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Resource synchronization constraints are a major rising features of many city logistics and transportation
problems. Such type of constraints typically arise from limited parking spaces at logistics warehouses or hubs

1. Introduction

In logistics, cross-docking is a distribution strategy in which goods are brought from suppliers to an
intermediate transshipment point, the so-called cross-dock, where they may be transferred (without storing)
to another vehicle for delivery. Compared to traditional distribution systems, cross-docking can help reducing
delivery costs and delivery lead time, that is why it is used by many companies from different sectors: LTL,
retail or automotive for example [? ]. In the vehicle routing literature, the associated routing problem is
called the Vehicle Routing Problem with Cross-Docking (VRPCD). It is a variant of the Pickup and Delivery
Problem with Transfers with one compulsory transfer point: vehicles start by collecting items, then return to
the cross-dock where they unload/reload some items and eventually visit delivery locations. A few authors
have proposed methods to solve this problem or variants of it, but to our knowledge, in most models there is
no limit on the processing capacities of the cross-dock: as soon as a truck arrives, it immediately undergoes
consolidation operations. However in practice, this may not be the case because of limited equipment or
workforce, and trucks may have to wait before being unloaded. In fact, a wide range of the cross-docking
literature is dedicated to the scheduling of operations at the cross-dock taking into account the cross-dock
capacity. It has recently been pointed out [? ? ], that there is a need to consider the synchronization of
local and network-wide cross-docking operations, in particular to take into account resource capacity at the
cross-dock. To that end, in this paper, we introduce a new variant of the VRPCD in which the number of
vehicles that can simultaneously be processed at the cross-dock is limited. We call it the Vehicle Routing
Problem with Cross-Docking and Resource Constraints (VRPCD-RC). The dock resource constraint, is a
resource synchronization constraint as defined by Drexl [? ] as vehicles compete to access a scarce resource:
the processing capacity of the cross-dock. Very often resource synchronization constraints imply a difficult
scheduling problem which is embedded within the vehicle routing problem. VRPCD-RC is no exception and
the main contribution of this paper is on the integration of the scheduling problem associated with the dock
resource constraints within a recently proposed large neighborhood search based method [? ] for the VRPCD.

The remainder of this paper is organized as follows. A literature review is presented in Section 2, while
the problem is defined in Section 3. In Section 4, we recall the method of [? ], and Section 5 is devoted to the
its adaptation to VRPCD-RC. Eventually, computational results are presented in Section 6.

2. Literature review

In this section we review the literature on two related vehicle routing problems: the vehicle routing problem
with cross-docking and vehicle routing problems with resource synchronization.
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2.1. The vehicle routing problem with cross-docking
A lot of cross-docking related problems exist such as: location, assignment of trucks to doors, inner flow

optimization or routing. In particular, the vehicle routing problem with cross-docking consists in designing
routes to pick up and deliver a set of transportation requests at minimal cost using a single cross-dock. It
was introduced by Lee et al. [? ] in a variant which imposes trucks to arrive at the exact same time at
the cross-dock. Wen et al. [? ] relaxed this last constraint only imposing precedence constraints based on
the consolidation decisions and added time windows. This is the most studied variant, and it is the one
we will refer to as the vehicle routing with cross-docking (VRPCD). Several heuristics have been proposed
to solve it: based on tabu-search [? ? ? ? ], iterated local search [? ] and large neighborhood search [?
]. Other variants have been studied by Santos et al. [? ? ] which integrate a cost for transferring item at
the cross-dock and have no temporal constraints. It was later extended in [? ] with optional cross-dock
return. These three articles proposed methods based on branch-and-price. The work of Petersen and Ropke
[? ] considers optional cross-dock return and multiple trips per day. They propose a parallel adaptive large
neighborhood search to solve large real-life instances with up to 982 requests. In [? ], Nikolopoulou et al.
considers optional cross-dock returns when comparing direct shipping versus cross-docking strategy. Dondo
and Cerdà [? ] consider a case where the number of doors is fixed and smaller than the number of trucks. In
particular each door is modeled individually: a time matrix models the time spent by a truck for moving
from an inbound door a to an outbound door b. They solve two randomly generated instances with up to 70
requests with a mathematical model combined with a sweep heuristic. Recently, Maknoon and Laporte [? ]
study the extension of the problem to multiple cross-docks, Nikolopoulou et al. study the many-to-many case
and Ahmadizar et al. [? ] propose a hybrid genetic algorithm for the multiple cross-dock, multiple suppliers
case. From a general perspective, the VRPCD can be viewed as a special case of the pickup and delivery
problem with transfers with only one compulsory transfer point [? ]. Guastaroba et al. [? ] released a survey
on intermediate facilities in freight transportation. For a general overview of cross-docking and cross-dock
related problems we refer the reader to [? ? ? ]

2.2. Resource synchronization
The expression resource synchronization appears in [? ] as a way to model the following constraint:

‘The total consumption of a specified resource by all vehicles must be less than or equal to a
specified limit.’

Of course, this resource has to be scarce to be constraining, as vehicles compete to access it. Such resource
constraints arise in many different vehicle routing problems usually when a special infrastructure or equipment
is required: a docking station or parking space in airport cargo system [? ], a berth in maritime transportation
[? ], a forest loader in forestry [? ], a pump in ready mix-concrete delivery [? ], an asphalt paver in public
works [? ]. Limited storage [? ] or processing capacities [? ] can also account for resource synchronization
constraints. Hempsch and Irnich [? ] also mention a situation where only a fixed number of vehicles (smaller
than the total number) can perform long routes.
Many approach have been applied to deal with these resource constraints in vehicle routing problems. In
[? ], Ebben et al. sequentially insert requests and check resource constraints in a predefined order. In [? ],
El Hachemi et al. use a dedicated constraint programming model, later combined with a greedy scheduling
heuristic in [? ], to ensure that resource constraints are satisfied during their entire solving process. In
ready-mix concrete routing problems as well as in public works routing problem, orders are larger than truck
capacity, as such they have to be split into several delivery operations that should not overlap. Resource
synchronization constraints arise at pickup sites or at delivery sites or at both. Asbach et al. [? ], Schmid
et al. [? ], Schmid et al. [? ] and Grimault et al. [? ] impose precedence constraints on the sequencing of
operations to handle precedence constraints. Gronhaug et al. [? ] rely on a time-discretized formulation in
which resource synchronization constraints are easily expressed. Hempsch and Irnich [? ] proposed a generic
modeling for inter-routes constraints via the use of Resource Extension Functions (REF). In particular they
focused on the use of REF as efficient feasibility tests in local search based algorithms when the solution is
represented by a giant tour. From this literature review, it is clear that most of the resource synchronization
constraints are in fact complex scheduling problem integrated into a vehicle routing problem. However the
precise definition of the scheduling problem depends largely on the vehicle routing problem at stake.
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3. The vehicle routing problem with cross-docking: model and resource synchronization con-
straint

This section presents the vehicle routing problem with cross-docking, and in particular the cross-dock
model, as defined by Wen et al. [? ]. It also introduces the two considered cross-dock resource models .

