between both approx-
imations. The generalized solution gives approximations very close to those
obtained with an FE computation, errors are always below 10−5.

Finally, once ĥn is determined and its inverse Fourier transform computed,
hn = F−1[ĥn], equation (18) is used to determine the temperature at the de-
sired monitoring point x0 for a given excitation. The evaluation of the PGD
approximation and its inverse Fourier transform is performed only once for any
excitation, it is the offline phase. The actual application of the convolution, see
equation (18), for any excitation in order to determine the temperature at the
monitored point is the online or post-process stage. Here this is done for the
imposed external flux q(ξ, t), see equation (29), in the time interval t ∈ [0, 1] sec-
onds, which is the window of interest. The convolution integral is discretized in
time using the time-step that comes naturally from the greatest frequency con-
sidered in the generalized transfer function. This follows the previous discussion
on the use of the Nyquist-Shannon theorem [40].

The evolution with time of the temperature at x0 is shown in Figure 6. The
reference solution (solid red line) is computed with FE and a Crank-Nicolson
time-marching scheme. This scheme uses a ratio ∆t/∆x2 = 20 which has errors
below 0.4 10−4 compared with a reference solution using ∆t/∆x2 = 1/2 to
ensure an accurate transient response. Note that each time-step requires the
resolution of a system of equations whose dimension is determined by the FE
mesh used.

It is clear from this figure that the proposed method produces an accurate
response. However, it is more important to note that the online phase for
PGD-based approximation of temperature, which is determined at 500 instants
(equispaced by 2ms), requires with MATLABr on a laptop 0.34s, which is
almost a third of the physical time 1s. This confirms that given the generalized
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Figure 3: Single-ply composite cylinder: first 3 PGD spatial modes real (left)
and imaginary (right).
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Figure 4: Single-ply composite cylinder: first 3 PGD frequency modes.
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Figure 5: Single-ply composite cylinder: difference between PGD and FE solu-
tions, real (left) and imaginary (right) parts, for frequencies 0 Hz (top) and 250
Hz (bottom).
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Figure 6: Single-ply composite cylinder: comparison of the temperature evolu-
tion at point x0 for a moving heat flux on the outer boundary for the proposed
PGD-based solution (discontinuous blue) and the standard FE (solid red).

transfer function hn and an imposed heat flux q(ξ, t) along the outer boundary,
the temperature at a point x0 can be evaluated in real-time (actually faster
than real-time!). Note that this 35 times faster than the full FE solution, which
needs of around 12 seconds to be computed with a standard commercial code.

5.2 Multi-ply composite cylinder: response verification
and imperfection influence

An imperfection is introduced in the previously studied problem. That is, the
same geometry, see Figure 1, and the same equations, see (28), with the same
parameters are considered. However, now a zero thickness imperfection of a
prescribed length is introduced in the middle of the ply just between the inner
boundary and the outer boundary and centered at the measuring point. This
imperfection models a possible delamination of the composite and it is modeled
as a perfect adiabatic boundary. Obviously this imperfection affects convergence
but not drastically, see Figure 7 for a delamination length of 0.2m. Its influence
is more clear when plotting modes or the generalized transfer function. In fact,
the same comparison shown earlier (that is, the difference between a PGD ap-

proximation of the generalized transfer function ĥn and the direct FE) is shown
in Figure 8 for the extreme frequencies 0 and 250 Hz. Recall that computations
are still done for the whole range [−250, 250] Hz to further verify the symmetric
nature of the solution. Again errors are always below 10−5.

As discussed at the end of Section 2.3, the generalized transfer function
problem (8) is non-Hermitian but it is symmetric. The later property proves
sufficient for reciprocity, but it is well known that there is no proof of monotonic
convergence for the PGD method when confronted to non-Hermitian operators.
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Figure 7: Multi-ply composite cylinder: convergence of the generalized fre-
quency transfer function.

Thus, the convergence shown in Figure 7 shows a slight increase of the residual
norm for the last computed terms.

The influence of the imperfection is even more clear when plotting temper-
ature evolution at the measuring point. Figure 9 shows three cases with their
corresponding (expensive) comparison with FE, the no defect case, same curves
shown in Figure 6, and two defects, one of length 0.1m, the other with length
0.2m. Since the computer cost of the reference FE solution is similar to the one
of the previous section, its overhead with respect to the prosed method is also
of the same magnitude. The number of terms used in the PGD expansion is 21
and 25 for the short and long imperfection, respectively, recall that 19 were used
with no imperfection. Thus, the imperfection does not increase the number of
terms dramatically.