3.1. The vehicle routing problem with cross-docking
In the VRPCD, we consider a cross-dock c, a set of requests R, and a homogeneous fleet of vehicles V ,

each of capacity Q and based at o. Each request r ∈ R has to be picked up at its pickup location pr within
its pickup time window [epr

, lpr
], and has to be delivered at its delivery location dr within its delivery time

window [edr
, ldr

]. In case of early arrival, a vehicle is allowed to wait, but late arrivals are forbidden. We
denote by P the set of pickup locations and by D the set of delivery locations.
Each vehicle starts at o, then goes to several pickup locations, arrives at the cross-dock where it unloads/reloads
some requests. A vehicle then visits delivery locations and eventually returns at o. Note that a vehicle has to
visit the cross-dock even if it does not unload nor reload any requests there. The sequencing of operations at the
cross-dock is described in 3.2. The VRPCD is defined on a directed graphG = (V,A), withG = {o}∪P∪{c}∪D
and A = {(o, p)|p ∈ P} ∪ P × P ∪ {(p, c)|p ∈ P} ∪D ×D ∪ {(d, e)|d, e ∈ D} ∪ {(d, o)|d ∈ D} ∪ {(o, c), (c, o)}.
With each arc (i, j) ∈ A is associated a travel time ti,j and a travel cost ci,j .
Solving the VRPCD involves finding |V | routes, and a schedule for each route, such that the capacity and
time-related constraints are satisfied, at minimal routing cost. An arc-based mathematical formulation can be
found in [? ].

3.2. Precedence constraints at the cross-dock
Following [? ], if a vehicle k has to unload a set of items R−k and reload a set R+

k at the cross-dock, the
time spent at the cross-dock can be divided into four periods:

• Preparation for unloading. The duration δu of this period is fixed.

• Unloading of requests. The duration of this period depends on the quantity of items to unload. For
vehicle k the duration is (

∑
i∈R−

k
qi)/su, where su is the unloading speed in quantity per time unit. All

unloaded items become available for reloading at the end of this period.

• Preparation for reloading. The duration δr of this period is fixed.

• Reloading of requests. The duration of this period depends on the quantity of items to reload. For
vehicle k the duration is (

∑
i∈R+

k
qi)/sr, where sr is the reloading speed in quantity per time unit.

All the items for loading must have been unloaded before the beginning of the reloading operation
(preemption is not allowed).

Items that are not transferred at the cross-dock remain in the vehicle. Thus, if a vehicle does not unload or
reload it need not spend any time at the cross-dock and can leave immediately.

3.3. Resource constraints models at the cross-dock
According to Van Belle et al. [? ], the most common service mode of a cross-dock is called exclusive. In

an exclusive mode, a dock door is either exclusively dedicated to unloading (inbound operations) or reloading
(outbound operations). Such affectation is a decision taken at a strategical or tactical level which cannot be
modified in the VRPCD, which is an operational problem. In practice most cross-docks are I-shaped [? ],
with inbound doors on one side and outbound doors on the other. The flow of items is thus uni-directional,
which can be easier to manage. This is a common situation but it is not mandatory.
Cross-docks usually have many doors (typically ranging from 40 to 150 according to [? ]). However, as
mentioned in [? ] or [? ], processing capacities may actually be lower than the number of doors. This comes
from a limited workforce or special equipment to move the items within the cross-dock.
Because of the previous two considerations regarding operations at the cross-dock, we will consider two
exclusive cross-dock models that integrate resource constraints:
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• a case in which the total number of doors (both inbound and outbound) that can be processed
simultaneously is limited to a number S. This is a simple way to model resource constraints due to
limited workforce. We refer to this case as shared.

• a case in which the number of inbound doors (resp. outbound doors) that can be processed simultaneously
is limited to a number I (resp O). This is a simple way to model a resource constraints due to special
equipment. We refer to this case as separated.

Provided that at least two dock doors can be processed simultaneously, the scheduling problems at the
cross-dock is NP-Hard as the scheduling problem P2||Cmax is included in them. In the rest, we will simply
use dock to refer to the capacity in the number of docks processed simultaneously.
We call the VRPCD with these dock resource constraints, vehicle routing problem with resource constraints
(VRPCD-RC). Figure 1 illustrates the sequencing of consolidation operations for a vehicle that unloads
and reloads items at the cross-dock in the VRPCD-RC. When the vehicle arrives at the cross-dock, it can
immediately be prepared for unloading, but it has to wait before being actually unloaded (WU ) because of a
lack of available resources (note that such waiting time does not exist in the VRPCD). Once the unloading
operation is done, the vehicle can proceed and move to an outbound door. Again preparation operation can
be performed immediately, but it may wait before being actually reloaded (WR). This waiting time can have
two origins: first, not all items are available when it is ready (such situation can also arise in the VRPCD),
second, there maybe a lack of available resources (which cannot occur in the VRPCD).

Prep. U. Unloading Prep. R. Reloading

WU WR

t

Figure 1: Time chart for vehicle unloading and reloading at the cross-dock in the VRPCD-RC

4. Matheuristic of Grangier et al. [? ] for the VRPCD

In a previous paper [? ], we proposed a matheuristic to solve the VRPCD, called LNS+SPM (Large
Neighborhood Search + Set Partitioning and Matching). To our knowledge, this method is currently one
of the best heuristic for the VRPCD. A sketch of LNS+SPM method is given in Algorithm 1. In details,
the main component is LNS(l. 4-15), which is enhanced by the occasional solution of an SPM(l.18 and l.23).
When the LNS finds a new solution, the pickup part and delivery part, called legs, of each route are added to
a memory component (l. 16), called a pool of legs. The SPM aims to create the best possible solution from the
legs in the pool. As shown in [? ], this component significantly improves the quality of the solution compared
to LNS alone. Hereafter, we recall the methods that are used in the LNS component and the SPM component.

4.1. Large neighborhood search
Large Neighborhood Search [? ] iteratively destroys (removes several requests from) and repair (reinserts

requests into) the current solution using heuristics. In what follows, the destruction and repair methods used
in [? ] are summarized.

4.1.1. Destruction operators
When partially destroying a solution, a destruction method M− and a number Φ of requests to remove

are selected. Unless stated otherwise, this method is reused until Φ is reached. The transfer removal was
introduced for the VRPCD, and the other removal techniques below are inspired by [? ].

Random removal:. a request is removed at random.
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Result: The best found solution s?

1 Pool of legs L := ∅
2 Generate an initial solution s
3 s? := s
4 while stop-criterion not met do
5 s′ := s
6 Destroy quantity: select a number Φ of requests to remove from s′

7 Operator selection: select a destruction operator M− and a repair operator M+

8 Destruction : apply M− to remove Φ requests from s′, and put them in the requests bank of s′
9 Repair: apply M+ to reinsert the requests in the requests bank in s′

10 if acceptance criteria is met then
11 s := s′

12 end
13 if cost of s′ is better than cost of s? then
14 s? := s′

15 end
16 Add legs of s′ to L
17 if set partitioning and matching condition is met then
18 Perform set partitioning and matching with the legs in L
19 Update s? and s if a new best solution has been found
20 Perform pool management
21 end
22 end
23 Perform set partitioning and matching with the legs in L
24 Update s? if a new best solution has been found
25 return s?

Algorithm 1: LNS+SPM of Grangier et al.

Worst removal:. a request with a high removal gain is removed. The removal gain is defined as the difference
between the cost of the solution with and without the request. Then, the requests are sorted in non increasing
order of their removal gains and put in a list N . The request to remove is selected in a randomized fashion as
in [? ]: given a parameter p, a random number y between 0 and 1 is drawn. The request in position yp × |N |
is then removed.

Historical node-pair removal:. each arc (u, v) ∈ G is associated with the cost of the cheapest solution it
appears in (initially this cost is set to infinity). For each request, the sum of the cost of its associated arcs in
the current solution is computed. A randomized selection, similar to worst removal, is performed.

Related removals:. these methods aim to remove related requests. Let the relatedness of requests i and j
be R(i, j). Two distinct relatedness measures are used: distance and time. The distance measure between
two requests is the sum of the distance between their pickup points and the distance distance between their
delivery points. The time measure is the sum of the absolute difference between their start of service at their
pickup points and the absolute gap between their start of service at their delivery point. In both cases a
small R(i, j) indicates a high relatedness. A randomized selection, similar to worst removal (albeit with a non
decreasing ordering), is performed.

Transfer removal:. for each pair of routes (vi, vj), with vi 6= vj the number of requests transferred from vi to
vj is computed. Then a roulette wheel selection is applied on the pairs of routes (the score of a pair being
the number of requests transferred), and the requests that are transferred between the routes in the selected
pair are removed. If there are less transferred requests than the target number Φ to remove, the rest of the
removals is performed with random removal.
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4.1.2. Repair operators
In LNS, the unplanned requests are stored in a requests bank. In the following, the operators to reinsert

them in a solution are described. Best-insertion, 2-regret, 3-regret and 4-regrets are used as repair methods in
LNS+SPM.

Best insertion:. from the requests r in the requests bank, the one with the cheapest insertion cost considering
all possible insertion (with and without transfer) is performed.

Regret Insertion:. for each request r in the requests bank and for each pair of vehicles (pickup vehicle, delivery
vehicle), the cost of cheapest feasible insertion (if any) is computed. Note that the pickup and delivery vehicles
may be the same (in the case of insertion without transfer). Then, with these insertion options, the k-regret
value of r is defined as ck

r =
∑k

i=1(fi − f1), where f1 is the cost of the cheapest insertion, f2 is the cost of the
second-cheapest insertion and so on, and k is a parameter. The cheapest insertion of the request with the
highest regret value is performed.

4.1.3. Feasibility tests and reduction of neighborhood
In [? ], we used an adaptation of forward time slacks [? ] due to Masson et al. [? ] to check time feasibility

of insertions in constant time (capacity check in constant time is straightforward). To reduce the runtime, we
do not consider all insertions with transfer. For a request r we only consider transfer from the five closest
vehicles to its pickup point, to the five closest vehicles from its delivery point. For large scale instances, this
halves the runtime.

4.2. Set Partitioning and Matching
Given a set of legs L, set partitioning and matching (SPM) aims to select a subset L̃ of L such that (1)

each request is picked up and delivered by exactly one leg in L̃ and (2) legs in L̃ can be matched to form
routes that respect time constraints. Each leg l ∈ L has an associated routing cost cl, the objective in the
SPM is to minimize the sum of the costs of the selected legs. Notice that only non-dominated legs in L have
to be considered in the SPM. A pickup (resp. delivery) leg li is said to be dominated by a leg lj iff: li and lj
serve the same set of requests, cj < ci and aj ≤ ai (resp. bj ≥ bi) where a represents the arrival time at the
cross-dock and b represents the departure time from the cross-dock.
The SPM is solved using a technique called branch-and-check, presented in Section 4.2.1. Its subproblem is a
dedicated matching and scheduling subproblem, detailed in Section 4.2.2. The SPM is solved every thousand
iterations with a time limit of ninety seconds. If the SPM is solved to optimality within the time limit, the
legs in memory are kept, otherwise the pool is cleared.

4.2.1. Branch-and-check
We present branch-and-check [? ] using the following optimization problem:

M1 : min cᵀx (1)
Ax ≤ b (2)
H(x, y) (3)
x ∈ {0, 1}n (4)
y ∈ Rm (5)

Assume that H(x, y) represents a set of constraints that have a limited impact on the LP relaxation and/or
are difficult to efficiently model in a MIP, but that can be handled relatively easily by a CP solver. (1), (2)
and (4) form a relaxation (M2) of (M1) that can be solved using branch-and-bound. The general principle
of branch-and-check is the following. To solve (M1), a branch-and-bound is carried on (M2). Whenever an
integral solution of (M2) is found, a CP solver is called to check constraints (3). If they are satisfied, the best
solution found so far for (M1) is updated accordingly. Otherwise, this solution is rejected. In both cases the
branch and bound process continues.
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4.2.2. Application of branch-and-check to the VRPCD
For the SPM in the VRPCD, a classical set partitioning problem (SPP) is used as relaxation. For each

request r ∈ R and each leg l ∈ L, let λr,l be a binary constant that indicates whether this request is served by
this leg, and for each leg, let xl be a boolean variable that indicate whether this leg is selected. The SPP on
legs is then :

min
∑
l∈L

clxl (6)∑
l∈Lp

λr,lxl = 1 ∀r ∈ R (7)

∑
l∈Ld

λr,lxl = 1 ∀r ∈ R (8)

xl ∈ {0, 1} ∀l ∈ L (9)

The objective (6) is to minimize the cost of the selected legs while constraints (7) (resp. (8)) ensure that
each pickup point (resp. delivery point) is covered by exactly one leg.

A solution to the SPP on legs, which involves a set of pickup legs denoted L̃p and a set of delivery legs
denoted L̃d, is a solution to the VRPCD iff there exists a matching of pickup legs and delivery legs to form
routes that respects time constraints. For each pickup leg l ∈ L̃p, let Tl be the set of delivery legs that deliver
at least one request picked up by l. If a pickup leg l and a delivery leg l′ are matched together to create a
route, there are an associated unloading task o−ll′ , with a set of requests R−ll′ being unloaded, and a reloading
task o+

ll′ , with a set of requests R+
ll′ being reloaded. These tasks have to be performed iff l and l′ are in the

same route.
The matching and scheduling problem is modeled as a constraint satisfaction problem, represented using
notation from OPL (Optimization Programming Language [? ]). In particular the model is based on the
notion of interval variables and uses alternative constraints. As used here (from [? ]):

‘An interval variable represents an interval of time during which a task happen, and whose position
in time is an unknown of the scheduling problem. An interval is characterized by a start value,
an end value and a size. (...) An interval variable can be optional, that is, one can decide not to
consider [it] in the solution schedule.’