This methodology clearly shows that, in real-time, defects can be detected as
the difference between measured and computed temperature values. Moreover,
it further opens the possibility to determine the defect nature from its thermal
signature.

5.3 Multi-parametric extension

As presented in Section 4.1 this PGD-based approach presented here has a po-
tentiality that exceeds real-time monitoring of temperature at a given location.
More precisely, thermal conductivity, k, can be chosen as an extra parame-
ter. The generalized transfer function is now parametric in k and consequently,
temperature at the monitoring point x0 for any instance t can be computed in
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Figure 8: Multi-ply composite cylinder: difference between PGD and FE solu-
tions, real (left) and imaginary (right) parts, for frequencies 0 Hz (top) and 250
Hz (bottom).
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Figure 9: Multi-ply composite cylinder: comparison of the temperature evolu-
tion at point x0 for the proposed PGD-based solution (discontinuous) and the
standard FE (solid) for different defect lengths.

real-time for any conductivity k, i.e. u(x0, t, k), see equation (26).
The single-ply example presented and discussed in Section 5.1 is further

generalized for any conductivity k ∈ [1, 20]W/(m K). In this section, the range
of frequencies is up to 60 Hz instead of 250 Hz because there is no need to
assess the computational performance of the method compared to the reference
solution. In any case, the range of frequencies is taken such that the proper
symmetries must be recovered in the computed solution. This is clearly seen in
the modes shown in Figures 10 and 11.

This problem however is much more challenging because there is an extra
parameter. But more important, these difficulties are relevant because varia-
tions in thermal conductivity introduce major changes in the real behavior of
the thermal field. This is clearly observed in the modes associated to conductiv-
ity in Figure 11. Note the large variations introduced close to the lower bound
of the thermal range, recall k ∈ [1, 20]W/(m K). That is, for low conductivities
solutions must localize close to the heat source. This has a clear influence in the
convergence process of PGD, see Figure 12. Although convergence to engineer-
ing precision (0.5 10−2) is obtained with 14 modes, the rate of convergence is
slower compared to space-frequency separated representations computed in the
previous cases. Moreover, if further precision is required (beyond engineering
accuracy), the algorithm fails to converge due to the non-Hermitian character
of the operator. See [5] for further details and strategies to overcome this is-
sue. Moreover, regarding the fixed-point convergence of the multi-parametric
problem (i.e. convergence of each greedy algorithm), the average number of it-
erations per mode is now increased to 59. Consequently, a total of 826 FE
solves are done during the offline phase to compute the necessary 14 terms of
the PGD expansion. Note, that a brute force approach sampling (no functional
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Figure 10: Single-ply composite cylinder: first 3 PGD spatial modes real (left)
and imaginary (right).
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Figure 11: Single-ply composite cylinder: first 3 PGD frequency (left) and
thermal conductivity (right) modes.
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Figure 12: Multi-parametric convergence of the generalized frequency transfer
function.

approximation) of the generalized transfer function at the 121 frequency and
77 conductivity nodes would imply 9317 FE solves. Thus, the cost of the brute
force computation of the transfer functions depends on the fidelity of the dis-
cretization of the frequency and conductivity spaces. Whereas, the cost of the
computation of the PGD expansion (and the number of terms in the expansion)
is largely independent of the fidelity of the discretization of the frequency and
conductivity spaces, assuming the discretization is sufficiently fine.

Nevertheless, the PGD-based scheme converges globally although its local
behavior, precisely near the lower bound for conductivity, shows less precision
compared to larger values of k. This is better appreciated in the temperature
evolution at the measuring point. Figure 13 shows this evolution for several
values of the conductivity with their corresponding (expensive) comparison with
FE. Results are in very good agreement with the reference FE solution and
precision increases as k increases.

Now, since the largest frequency considered for the evaluation of the gen-
eralized transfer function is 60Hz, the response at the measuring point x0 is
recovered with a time-step of 8ms, recall (30). Consequently, the computational
time needed for the online phase is faster than in previous examples, only 0.09
seconds. Whereas, the FE reference solution is computed with the same time-
marching scheme described in previous sections (∆t = 2ms) because this implies
that 20 ≤ k∆t/∆x2 ≤ 400. Therefore, both solutions are not strictly compara-
ble. The computational time associated to the FE solution remains unchanged
(around 12 seconds) and the online stage of the proposed approach is now 133
times faster than the FE one.
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Figure 13: Multi-parametric comparison of the temperature evolution at point
x0 for the proposed PGD-based solution (discontinuous) and the standard FE
(solid) for thermal conductivities.