In this model, we model alternative activities [? ] by using alternative constraints (from [? ]):
‘An alternative constraint between an interval variable a and a set of interval variables b1, . . . , bn

models an exclusive alternative between b1, . . . , bn. If interval a is present, then exactly one of
intervals b1, . . . , bn is present and a starts and ends together with this specific interval. Interval a
is absent if and only if all intervals in b1, . . . , bn are absent.’

The matching and scheduling problem is then:

Alternative(tl, {o−ll′ ;∀l
′ ∈ L̃d}) ∀l ∈ L̃p (10)

Alternative(tl′ , {o+
ll′ ;∀l ∈ L̃p}) ∀l′ ∈ L̃d (11)

o−ll′ .IsOptional← True ∀l ∈ L̃p,∀l′ ∈ L̃d (12)
o+

ll′ .IsOptional← True ∀l ∈ L̃p,∀l′ ∈ L̃d (13)
o−ll′ .IsPresent ⇐⇒ o+

ll′ .IsPresent ∀l ∈ L̃p,∀l′ ∈ L̃d (14)
tl′ .Start ≥ tl.End ∀l ∈ L̃p, l

′ ∈ Tl (15)
o+

ll′ .Start ≥ o
−
ll′ .End+ δr ∀l ∈ L̃p,∀l′ ∈ L̃d s.t. R

+
ll′ 6= ∅ (16)

o+
ll′ .Start ≥ o

−
ll′ .End ∀l ∈ L̃p,∀l′ ∈ L̃d s.t. R

+
ll′ = ∅ (17)

o−ll′ .Start ≥ al + δu ∀l ∈ L̃p,∀l′ ∈ L̃d s.t. R
−
ll′ 6= ∅ (18)

o−ll′ .Start ≥ al ∀l ∈ L̃p,∀l′ ∈ L̃d s.t. R
−
ll′ = ∅ (19)

o+
ll′ .End ≤ b

′
l ∀l ∈ L̃p,∀l′ ∈ L̃d (20)
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For each pickup leg l, tl is an interval variable that represents the associated unloading task that takes
place at the cross dock. Alternative constraints (10) and (12) ensure that for each pickup leg l exactly one
unloading task oll′ is scheduled and that it is equal to tl. The same holds for delivery legs and reloading
operations through variables tl′ and constraints (11) and (13). Constraints (14) ensure that the unloading
operation associated with the matching of pickup leg l and the delivery leg l′ in the same vehicle is present
iff the corresponding reloading operation is present as well. Constraints (15) ensure that all the reloading
operations that depend on a pickup leg l start no earlier than the end of the unloading task associated with l.
Constraints (16) and (17) ensure that when two legs are packed together, the delay between the two tasks
respects the model presented in Section 3.2. Constraints (18) and (19) ensure that for each pickup leg, its
corresponding unloading operation cannot start before the earliest feasible arrival time at the cross-dock.
Constraints (20) ensure that for each delivery leg, its corresponding reloading operation is done by its latest
feasible departure time.

5. Proposed matheuristic for the VRPCD-RC

In this section, we present the matheuristic that has been derived from [? ] for the VRPCD-RC: Large
Neighborhood Search+Set Partitioning and Scheduling (LNS+SPS). In Section 5.1 we focus on the feasibility
test of insertions in the repair methods. Then we summarized the methods used in the LNS in Section 5.2.
Because of the dock resource constraints, in place of SPM, we propose a Set Partitioning and Scheduling
problem (SPS). We present it in Section 5.3. The overall method is summarized in Section 5.4.

5.1. Integration of dock resource constraints in LNS
In the repair methods of LNS, we need to ensure that the considered insertions are feasible both with

respect to capacity and time-related constraints (time windows and dock resource). Capacity constraints can
easily be checked in constant time, thus in what follows we focus on how to handle dock resource constraints.
To that end, we start by presenting the scheduling model associated with dock resource constraints, then the
methods we propose to solve it and eventually the general structure of feasibility tests we use for maximal
efficiency.

5.1.1. Scheduling problems associated with dock resource constraints
For each route k ∈ K, let ak be its earliest feasible arrival time at the cross-dock and bk its latest feasible

departure time from the cross-dock. For an insertion that would insert request r in route k1 for pickup and
route k2 for delivery, we can compute the new earliest feasible arrival time at the cross-dock of k1: a′1, and
the new latest feasible departure time of k2: b′2 (provided that no time windows violation occurs in the pickup
leg of k1 and in the delivery leg of k2, in which case we could immediately reject the insertion). Thus, dock
resource constraints can be seen as a satisfaction scheduling problem at the cross-dock.
For each route k ∈ K, let Tk be the set of routes that deliver at least one request picked up by k; let t−k and t+k
be its associated unloading and reloading operations respectively; and let R−k and R+

k be the sets of requests
R−k being unloaded and reloaded respectively. Let isActive be an indicator function such that isActive(o, h)
is equal to 1 iff task o is being performed at instant h. Let H be the time horizon of the problem.
In the separated case the associated scheduling problem is:

t+
k′ .Start ≥ t

−
k .End ∀k ∈ K, k′ ∈ Tk (21)

t+
k .Start ≥ t

−
k .End+ δr ∀k ∈ K; s.t. R+

k 6= ∅ (22)
t+
k .Start ≥ t

−
k .End ∀k ∈ K; s.t. R+

k = ∅ (23)
t−k .Start ≥ ak + δu ∀k ∈ K; s.t. R−k 6= ∅ (24)

t−k .Start ≥ ak ∀k ∈ K; s.t. R−k′ = ∅ (25)
t+
k .End ≤ bk ∀k ∈ K (26)∑

k∈K

isActive(t−k , h) ≤ I ∀h ∈ [0, H] (27)∑
k∈K

isActive(t+k , h) ≤ O ∀h ∈ [0, H] (28)
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In the shared case the associated scheduling problem is:

(21 - 26)∑
k∈K

isActive(t−k , h) + isActive(t+k , h) ≤ S h ∈ [0, H] (29)

Constraints (21) ensure that all the reloading operations that depend on a route k start no earlier than the
end of the unloading task associated with k. Constraints (22) and (23) ensure the delay between the unloading
and reloading task of a route k respects the model presented in Section 3.2. Constraints (24) and (25) ensure
that for each route, its corresponding unloading operation cannot start before the earliest feasible arrival time
at the cross-dock. Constraints (26) ensure that for each route, its corresponding reloading operation is done
by its latest feasible departure time. Constraints (27 and 28) models the separated case while constraint (29)
models the shared case.

5.1.2. Proposed methods for the dock resource constraints
To solve the satisfaction scheduling problems of Section 5.1.1 we propose two methods: (1) using a third

party CP solver or (2) using scheduling heuristics. When repeatedly calling a third party solver we cannot
neglect its overhead (model building, memory allocation of the solver, ...) potentially leading to very high
runtimes. Scheduling heuristics are potentially faster, we could thus perform more LNS iterations within the
same time budget, but they are likely to report more false negatives (stating that an insertion is infeasible
although it is actually feasible). This is a runtime versus quality trade-off situation.

The scheduling heuristics we use are list heuristics: among a list of available tasks (a task is said to be
available for scheduling if all its predecessors have already been scheduled) we select one task according to a
given criterion and we try to schedule it. If we can schedule it, we update the resource constraints accordingly,
we update the list of available tasks to schedule, and we repeat the process. If at one point we cannot schedule
a task, we declare this insertion infeasible according to this scheduling heuristic. The four different selection
criteria we use are listed hereafter.

First Come First Served (FCFS):. we select the task with the earliest release date in the list of available
tasks.

Earliest Due Date (EDD):. we select the task with the earliest due date in the list of available tasks.

Most Successors First (MSF):. we select the task with the largest number of successors tasks in the list of
available tasks. By definition reloading tasks do not have successors, we break ties with the EDD rule.

Shortest Processing Time First (SPTF):. we select the task with the shortest processing time in the list of
available tasks.

5.1.3. Checking the feasibility of an insertion in the VRPCD-RC
First, observe that, a necessary condition for an insertion to be feasible in the VRPCD-RC, is for it to be

feasible in the VRPCD. As mentionned in Section 4.1.3, feasibility tests in the VRPCD can be performed in
constant time. On the other hand feasibility test with respect to dock resource constraints in the VRPCD-RC
cannot be done in constant time. Thus for maximal efficiency, we test the feasibility of an insertion as shown
on Fig. 2: we start by checking if it is feasible for the VRPCD, if the insertion passes these tests, we test it
with respect to dock resource constraints using either a CP solver or scheduling heuristics.

5.2. LNS operators
In the proposed LNS, we use the destruction operators of LNS+SPM (see Section 4.1.1). For repair

operators, two facts should be taken into account: first, because of resource constraints, only a limited number
of requests will be transferred (some requests that were transferred in the VRPCD may not be transferred in
the VRPCD-RC). Thus, there is an incentive in creating routes without transfer. Second, as mentioned in
Section 5.1.2, feasibility tests can no longer be performed in constant time, thus repair methods that check
many insertions, such as k-regret with a high value of k, should be avoided. As such we use: best insertion,
2-regret, best insertion without transfer and 2-regret without transfer as repair methods. In the variants
without transfer, only insertions without transfer are considered.
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Figure 2: Logical flow-chart of feasibility tests for the VRPCD-RC

5.3. Integration of dock resource constraints in the periodical set partitioning based problem
For the VRPCD-RC, adding dock resource constraints makes the SPM (see Section 4.2) significantly more

difficult. Indeed preliminary tests showed that, very often, the CP solver could not find any solution to the
corresponding matching and scheduling problem within reasonable runtimes. On the other hand we noticed
that the scheduling problems of Section 5.1.1 were solved by the CP solver within a relatively small time.
Thus, because the set partitioning idea proved very efficient in [? ], and to cope with the added complexity
of the dock resource constraints, in place of SPM we propose to solve a Set Partitioning and Scheduling
problem (SPS). It provides the best possible solution from a set of routes (instead of legs in the SPM). It is
solved using branch-and-check. To that end a set partitioning problem on routes (similar to the SPP on legs
of Section 4.2.2) is solved in a branch-and-bound fashion. At each integral node, the associated scheduling
problem corresponds to the one in Section 5.1.1.
This approach is efficient to select the best routes but the matching of legs in these routes may be improved. At
the end of the SPS, we solve an optimization version of the matching and scheduling problem of Section 4.2.2,
where the objective is to minimize the volume transferred at the cross-dock. In the shared case, the CP
problem is:

min
∑

(l,l′)∈L̃p×L̃d

o−ll′ .IsPresent×
∑

r∈R−
l,l′

qr (30)

(10 - 20)∑
l∈Lp

isActive(tl, h) ≤ I ∀h ∈ [0, H] (31)

∑
l′∈Ld

isActive(t′l, h) ≤ O ∀h ∈ [0, H] (32)

(30) minimizes the volume transferred at the cross-dock, while constraints (31) and (32) account for the
capacity constraints and are similar to (27) and (28) of Section 5.1.1. A similar problem for the separated
case can be formulated with an adaptation of (29).

5.4. Structure of the proposed method
Algorithm 2 and Algorithm 3 present a sketch of the proposed method: LNS+SPS. Algorithm 2 is similar

to Algorithm 1 except for two changes. First, since feasibility tests are computationally more intensive, we
consider a stop-criterion based on time, and enclose all instructions within time conditions. Second, the pool
of routes K (l. 2 in Algorithm 3) plays the exact same role as the pool of legs L in Algorithm 1. The pool of
legs L is still present, it now acts as a memory that can help improving routes in K before solving the SPS, as
presented in Algorithm 3. We first apply dominance rules to the legs in L (see Section 4.2). Then we try to
improve each route in K by replacing its pickup leg and/or its delivery leg by a non dominated equivalent in L
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(l. 2-4 in Algorithm 3). We remove dominated routes from K (l. 5 in Algorithm 3). A route is dominated iff
there exists a route with a smaller cost that covers the same requests and can arrive earlier at the cross-dock
and/or can leave later from the cross-dock. We solve the SPS, and eventually we try to improve the matching
of legs in the solution. The initial solution is obtained by applying a 2-regret without transfer.

Result: The best found solution s?

1 Pool of legs L := ∅
2 Pool of routes K := ∅
3 Generate an initial solution s
4 s? := s
5 while stop-criterion not met do
6 s′ := s
7 Destroy quantity: select a number Φ of requests to remove from s′

8 Operator selection: select a destruction operator M− and a repair operator M+

9 Destruction : apply M− to remove Φ requests from s′, and put them in the requests bank of s′
10 Repair: apply M+ to reinsert the requests in the requests bank in s′
11 if acceptance criteria is met then
12 s := s′

13 end
14 if cost of s′ is better than cost of s? then
15 s? := s′

16 end
17 Add legs of s′ to L
18 Add routes of s′ to R
19 if set partitioning and scheduling condition is met then
20 Perform SPS(L, K, s?, s′);
21 end
22 end
23 return s?

Algorithm 2: LNS+SPS

6. Computational experiments

The algorithm is coded in C++ and uses CPLEX and CP Optimizer from IBM ILOG Cplex Optimization
Studio 12.6.1 as MIP solver and CP solver, respectively. The experiments were conducted under Linux using
an Intel Xeon X7350 @ 2.93GHz. Only one core is used both by our code and third party solvers. We consider
instances proposed by Wen et al [? ], that range from 50 to 200 requests. They are based on real life data
from a Danish logistics company. The termination criterion for all algorithms is based on time: 15 minutes
for size 50 instances, 30 minutes for size 100 for instances, 60 minutes for size 150 instances and 120 minutes
for size 200 instances. SPS time limit is 180 seconds. These time limits are between two and three times the
runtimes reported for the VRPCD in [? ]. As in [? ], the number Φ of requests to remove in the repair phase
of the LNS is drawn randomly in the interval [min(30, 10% of |R|), max(60, 20% of |R|)], acceptance criterion
is descent.