In any case, this approach clearly demonstrates its applicability to inverse
problems where the measured temperature is used to determine thermal con-
ductivity. Remember, that the temperature evolution at the measuring point is
obtained extremely fast.

5.4 Amplitude identification

This example shows the applicability of the proposed approach for the model
case of identification discussed in Section 4.2. First, some measured temperature
is needed, that is, umeas(x0, tr) for r = 1, . . . ,m. In this case, the “measured”
temperature is synthetically generated at m = 501 instances (∆t = 2ms) with
an inflow forcing excitation equal to the one defined in (29) whose amplitude is
modulated by [1 + cos(2πt)]/2. That is, a FE code with a Crank-Nicolson time-
marching scheme is used to generate the temperature data at the monitoring
point under an external heat source

q(ξ, t) = 250[1 + cos(2πt)] exp
(
−50(2ξ − πt)2

)
W/m

2
.

Second, this data is used to determine the laser input amplitude following the
procedure described in Section 4.2. The amplitude of the excitation is assumed
not known and it is approximated following a piecewise linear approximation
with nfit = 50 (i.e. a uniform mesh of 51 nodes each 20ms), see (27). Figure
14 shows the synthetically generated temperature at the monitoring point (left)
and a comparison (right) between the approximated nodal values (blue markers)
and the reference amplitude (solid red line). The coincidence is remarkable.
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Figure 14: Amplitude identification: synthetically generated temperature mea-
surements (left) used to calibrate the amplitude of the heat source (right), cal-
ibrated values (blue markers) and reference solution (solid red line).

6 Conclusions

This paper proposes a novel approach to monitor in real-time thermal processes.
This technique provides temperature evolution at a particular point in the do-
main, usually, where thermocouples will be placed. The online computation is
drastically speed-up. This can be used in a large number of problems ranging
from a simple surveillance of the process to a simulation-based control, as well
as identification problems for defects, material properties or power oscillations.

This approach recourses to the reciprocity principle, which can be employed
in thermal problems when working in the frequency domain where the equation
is symmetric (but not Hermitian). Then a convolution of the heat source and
a generalized transfer function is the only computational effort that the online
stage requires. Note that the generalized transfer function is determined by
means of the Proper Generalized Decomposition for all the range of frequencies
excited by the heat source.

Numerical results show the potentiality and the accuracy of this approach.
Examples of real-time monitoring, defect detection, multi-parametric evaluation
and inverse calibration are shown.

A Green’s function problem for a parabolic op-
erator

Although what follows is well known it is not standard to write the Green’s
function problem associated to the homogenous heat equation with homoge-
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neous Dirichlet and non-homogeneous Neumann boundary conditions. The ad-
joint Green’s function problem associated to (2) is detailed in (3) where its last
equation, namely G = 0 on Ω × [t0, T [, corresponds to the causality condition.
Green’s identity can be written as∫

Ω

∫ t0

0

[
G(∇2u− ∂tu)− u(∇2G+ ∂tG)

]
dtdΩ

=

∫
∂Ω

∫ t0

0

[
G(n · ∇)u− u(n · ∇)G

]
dtdΓ +

∫
Ω

[
uG|t=0 − uG|t=t0

]
dΩ. (31)

Consequently, using (2) and (3) in the previous identity (31), a representation
for u(x0, t0) with (x0, t0) ∈ ΓN×]0, T [ is obtained, namely

u(x0, t0) =

∫
ΓN

∫ t0

0

G(x, t;x0, t0) q(x, t)dtdΓ +

∫
Ω

u0(x)G(x, 0;x0, t0)dΩ,

(32)
where now it can be clearly identified that the causality condition implies that
the solution at time t0 cannot depend on any of its values at later times. Recall
T can be arbitrarily large.

B Reciprocity proof in the frequency domain for
even and odd real excitations

This appendix is aimed to prove the reciprocity principle, recall (13)〈
q̂1, û2

〉
=
〈
q̂2, û1

〉
, (33)

when both q̂1 and q̂2 are real. As discussed in Section 2.5, reciprocity, holds if
the two conditions stated in equation (14) are verified, namely(

∇û1,∇û2

)
=
(
∇û2,∇û1

)
and

(
û1, û2

)
=
(
û2, û1

)
.

Recalling that
(
·, ·
)

is the L2 scalar product of complex functions in Ω, see (9),
these conditions are equivalent to

Im
[(
∇û1,∇û2

)]
= 0 and Im

[(
û1, û2

)]
= 0.