6.1. Bound setting for the number of docks
To determine when limiting the number of docks start being a constraint in the VRPCD-RC, we postpro-

cessed the solutions obtained in [? ] for the VRPCD. To that end, for all the ten solutions found for each
instance for the VRPCD, we solve optimization versions of the satisfaction scheduling problems introduced in
Section 5.1.1. We take as objective: to minimize S in the shared case, and in the separated case, we only
consider symmetric configurations where I = O and we minimize I. In table 1, columns A correspond to the
smallest value obtained after two hours of runtime for the CP solver, and columns B correspond to the worst
value obtained after five minutes of post-process. For each instance, columns B corresponds to a threshold for
the dock value, above which, the VRPCD-RC could be solved as a VRPCD (postprocessing the solution for a

11



Input: pool of legs L, pool of routes K, solution s?, s′ from Algorithm 2
1 Remove dominated legs from L
2 for each route k ∈ K do
3 Replace, if possible, its pickup leg and/or its delivery leg with a non-dominated equivalent in L
4 end
5 Remove dominated routes from K
6 Solve SPS with all routes in K
7 if a new best solution has been found then
8 Improve the matching of legs (as in Section 5.3)
9 Update s?

10 end
11 if Set partitioning was not solved to proven optimality then
12 Clear K
13 end

Algorithm 3: Perform SPS

limited amount of time to satisfy dock resource constraints). As such, in our experiments for the VRPCD-RC,
we will test dock values up to those reported in colums B.
From this table, we can observe that dock resource constraints arise for dock values that corresponds to
approximately 15% of the fleet size in the shared case and 10% of the fleet size in the separated case.

Instance Avg. fleet size Separated Shared
A B A B

50a 14.2 2 2 2 2
50b 16.1 2 2 2 2
50c 16.0 2 2 2 3
50d 15.0 2 2 2 2
50e 16.0 2 2 2 3
100b 31.0 3 3 4 4
100c 31.5 3 3 4 4
100d 29.2 3 3 4 4
100e 32.0 3 3 4 5
150a 45.4 4 5 5 7
150b 46.9 4 5 6 7
150c 45.9 4 5 6 7
150d 45.0 4 5 6 7
150e 46.0 4 5 6 7
200a 62.9 6 7 8 9
200b 62.0 6 6 8 9
200c 61.1 6 7 8 9
200d 62.0 6 7 8 9
200e 62.0 6 7 8 10

Table 1: Dock value obtained when postprocessing for each instance all of ten solutions of [? ]. Columns A refer to the to the
best solution (min dock use) obtained after two hours, while columns B correspond to the worst value (max dock use) obtained

after five minutes of post-processing.

6.2. Parameters tuning
In this section we evaluate and adjust several parameters. We start with the time limit for the CP solver

in LNS feasibility tests, then we report the success rate of heuristics. After, we present the influence of
the SPS frequency on the quality of solutions, and eventually we compare the performance of four possible
configurations: with CP solver tests/with heuristic tests in LNS, with/without SPS. For tuning, we use
instances 50b, 100b, 150b, 200b, and we consider the shared cross-dock configuration case.

6.2.1. CP solver time limit in feasibility tests
When checking the feasibility with respect to dock resource constraints, we need to set a time limit after

which the CP solver will stop searching and declare the insertion infeasible. This avoids spending a large
amount of time checking the feasibility of a single insertion. In Table 2, we compare four different time limits.
In the final setting, the time limit of the CP Solver is set to 0.01 seconds

6.2.2. Heuristics performance
As mentioned in Section 5.1.2, using CP versus using heuristics for feasibility tests is a quality/runtime

trade-off. For each instance in the training set, we performed two runs with LNS, with the stop-criterion
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CP Time Limit (s) 1 0.1 0.01 0.001
Runtime 1 0.33 0.12 0.10
Time limit hit (%) 0.5 12.9 20.1 27.3

Table 2: Comparison of four different time limits for the CP solver, when used as feasibility test in the shared case. Runtime is
normalized with 1 representing the runtime for a CP solver time limit of 1s. Time limit hit represents the percentage of calls for
which the CP solver could not find an answer within the time limit. Figures reported for one thousand LNS iterations, two runs

were performed in each case.

set to one thousand iterations. We count how many time insertions were reported feasible by heuristics and
how many times they were reported feasible by the CP solver with a time limit of 1 second (according to
Table 2, with this time limit we can consider that the CP solver give an accurate answer most of the time).
On average, 71.1% of feasible insertions are reported feasible by heuristics. Performing one thousand LNS
iterations with feasibility tests performed by heuristics takes only 18.2% of the time taken with CP solver
tests (with 0.01s as time limit).

6.2.3. SPS frequency
In [? ], the SPM was solved twenty times per run (every thousand iterations with a stop-criterion of

twenty thousands iterations). In the VRPCD-RC, because feasibility tests are computationally intensive, the
stop-criterion is based on time. The number of iterations performed within the time limit depends not only
on the size of the instance but also on the dock value. As such, we propose a SPS-criterion based on time. In
Table 3 and Table 4, we compare three different settings for the SPS frequency : 10, 20 and 40 calls within the
time limit. Accordingly, the number of calls per run is set to 20 for heuristic test and 10 for CP solver test.

Number of calls 10 20 40
Average gap (%) 0 -0.70 -0.29

Table 3: Comparison of the impact of the number of SPS calls per run on the quality of the solution for heuristic feasibility tests.
Five runs were performed for each dock value for each instance in the training set. 10 calls is taken as reference for the gap

Number of calls 10 20 40
Average gap (%) 0 +0.40 +0.68

Table 4: Comparison of the impact of the number of SPS calls per run on the quality of the solution for CP solver tests. Five
runs were performed for each dock value for each instance in the training set. 10 calls is taken as reference for the gap

6.2.4. Performance comparison
On Fig. 3 we present the convergence curves of LNS and LNS+SPS over time for both CP solver and

heuristics feasibility tests. From this graph, we can observe two things. First, as in the VRPCD, periodically
solving a set partitioning based problem significantly improves performance compared to LNS alone: -6.96%
for heuristic test and -7.92% for CP solver test on average. Second, the best performing method is LNS+SPS
with heuristic feasibility tests, as it finds solutions that are 1.19% better on average than LNS+SPS with CP
solver test. In the rest, we thus use LNS+SPS with heuristic feasibility test.