Since û1 and û2 give values in C, one can define the real functions a1, b1, a2

and b2 such that û1 = a1 + ib1 and û2 = a2 + ib2, and the previous expressions
are equivalent to (

∇a1,∇b2
)

=
(
∇b1,∇a2

)
(34a)(

a1, b2
)

=
(
b1, a2

)
. (34b)

Recall also that û1 and û2 are the corresponding solutions of the weak problem
(8) for the two excitations q̂1 and q̂2 and for any imposed frequency ω. By
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definition, ai and bi for i = 1, 2 also belong to space of trial and test functions,
namely H1

ΓD
. Thus, equation (8) for the pair {û1, q̂1} can be particularized as

follows: (
∇û1,∇a2

)
+ iω

(
û1, a2

)
=
〈
q̂1, a2

〉
,(

∇û1,∇b2
)

+ iω
(
û1, b2

)
=
〈
q̂1, b2

〉
,

(35)

and likewise for {û2, q̂2}(
∇û2,∇a1

)
+ iω

(
û2, a1

)
=
〈
q̂2, a1

〉
,(

∇û2,∇b1
)

+ iω
(
û2, b1

)
=
〈
q̂2, b1

〉
.

(36)

Recall the splitting of û1 into real and imaginary parts, û1 = a1 + ib1, to
also split equations (35) into real and imaginary parts as(

∇a1,∇a2

)
− ω

(
b1, a2

)
=
〈
q̂1, a2

〉
, (37a)(

∇b1,∇a2

)
+ ω

(
a1, a2

)
= 0, (37b)(

∇a1,∇b2
)
− ω

(
b1, b2

)
=
〈
q̂1, b2

〉
, (37c)(

∇b1,∇b2
)

+ ω
(
a1, b2

)
= 0, (37d)

where the hypothesis that both q̂1(x, ω) and q̂2(x, ω) belong to R is used.
Likewise, for û2 = a2 + ib2 each equation in (36) is split into real and

imaginary parts as (
∇a2,∇a1

)
− ω

(
b2, a1

)
=
〈
q̂2, a1

〉
(38a)(

∇b2,∇a1

)
+ ω

(
a2, a1

)
= 0 (38b)(

∇a2,∇b1
)
− ω

(
b2, b1

)
=
〈
q̂2, b1

〉
(38c)(

∇b2,∇b1
)

+ ω
(
a2, b1

)
= 0 (38d)

Recall now that the L2 scalar product is symmetric for any pair of real
functions, more specifically

(
u, v
)

=
(
v, u
)

for all u and v ∈ R. Then subtract
(38b) from (37b), and (38d) from (37d) to obtain the desired conditions (34).
Thus if (34) are verified, then (14) also holds and reciprocity is demonstrated.
Note that these results hold for any ω.

To further close these appendix, note that the other equations not used up
to now also produce the same results. After subtracting (38a) from (37a) and
(38c) from (37c), the following equations are obtained:

ω
[(
b2, a1

)
−
(
b1, a2

)]
=
〈
q̂1, a2

〉
−
〈
q̂2, a1

〉
,(

∇a1,∇b2
)
−
(
∇a2,∇b1

)
=
〈
q̂1, b2

〉
−
〈
q̂2, b1

〉
.

However, both left-hand-sides in the previous equations are zero because they
correspond to (34), which was just proven, and these equations become〈

q̂1, a2

〉
=
〈
q̂2, a1

〉
and

〈
q̂1, b2

〉
=
〈
q̂2, b1

〉
,

which corresponds to split (33) into real and imaginary parts using the defini-
tions splitting of û1 = a1 + ib1 and û2 = a2 + ib2.
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[25] P. Lavedèze and L. Chamoin, On the verification of model reduction meth-
ods based on the proper generalized decomposition, Comput. Methods Appl.
Mech. Eng. 200 (2011), no. 23-24, 2032–2047.

[26] Jon Lee, A first course in combinatorial optimization, Cambridge Texts in
Applied Mathematics, Cambridge University Press, Cambridge, 2004.

[27] A. E. H. Love, A treatise on the Mathematical Theory of Elasticity, 4th ed.,
Dover Publications, New York, NY, 1944.

[28] Yvon Maday and Einar M. Ronquist, The reduced basis element method:
application to a thermal fin problem., SIAM J. Sci. Comput. 26 (2004),
no. 1, 240–258.

[29] J. P. Moitinho de Almeida, A basis for bounding the errors of proper gener-
alised decomposition solutions in solid mechanics, Int. J. Numer. Methods
Eng. 94 (2013), no. 10, 961–984.

[30] Griet Monteyne, Saqib Javed, and Gerd Vandersteen, Heat transfer in a
borehole heat exchanger: Frequency domain modeling., Int. J. Heat Mass
Transfer 69 (2014), 129–139.
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