6.3. Results
Table 5 and Table 6 present the results in the shared case and in the separated case respectively. A

dock value of 0 corresponds to the case where no transfer is allowed. These results highlight the increased
complexity induced by integrating dock resource constraints, as there exists for each instance, at maximum
dock value, a solution with 0% gap (see Section 6.1). Nevertheless LNS+SPS finds solutions that are 1.6%
more expensive in the shared case and 1.5% more expensive in the separated case, which remains satisfactory.
The algorithm shows relatively good performance in terms of stability: the difference between the average
value and the best value of the five runs for each instance and each dock value is 0.6% on average and at most
1.4% in the shared case and 0.6% on average and at most 3.2% in the separated case.
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Figure 3: Comparison of the evolution of the average solution quality over time (in percentage of time limit) for four different
configurations: with CP solver/with heuristics tests, with/without SPS. The results aggregate 5 runs for each dock value in the
shared case for instances in the training set. They have been normalized, first by instance then by method, with 100 representing

the cost at the end of LNS with CP solver tests (LNS-CP)

Regarding routing costs: integrating dock resource constraints implies an increase in cost. Comparing the two
systems, the shared case costs are slightly smaller than separated costs (e.g, for instance 150b, 5.85% for 2
shared docks compared to 6.05 as shown on Fig. 4). This differences increases with the number of docks.

7. Conclusion

This paper presents an adaptation of the method proposed in [? ], which is based on large neighborhood
search and periodic calls to a set partitioning based problem, to solve an extension of the VRPCD that
includes resource synchronization constraints at the cross-dock. To deal with these constraints, scheduling
heuristics and a CP model have been used as feasibility tests for insertions in LNS. In this case, experiments
have showed that heuristics are the most efficient compromise. Compared to [? ], because of the increased
complexity induced by resource synchronization constraints, the set partitioning based problem had to be
adapted with a simpler subproblem. As in [? ], adding this component helps finding solutions significantly
better than those obtained by LNS alone. The proposed method has been tested on instances from the
literature, where it shows an increase in routing costs with the decrease in cross-dock capacity.
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Instance Dock Average Best
Value Gap (%) Value Gap (%)

50a 0 6882.4 6.5 6871.93 6.4
1 6682.72 3.4 6628.05 2.7
2 6530.81 1.0 6471.48 0.2

50b 0 8027.87 8.1 8021.81 9.6
1 7609.07 2.4 7541.33 3.0
2 7481.99 0.7 7470.78 2.0

50c 0 7857.77 7.3 7827.67 7.1
1 7505.34 2.5 7473.94 2.2
2 7449.88 1.8 7397.38 1.2
3 7338.88 0.3 7330.08 0.3

50d 0 7760.32 10.2 7760.11 10.4
1 7272.57 3.3 7206.48 2.5
2 7108.91 1.0 7076.13 0.7

50e
0 8157.77 9.1 8156.94 9.4
1 7843.08 4.9 7772.39 4.3
2 7616.54 1.8 7554.75 1.4
3 7537.85 0.8 7473.56 0.3

100b

0 15636.26 8.8 15628.7 8.9
1 15322.86 6.6 15234.2 6.2
2 15181.04 5.6 15073.8 5.0
3 14929.18 3.8 14810.3 3.2
4 14700.96 2.3 14620.3 1.9

100c

0 14915.92 7.9 14915.6 8.2
1 14654.16 6.0 14611.5 6.0
2 14456.6 4.5 14395.0 4.4
3 14353.9 3.8 14188.2 2.9
4 14145.78 2.3 14081.3 2.2

100d

0 14860.46 9.3 14832.5 9.2
1 14424.74 6.1 14338.9 5.6
2 14316.7 5.3 14207.4 4.6
3 14070.18 3.5 13976.2 2.9
4 13866.24 2.0 13774.7 1.5

100e

0 15095.92 8.1 15091.5 8.2
1 14819.26 6.2 14733.8 5.7
2 14783.82 5.9 14622.8 4.9
3 14515.0 4.0 14384.7 3.2
4 14357.26 2.9 14258.4 2.3
5 14281.0 2.3 14085.3 1.0

150a

0 20859.22 7.5 20807.7 7.5
1 20534.8 5.8 20406.4 5.4
2 20505.68 5.7 20342.5 5.1
3 20248.54 4.4 20090.1 3.8
4 20110.14 3.7 19988.6 3.3
5 19822.08 2.2 19740.0 2.0
6 19725.04 1.7 19629.7 1.4
7 19603.78 1.0 19541.6 0.9

150b

0 22272.64 7.7 22236.5 8.0
1 22018.68 6.5 21934.5 6.6
2 21882.36 5.9 21825.0 6.0
3 21651.48 4.7 21585.3 4.9
4 21432.16 3.7 21360.2 3.8
5 21227.66 2.7 21097.6 2.5
6 21065.9 1.9 20986.2 2.0
7 20963.44 1.4 20899.9 1.5

150c

0 21313.88 7.8 21295.7 8.0
1 21095.74 6.7 20959.6 6.2
2 20945.68 5.9 20854.4 5.7
3 20869.2 5.5 20642.1 4.6
4 20685.7 4.6 20559.7 4.2
5 20475.68 3.6 20369.1 3.3
6 20208.76 2.2 20155.8 2.2
7 20153.68 1.9 20100.9 1.9

150d

0 21962.58 7.9 21951.3 8.0
1 21735.46 6.8 21536.0 6.0
2 21609.34 6.2 21442.6 5.5
3 21448.08 5.4 21368.0 5.2
4 21504.76 5.6 21289.8 4.8
5 21040.52 3.4 20874.7 2.7
6 20806.38 2.2 20642.2 1.6
7 20715.78 1.8 20608.5 1.4

Instance Dock Average Best
Value Gap (%) Value Gap (%)

150e

0 21036.12 7.9 21019.3 8.1
1 20827.96 6.8 20703.5 6.4
2 20774.68 6.6 20587.3 5.9
3 20599.16 5.7 20320.2 4.5
4 20398.18 4.6 20341.0 4.6
5 20346.68 4.4 20245.7 4.1
6 20073.92 3.0 20025.5 3.0
7 19915.4 2.2 19773.1 1.7

200a

0 28779.68 7.1 28760.6 7.2
1 28507.12 6.1 28423.1 6.0
2 28516.14 6.2 28263.0 5.4
3 28273.0 5.2 28159.1 5.0
4 28323.38 5.4 28146.5 5.0
5 28151.24 4.8 28054.8 4.6
6 28099.32 4.6 27959.8 4.3
7 27922.8 3.9 27782.5 3.6
8 27704.08 3.1 27527.8 2.7
9 27497.36 2.4 27391.5 2.1

200b

0 29168.18 6.9 29082.8 6.9
1 28962.52 6.1 28771.7 5.7
2 28809.76 5.5 28751.4 5.6
3 28784.88 5.5 28514.1 4.8
4 28589.7 4.7 28546.4 4.9
5 28374.36 4.0 28186.6 3.6
6 28446.44 4.2 28234.3 3.7
7 28156.7 3.2 28091.2 3.2
8 27889.54 2.2 27677.2 1.7
9 27630.92 1.2 27516.8 1.1

200c

0 28153.28 7.9 28119.3 8.5
1 27996.14 7.3 27819.7 7.3
2 27744.12 6.4 27555.7 6.3
3 27629.96 5.9 27381.3 5.6
4 27534.98 5.5 27207.7 4.9
5 27522.48 5.5 27315.8 5.4
6 27236.38 4.4 27135.5 4.7
7 26921.14 3.2 26820.2 3.4
8 26685.4 2.3 26570.1 2.5
9 26583.44 1.9 26477.1 2.1

200d

0 29463.02 7.6 29446.8 7.8
1 29328.88 7.1 29227.0 6.9
2 29126.9 6.3 28993.7 6.1
3 28962.52 5.7 28825.7 5.5
4 28866.58 5.4 28776.3 5.3
5 28777.12 5.0 28523.2 4.4
6 28708.02 4.8 28546.4 4.5
7 28467.38 3.9 28283.7 3.5
8 28208.72 3.0 28129.6 2.9
9 28002.7 2.2 27877.6 2.0

200e

0 28225.92 8.1 28139.3 8.0
1 28106.28 7.7 28001.5 7.4
2 27935.84 7.0 27659.2 6.1
3 27789.42 6.4 27566.0 5.8
4 27610.22 5.8 27432.2 5.3
5 27421.46 5.0 27113.3 4.0
6 27324.54 4.7 27067.2 3.9
7 27061.8 3.7 26967.5 3.5
8 26858.48 2.9 26772.0 2.7
9 26665.24 2.1 26543.9 1.8
10 26677.62 2.2 26600.4 2.1

Table 5: Average values and best solution found in the shared cross-dock configuration case; LNS+SPS was run five times for
each instance. Columns Gap refer to the gap to average values and best solutions reported in [? ] for the VRPCD
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Instance Dock Average Best
Value Gap (%) Value Gap (%)

50a 0 6882.4 6.5 6871.93 6.4
1 6614.32 2.3 6554.55 1.5
2 6574.13 1.7 6545.34 1.4

50b 0 8027.87 8.1 8021.81 9.6
1 7520.61 1.3 7496.96 2.4
2 7462.01 0.5 7451.21 1.8

50c 0 7857.77 7.3 7827.67 7.1
1 7428.2 1.5 7385.09 1.0
2 7359.79 0.5 7335.97 0.3

50d 0 7760.32 10.2 7760.11 10.4
1 7169.38 1.8 7127.77 1.4
2 7078.23 0.5 7054.87 0.4

50e 0 8157.77 9.1 8156.94 9.4
1 7705.03 3.0 7649.99 2.6
2 7546.88 0.9 7478.02 0.3

100b
0 15636.26 8.8 15628.7 8.9
1 15184.1 5.6 15088.4 5.1
2 15163.32 5.5 14887.9 3.8
3 14718.0 2.4 14618.6 1.9

100c
0 14915.92 7.9 14915.6 8.2
1 14484.24 4.7 14360.5 4.2
2 14470.17 4.6 14313.7 3.8
3 14130.18 2.2 14029.0 1.8

100d
0 14860.46 9.3 14832.5 9.2
1 14413.18 6.0 14331.3 5.6
2 14120.35 3.8 14036.7 3.4
3 13911.1 2.3 13762.2 1.4

100e
0 15095.92 8.1 15091.5 8.2
1 14801.8 6.0 14736.4 5.7
2 14643.54 4.9 14459.3 3.7
3 14329.12 2.7 14251.0 2.2

150a

0 20859.22 7.5 20807.7 7.5
1 20482.68 5.6 20397.9 5.4
2 20430.4 5.3 20298.3 4.9
3 20161.44 3.9 19866.7 2.6
4 19818.47 2.1 19683.2 1.7
5 19709.34 1.6 19599.3 1.2

150b

0 22272.64 7.7 22236.5 8.0
1 21922.38 6.0 21770.5 5.8
2 21896.35 5.9 21733.3 5.6
3 21600.98 4.5 21422.4 4.1
4 21060.7 1.9 20957.2 1.8
5 20940.14 1.3 20877.8 1.4

150c

0 21313.88 7.8 21295.7 8.0
1 21060.12 6.5 20986.5 6.4
2 21057.4 6.5 20653.7 4.7
3 20707.24 4.7 20594.7 4.4
4 20431.26 3.3 20299.3 2.9
5 20071.94 1.5 19936.7 1.1

150d

0 21962.58 7.9 21951.3 8.0
1 21714.83 6.7 21549.1 6.1
2 22019.32 8.2 21327.4 5.0
3 21424.15 5.2 20967.3 3.2
4 20964.9 3.0 20784.2 2.3
5 20666.2 1.5 20553.8 1.2

Instance Dock Average Best
Value Gap (%) Value Gap (%)

150e

0 21036.12 7.9 21019.3 8.1
1 20888.67 7.2 20774.5 6.8
2 20722.35 6.3 20625.8 6.0
3 20551.0 5.4 20280.7 4.3
4 20347.46 4.4 20179.9 3.8
5 19884.9 2.0 19789.0 1.7

200a

0 28779.68 7.1 28760.6 7.2
1 28530.67 6.2 28419.3 6.0
2 28435.3 5.9 28267.4 5.4
3 28173.58 4.9 28063.0 4.6
4 27994.62 4.2 27881.1 4.0
5 27702.8 3.1 27555.8 2.8
6 27458.1 2.2 27333.0 1.9
7 27259.12 1.5 27177.7 1.3

200b

0 29168.18 6.9 29082.8 6.9
1 28890.62 5.8 28695.7 5.4
2 28784.8 5.5 28526.9 4.8
3 28450.8 4.2 28329.2 4.1
4 28200.94 3.3 28054.6 3.1
5 28049.1 2.8 27940.8 2.7
6 27653.76 1.3 27581.9 1.3

200c

0 28153.28 7.9 28119.3 8.5
1 27735.95 6.3 27703.7 6.9
2 27656.33 6.0 27451.2 5.9
3 27435.67 5.2 27320.1 5.4
4 27277.44 4.6 27083.6 4.5
5 26846.82 2.9 26776.0 3.3
6 26521.98 1.7 26387.4 1.8
7 26362.82 1.1 26263.4 1.3

200d

0 29463.02 7.6 29446.8 7.8
1 29172.35 6.5 29013.9 6.2
2 28888.03 5.5 28775.9 5.3
3 28907.9 5.5 28754.6 5.2
4 28778.5 5.1 28633.4 4.8
5 28403.72 3.7 28294.1 3.5
6 27974.1 2.1 27846.6 1.9
7 27762.08 1.3 27654.5 1.2

200e

0 28225.92 8.1 28139.3 8.0
1 28046.3 7.4 27972.5 7.3
2 27683.53 6.0 27555.4 5.7
3 27360.9 4.8 27186.0 4.3
4 27229.36 4.3 27025.6 3.7
5 26943.35 3.2 26823.2 2.9
6 26593.2 1.9 26530.5 1.8
7 26687.88 2.2 26593.6 2.0

Table 6: Average values and best solution found in the separated cross-dock configuration case; LNS+SPS was run five times for
each instance. Columns Gap refer to the gap to average values and best solutions reported in [? ] for the VRPCD
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(a) Shared cross-dock configuration

(b) Separated cross-dock configuration

Figure 4: Influence of the dock value for instance 150b. Five runs were performed for each dock value. The y-axis represents the
average gap with respect to the average value reported in [? ]
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